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Abstract We study several physical aspects of the dressed
elliptic strings propagating on R x S? and of their counter-
parts in the Pohlmeyer reduced theory, i.e. the sine-Gordon
equation. The solutions are divided into two wide classes;
kinks which propagate on top of elliptic backgrounds and
non-localised periodic disturbances of the latter. The former
class of solutions obey a specific equation of state that is
in principle experimentally verifiable in systems which real-
ize the sine-Gordon equation. Among both of these classes,
there appears to be a particular class of interest the closed
dressed strings. They in turn form four distinct subclasses
of solutions. One of those realizes instabilities of the seed
elliptic solutions. The existence of such solutions depends
on whether a superluminal kink with a specific velocity can
propagate on the corresponding elliptic sine-Gordon solu-
tion. Unlike the elliptic strings, the dressed ones exhibit inter-
actions among their spikes. These interactions preserve an
appropriately defined turning number, which can be associ-
ated to the topological charge of the sine-Gordon counter-
part. Finally, the dispersion relations of the dressed strings
are studied. A qualitative difference between the two wide
classes of dressed strings is discovered.

1 Introduction

Classical string solutions [1-11] have enlightened several
interesting features of the holographic duality [12—15] and
have provided a framework for non-trivial checks of its valid-
ity. String solutions in symmetric spaces, which are relevant
to holography, such as the sphere or the AdS spacetime, as
well as their tensor product, have been the subject of exten-
sive study in the literature. Furthermore, the study of such
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solutions facilitates the qualitative understanding of the clas-
sical dynamics of the system whose quantum version is the
only known consistent quantum theory of gravity.

The sigma models that describe string propagation on
symmetric spaces have the additional interesting feature of
integrability, which provides several non-trivial tools for the
construction of string solutions. Taking advantage of inte-
grability methods, it is possible to find general expressions
for string solutions on specific symmetric spaces, in terms
of hyperelliptic functions [16,17]. These suggest a natural
classification of the solution in terms of the genus of the rel-
evant algebraic curve. Although this kind of treatment has
the advantage of being very generic, the understanding of
the physical properties of the solutions in this language is
rather limited. This is due to fact that the behaviour of the
hyperelliptic functions is much more complicated than that
of simpler elliptic or trigonometric/hyperbolic functions. As
an exception, the genus one solutions, i.e. elliptic solutions,
can be expressed in terms of elliptic functions and their prop-
erties have been extensively studied.

Another signature of the system’s integrability is the
fact that the sigma models, which describe the propaga-
tion of strings in symmetric spaces, are reducible to inte-
grable systems of the family of the sine-Gordon equation,
the so called symmetric space sine-Gordon models (SSSG)
[18-21]. This property is formally called the Pohlmeyer
reduction [22,23]. It can, in principle, facilitate the study
of string propagation, as the SSSGs have been quite exten-
sively studied in the literature. Many non-trivial solutions
of those are known. However, the Pohlmeyer reduction
is a non-local, many-to-one mapping that is difficult to
invert.

The Pohlmeyer reduction sheds new light on another
interesting property of the aforementioned sigma models.
It is possible to construct new string solutions given an
initial seed one, by means of solving a simpler auxil-
iary system instead of the original equations of motion.
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This procedure is the so called “dressing method” [24—
26] and it is the analogue of the Backlund transformations
on the side of the reduced integrable theory. The dress-
ing transformation, as well as the Bicklund transforma-
tions add one extra genus on the initial solution. This is
a degenerate one, as one of the related periods is diver-
gent.

Although the Pohlmeyer reduction is difficult to invert, a
systematic approach for its inversion in the case of elliptic
solutions has been developed recently [27], in the case of
strings propagating on AdS3 or dS3. We have extended the
method for the case of strings propagating on the sphere
S2 [28]. It was shown that the method leads to a uni-
fied and simple description of all elliptic solutions in terms
of the Weierstrass elliptic function. In a subsequent work
[29], we took advantage of this simple description to con-
struct dressed elliptic solutions through the dressing method,
i.e. degenerate genus two solutions. An advantage of this
construction is the expression of the solutions in terms of
simple elliptic and trigonometric functions, which makes
many of their physical properties accessible to study. In
the present work we focus on salient aspects of the above
solutions, such as spike interactions, implications to the
stability of the seed solutions and their dispersion rela-
tions.

An interesting feature of the elliptic string solutions is
the fact that they have several singular points, which are
spikes. These can be kinematically understood, as points of
the string that propagate at the speed of light [1] due to the
initial conditions. As they cannot change velocity, no mat-
ter what forces are exerted on them, they continue to exist
indefinitely, as long as they do not interact with each other.
In the already studied spiky string solutions [6—10,28], the
spikes rotate around the sphere with the same angular veloc-
ity, and thus, they never interact. Interacting spikes emerge in
higher genus solutions. The simplest possible such solutions
are those which are constructed via the dressing of elliptic
strings [29].

The stability of the elliptic strings is closely related to the
stability of their Pohlmeyer counterparts, which are either
trains of kinks or trains of kinks—antikink pairs. Although the
latter is known [30], it is not easy to construct an explicit non-
perturbative solution exposing the instability of the elliptic
strings. Naively, such a solution has to be a degenerate genus
two solution. In this case, one of the two periods must coin-
cide to the periodicity of the original elliptic solution under
study. On the other hand, the degenerate one will describe
the infinite evolution which either asymptotically leads to or
away from the elliptic solution. Therefore, the dressed ellip-
tic strings are conducive to the determination and study of
the instabilities of the elliptic ones.

The structure of the present paper is as follows: in Sect. 2,
we review some elements of the construction of the dressed
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elliptic strings on S? that are necessary for the study of their
physical properties. In Sect. 3, we elucidate the properties
of the sine-Gordon counterparts of the dressed elliptic string
solutions, in order to both facilitate the study of the latter
and furthermore establish a mapping between the properties
of the string solutions and their counterparts. In Sect. 4, we
study the constraints which have to be imposed on the dressed
string solutions, so that they are closed. In effect they emerge
to belong to four distinct classes. In Sect. 5, we study the time
evolution of the string solutions focusing on the interaction
of spikes. In Sect. 6, we study a specific class of dressed
string solutions that reveals instabilities of a subset of the
elliptic string solutions. In Sect. 7, we calculate the energy
and angular momentum of the dressed elliptic strings, which
have great interest in the context of the holographic duali-
ties. In Sect. 8, we discuss our results. Finally, there is an
appendix containing some technical details on the asymp-
totic behaviour of the dressed strings and the calculation of
the conserved quantities.

2 Review of dressed elliptic string solutions

String propagation in symmetric spaces can be described by
a sigma model, whose target space X is the respective sym-
metric space, supplemented by the Virasoro constraints. In
this work, we focus on the case ¥ = R! xS2, namely strings
propagating on a two-dimensional sphere. The target space
can be embedded in a higher dimensional flat space, namely,
RU-3) Then, the sigma model action reads

S:/dsmg*((ag()-(a_X)+/\(X-X—1)), 2.1)

where £+ = (¢! + £9)/2 are the usual light-cone world-
sheet coordinates. Four-vectors are denoted by X, whereas
the notation X is used for the three-vector composed by the
spatial components of X. The inner product of two four-
vectors A and B with respect to the Minkowski metric
g = diag{—1,1, 1, 1} is denoted as A - B.

A well-known method for constructing solutions of the
equations of motion of (2.1) is the so-called dressing method
[24-26], which connects solutions of the sigma model equa-
tions in pairs. Given a solution of the latter, henceforth called
the seed solution, one can apply the above method in order to
generate a new non-trivial one [31-35]. Recently, an appli-
cation of the dressing method appeared [29], where elliptic
string solutions [28] were used as seeds. The study of the
physical properties of the above dressed solutions is the sub-
ject of this work.

The aforementioned elliptic string solutions on R? x S?
were obtained in [28] through the inversion of Pohlmeyer
reduction. For this purpose, it is convenient to adopt a more
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general gauge selection than the usual static gauge, the lin-
ear gauge, i.e. X0 = m &T + m_&~, with m+ constants.
In this gauge, the equations of motion of the sigma model
(2.1) can be mapped to the sine-Gordon equation. This map-
ping is known as Pohlmeyer reduction and in general it is
non-invertible. However, a systematic way of inverting this
mapping was developed in [28], for the case of elliptic solu-
tions of the sine-Gordon equation. The latter can be written in
a form depending on only one of the worldsheet coordinates
£9 or &' and will be called the translationally invariant and
the static solution respectively. The translationally invariant
ones read,

w(éo; E)

ﬂJ 0oy 4 £
(—I)Lz‘”l arccos (—2@(5;&% . E < u?,
= LQJ 20(&%+w2)+5
(=1L Jarccos (—%)
£04 2
+27T LTT”J ) E > n-,
2.2)
where 2 = —m_ . m_. The moduli of the Weierstrass elliptic

function, which are usually denoted in the literature by g, and
g3, take the values

o=, =L EY
3 T 3 \\3 '

Interchanging £° with £! in (2.2), accompanied by an over-
all shift of the solution by , yields the static solutions. The
parameter E is an integration constant that can take any value
larger than — 2. The solutions with E < p2 are called oscil-
latory, whereas the ones with E > . are called rotating, in
an analogy to the simple pendulum that was established in
[28]. Clearly there are four classes of solutions character-
ized as translationally invariant-oscillating or -rotating and
static-oscillating or -rotating.

The resulting string solutions are expressed in terms of
the Weierstrass functions g, ¢ and o. The associated cubic
polynomial has always three real roots, and, thus, the one
of the periods of the elliptic function g is real, whereas the
other one is purely imaginary. In the following, they will be
denoted as 2w and 2w;, respectively. The string solutions
read,

(2.3)

to)1 = v/x2 — 9 (@E° + Vx5 — o (@), (2.4)
Fi (50/1) cos (ZEI/O - (Eo/l; a))
Xoy = | Fi (") sin (€10 — @ (£1; a)) (2.5)

P (EO/I)

where

e ton-p@
Fl@‘\/ Nop@

_ [ —pE+wm)
RE) =[S 2.6)
and

) ___i céE+wr+a)o(wy—a) .
PO = T m o @t O

2.7

The indices 0 and 1 account for the Pohlmeyer counterpart of
the solution being translationally invariant or static respec-
tively. The function @ has the quasi-periodicity property

@ (6 +20150) =@ (£%a) +21 ¢ @1 — ¢ @D @),
2.8)

whereas the parameters £ and g (a) appearing in (2.5) read

mi+m? E

0 =x - = =,
x1— g (a) 2 T3

(2.9)
where x; = E/3 is one of the three roots of the cubic poly-
nomial associated with the Weierstrass elliptic function. The
other two roots read xp/3 = —E /6 £ w? /2. The parameter a
takes values on the imaginary axis and it is a free parameter
of the solution, which reflects the fact that Pohlmeyer reduc-
tion is a many to one mapping. The value of a is specified
by demanding that the string (2.5) obeys the correct period-
icity conditions, so that the solution is a finite closed string.
Furthermore, a is connected to the parameter £ through
9 (@ _ mi —m?

e T T

(2.10)

which determines the relevant sign of a and £.

Taking appropriate limits of the parameters involved in
(2.5) results in some well known string solutions. In the case
of a static Pohlmeyer counterpart, the giant magnons can
be recovered in the limit £ = p? and the GKP strings in
the limit a = w;,. Had one considered the solutions with
translationally invariant counterpart, one would obtain the
BMN particle for E = — 2 and the single spike solution for
E = /ﬂ. The reader is referred to [28] for further details on
the elliptic string solutions.

The two-dimensional sphere S? is trivially isomorphic to
the coset SO(3)/SO(2), and, thus, instead of the action (2.1)
one could consider the non linear sigma model action

S—l/dg dt Tr<8 19 f) @.11)
=3 +ds— + -7) :

@ Springer
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where the group valued field f is appropriately constrained
in the aforementioned coset space. The mapping

f= (1 — 2X0X§) (1 - 2XXT) , (2.12)

where Xg = (0 0 1), provides the corresponding isomor-
phism. The equations of motion following from the action
(2.11) are

—1
[8+ 0 ff 5

R
I+

2.13
P 2.13)
with A being the spectral parameter. These equations can be
considered as the compatibility condition of the auxiliary
system of first order differential equations

arff!

v ). (2.14)

The existence of the system (2.14) can be attributed to the
integrability properties of the non linear sigma model and,
furthermore, it has the property that if ¥ (i) is a solution,
W (0) satisfies the equation of motion of the non linear sigma
model.

The dressing method involves the specification the aux-
iliary field ¥ (1) corresponding to a known seed solution f
of the non linear sigma model, by solving the system (2.14),
supplemented by the condition ¥ (0) = f. Then, one may
construct a new solution of the auxiliary system of the form
¥’ (L) = x (M)W (1), by utilizing an appropriate dressing
factor x(A). Finally, taking A to zero, one obtains a new
solution of the sigma model equations of motion, namely,
f' = x(0)¥ (0). The latter is called the dressed solution. The
dressing factor, which is in general a meromorphic function
of the complex parameter A, must obey certain conditions,
that ensure that the dressed solution is still an element of the
coset SO(3)/SO(2). The simplest possible dressing factor,
which fulfils these requirements, has only two poles, com-
plex conjugate to each other, that lie on the unit circle. It
reads

01 01
N=I+— 4+ =
x () A -

(2.15)

where

(k) ppTw = ()
pre=tanw (M) p
(2.16)

01 = ()\.1 —)11) P, and P =

and the vector p is any constant complex vector obeying
the conditions p”p = 0 and p = (I —2XoX]) p. The

@ Springer

dressing transformation also induces a change in the (left)
sigma model charge' of the seed solution

A2 = Zfdslalgj.
j

(2.17)

Since the sigma model charge is proportional to the angu-
lar momentum of the string, the above formula connects the
angular momenta of the seed and dressed solutions.

In the case that the seed solution is the elliptic string solu-
tion (2.5), the change of variables

X:=UXo, f=0U0fUT, ¥ Q) :=0U¥ (1),
(2.18)

where

o = (1 - 2X0X§) R (1 - 2)25(7) , (2.19)

has been proven useful for the solution of the auxiliary system
(2.14) [29]. When the seed solution has a static Pohlmeyer
counterpart, the matrix U reads

cosp —sing 0 R 0R
U=|sing cose 0 0 101, (2.20)
0 0 1 —F0F

where ¢ (§°,¢') = Va1 — 9 @§° - @ ("1 a).
The {i, j}-element of the solution of the auxiliary system
¥ (M) reads

w;; (h) = —E}, 2.21)
where
E; := cos (JZsO ) (sl; a)) el

+ sin (JZ&O —® (gl; a)) e, (2.22)
Ej := — cos (JZsO ) (g‘; a)) e

+ sin («/Zgo % (gl; a)) e1, (2.23)
Ey:=e3. (2.24)

The vectors E; are in turn expressed in terms of the vectors
€

! The right charge is not independent in the case of a symmetric space
sigma model.
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X0 X Ko KQ
e = X

V(Xo x k)T (Xo x ko) \/KgKo’

Xo X Ko KQ

V(X0 x k)" (Xo x k0) [Tk

(2.25)

and the parameters

and a, which play a role analogous to the parameters £ and
a of the elliptic solution (2.5). The parameter a is defined
through the equations

B E m2 (1-2\? 1+
pa@a=-g-7 <1+/\> o (1— ) 227
2 2 2 2
S ooy s my (1—A _mZ 14+ A
9 @) =ivA (—2 (—1+x> - <—1—x> ) (2.28)

Finally, the vector kg is defined through the equations

ko1 = —ko,1- (2.29)
2
172 L+A% 12 20 12
ko =15k t 5k (2.30)

The vectors ko are determined by the matrix U, via the
equations UT (3;U) = k;" T;, where T; are the generators of
the lie group SO(3) defined as usual.

The application of the dressing factor (2.15) yields the
dressed solution

R M= 1/ X_XT 1/a —a X4 XT
f/zl_l /M T+_/1 1 ; 23D
Mo XEXC /a XIX_

where
X, =" ()0p, X_=060W()0p. (2.32)
In terms of the variable X’ the solution reads
X' = ! sinf; (X4 + X_) +cosb1 X

= 2XJTFX_ 1 (X4 - 1X0

:=sin 0 X + cos 01 Xy, (2.33)

where A = exp 6, and, finally, expressing the dressed solu-
tion in terms of the non-hatted variables X, yields X’ = U X'
The time component ¢’ of the dressed solution is the same as
the one of the seed solution (2.5), since the dressing trans-
formation acts only on the S>-part, i.e. the spatial part of the
seed solution. In order to get the corresponding solution, in

the case of a seed with translationally invariant Pohlmeyer
counterpart, one should simply exchange £° with £

The sine-Gordon counterparts of the dressed solutions
have also been obtained in [29]. It turns out that they corre-
spond to solutions, which are obtained after the application of
asingle Bécklund transformation to the sine-Gordon counter-
part of the seed solution (2.2), revealing the deep connection
between the dressing method and the Bécklund transforma-
tions

0 gO—HZ)=a,using0_('7)

) 2
— 1 7

9. =% 1 n?t? (2.34)
2 a 2

of the sine-Gordon equation. The corresponding Béacklund
parameter a is related to the position of the poles of the dress-
ing factor through

my 91
a = |[———tan
V m_ 2

The Pohlmeyer counterpart of the dressed solution in the case
of a translationally invariant seed reads

(2.35)

D2>0,

1 (£0.5
¢ + 4 arctan |:A+B tanh 25 2E:4) JHZD(S ’a)] ,

¢ = { ¢ + 4arctan [‘gsz (sl +id (SO;&))} . D=0,

<p+4arctan|:A'EBt w], D? <0,
(2.36)
where
1 .
=3 [,ﬁ(a ta ) - 2E] —_A (e’91), (2.37)
2 ) E ~
o (a) = T (a +a ) e =¥ (anLsm(expify)) .
(2.38)

The functions ¢, A and B are completely determined by the
seed solution of the sine-Gordon equation as

—1

N a
= 2 arctan <

a+a~

[ tan 2) +Q2k—Dm

2 ¢ 1
+sgn<a —1)271 Lo, (2.39)
2 2
N R v
A_scz\/a +a=*+2cosg,
@
B=—d=,
D)
se = (—1)¥sgna (2.40)

and k € Z.
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3 Properties of the sine-Gordon counterparts of the
dressed elliptic strings

It has been shown that many physical properties of the elliptic
strings solutions are directly connected to properties of their
sine-Gordon counterparts [28]. The establishment of this
mapping enhances the intuitive understanding of the dynam-
ics of string propagation on the sphere via the dynamics of the
sine-Gordon equation, which is a much simpler system. For
this purpose, in this section, we will study some basic prop-
erties of the sine-Gordon counterparts of the dressed elliptic
string solutions reviewed in Sect. 2.

The dressed strings, as well as their sine-Gordon counter-
parts can be classified into two large categories depending
on the sign of the constant D>. When D> > 0 (or equiva-
lently when a lies on the real axis), Eq. (2.36) describes a
localized kink travelling on top of an elliptic background.
The position of the kink can be identified with the position
where the argument of the tanh in Eq. (2.36) vanishes, namely
gl = —io (£ a)/D, where it holds that ¢ = ¢. Far away
from this region, the solution assumes a form that is deter-
mined solely by the seed solution. As we have commented
in Sect. 2, a Bicklund transformation increases the genus
of the solution by one, adding a degenerate hole to the rel-
evant torus, which corresponds to a diverging period. This
is evident in this case, where the two periods appearing in
the solution are the one of the seed solution and the infinite
time/space required to accommodate the kink.

The minimum value of the parameter D> is D%ﬁn =
(uz — E)/2. Thus, when a rotating seed is considered, it is
possible that D> < 0 (or equivalently & lies on the imaginary
axis shifted by the real half period w;). In such a case, the
hyperbolic tangent function appearing in the dressed solution
becomes trigonometric tangent. As a result, the effect of the
dressing on the solution is not localized in the position where
the argument of this function vanishes, but it is rather spread
everywhere in a periodic fashion. It follows that these solu-
tions do not describe a kink propagating on an elliptic back-
ground. They should be understood as a periodic structure
of oscillating deformations on top of a rotating elliptic back-
ground. Such solutions contain two periods; one of the seed
solution and one imposed by the aforementioned trigono-
metric tangent. However, it is the imaginary period of the
trigonometric tangent that is divergent, and, thus, these solu-
tions are still degenerate genus two solutions, in this manner
similar to the solutions of the D? > 0 class.

It follows that a bifurcation of the qualitative characteris-
tics of the dressed solution occurs at D? = 0.

3.1 D? > 0: kink-background interaction

We start our analysis considering solutions whose seeds are
translationally invariant. Figure 1 depicts two such dressed

@ Springer
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Fig. 1 The dressed sine-Gordon solution for a translationally invariant
oscillating seed with E = —91%/10 and a translationally invariant
rotating seed with E = 112 /10. In both cases, the Bicklund parameter
equalsa =2

solutions of the sine-Gordon equation, one with an oscillatory
seed and one with a rotating seed.

It is evident from the form of the solution (2.36), as well
as Fig. 1, that the solutions with D? > 0 have the form of a
localized kink at ! = —i (é 0, Zz) / D propagating on top of
an elliptic background. Let us determine, whether the kink is
left- or right-moving. This is determined by the monotonicity
of the function —i® (£°; @) /D. It turns out that

i _i@(éo;ﬁ) _,u_z a?—a?
d&0 D 4 p(E%twm)—p @

implying that the direction of the motion of the kink is deter-
mined by the sign of a> — a~2, i.e. by sq := sgn (Ja| — 1).
Since g (é 04 a)z) < g (a), as the former takes values
between the two smaller roots and the latter is larger than
the largest root, it turns out that the regime |a] > 1 cor-

3.1
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responds to the left-moving kinks and the regime |a| < 1
corresponds to the right-moving ones, similarly to the usual
analysis for kinks built on top of the sine-Gordon vacuum.

Moreover, Eq. (2.36) implies that far away from the kink
location, the solution depends solely on £°. This is also vis-
ible in Fig. 1. As this is the defining property of the elliptic
solutions of the sine-Gordon equation [28], we expect that
asymptotically the solution assumes the form of an elliptic
solution. One can easily check, either directly or via the cal-
culation of the energy density far away from the kink location
(see Sect. 3.4), that this is not an arbitrary elliptic solution,
but the seed one up to a time shift (and possibly a reflection).
This time shift may be different before and after the passage
of the kink. It is a matter of algebra to show that

’)

=<p($0:bé) tsg 2k — 1+ 50) 7.
3.2)

lim

- R A+
Sq4¢ = sq | ¢ £ 4arctan
DEN+id (80;a)—+o0

Thus, indeed the asymptotic form of the solution is a shifted
version of the seed solution, being reflected depending on
the sign s4. In the following, taking advantage of the reflec-
tion symmetry ¢ — —¢ of the sine-Gordon equation, we
will avoid this reflection, considering the properties of the
solution s;¢. The above asymptotic expression (3.2) deter-
mines ¢ and 4 arctan(A + B)/ D interms of the seed solution,
allowing the re-expression of the dressed solution (2.36) in
terms of the latter as

54§ = % (0 (e°+a) +9 (s —a)) +sa @k -
DE' +id (6% a)
2

<an (5 (0 (43) -0 (2-2) 455 )|

(3.3)

+ 45,4 arctan [tanh

The Eq. (3.2) clearly implies the asymptotic behaviour
lim sq4¢ = ¢ (6% Fal) + 2ni7, where ny € Z. There-

£0 5400

fore, as depicted in Figs. 2 and 3, the passage of the kink
effectively causes a delay to the motion of the system equal
to

A0 =2]a). (3.4)
This observation provides a nice physical meaning to the
parameter a. This time delay quantifies the effect of the inter-

action of the elliptic background with the kink that was intro-
duced by the Bicklund transformation.

Page 7 of 41 869
P+
N\ -~ N
I\ A Y B
[BEAY Y 1\ |
[ Y ;o [ I
R ANE |
]
2 .|‘....1....1....1....1‘.....,....4‘.....: RSV PSRN NN WP AR M .:
\
Vo v \ ! Vo |
VERYERVYAR 12
\ 1
\J ./ \_l4wl \/ 4, ] ﬂéo
L L L L L Ll
|
A ,"‘ [y ,i\‘
\ [ I Y
\ HER [ !
[/ [ \
1 1 1 1
H _“ .o e I
(AR A | AN .
0 i (A S (A
Vo [ \ 1 \
] \ 1
\ ! \
] \ [}
\ 1 \
] \ 1
v \ 1 v
L -’ N,

Fig. 2 The dressed solution for an oscillating seed with E = 9u%/10
and Biicklund parameter a = 2 at &' = 0. The dashed lines indicate the

asymptotic behaviour ¢ (50 + Zz)

Fig. 3 The dressed solution for a rotating seed with E = 1112/10 and
Bicklund parameter a = 2 at £' = 0. The dashed lines indicate the
asymptotic behaviour ¢ (€% + ). The jump due to the kink is positive,
but smaller than 27, as a result of the delay in the background motion

Finally, studying the average value of ¢ in a full period of
the seed solution at spatial infinity, we find that

El—s—o0

- <g0 (EO - IZzI) —¢ (éo + |5’|)>+2ﬂsc

27 Se,
- jal
27ws, — 27Tw_1’

lim sqp — lim s40
§1—>+OO 1

2
E=n (3.5)
E > p?,
implying that the solution is a kink or antikink depending on
the sign s.. Notice that in the case of arotating background, as
shown in Fig. 3, the jump in the rotation induced by the kink is
not an integer multiple of 2, but it ranges in [—47w, =27 ] U
[0, 27 ]; it is actually 27 minus a quantity induced by the
delay to the background rotation.

The apparent asymmetry is due to the fact that we have
considered the rotating elliptic seed solutions to be always
increasing functions of time. All cases are summarized in
Table 1.
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Table 1 The translationally invariant background kink solutions for all @ and k

Parity of k a € (—oo,—1) ae(—1,0) aec(0,1) a € (1,00)
k even Left moving antikink Right moving antikink Right moving kink Left moving kink
k odd Left moving kink Right moving kink Right moving antikink Left moving antikink

Table 2 The static background kink solutions for all @ and k

Parity of k a € (—oo, —1) ac(—1,0) ae(0,1) a € (1,00)
k even Right moving antikink Left moving kink Left moving antikink Right moving kink
k odd Right moving kink Left moving antikink Left moving kink Right moving antikink

These four classes of solutions are the physical depiction
of the fact that the same value of D? can be obtained for four
distinct values of the Bicklund parameters a. The definition
of the sign of the function A (2.40) has been made so that
all four classes of solutions can be accessed with the same
formula, simply varying the parameter a, in a similar manner
to the usual analysis of kinks built using the vacuum as the
seed solution. The special case @ = %1 corresponds to static
kinks/antikinks leading to only two physical distinct cases.

The situation is similar in the case of static seed solutions.
In this case, limgo_, 4o 549 = @ (8' £a) + 2n.m, where
ny € Z. Thus, the effect of the passage of the kink is a
displacement of the background static configuration by

AEL = F2a. (3.6)

Furthermore, considering the average value of ¢ in a full
spatial period of the background solution at spatial infinity,
we find that

< lim  (sq¢ — <p)> - <§llin_1 (sa® — <p)>

Elsto0o

2807, E < /Lz,
— ) 3.7
271(%1 +2s.m, E > p?

This implies that the solution is a kink or an antikink depend-
ing on the sign s.. All cases are summarized in Table 2.

3.2 D? > 0: kink velocity

Let us consider the class of kinks propagating on a transla-
tionally invariant elliptic background. A naive way to define
the kink velocity is

_ag! 1

_ ' (@)
2D p (9 + wp) — p (@)
3.8)

Vo =
A0 | pe1 1io (£9:a)=c

@ Springer

The above velocity is not constant but rather it is a periodic
function of time. Its range is

a—a! o (@ —x
|U()| Z —1 = ~ ’
a+a © (@) —x3
ol < |- L7 |_ Y@ -x)e@ - x)
or = a+a?—E/u? e (@) — x1
(3.9)
for oscillating backgrounds and
a—a-! o (@) —xo
lvo| = | = - ;
a+a © (@) —x3
-1 ~N
ol < |49 | = (2@ (3.10)
—a~! o (a) —x2

for the rotating ones. The minimum value is always smaller
than the speed of light, whereas the maximum value is always
larger than the speed of light in the case of rotating back-
grounds. In the case of oscillating backgrounds, when E < 0
the maximum instant velocity is always smaller than that of
light, whereas when E > 0 it is so only when the Bicklund
parameter satisfies

@3.11)

The velocity defined above is a notion of instant velocity.
Within a period of the elliptic background, the propagation
of the kink is quite complicated, since the shape of the kink
is fluctuating periodically. A more natural definition of the
kink velocity is the mean velocity in a period, v, defined as

® (6% +2w;a) — @ (6% a)

3.12
2ia)1D ( )

vy =

The function @ (£%; @) is a quasi-periodic function. Its prop-
erty (2.8) implies that the mean velocity of the kink equals
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— 4w N 4w,

.—4(01

Fig. 4 The solution for an oscillating background with E = 7u2/10
and Bécklund parameter a = 2. The blue line indicates the position of
the kink. The dashed line is the average position. Its inclination is the
mean velocity of the kink

- t(@w—¢(w)a
vy = .
w1 D

(3.13)

This velocity should not be apprehended as the velocity of
the kink. Any of these solutions can be boosted to an arbitrary
frame, altering the kink velocity. It should rather be under-
stood as a parameter of the family of dressed elliptic solutions
of the sine-Gordon equation, which is equal to the velocity
of the kink at the specific frame, where the background is
translationally invariant (Fig. 4).

For the solutions with D? > 0, the parameter a takes
values on the real axis between —w; and w;. The mean
velocity is a decreasing function of a for energies smaller
than a critical value E. ~ 0.65223 defined through the
equation

6¢ (w1 (Ec); 82 (Ec), 83 (Ee)) = Ecowy (Ec) (3.14)
and an increasing function for E > pu2. In the inter-
mediate range of constants E there is a global maxi-
mum. Bearing in mind the pendulum picture for the trans-
lationally invariant elliptic solution of the sine-Gordon
equation, the criterion (3.14) is equivalent to demand-
ing that the mean potential energy of the pendulum van-
ishes.

Furthermore,
lim vy = 1. (3.15)
a—0

In the case of an oscillating background, it is also trivial that

lim @ = 0. (3.16)

a—wi

Thus, all possible velocities between 0 and 1 relative to the
translationally invariant background are allowed. In the case
of rotating backgrounds though, the expression for the veloc-
ity (3.13) is undetermined at the limit @ — w; and it turns
out that

¢ (w1)/wy + x1 _

lim vg = =7 > 1,
RN TRy N ey B

ﬁ—)a}l

(3.17)

implying that all kinks on a rotating background are mov-
ing with speeds larger than the speed of light and up to the
value given by (3.17). The top panel of Fig. 5 depicts the
dependence of the mean velocity on the modulus a for var-
ious values of the other modulus E. To sum up, only when
E < E., all kinks moving on the elliptic background are
subluminal. When E > E_, there is always a range of a
corresponding to superluminal kinks.

When kinks propagating on a static elliptic background
solution are considered, both the instant and the mean veloc-
ity are simply the inverse of the ones calculated for the trans-
lationally invariant backgrounds as given by Eqs. (3.8) and
(3.13),i.e.

_ w1 D

= . 3.18
N @ — ¢ (@na ©.18)

Therefore, kinks propagating on an oscillating static back-
ground are always superluminal, when E' < E, but there are
kinks moving with velocities under the speed of light when
E > E.,whereas kinks propagating on a rotating static back-
ground move with velocities smaller than the speed of light.
However, they cannot move with an arbitrarily small veloc-
ity. The minimum velocity is the inverse of vy« as given by
(3.17). The bottom panel of Fig. 5 depicts the dependence of
the mean velocity on the modulus a.
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— E=-9/10u>
| E—E
— E=9/10u?
E =99/100u>
— E =101/100u?
— E =21/20u>

Fig. 5 The mean velocity as function of a for translationally invariant
seeds (left) and static seeds (right) for various values of the energy
constant £

In the case of the static seed, only when E > uz all kinks
propagating on the elliptic background are subluminal. When
E < u?, there is always a range of @ which gives rise to
superluminal kinks.

3.3 D? > 0: periodic properties

The elliptic solutions of the sine-Gordon equation have spe-
cific periodic properties. These are critical in the determi-
nation of the appropriate periodicity conditions for the con-
struction of the corresponding elliptic strings solutions. The
translationally invariant elliptic solutions obey

0 (6" +d0r, 8" +06") =g (£6), (3.19)
when they are oscillatory, and
o(£ +2018" +ot!) =g (%6") +2m (320)

when they are rotating. The above properties hold for any
value of 8&!, which is a result of the fact that ¢ does not

@ Springer

depend on &!. The static solutions have similar periodic prop-
erties that are given by the relations above after the inter-
change £ < g1

The periodic properties of the dressed elliptic solutions
have been disturbed due to the presence of the kink, which
needs infinite time to complete. However, the new solution
still has some interesting periodic properties.

Firstly, in the region far away from the location of the
kink | D&' +i® (€°; a)| >> 1, the solution tends to a shifted
version of the elliptic seed solution. Therefore, at this region,
the periodic properties (3.19) and (3.20) are approximately
recovered.

Secondly, as the shape of the kink also alters periodically
in time, an observer that follows the kink thinks that the
sine-Gordon field alters periodically in all positions. This is
evident in Eq. (3.3), which implies

7 (60 + 401" + 40001 ) =3 (6%.¢") 3.21)
for solutions with oscillatory seeds and
o (£ + 2018 + 20001 ) = ¢ (6%6" )+ (322)

for solutions with rotating seeds.

In a trivial manner, one can obtain the corresponding peri-
odic properties of the dressed elliptic solutions with static
seeds, after the interchange & 0 &gl

3.4 D? > 0: energy and momentum

The energy-momentum tensor of the sine-Gordon theory is
given by

1 1
T% = 2 (09)* + 5 (019)” — u? cosp = 1, (3.23)
T = — (dop) (19) = P = S, (3.24)
1 1
T = 2(009)* + 5 (19)* + ucosp = Jp. (3.25)

The static solutions can be derived from the translationally
invariant ones via the interchange of the variables £° and &'
and a shift of ¢ by . It follows that if 700 = £ (&%, £1),
then T,/! = f0 (¢!, £°) and similarly if 7' = f1 (£°,&"),
then 7' = f1 (&1, £9).

The elliptic solutions of the sine-Gordon equation lead to
simple expressions for most of the elements of the energy-
momentum tensor (see e.g. [28]). Namely, Tt?o = TS{I =
E and Tt?1 = Ts(t)1 = 0. However, the elements Tn“
and T are non-trivial functions of £° and &' respec-
tively.

Let us study the energy and momentum of the dressed
solutions of the sine-Gordon equation. We initiate our anal-
ysis considering the kinks propagating on a translationally
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invariant elliptic background. It is a matter of algebra to cal-
culate the energy density and find

1 - 0.~
sin |:4 arctan (# tanh w>]

H =2DA

sinh (Dg! +i@ (£9; a)) e

(3.26)

Therefore, the energy density, far away from the kink posi-
tion assumes the same constant value that matches the energy
density of the seed solution. This is not surprising, since
we have seen that the asymptotics of the dressed solu-
tion far away from the kink is the seed solution shifted by
an appropriate time/position. Actually, we could also have
deduced the above fact by the form of the energy den-
sity.

Defining the kink energy density as the difference of the
energy densities of the dressed solution and the background
solution, we can calculate the energy of the kink and find it
equal to

Elink = /d.s;‘ (# — E) =8D. (3.27)

The above formula reveals the physical meaning of the
constant D. It is now clear why the quantity D? is a
decreasing function of the energy constant E, since the
larger the background energy, the smaller the necessary
energy for a kink to jump from the region of one vac-
uum to the region of the neighbouring one. Furthermore,
it is also physically expected that the kink energy is a
decreasing function of the background time delay 2a. As
the latter gets larger approaching wi, the jump is facil-
itated and less energy is required for this purpose (see
Fig. 2).

As the kink propagates, it periodically changes shape,
due to its interaction with the elliptic background. This is
also depicted in the profile of the energy density. One mea-
sure that quantifies this phenomenon is the peak energy
density at the location of the kink. The latter equals
ek — E =4A(A+ B), (3.28)
which obviously is a periodic function of time. In the limit
E — —u?, the energy density of the peak becomes constant
as expected from the physics of the kinks propagating on
the vacuum. Figure 6 depicts the energy density for the two
solutions depicted in Fig. 1.

In a similar manner, we may calculate the momentum
density of the kink solution

4w]

Fig. 6 The energy densities of the dressed elliptic solutions with trans-
lationally invariant seeds depicted in Fig. 1

_ Ap' (@)
9 (E0+w) —p @
| (50
sin |:4 arctan (A%B tanh D§+@’“)>i|
sinh (D&l — @ (£9; a))
1_ (0.7
212D sin? [2 arctan (A%B tanh D5+(5’“)>i|

A sinh (DET — @ (£0; 4)) n

X

(3.29)

The momentum density vanishes far away from the location
of the kink, a fact which is expected since the momentum
density of the elliptic background vanishes. We define the
kink momentum as the integral of the momentum density
over all space to find

@)

Pyink = —4 =
M= T S (B0 + wa) — p @)

= 8Dvy = Ekjnkv0,

(3.30)
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as one would expect for a particle. Like the instant velocity,
the kink momentum is not constant in time. One could define
the mean kink momentum as
Pyink = 8Dty = Exink 0. (3.3D)

It may appear surprising that the momentum of the kink
is not conserved, although the theory possesses translational
symmetry. This is due to the asymptotic behaviour of T'!! in
the case of translationally invariant seeds. The momentum
conservation law 99T7% + 9, 71! =0 implies that
doP =T" (gl N +oo) _ i (g‘ = —oo). (3.32)
Asymptotically, the solution assumes the form of the trans-
lationally invariant seed solution, with a time shift, which
is different at plus and minus infinities. As the element 7''!
is a non-trivial periodic function of time in this case, it fol-

lows that the kink momentum cannot be conserved. On the
contrary, the energy is conserved, since

WE = P (gl - +oo) e (gl N —oo) —0, (333)

as the momentum density of the seed solution vanishes.

When we consider kinks propagating on a static back-
ground, it is not easy to repeat the above calculations, since
the dependence of the dressed solution on the space-like coor-
dinate £! is highly non-trivial. However, we may adopt a
different approach, calculating the total flow of energy or
momentum that passes through a given location. Converting
from static to translationally invariant backgrounds, leaves
the expression of the momentum density the same, apart
from an interchange of & 0and &!. It follows that the flow of
energy Eflov — [ dg 07 (5 0 & l) through a given point can
be derived from the total momentum of the kink on a transla-
tionally invariant background, i.e. Py = [d&' 2 (€°,&!)
after the same interchange, Thus,

@)
o (E' +w)—p @

Efow = —4 (3.34)

Naturally, this is not constant. As we have already com-
mented in Sect. 3.1, the passage of the kink has translated the
static background, and as the latter has a non-trivial energy
density profile, it has translated energy. In this case, the effect
of the interaction of the kink with the background is not lim-
ited to a time delay, but it extends to the energy density. The
kink energy can be identified as the mean energy flow per
spatial period. Bearing in mind that the kink velocity on a
static background is the inverse of that on a translationally
invariant background with the same Bicklund parameter a,
the above imply

@ Springer

_ a . 8D

Exink = Efiow = 8 <§ (w1) ——=¢ (a)> =—. (3.35)
w1 U1

In a similar manner, the flow of momentum from a given
point in the case of a static seed PI = [d£OT 1! (£0,&!),
can be deduced from the energy in the case of a translation-
ally invariant seed Eq = [ d&' .7 (€°, &"), after the inter-
change of & and &!. Subtracting the momentum flow of the
background solution, in order to define the kink momentum,
yields

Pyink = /déo (T“ (507 51) - E) = 8D = Ekink V1.
(3.36)

Notice that in the case of a static seed, both the energy and
momentum of the kink are conserved quantities, since
WE = P (g‘ N +oo> — 2 (g‘ - —oo)zo, (3.37)
doP =T (gl - +oo) _rh (gl N —oo) —E—E=0.
(3.38)

The algebra of the Bicklund transformations results in
dressed elliptic solutions, which are naturally expressed in
terms of the parameters D and a [29]. Interestingly, both
parameters have a simple physical meaning. The parameter
D is directly related to the energy of the kink in the case
of a translationally invariant seed solution (Eq. (3.27)) or its
momentum in the case of a static one (Eq. (3.36)). The param-
eter a directly measures the degree of interaction of the kink
with the elliptic background. In the case of a translationally
invariant seed, it is directly related to the time delay in the
background field oscillation induced by the kink (Eq. (3.4));
in the case of a static seed, it is related to the spatial displace-
ment of the static background (Eq. (3.6)). Bearing in mind
that there are not two independent parameters in this class
of solutions, but only one (the Bécklund parameter a), there
is a relation connecting the energy/momentum of the kink to
the effect that it has on the background. This reads

El%ink_ ASO_E2+ . E(E? 4 E
60 P\ 23 THo3 g TH 3’

for translationally invariant backgrounds and

P2 Agl E? E [ E? E
64 273 3.9 3

(3.40)

for static ones. The above relations can in principle be verified
experimentally in physical systems realizing the sine-Gordon
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Fig. 7 The solution with D> < 0 for two distinct Bicklund param-
eters. The background solution has energy density E = 3u2/2 and
the Bicklund parameter takes the value a = 1.45482 on the top and
a = 1.36771 on the bottom

equation, such as coupled torsion pendula, Josephson junc-
tions, spin waves in magnetics, etc. (see e.g. [50])

3.5 D? < 0: periodicity
When D? < 0, the solution assumes the form

A+B _ iDg' — & (8% a)
- tan
iD 2

¢ = ¢ + 4arctan |: :| . (341

Figure 7 depicts two example cases of such solutions.
These solutions do not describe a localized kink propa-
gating on top of an elliptic background. They are actually a
periodic disturbance propagating on top of a translationally
invariant rotating elliptic background. This transition of the
qualitative characteristics of the solution is in a sense similar
to the well-known behaviour of the solutions that occur after
the action of two Bécklund transformations of the vacuum.

These solutions form two classes; one class of two-kink scat-
tering solutions and one class of bound states, the so called
breathers. Having this picture in mind, we may understand
the Bicklund transformed elliptic solutions with D> > 0
as the analogue of the scattering solutions, since the kink
induced by the Bicklund transformation propagates on top
of the train of kinks that forms the elliptic background, inter-
acting with it, causing a delay/translation. On the contrary, the
solutions with D? < 0 are the analogue of the breathers. Of
course instead of a single oscillating breather, these solutions
are a whole periodic structure of such oscillating formations,
a “train of breathers”.
The solution (3.41) is obviously periodic in &' since

o (%6 +2m/ (D) = (£ 6). (3.42)

Furthermore, the quasi-periodic properties of the function @
imply that

- (50, gl) + o (3.43)

It follows that the solutions with D? < 0 are either peri-
odic or quasi-periodic under translations in a non-orthogonal
two-dimensional lattice. One of the two directions of the lat-
tice coincides with the space-like (in the case of translation-
ally invariant seeds) or time-like (in the case of static seeds)
directions. The other is determined by a velocity, which is the
average velocity of the periodic disturbances. This velocity
equals

w_ (@1 —¢(w)a
Vg =

3.44
oD (3:44)

and it is the analytic continuation of the kink mean velocity
(3.13).

As a moves from w; to w3, the velocity of the periodic
disturbances v(‘)b increases. It also obeys

tb T

T S— (3.45)
a—w3 w14/2 (E — Mz)

and

lim o = lim vo = e /ertn (3.46)
a—w; a—w) \/(xl —x2) (x1 — x3)

which implies that vg’ is always larger than the speed of light.
In a similar manner, in the case of a static seed solution, the
velocity of the periodic disturbances is given by the inverse
of equation (3.44)
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Fig. 8 The velocity of the periodic disturbances as function of a for
translationally invariant seeds (top) and static seeds (bottom) for various
values of the energy constant E. These curves are a smooth continuation
of the curves of Fig. 5 with the same color

Utbz wlD
' r@aor —C(ena

(3.47)

The velocity vib decreases as a moves from w; to w3 and
it is always smaller than the speed of light. The above are
displayed in Fig. 8.

It is not obvious, whether the solution (3.41) is a periodic
function of £°. In general we have that

7 (e +201,6") =2m + (8% ¢")

A+ B(E)

4 arctan
+ |: iD

X tan <iD$l _j (50; &)

—i¢(@w—¢ (a)l)ﬁ)>] .
(3.48)

The quantity ¢ (@) w; — ¢ (wy) a is the Bloch phase of the
finite valence band states of the n = 1 Lamé problem. It is
always purely imaginary and its imaginary part decreases
monotonically from 0 to —x/2 as a moves from w; to
w3. It follows that i(¢ (@) w1 — ¢ (w1)a) = cm/2, where
¢ € [0,1]. The periodicity properties of the solution ¢
as a function of time, are determined by number-theoretic
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Fig. 9 The solution with D?> < 0 at &' = 0 for two distinct Biick-
lund parameters. The seed solution has energy density E = 3u2/2
and the Bicklund parameter takes the value a = 1.45482 on the top,
corresponding to a periodic solution with ¢ = 1/2, and the value
a = 1.36771 on the bottom, corresponding to a non-periodic solution

with ¢ = (+/5 —1)/2

properties of the number c. If the number ¢ is a rational
number of the form «/B, where ged (o, ) = 1, then ¢
will be a quasi-periodic function of &) with period 48w
and the quasi-periodicity property ¢ (50 +4Bwi, & 1) =
) (SO, 51) + 27 (o + B). On the contrary, if the number ¢
is irrational, then ¢ will not be periodic in &. In Fig. 9, a
periodic and a non-periodic example are shown.

Similarly, if a static background is considered, the solu-
tion is always periodic in £°, but not always periodic in &!,
obeying the periodicity properties

o (e +2m/ (D). ") =5 (£".6). (3.49)
@(g%z‘: (@) w l—)C(wl)a 42w € +2w1>
=¢<E°,El) +27. (3.50)

In this case the velocity of the periodic disturbances equals

Dwq
Ut = = ol
t(@wr — ¢ (w)a

(3.51)

which is the analytic continuation of Eq. (3.18).
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3.6 D? < 0: energy and momentum

Once again, we first consider a translationally invariant seed
solution. As we showed in Sect. 3.5, these solutions are
always periodic in space. Therefore, they cannot have a finite
energy difference to the energy of the background solution.
However, we may study the average energy density per spa-
tial period of the new solution. It turns out that

ipD [§4%

() = —/ d&' 0 = E. (3.52)
21 gl

Thus, the solution has on average the same energy density

as the background solution. In a similar manner the aver-

age momentum density vanishes, also similarly to the back-

ground solution.

iD S1+l-2—l’§
(P) = -

== de'? = 0.
27'[ El é:

(3.53)

Figure 10 shows the energy density and the momentum den-
sity for a periodic solution.

The relevant solutions whose seed is a static elliptic solu-
tion are not manifestly periodic in space. They are periodic
in time. One can show that the average current of momentum
and energy through a given point is identical to those of the
seed solutions, namely,

iD S0+l’2l
<<92’>—’/ P a7 o,

_b 3.54
27 sO ( )
iD £+
(7 = ’2—/ Pagd g = E. (3.55)
T &-0

3.7 The D — O limit

In the limit D — 0, the solution degenerates to the form

¢ = ¢ + 4arctan [%B (gl — isg®Pp (50))] . (3.56)

where

n(e) =0 (00

= \/EZ%M“ (C (50 +w3) — ¢ (@2) +X1EO> :

(3.57)

There are four such solutions, as there are four distinct values
of a,namely a = &/ E & \/E2 — u*/u, which set D equal
to zero. Half of those correspond to a localized solution that
generates an overall jump to the background solution equal
to —4m. For the other half, the solution is equal to ¢, thus

50‘ iy
n/(iD)

Fig. 10 The energy and momentum densities for a solution with
D? < 0, seed energy density E = 3u?/2 and Biicklund parameter
a = 1.45482, corresponding to a periodic solution with ¢ = 1/2

a periodic, translationally invariant solution. It turns out that
in this specific case, ¢ coincides with an elliptic solution, as
the corresponding parameter a is equal to w1, namely,

¢ = %Sd (tp <E°+w1)+<p($0—w1))+(2k—1)7t

= 540 (s,:o +sq 2k — 1) w1> . (3.58)

Interestingly enough, the limit D — 0 separating the
localized and non-localized solutions comprises of two local-
ized and two non-localized solutions, the latter coinciding
with the background solution shifted by an odd number of
half-periods.

The total energy and momentum of these solutions exactly
match those of the seeds in this limit, not only in the case the
dressed solution is a trivial displacement of the seed, but also
in the non-trivial cases.
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4 Asymptotics and periodicity of the dressed elliptic
strings

In this and the following three sections, we will study some
properties of the dressed elliptic string solutions [29] that
we reviewed in Sect. 2 and compare them to the properties
of their Pohlmeyer counterpart that we presented in Sect. 3.
Here, we determine the appropriate values of the moduli that
result in closed string solutions.

In order to visualize the string solutions, first we have
to select the static gauge, so that the time-like world sheet
coordinate o is proportional to the physical time X°. This
is equivalent to a boost in the worldsheet of the form

£ =yo’ —yBo', 4.1)
gl =yo! —ypa’, (4.2)
where

yp = ﬁm 43)
y = %\/362——60(0) (4.4)

In the static gauge, the time coordinate assumes the form
X% = 1o and it is easier to study a time snapshot of the
string solution in order to determine the periodic properties
that it obeys. It is also easier to visualize the time evolution
of the string, which will become handy in Sects. 5 and 6.

The dressed string solutions, similarly to their ellip-
tic seeds, are naturally infinite string solutions. They are
parametrized by the spacelike coordinate taking values in the
whole real axis. However, the periodic properties of the sine-
Gordon counterparts of the elliptic strings (3.19) and (3.20)
imply that the string solution obeys appropriate periodicity
conditions for specific values of the moduli [28], giving rise
to finite string solutions.

In the case of the dressed elliptic strings with D?> > 0,
the sine-Gordon counterparts cease to obey periodicity con-
ditions of the form (3.19) and (3.20) due to the existence of
the extra kink that propagates on the non-trivial elliptic back-
ground. However, the above periodic properties are recovered
in the region far away from the position of the kink, as the
sine-Gordon solution tends to a shifted version of the ellip-
tic seed. This asymptotic behaviour can be used to construct
approximate finite closed dressed elliptic string solutions in
the same manner as the closed finite elliptic strings. In order
to do so, we first need to study the asymptotics of the dressed
elliptic string solutions with D? > 0.

Even though the dressed solutions do not have the
extended periodicity properties of their elliptic seeds, they
still obey the periodic properties (3.21) and (3.22) in the case
D? > 0, as well as (3.42) and (3.43) in the case D? < 0.

@ Springer

One can take advantage of these periodic properties in order
to construct exact finite closed string solutions. It has to be
noted that the above equations are expressed in the linear
gauge; however, the closed string solution should exhibit
appropriate periodicity in their dependence on the spacelike
coordinate in the static gauge. In the following, we present all
these classes of closed string solutions and derive the appro-
priate constraints that the moduli should obey for each class.

4.1 D? > 0: the asymptotics of the dressed strings

Bearing in mind the asymptotic form of the sine-Gordon
counterparts of the dressed string solutions with D? > 0,
which is described in Sect. 3.1, it is not surprising that in
the region far away from the location of the kink, the dressed
string solutions tend to a rotated version of their seed, elliptic
string solution. Assume that the seed solution is written in
spherical coordinates, in parametric form as,

01 = Oseea (0. 01) 45)

P0/1 = Pseed (O,O, 51) . (4.6)

The functions Oseeq and @geeq have the properties [28]

Oseed (0'07 o! + 500/1) = t0seed (UO’ Ul) , 4.7
0 _1 _ 0 _1

Pseed <0 ,0 o+ 800/1) = @seed (U , O ) + 8¢, (4.8)

where the £ sign in the first equation applies in the case of
rotating/oscillating counterparts, §¢ is the angular opening of
the elliptic string, i.e. the azimuthal angular distance between
two consecutive spikes of the seed solution,

. a
Spo/1 = Fiw (E (w1) or + ¢ (0n3,) — ¢ (a+ w;@/z))

4.9)
and
26()1
dopg = —, (4.10)
vB
2w
Sop = —. 4.11)
14
Furthermore, we define the function
qS(ao,al) = DEVO 4 i (go/l;&). (4.12)

The kink which propagates on the elliptic background is

located in the region @ =~ 0. Several periods away from
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the kink position, one may use the quasiperiodicity property
of the function @ to show that

Dy (1 + i) (o' = £520°).
for transl. invar. seeds,

1 1 B+i1 0
o+ k) (0! )

for static seeds.

@@Qa):

(4.13)

The parameters vo,1 are the mean velocity of the kink rela-
tively to the elliptic background, in the case of a translation-
ally invariant and static seed, respectively, which are given by
Egs. (3.13) and (3.18). Notice that the above approximations
are exact whenever 0! = néog,1, with n € Z.

Then, one can show that in the region far away from the
kink position, the dressed solution assumes the form

lim 6 (ao, a‘) = Oeed <a°, ol ¥ iaao) . (4.14)
@400 2a)1

. 0o _1\ _ 0 _1 a
lim @o|07,0" ) =@sed (07,0 F 7—3800 ) = Ago,
@ —=+o0 2w,
(4.15)

for translationally invariant seeds and

lim 6, (0’0, 01> = Oued <a°, ol + iaal) . (4.16)
@ —+o0 2w

lim ¢ (ao, 01> = Qseed (UO, ol + L(Scn) + Agy,
@400 20)1
4.17)

for static seeds, respectively. An overall reflection with
respect to the origin, & — 7w — 6, ¢ — ¢ + 7w, may be
present; we will comment on it later on. The angle Agy, is
equal to

Agoj1 = arg (L +iD) +argo (a +a)
+i (f (a +‘0x3/2) —¢ (“’xm))é
=arg({ +iD)+argo (a+a)

+ (; (O)l)ai&po/l)i. (4.18)
2 w1

The half-period w,; is the half-period corresponding to the
root x;. More specifically, wy; is always the imaginary half-
period w>, whereas wy, is equal to the real half-period
for oscillating seeds and to w3 = w; + w, for rotating
seeds. The details of the above derivations are included in
the Appendix A.

The above approximation is valid at the region |®| > 1
or in other words in the region

ol — pt U_O o’ ;_, (4.19)
1 + By Dy |1 + Bl
v 1
ol = L > . (4.20)
v
v pylp+ k

for each case respectively. The above inequalities are
expressed in terms of the static gauge worldsheet coordinates,
and, thus, they describe which region of the dressed elliptic
string in any time snapshot is indeed well-approximated by a
rotated version of the seed solution. Notice also that one has
to be careful in the correspondence between the o'! and &
infinite limits. This is determined by whether the kink veloc-
ity is larger or smaller than the inverse of the velocity of the
boost connecting the linear and static gauges. We define the
sign s as

lim @ = +spo00. 4.21)
ol—+4o0
The Eq. (4.13) implies that
sgn (1 + Bvo), for transl. invar. seeds,
Sp = (4.22)

—sgn (;6 + %) , for static seeds.

The dependence of the sign s¢ on the moduli of the dressed

string solutions is studied exhaustively in the Appendix B.

In the special case where 1 + Bvg = 0or 8 + 1/v1 = 0, the

string does not exhibit this kind of asymptotic behaviour. This

is an interesting special case, which is studied in Sect. 4.5.
The Eq. (4.18) implies that the angle A¢ obeys

5
lim Ago/ = arg (¢ +iD) + 2L
ﬁ—)a)l 2

(4.23)

where the angle ¢ is the angular opening of the elliptic
string. Further details are provided in Appendix A.

The behaviour of a and Ag as functions of 6; is shown in
Fig. 11.

For solutions with D% > 0, usually we select a to lie on
the real axis in the segment (—wj, w1). However, in Fig. 11
it is selected to lie in the segment (—2w1, 0) to show the
continuity of its dependence on the position of the poles of
the dressing factor. In the case of a seed solution, with an
oscillating counterpart, there is a special value of 6, = 6,
equal to

~ m_
@ = 2arctan | ——,
m+

(4.24)
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—E =3u?/10
_E:“Z

Fig. 11 The parameters a and Ag, which determine the asymptotic behaviour of the dressed solutions, as functions of the angle ;. The parameter
a of the seed elliptic solution is selected so that the latter obeys appropriate periodicity conditions with n = 6

where a equals the real half period w;. At ) = é, Ap is
stationary and at the same time discontinuous. It performs
a jump by m — 8¢, which is related to the inversion of the
asymptotics of the solution. In the case of a seed solution
with a rotating counterpart, there are two such special values
for 61, namely,

E+E?—put

2 9
mZ3

éi = 2 arctan (4.25)

where a equals the real half period ;. When 6 is equal to
6+, D? vanishes and the absolute value of A¢ is maximum
andequalto 8¢ /2 and m — 8¢ /2, respectively. For values of 6
between these two, it turns out that D? < 0 and the solution
has a Pohlmeyer counterpart being a periodic disturbance
on a rotating background; we will study these solutions in
Sect. 4.4.

It follows that, in the case of rotating backgrounds, the
dressed solutions with Pohlmeyer counterparts, which are
kinks or antikinks propagating on top of a train of kinks,
have been separated into two classes. Recalling the epicycle

@ Springer

description of the action of the dressing on the string solution?
[29], their difference is the following: the class with 8; <
6_ asymptotically tends to the seed solution rotated around
the z-axis by an appropriate angle; the class with 6; > 6,
asymptotically tends to the seed solution, first inverted with
respect to the origin of the enhanced space and then rotated
appropriately around the z-axis. Finally, notice that A¢ tends
to 0 at the limits #; — 0 and 6; — 7 as expected, since the
epicycle becomes a point.

4.2 D? > 0: approximate finite closed strings

Strictly speaking, it is not possible to fix the parameters of the
solution, so that a dressed string with D? > 0 satisfies appro-
priate periodicity conditions (except for very specific cases
that we will study in Sect. 4.5). In the elliptic strings case, the

2 The dressed string solutions with the simplest dressing factor, as those
presented here, have an interesting geometric relation to their seeds.
Every point of the dressed string is connected to the point of the seed
solution with the same worldsheet coordinates, via an arc of a maximum
circle equal to ;. Therefore, the dressed string can be considered drawn
by a point on an epicycle of constant arc radius ¢, whose center is
running on the seed solution.
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functions Oseq and @geeq have the periodic properties (4.7)
and (4.8). Therefore, arranging the solution parameters so
that 8¢ = 27 /n where n € Z, in the case of a rotating coun-
terpart, and n € 27 in the case of an oscillating one, results
in a well defined, closed string of finite length, parametrized
by ol e [0, néoy, 1). However, when one considers dressed
strings with a Pohlmeyer counterpart that is a kink propagat-
ing on an elliptic background, in general these functions are
not periodic/quasi-periodic due to the presence of the kink.

Nevertheless, we have shown that the dressed solutions
asymptotically approach a rotated version of the seed ellip-
tic ones. This is due to the fact that the effect of the kink
is exponentially damped with the distance from its center.
Therefore, as long as the characteristic length of the expo-
nential damping of the kink is much smaller that the number
of periods appearing in the seed solution, we can claim that
we may adjust the periodicity conditions in order to find a
string solution that is not exactly a closed finite string, but
nevertheless an exponentially good approximation of such
a solution. For such a purpose, the parameters of the solu-
tion should obey a modified periodicity condition, due to the
asymptotic behaviour (4.15), (4.17) of the dressed solution,
namely,

(n18¢p +2s¢p Ap)ny =21, ny,ny € Z. (4.26)

It has to be noted that in general dressed elliptic string solu-
tions that satisfy the condition (4.26) have elliptic seeds
which do not obey the appropriate periodicity conditions,
and, thus, they are not finite closed strings. This holds in
the simple case that we considered here, where the strings
perform only one winding around the z-axis and thus, it is
possible that they do not contain self-intersection. In gen-
eral, one could consider a generalization of (4.26) where the
left hand side is 2wm, where m € Z. In such a case, the
seed and the dressed solutions are both closed, as long as the
ratio Agp/d¢ is rational; however, they correspond to differ-
ent ranges of the spacelike parameter o'!. The simplest case
of this kind is the limit a — w; for rotating seeds, where the
angle Ag tends to §¢ /2.

Figure 12 depicts six such solutions. All solutions of
Fig. 12 depict approximate finite closed dressed strings with
ny = 1. Two indicative examples of dressed solutions with
ny > 1 are depicted in Fig. 13.

The conditions (4.19) and (4.20), which determine the
regions where the asymptotic form (4.16) and (4.17) of the
dressed solution is a good approximation, imply that solu-
tions obeying the condition (4.26) are an exponentially good
approximation of a finite closed string as long as

'D (% + 170) o m > 1, 427)

ny > 1, (4.28)

‘D (ﬂ + ;) w1
U]

in the case of seed solutions with translationally invariant and

static Pohlmeyer counterparts, respectively.

Such solutions approximate non-degenerate genus two
solutions with appropriate periodicity conditions. Figure 14
clarifies the performed approximation in the language of the
sine-Gordon equation.

The performed approximation is analogous to the fact that
solutions of the simple pendulum with energies close to that
of the unstable vacuum can be well approximated by a series
of patches of appropriate segments of the kink solution. This
holds for both oscillatory and rotating solutions of the simple
pendulum. In our problem, the former case is depicted in the
top row of Fig. 14, whereas the latter case is depicted in the
bottom row of the same figure.

In the top row of Fig. 14, the non-degenerate genus two
solution that we approximate, has a Pohlmeyer counterpart,
which is the non-trivial, non-linear superposition of a train
of kinks—antikinks with a train of kinks—antikinks, the latter
corresponding to the seed solution. In the bottom row case, it
is the superposition of a train of kinks with a train of kinks—
antikinks when the seed solution has an oscillatory counter-
part and a train of kinks when the seed solution has a rotating
counterpart. In a similar manner to the construction of ellip-
tic strings [28], where the string solutions with oscillatory
Pohlmeyer must obey periodicity conditions corresponding
to even integers n, the dressed solutions Pohlmeyer coun-
terparts of the kind of the top row of Fig. 14 must have an
even value for n,. The string solution depicted on the left of
Fig. 13 has a Pohlmeyer counterpart of the kind of the bottom
row of Fig. 14, whereas the one on the right has a Pohlmeyer
counterpart of the kind of the top row.

This picture implies that, as time evolves, the finite seg-
ment of the coordinate ! that parametrizes the finite closed
string should move so that the kink in always inside this
segment. More specifically the asymptotic formulae (4.14),
(4.15), (4.16) and (4.17) imply that each of the n; patches
comprising the closed string is parametrized by the coordi-
nate 0! taking values in the segment

ol e[Zy—AX, Zp+ AY), (4.29)

where

so= P 0 45 MmOt sed (4.30)
1+ Bug vB

in the case of translationally invariant seeds, whereas

B+ v nijwi — S¢d
=— 0 AY=—"-—""1

- , 431
1+ By 14 @30

2o
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Fig. 12 The finite dressed
string solutions with
approximate periodicity
conditions and ny = 1. The left
and right column solutions have
seeds with translationally
invariant and static Pohlmeyer
counterparts, respectively. On
the first row the seed solution
has an oscillating counterpart
with E = 12/10 and a selected
so that n; = 10. On the second
and third rows the seed solution
has a rotating counterpart with
E = 6p1%/5 and a selected so
that ny = 7. On the first and
second rows 0] = /12,
whereas on the third row

61 = 7x /8. The solutions of the
second and third row belong to
the 6 < §_ and 01 > §+ classes
of solutions, respectively

in the case of static seeds. This segment is visualized in
Fig. 15, where it is depicted in the original £%! coor-
dinates. In this figure, the green dashed lines correspond
to the periodic properties of the asymptotic limit of the
Pohlmeyer counterpart of the solution, i.e. The Pohlmeyer
field at all points on the green dashed lines has the
same value (or values differing by an integer multiple
of 21).
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— seed solution
— rotated seed solution

— dressed solution

4.3 D? > 0: exact infinite closed strings

Had we not restricted to finite length strings, we could form
infinite strings that obey appropriate and exact periodicity
conditions in the same sense as the single spike solution
[5]. Unlike the single spike solution, which far away from
the region of the spike tends asymptotically to the equa-
tor, thus, providing appropriate boundary conditions at infin-
ity (after infinite self-intersections), this is not the case for
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Fig. 13 Two closed string solutions with approximate periodicity con-
ditions and np, =2

dressed elliptic strings. In order to have a well-defined peri-
odic asymptotic behaviour of the dressed string, it is required
that 8¢ = 2mmi/ny, where m and n; are integers. In
other words, the seed solution must obey appropriate period-
icity conditions (obviously having self-intersections when-
ever gcd (m1,n1) = 1 and m; # 1). A single patch of the
dressed string does not form a closed string, even in this
case, due to the phase difference of the periodic behaviours
of the solution before and after the kink location. However,
when A@ = mwmy/n;, where my and n, are integers with
gcd (ma, ny) = 1, it is possible to unite ny such patches,
each one rotated by an angle 2wm,/n; in comparison to the
previous one. In this way, the asymptotic region of each patch
after the location of the kink, coincides with the asymptotic
region of the next one before the location of the kink, so that
an infinite smooth closed string is formed. An infinite closed
dressed elliptic string of this kind is depicted in Fig. 16.
These exact infinite closed string solutions can be consid-
ered as the n; — oo limit of the approximate finite closed
strings presented in the previous section, with the additional
constraint that the seed solution obeys appropriate periodic-

ity conditions so that the asymptotic behaviour of the infi-
nite dressed string is well-defined. In this limit, the condi-
tions (4.27) and (4.28) are trivially satisfied and the solution
ceases being approximate and becomes exact. It follows that
the approximate closed strings of the previous section can
also play the role of a regularization scheme for the infinite
ones of this section. This will become handy in Sect. 7, where
we will calculate the energy and momentum of the dressed
string solutions.

It may appear annoying, that such solutions are
parametrized by many infinite patches. However, this is
not unexpected. In the literature, there are very well-known
examples of simpler solutions with similar behaviour, namely
the multi-giant magnons. These are degenerate limits of ellip-
tic solutions (the E — 2 limit of the elliptic solutions (2.5)).
Let us consider an elliptic solution (a solution defined on a
torus) that obeys periodicity conditions with §¢ = 27 /n.
This solution is parametrized by a segment of o' which cor-
responds to n windings around the circle of the torus that cor-
responds to the real period 2w . In the limit that this solution
becomes a multi-giant magnon, this period diverges, and,
thus the torus is transformed to a cylinder. It follows that
appropriate parametrization in this limit, requires the union
of n such infinite cylinders, and for this reason these solu-
tions require an infinite range of o'! for the parametrization
of each hop. The solutions of this section exhibit the same
behaviour. They should be understood as the degeneration
of genuine genus two solutions, in the limit when one of the
two real periods diverges.

4.4 D? < 0: exact finite closed strings

When considering dressed string solutions with D? < 0, the
corresponding Pohlmeyer counterpart is not a kink propa-
gating on an elliptic background, but rather a periodic dis-
turbance of the background. This means that the effect of the
dressing on the string (as well as in its Pohlmeyer counter-
part) is not localized in some region, as it was in the case
D? > 0. This also implies that there is no limit where the
dressed solution tends to become similar to the seed. Thus, in
this case, it is not possible to construct an approximate genus
two solution, similar to those of Sect. 4.2.

It is possible to find dressed string solutions with D? < 0
that obey exact appropriate periodicity conditions, i.e. it is
possible to construct a closed string that corresponds to a
finite interval of the space-like parameter o'!. The dressing
solution contains elliptic functions with argument of the form

ya®t — B0 4w, (4.32)
inherited by the seed solution. These have the periodicity

properties of the seed, i.e. they are periodic in o' !, with period
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Fig. 14 On the left, the kink solution propagating on top of an elliptic background, a degenerate genus two solution of the sine-Gordon equation.
The part of this solution between the thick vertical black lines is used to approximate the non-degenerate genus two solution depicted on the right

Fig. 15 Taking advantage of the asymptotic periodicity properties of
the sine-Gordon counterpart to form an approximate finite closed string.
Notice that the o'! segment that covers the closed string moves with the
velocity of the kink and not alongside the o' axis

@ Springer

Fig. 16 An infinite closed string with exact periodicity conditions and
¢ = 2m/3 and 2A¢ = m/2. The seed solution has a rotating static
Pohlmeyer counterpart with E = 6u2/5. Four patches of the original
seed string solution are required to form the dressed string

dop = 2w1/(yB) and o1 = 2w;/y, for translationally
invariant and static seeds, respectively. This implies that a
closed string, which is covered by ol € [Xo, Do+ AY)
obeys
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AXY =ndog;1, neN. (4.33)

Except for this dependence of the dressed solution on the
worldsheet variables, there are two angles that appear as argu-
ments in trigonometric functions, one inherited from the seed

solution and one from the dressing factor, namely

pteed (Go’ 01) —7 (yo_l/() . VﬂO_O/l)

- (yao/l — yﬁal/o; a) , (4.34)
(pdress (00, Gl) _ \/—7[)2<y01/0 _ %300/1>
—® (yao/l - yﬂal/o;é). (4.35)

These functions obey the following quasi-periodicity prop-
erties

(pseed (0_0’ O.l +50'0/1) — (pseed (O’O, O_l) + B(P(S)eﬁd, (4.36)

(pdress (GO, Ul “1‘500/1) — godress (O’O, 0_1) + 590(()1;61“»

4.37)
where
a
S seed __ 2 : -
Poj1 = F2w1 | ig (w1) o
. (x1—p (a)) (x2/3— (a
Nicw+ © (@) (x23— (@) ’
x3/2— (a)
(4.38)
dress __ . a
Sep1 = F2o1 | i (@1) —
w|
. (& (@) —x1) (x2/3— (@)
- iz @+ /[~ k2= @)
x32— (a)
(4.39)
Obviously, appropriate periodicity conditions imply
d
d B msee
8¢see = mzﬂ, (440)
dress
dress __ M
(S(ﬂ eSS — WZTF, (441)
where mseed | pseed pydress dress o 7 1f we select the above

integers, so that gcd (mseed, nseed) = gcd (mdress, ndress) =
1, then we will obtain a finite closed string solution with
n = lem (nseed’ ndress).

The first of these conditions (4.40) simply states that the
seed solution obeys appropriate periodicity conditions. The
second one (4.41) is closely related to the periodicity prop-
erties of the sine-Gordon counterpart analysed in Sect. 3.5.

More specifically, this condition is equivalent to demand-
ing that the direction of the boosted axis ! coincides with
one of the directions defined by the periodicity lattice of the
sine-Gordon counterpart. This can become more transparent
expressing the condition (4.41) in terms of the velocity of the
periodic disturbance vg}l , given by Eqs. (3.44) and (3.47). It
reads

1 mdress

dres / b

aworeSS = —D2 (E — UB ) 26()1 = Wzﬂ, (442)
1 mdress

dress __ 2 _
81" =—v—=D ( — v_t1b> 201 = ~ds 27, (4.43)
which after some algebra results in
1 2_:1D2 mdress + 2w U(t)bndress
E = za)lndress ’ (4.44)
1 2a)lndress
i _ 2 dress | 201, dress (445
B m + n

—_D2 ptb

for solutions whose seeds have a translationally invariant or
static Pohlmeyer counterpart, respectively. Bearing in mind,
that the sine-Gordon counterpart solution is periodic under
the translations (3.42) or (3.49) and quasi-periodic under the
translations (3.43) or (3.50), the above equations imply that
the o'! axis is lying in the direction of m9™s periodic dis-
placements and n"% quasi-periodic displacements on the
periodicity lattice of the sine-Gordon counterpart. Figure 17
visualises the above.

These finite closed string solutions can be considered as
the analytic continuation of the exact infinite closed strings
that we studied in Sect. 4.3. However in this case, the result-
ing strings are of finite size. Similarly to the exact infinite
closed strings with D? > 0, the seed solution must obey
appropriate periodicity conditions, too. However, depending
on the integers 7°¢°d and n97, the dressed string may require
several (Icm (nseed, ndress) /n%%d) repetitions of the o'! inter-
val of the original seed solution in order to complete a closed
string. Figure 18 depicts an example of such a dressed string
solution.

Similarly to the exact infinite closed string solutions
with D?> > 0, these solutions are also the degener-
ate limit of genuine genus two solutions. The differ-
ence between the two classes of solutions is the fact that
the divergent period is the real one in the former case
and the imaginary one in the latter. In other words, in
this case, the 0! segment parametrizing the string solu-
tion corresponds to winding around the compact direc-
tion of the cylinder, which is the degenerate limit of the
torus.
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Fig. 17 The segment of 0! parametrizing a finite closed dressed ellip-
tic string with D> < 0, as specified by the periodicity properties of
the sine-Gordon counterpart. In the depicted example 795 = 1 and
mdress -2

4.5 D? > 0: special exact finite closed strings

In Sect. 4.2, we showed that under some conditions, it is
possible to take advantage of the asymptotic behaviour of
the solutions to construct approximate closed dressed ellip-
tic string solutions. The appropriate conditions are given in
Egs. (4.27) and (4.28) and it is simple to see that, select-
ing an adequately large n, these conditions can be satis-
fied, independently of the value of the other parameters.
However, there is a special case where this is not possible
namely,

B= —_L. (4.46)
vo/1

In this case, it is not possible to construct such an approximate

solution, as the spacelike coordinate o'! follows exactly the

motion of the kink, and, thus, no matter how large values ol

takes, a snapshot of the string never reaches the asymptotic

region.

In a different approach, in the case D> < 0, there is a
two-dimensional lattice of symmetries of the sine-Gordon
counterpart that allows the construction of periodic and thus,
finite string solutions. In the case D? > 0, this set of symme-
tries is one-dimensional and thus, it is not generally possible
to use these symmetries for the construction of finite string
solutions, unless the ol axis coincides with the direction of
the periodic symmetry of the sine-Gordon counterpart. The
condition (4.46) corresponds to exactly this case. Therefore,
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— seed solution

— dressed solution

Fig. 18 Two dressed strings with D?> < 0 with seed solutions, which
have a translationally invariant counterpart (left) and a static counterpart
(right)

one may use the exact periodic properties of the sine-Gordon
counterparts of the dressed elliptic strings (3.21) and (3.22)
to construct the special exact finite closed string solutions, as
shown in Fig. 19.

The condition (4.46) is not sufficient to ensure appropriate
boundary conditions of the solution. Similarly to the D? < 0
case of Sect. 4.4, the worldsheet coordinates appear in three
distinct combinations in the solution. The first one is triv-
ially €91 or (4.32) in terms of oy /1, which implies that the
possible segment of o] covering a finite string is given by
Egs. (4.10) and (4.11) for translationally invariant and static
seeds respectively. One should remember that in the case
under study it holds D? > 0 and thus, the seed may have
an oscillating sine-Gordon counterpart. In such a case, 2w
should be substituted with 4w; in these expressions.

Except for this dependence on the worldsheet variable,
two more angles appear, namely

5 (o0 0") = £ (o /0 — ypo®)

— @ ()/ao/l — ypa 0, a) , (4.47)
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Fig. 19 Taking advantage of the periodicity properties of the sine-
Gordon counterpart to form a special exact finite closed string

(pg;eiss (60’01) - D (yal/o _ %300/1)
- (yao/l — yﬂal/o;é).

The first angle appears as argument of trigonometric func-
tions, whereas the second one in hyperbolic functions. Thus,
in juxtaposition with the D> < 0 case of the previous sec-
tion, appropriate periodicity conditions require a condition
identical to (4.40), whereas the periodicity condition (4.41)
should be substituted with

(4.48)

spdress = 0. (4.49)
The condition (4.40) is equivalent to the seed solution obey-
ing appropriate periodicity conditions, whereas the condition
(4.49) simply implies the condition (4.46). Obviously, such
a solution is possible only when the kink propagates with a
speed larger than the speed of light.

Both infinite and finite exact periodic string solutions
with D? > 0 can be considered as the analytic continua-
tion of the exact finite string solution with D> < 0. The
space or time period of the corresponding sine-Gordon coun-
terparts is equal to 27 /+/—D2. As D — 0 this period
diverges. Therefore, naturally the finite strings with D? <
0 of Sect. 4.4 tend to the infinite strings with D> > 0
of Sect. 4.3, unless this vector does not contribute to the
o! direction, i.e. m¥eS = 0, in which case they tend
to the finite exact solutions with D> > 0 of this sec-
tion.

5 Time evolution and spike interactions
5.1 Shape periodicity
5.1.1 D* > 0: approximate finite and exact infinite strings

The time evolution of the approximate finite dressed strings
with D? > 0 is shown in Fig. 20. The dressed strings, in the
region far away from the extra kink induced by the dress-
ing, are similar to a rotated version of the seed elliptic string
solutions. The time evolution of the later is simply a rigid
rotation around the z-axis with angular velocity equal to [28]

w01—i X1 — g (a)
/ R\ x30— g (a)

In Fig. 20, this rigid rotation has been frozen in order to
focus on the change of the shape of the string. The shape of
the string alters periodically with period equal to

5.1)

™ = (2) 2uyw; (1 — Bio) ,

e 1
TP = (2)2uy o (E - ﬁ) ,

(5.2)

where the extra 2 applies in the case of oscillatory seed solu-
tions and vg, is given by Egs. (3.13) and (3.18), depending
on whether the seed solution has a translationally invariant or
static counterpart. At the level of the sine-Gordon equation,
this formula yields the time necessary for the kink to travel
over a whole period of the elliptic background. This time is
directly related to the mean velocity of the kink, as calculated
in Sect. 3.2 in the linear gauge. The above formula is just the
appropriate adaptation to the static gauge.

The time evolution of the exact infinite dressed strings with
D? > 0 is similar to the time evolution of the approximate
finite strings.

512 D?><0

The question whether the dressed elliptic string solutions
with D? < 0 are also periodic in time has a similar answer to
the same question imposed about the sine-Gordon counter-
part. In a similar manner to the periodic in space properties,
the dependence of the solution on elliptic functions of £%/1
implies that a possible period for the motion of the string has
to be a multiple of the quantity

2

St = 2L, (5.3)
y
2w

s = (5.4)
vB
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Fig. 20 The time evolution of
the dressed elliptic string
solutions depicted in Fig. 12

In this case it is not necessary to impose any condition for
the angle %4, It turns out that the angle ¢ is altered
by an amount that it is independent of o'!. Since this angle
enters into the solution as an overall rotation via the matrix U,
such an angle does not correspond to a variation of the shape
of the string. On the contrary, periodicity in time requires

@ Springer

t=0
— t=Thpe/g
— r=Thawe /4
1 =3Tshape /8
— =T/

appropriate condition for the angle ¢975¢d_ This turns out to
be

mdress

5¢8ress _ _\/Tm (,3 _ v%)b> 2w) = WZT[’ (5.5)
1 1 mdress
8¢(liress — \/Tm (E _ v_ib> Za)l = Wzn, (56)
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which after some algebra can be written as

2 s tb S
__2n mdress + 2w1v0 ndres<

p= =2

2win

2(01 pdress ’ (5.7)

dress

B = (5.8)

2 dress 4 201 ,dress
/7D2 m + Ulb n

These equations are implying that the 0¥ axis coincides to a
direction of the periodicity lattice of the sine-Gordon coun-
terpart. Therefore, only in such a case, the string solutions of
this class are periodic in time.

5.2 Spike dynamics

We observe several forms of interaction between the spikes.
Two spikes pointing to opposite directions may approach
each other until a given time instant when they both disap-
pear. After some time, they reappear at a different position.
This is evident in Fig. 20 top-left, middle-left and middle-
right. It is also possible, as shown in the bottom-left part
of Fig. 20, that a loop shrinks until a time instant when
it disappears and two spikes pointing in the same direc-
tion appear. Then, the loop reappears in a different posi-
tion, after the combination of a different pair of spikes. It
has to be noted that although the kink induced by the dress-
ing bypasses the kinks of a rotating background, it is possi-
ble that the corresponding spikes bypass each other without
interacting, as shown in the bottom-right part of Fig. 20. A
close-up of these kinds of interactions is depicted in Fig. 21.
The time evolution of the string in this figure advances from
red to purple. On the left two spikes approach each other
and then disappear. It is clear that they cease to exist for
a finite time and then, a pair of spikes appears in a sym-
metric fashion and starts diverging until one of those com-
bines with another spike. On the right the situation is sim-
ilar, but when the two spikes disappear a loop takes their
place.

The above processes are quite simple to understand in
the language of the sine-Gordon equation. As noted in [28],
a spike may appear only at positions where the Pohlmeyer
field ¢ assumes a value that is an integer multiple of 277, as in
these positions the derivative % vanishes. Actually, unless a
very special coincidence happens (the second derivative also
vanishes), at such points the derivative ;’TX, gets inverted,
and, thus, these points are positions of spikes. In Fig. 22, the
time evolution of the sine-Gordon counterparts of the dressed
elliptic strings is depicted. On the left, the solution is a kink
propagating on a translationally invariant oscillating elliptic
seed, whereas on the right it is an antikink propagating on
a train of kinks, i.e. a rotating elliptic seed. As analysed in
Sect. 3, the shape of the kink alters periodically as it advances
in the elliptic background. As the shape changes, it is possible

Fig. 21 Two kinds of spike interactions. On the top a spike and anti-
spike annihilate and regenerate at a different position. On the bottom
a loop dissolves to two spikes. Then, one of those is recombined with
another one to form again a loop. The time evolves from the red curve
to the purple one

that the solution ceases to cross a ¢ = 2nm horizontal line,
or on the opposite may start crossing such a line. Continuity
ensures that whenever this happens two points where the
solution crosses a ¢ = 2nm line appear or disappear. As
these points correspond to spikes, it naturally implies that
spikes may interact in pairs that disappear or appear from
nothing.

The left part of Fig. 22 depicts the kind of interaction
occurring in the top left panel of Fig. 20, whereas the right
part depicts the kind of interaction happening in the middle
row and the bottom right panel of Fig. 20. Had one consid-
ered the case of a kink propagating on a train of kinks, the
situation would be rather different. Such a solution is always
monotonous (see Fig. 3), and, thus, it is not possible that such
phenomena occur. Therefore, although the extra spike cor-
responding to the kink will overpass all other spikes, as the
kink advances in the elliptic background, it is not possible to
get in touch and interact with any of those. This is the case
of the bottom right panel of Fig. 20.
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Fig. 22 The time evolution of a kink propagating on a translationally
invariant oscillatory background and an antikink propagating on a rotat-
ing background being a train of kinks. The dots are positions of spikes.

The thick dots are the “interacting” spikes that disappear and reappear
in either of the interactions depicted in Fig. 21

The same kinds of spike interactions occur in the time evo-
lution of the other classes of closed strings that we developed
in Sect. 4.

5.3 A conservation law preserved by spike interactions

In the case of the dressed string solutions with approxi-
mate periodicity conditions plotted in Fig. 12, the space-like
worldsheet coordinate o ! runs in a finite interval. Such solu-
tions are characterized by a topological number N, being
proportional to the difference in the value of the Pohlmeyer
field at the endpoints of this interval, obviously being a mul-
tiple of 2,

2N = / dod,p, N €Z. 5.9)

string

This number is conserved as the string moves due to the
continuity of the time evolution of the Pohlmeyer counterpart
of the solution.

In the case of the elliptic strings this has been identified to
the number of spikes [28]. However, in this case the spikes

@ Springer

never interact with each other, as the time evolution of the
elliptic strings is simply a rigid rotation. In the case of dressed
elliptic strings, we have seen that spikes may interactin a way
that their number is not conserved. Thus, the identification
of the topological number in the sine-Gordon equation as the
number of spikes cannot be extended beyond the case of the
elliptic strings.

The form of these spike interactions guide us to search for
a conserved quantity, which receives £1 contributions from
each spike and +£2 contributions from each loop. Let us con-
sider the turning number of the closed string. This is a difficult
task since the string has singular points (the spikes), where
the tangent vector is not well defined. However, it is true
that the string contains only this kind of non-smooth points,
i.e. points where the tangent gets inverted. Other non-smooth
points where the tangent is instantly rotated by an arbitrary
angle are not allowed. Therefore, the unoriented tangent to
the string is continuous, and, thus, an unoriented turning num-
ber can be defined. This is an element of the fundamental
group of the mappings from S! to the one-dimensional real
projective space RP!. Notice that possible self intersections
of the string should not be treated as the same point, where
the tangent would not be well-defined, but as separate points.
This way the desired turning number is naturally a member
of (RPI) = Z and must be conserved.

Figure 23 shows that the existence of a single spike
between two points of the string with the same unoriented
tangent contributes a 1 to this turning number. Similarly,
the existence of a loop contributes £2.

This explains the two kinds of interactions we found in
Sect. 5.2. Whenever two spikes with opposite contributions
to the unoriented turning number get combined, they just
disappear. When two spikes with identical contributions to
the turning number get combined they disappear and neces-
sarily the conservation of the turning number implies that a
loop must take their place. The above imply that the unori-
ented turning number and the topological charge of the sine-
Gordon equation are in correspondence. They do not have to
be equal, but they may differ by an even integer.

The above are also in line with the effect of the dressing
on the shape of the string that we observe in Fig. 12. In all
cases, the action of the dressing procedure on the Pohlmeyer
field adds a kink or an antikink to the seed solution, which
according to the above should increase or decrease the afore-
mentioned turning number by one. The simplest case is that of
a seed solution with a static oscillating counter part (Fig. 12,
top-right). In this case the seed solution has no spikes, while
the dressed solution has exactly one. In a similar manner,
when a seed solution with a translationally invariant oscil-
lating counterpart is considered (Fig. 12, top-left), the seed
solution has equal number of spikes that contribute +1 and
spikes that contribute —1 to the turning number, having net
turning number 0, whereas the dressed string has net turning
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Fig. 23 The turning number contributions from a spike (top) and a
loop (bottom)

number equal to 1. In the case of seeds with rotating elliptic
counterparts the behaviour is also similar.

6 Instabilities of the elliptic strings

When one desires to study the stability of a classical string
solution, they usually study the stability of its Pohlmeyer
counterpart, as the equations of motion of the reduced sys-
tem are simpler to study since they contain fewer degrees of
freedom and they do not possess any reparametrization sym-
metry. More specifically, the stability of the elliptic solutions
of the sine-Gordon equation has been studied in [30]. It turns
out that only the static rotating elliptic solutions of the sine-
Gordon equation are stable. Therefore, only one of the four
classes of elliptic string solutions on the sphere S? is sta-
ble.

However, we should be concerned about the above result.
The stability analysis is performed introducing an arbitrary
infinitesimal perturbation to the elliptic solutions of the sine-
Gordon equation. However, when a closed elliptic string
is considered, appropriate periodicity conditions must be

applied, and, thus, only perturbations preserving these con-
ditions should be considered in the stability analysis.

In the following, we will follow a different approach to
discover instabilities of the elliptic string solutions. Instead
of performing an infinitesimal perturbation to the string solu-
tion, we will try to find explicit solutions that tend asymp-
totically in time to an elliptic string solution, but in general
they are not a small perturbation around the latter. Such solu-
tions are the analogue, for example in the case of the simple
pendulum, to the trajectories connecting asymptotically two
consecutive unstable vacua. The existence of such a solution
reveals that the elliptic solution, which is the asymptotic limit
of the latter, is unstable.

This class of string solutions that reveals instabilities of
the elliptic strings may contain solutions with various genera.
However, the simplest case to consider is a degenerate genus
two solution, where only one of the two genera is degener-
ate. The solution should have a non-degenerate genus, asso-
ciated with the initial elliptic solution, and furthermore it
should have a degenerate one describing the infinite motion
that tends asymptotically to the elliptic solution at plus and/or
minus infinite time. This is exactly the class of dressed elliptic
string solutions.

It turns out that the relevant dressed elliptic solutions are
the special finite exact solutions with D> > 0 presented in
Sect. 4.5. These solutions have counterparts with D> > 0
being a kink propagating on an elliptic background. There-
fore, the sine-Gordon counterparts of these solutions have
a specific asymptotic behaviour, namely, far away from the
region of the kink they tend to a shifted version of the seed,
and similarly the string tends to a rotated version of the seed
string solution. In this specific class of solutions, the o' direc-
tion is parallel to the direction that the kink moves in space-
time, thus the asymptotic behaviour of the string is never
reached at a snapshot of the string, but it is rather reached
asymptotically in time. It follows that these specific string
solutions evolve from a rotated version of the seed elliptic
spiky string solution to another one, rotated by the oppo-
site angle. Notice that these asymptotic string solutions obey
appropriate periodicity conditions and thus, they are finite.

The existence of these solutions indicates that their seed
elliptic solutions are unstable. They describe a finite distur-
bance of a spiky string emerging after an infinitesimal per-
turbation at minus infinity time.

The special solutions of this kind emerge only when the
kink propagating on top of an elliptic background in the
sine-Gordon counterpart of the solution is superluminal, as
shown in Sect. 4.5. Therefore, following Sect. 3.2, only ellip-
tic strings with a translationally invariant sine-Gordon coun-
terpart that is rotating, or oscillating with £ > E, and ellip-
tic strings with a static oscillating sine-Gordon counterpart
may expose this kind of instability. Interestingly, as shown in
Fig. 5, the strings with an oscillating translationally invariant
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Fig. 24 The dressed elliptic string solutions that reveal instabilities of
their seed elliptic strings. The dashed lines correspond to times oppo-
site to the continuous ones with the same color. On the top row, the two
solutions related to an elliptic string, with a translationally invariant
oscillatory counterpart with E = 9>/10 and n = 4, are depicted. The

counterpart with £ > FE. give rise to two distinct dressed
string solutions exposing their instability, whereas all other
classes give rise to only one. Figure 24 shows the time evolu-
tion of the special finite dressed elliptic strings with D? > 0.

The rigid body rotation of the asymptotic elliptic string
has been frozen in the figure so that the time evolution is
clearly depicted. In all cases the string finally resettles to the
same unstable elliptic string configuration but with a delay
proportional to 2 |a| in comparison to the state it would lie had
it followed the simple rigid rotation evolution of the elliptic
string.

The above are in line with the findings of [30], which sup-
port that in general string solutions with sine-Gordon coun-
terparts that can accommodate superluminal kinks are unsta-
ble. However, in our case there is a particular difference. The
solutions exposing the string instability emerge only when

@ Springer
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bottom left panel shows the solution related to an elliptic string with
a translationally invariant rotating counterpart with E = 3u?/2 and
n = 8. Finally, the bottom right panel depicts the solution related to
an elliptic string with a static oscillatory counterpart with E = —u2/2
andn =8

there is a superluminal kink with velocity equal to the inverse
of the velocity of the boost connecting the linear and static
gauges. This is due to the fact that only such solutions do not
disturb the periodicity conditions of the closed seed string
solution. Recalling Fig. 5, the above implies that the ellip-
tic strings with oscillating static counterparts always expose
this kind of instability, since the kink velocity diverges at
the limit a — w1, and, thus, any possible superluminal kink
velocity can be obtained for some value of a. On the contrary,
for elliptic strings with translationally invariant counterparts,
even in the case they can accommodate superluminal kinks,
there is a maximum velocity of the latter. This means that,
depending on the elliptic string moduli E and a, which deter-
mine the velocity of the boost connecting the static and linear
gauges, this kind of instability may or may not exist. More
specifically, given a value of E, there is a minimum value
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Fig. 25 The set of unstable elliptic string solutions in the moduli space

of p (a), or in other words, there is a minimum number of
spikes required for the existence of the instability. This in
turn implies that the ”speeding strings” limit of the elliptic
strings always exposes this kind of instability (when they
have translationally invariant counterparts). Figure 25 shows
the subset of elliptic strings that present this kind of insta-
bilities within the moduli space of elliptic string solutions as
parametrized by the quantities £ and g (a).

In the right panel, the thick black line enclosing the unsta-
ble elliptic string solutions with oscillating translationally
invariant counterparts tends asymptotically to the £ = E,
vertical line, where the constant E. is defined in Eq. (3.14).

Of course the above argument is not a proof of the exis-
tence of stable closed elliptic string solutions, with sine-
Gordon counterparts that accommodate superluminal kinks;
it is possible that more complicated multi-kink generaliza-
tions of the above solutions conserve the periodicity condi-
tions and thus give rise to instabilities. These should possess
only one non-degenerate genus, thus, they could emerge from
the dressing of the elliptic strings with more complicated
dressing factors. The latter can be constructed from the solu-
tion of the auxiliary system presented in [29] in a straightfor-
ward manner. Such solutions should not correspond to multi-
ple kinks travelling on top of an elliptic background, as they
would have different velocities and thus, their asymptotic
behaviour could not be only temporal. They would rather
correspond to a single breather propagating on top of an
elliptic background. Nevertheless, the stability issue of the
spiky strings requires further investigation concerning the
constraints originating from the periodicity conditions.

A simple case to consider in particular is the stability of
the GKP strings [1]. These are the elliptic strings with static
Pohlmeyer counterparts and modulus a = w, implying that

B = 0, i.e. the linear gauge coincides with the static gauge.
It follows that a dressed elliptic solution exposing an insta-
bility of a GKP string should have a Pohlmeyer counterpart
being a superluminal kink on top of an elliptic background
with infinite velocity, in other words a translationally invari-
ant kink. As we have shown in Sect. 3.2, the kink velocity on
static backgrounds is diverging only in the case of an oscil-
lating seed at the limit @ = ;. Therefore, the GKP strings
with an oscillating Pohlmeyer counterpart are unstable. This
is expected since the latter are great circles rotating around
the sphere with subluminal velocities and they tend to shrink
due to the string tension.

7 Energy and angular momentum

7.1 Approximate finite and exact infinite strings with
D>>0

The dressed string solutions have a conserved energy and
angular momentum as a direct result of the time translation
and the rotation symmetries of the NLSM action. The energy
is simple to calculate, since

:T/

string

dto/1
900

ol =Tu / do'. (71.1)

string

oo _|eL
O = 580t

The only non-trivial quantity to be specified is the range of
the space-like parameter ! that covers the whole closed
string. In Sect. 4, apart from the special solutions related
to the instabilities of the elliptic strings, we specified two
classes of closed dressed elliptic strings with D> > 0:
those that have finite length and satisfy approximate period-
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icity conditions and those that are infinite and satisfy exact
periodicity conditions. Obviously, the energy of the latter
is infinite. The former are covered by nj patches, of the
form

ol e |:6_n1a)1+sq>d’6+nla)1+s(p5l>’ 72)
vB vB

(TIE |:(_T_n1w1—s(p51’5+n1a)1—sq>&>’ (7.3)
14 14

where o is the position of the kink that is induced by the
dressing, at any given time.> Defining as Eg;’f the energy of
one hop of the seed elliptic string, it follows that the energy
of these strings is equal to

2Tl’l2R/,L2 (nyw) £ sea)

VX322 — g (@)

h a
EO%D |:n2 (m :|:S<pw—1>:| .

In a similar manner, the angular momentum can in prin-
ciple be calculated as

Eo/n =

(7.4)

Ly a
=_— =TR? / sin290/1 ﬂdUI.
80 900

string

J (1.5)

This requires much more complicated algebra than the calcu-
lation of the energy. However, this algebra may be bypassed,
since the angular momentum is directly proportional to the
sigma model charge. The sigma model charge of the dressed
solution differs to that of the seed by a finite amount as
described by formula (2.17). Therefore, we can easily cal-
culate the angular momentum of the dressed solution given
the angular momentum of the appropriate segment of the
seed solution that corresponds to the range of o'! that cov-
ers the closed dressed solution. This is an easy task in the
parametrization in terms of the Weierstrass elliptic function,
as explained in [28].

We will focus on the calculation of the third component
of the angular momentum of the string, which presents a cer-
tain interest for holographic applications. Before that, let us
argue on the reasons we expect the other two components
to vanish, when we consider finite closed dressed strings.
In the case of elliptic “naked” solutions obeying appropri-
ate periodicity conditions, J; and J> vanish as a result of
the discrete symmetry that these solutions possess. This is
also the case when one considers infinite dressed elliptic
strings that obey exact periodicity conditions (see Fig. 16).

3 In Sect. 4.2 we used as & the average position of the kink (see
Eqgs. (4.30) and (4.31)). One could consider the exact position of the
kink, i.e. the o that obeys ) (00, r'r) = 0. Either selection results in the
same values for the energy and the angular momentum of the dressed
strings.
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However, naively this is not the case when we consider the
approximate closed finite dressed solutions with n, = 1, as
the extra spike induced by the dressing breaks this symme-
try. Although this symmetry is not present at a given time
instant, one should not forget that the dressed strings change
shape periodically, while they are simultaneously rotating.
Therefore, after a time equal to the period of the string
shape, it is expected that the J; and J> components will
have rotated by an arbitrary angle. As the angular momen-
tum is conserved, the latter implies that J; and J, vanish. In
the following J denotes the third component of the angular
momentum and the indices 0 and 1 refer to whether the seed
has a translationally invariant or static Pohlmeyer counter-
part.

The angular momentum of the seed solution is given in
[28]. In the following, we consider the case of seed solu-
tions with static counterparts. The case of seeds with trans-
lationally invariant counterparts can be treated in a similar
manner.

n o+AXY
Jseed:ﬂ / (6/') (V (01 - /300) +CU2) _X3> dUl,
t Js_ax

(7.6)

where AY = (njw; —s¢a)/y. Simple algebra yields

Jseed = —n?z {¢ (04) — ¢ (02) +2x3 (n1w1 — s@ad)},

(71.7)
where

o=y (a - ﬂao) + (n1w] — $pd) + w). (7.8)

The difference between the NLSM charge of the dressed
and seed solutions is given by Eq. (2.17). It follows that the
difference of the third component of the angular momentum
is given by

1
Al = —EAQ?. (7.9)

Itis a matter of algebra to show that the change of the angular
momentum induced by the dressing is given by the following
expression

ny
Al = [-2n1¢ (1) + ¢ (01) — ¢ (02)
+2s¢ (¢ (@) — Dcos6))]. (7.10)

Thus, the third component of the angular momentum of the
dressed solution Jgregsed 18 €qual to
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nj
J1 = —27[711 (¢ (w1) + x301)

— s (£ (@) + x3a — D cos b)) |. (7.11)

In a similar manner in the case of translationally invariant
seeds we find

Jo = 2%2[111 (¢ (w1) + x201)

+ ¢ (¢ (a) + x2a — D cos 91)]. (7.12)

. h
Defining as Jo/ol10 the angular momentum of one hop of the
seed solution, the above expressions can be written as

h ¢ (@) + x2/3a — D cos 6
Jop = nz]0/01p<n1 + s¢ / .

¢ (1) + x2/301
(7.13)

We observe that the dressing parameter a plays in energy
and momentum a role similar to that of w;. In a similar man-
ner the angle 2 Ag plays a similar role to the angular opening
8¢, which in the case of elliptic strings is associated to the
quasi-momentum in the holographically dual theory. A nat-
ural interpretation of these similarities is that the dressed
strings are holographic duals of states of the boundary CFT
that are characterized by more than one quasi-momenta,
interacting with each other in a non-trivial manner. This is
not unexpected, since the finite dressed strings approximate
genuine genus two solutions.

The difference of the energy and angular momentum of
the dressed solution to those of the seed solution is

TRu2a
AEy = £25¢ 1) ———=, (7.14)
VX3 — (@)
1 - -
Ao = ZSq)nZZ ({ (a) + xz/3a — D cos 91) . (7.15)

The exact infinite dressed strings with D> > 0 have obvi-
ously infinite energy and angular momentum. Nevertheless,
since they are the n;y — oo limit of the approximate solu-
tions, and the above expressions do not depend on n, the
difference of their energy and momentum to those of their
elliptic seeds is well-defined, finite and given by (7.14) and
(7.15). In other words the finite approximate closed dressed
strings may serve as a regularization scheme for the exact
infinite closed dressed strings.

Although the above relations are expressed in terms of
transcendental functions, the properties of the elliptic func-
tions allow the specification of the dispersion relation in a
closed form whenever the quantities @ and a are a rational
fraction of w; and w respectively. This procedure is applied
in [28] for the simpler case of elliptic strings and we will not
post further details here.

7.2 Exact finite strings with D? > 0 and strings with
D> <0

The energy and angular momentum of the dressed strings
with D? < 0 and appropriate periodicity conditions, as well
as those of the exact finite dressed strings with D? > 0, can
be trivially derived from those of the seed solutions. The fact
that the solution is periodic in o' with a period that is an
integer multiple of that of the seed, implies that the variation
of the energy and angular momentum induced by the dressing
is trivially vanishing, as one can read from expressions (7.1)
and (2.17). The energy is trivially equal to

2TnRu2a)
Eop = ——C L (7.16)
VX372 — g (a)
2TnR? w1) + x2/3w
Joj =+ (¢ (1) + x2301) (7.17)

Vx1— g (a) ’

where n is equal to lem (nseed, ndress), in the case of dressed
strings with D? < 0, as described in Sect. 4.4, and n = nsd
in the case of the exact finite elliptic strings with D? > 0 (or
equivalently n97 = 1), as described in Sect. 4.5.

The change of the difference of the energy and angular
momentum that is induced by the dressing, is plotted ver-
sus the dressing parameter 0; in Fig. 26. In these plots, it
is assumed that when the seeds have translationally invari-
ant sine-Gordon counterparts, they also have the instabilities
presented in Sect. 6. Had we considered the opposite, the
graphs would be identical apart from the inversion of the
curve between the two instabilities in the case of an oscil-
lating counterpart and between 6, and the instability in the
case of a rotating counterpart, which would be absent.

Furthermore, not all points in the continuous curves of the
graphs correspond to closed strings, but only a dense discrete
subset of them. The blue lines here correspond to the exact
infinite closed strings of Sect. 4.3. As the expressions for
the energy and angular momentum of the approximate finite
closed strings of Sect. 4.2 are identical, the relevant plots
would be similar apart from two differences:

— The full continuum of the curves could be set valid, if
the parameters of the seed solution were altered appro-
priately as one moves on the curve so that appropriate
periodicity conditions always apply. Otherwise only a
dense discrete subset would be valid.

— A region around each instability point would be invalid
since the approximation conditions around the instabili-
ties do not hold.

This behaviour implies the existence of an interesting
bifurcation in the dispersion relation of the dressed string
solution occurring at E = 2. The dispersion relation of
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S(E—J)

(E*J)hop
2

seed with translationally invariant
oscillating counterpart

S(E—1J)

(E-J)
2

S(E—J)

seed with translationally invariant
rotating counterpart

seed with static
oscillating counterpart

— finite closed strings with D*> < 0
—— finite closed strings with D> > 0

— infinite closed strings with D> > 0

seed with static
rotating counterpart

Fig. 26 The (E — J)gressed — (E — J)seeq @s function of the angle 0;

dressed strings whose seed solutions have oscillating sine-
Gordon counterparts are a non-trivial function of the angle
01, which determines the position of the poles of the dress-
ing factor or equivalently specifies the value of the Biacklund
parameter a. When considering dressed strings whose seeds
have rotating counterparts, the dispersion relation is a rather
peculiar function of the angle 61 ; there is a range for 61 where
the dispersion relation does not depend on the latter.

The above is an interesting similarity to the properties
of the corresponding solutions of the sine-Gordon equation.
As we have seen in Sect. 3.6, the mean energy and momen-
tum density of the dressed solution of the sine-Gordon equa-
tion with D> < 0 is identical to those of the seed solu-
tion. It would be interesting to interpret this fact on the side
of the holographically dual theory. The difference £ — J
remains the same after the dressing; however the seed solu-
tion is characterised by a single angular opening, i.e. a single
quasi-momentum, whereas this is not the case for the dressed
solution. A naive interpretation of this solutions could be that

@ Springer

they correspond to more complicated excitations, which have
formed bound states behaving as a single quasi-momentum
State.

There is yet another interesting bifurcation of the form of
the dispersion relation of the dressed strings in the case of
translationally invariant seeds that has to do with the presence
of the instabilities. When the seed is unstable, the quantity
AE — AJ contains further discontinuities related with the
inversion of the sign s¢. Although the dispersion relations
of the dressed strings are too complicated expressions to be
directly verifiable in a holographically dual theory, the above
discontinuities in the behaviour of the dispersion relation
could be in principle detectable.

8 Discussion

In the present work, we have carefully studied several phys-
ical properties of the dressed elliptic string solutions on S2,
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which were derived in [29]. We have presented these proper-
ties in juxtaposition to those of their Pohlmeyer counterparts
in an effort to obtain an intuitive understanding of the rela-
tivistic string dynamics on the sphere, through the dynamics
of the sine-Gordon equation, which can be visualised as a
chain of coupled pendulums.

The dressed elliptic solutions have been identified to
belong to two large classes depending on the sign of the
parameter D?. The ones with D?> > 0 have Pohlmeyer coun-
terparts which describe localised kinks propagating on top of
an elliptic background, whereas those with D? < 0 possess
Pohlmeyer counterparts which are periodic disturbances on
top of an elliptic background. The latter emerge only in the
case the seed solution has a rotating Pohlmeyer counterpart.

At first we focused on the necessary conditions that must
be obeyed, so that the dressed elliptic strings are closed. We
arrived at four specific classes of closed string solutions. One
of those is not exact, but these solutions approximate genuine
genus two ones, with one of the two genera being almost sin-
gular. The other three classes are exact solutions and can be
considered as the analytic continuation of one another as D>
changes sign. One of the latter contains only infinite strings;
the approximate class of solutions can serve as a regulariza-
tion scheme in order to calculate the conserved charges of
the infinite ones.

An interesting feature of the dressed elliptic strings is the
existence of interactions between their singular points i.e.
their spikes. It has been previously noted in [28] that in the
case of elliptic strings, the number of spikes is identical to
the conserved topological charge on the sine-Gordon equa-
tion counterpart. However, these solutions have trivial time
evolution and the spikes never interact. In the case of the
dressed elliptic strings, the form of the allowed interactions
between the spikes suggest that the topological charge should
not be connected to the number of spikes. It should rather be
connected to a more complicated quantity, which receives a
41 contribution from each spike and a £2 contribution from
each loop. This quantity is an appropriately defined turning
number, which is the homotopy class of the mapping from
each point of the string to the unoriented direction of the
tangent at this point.

The special class of finite exact solutions with D> > 0
relates in an interesting way to the stability of the seed ellip-
tic strings. Since these solutions asymptotically interpolate in
their dynamical evolution between two versions of the seed
elliptic string solution, they reveal that the latter is unstable. It
is interesting that such solutions emerge only for the classes
of elliptic strings whose sine-Gordon counterparts are unsta-
ble [30]. However, the opposite is not true; it is not possible to
find such a solution for any elliptic string whose Pohlmeyer
counterpart is considered unstable. This may be attributed
to the fact that the stability analysis for finite closed string
should incorporate only the perturbations that preserve the

appropriate periodic conditions. This point deserves further
investigation.

The conserved charges of the infinite dressed strings are
divergent, yet one can define a finite difference with respect
to the charges of the elliptic seed. This divergence is not
surprising, since these string solutions are a long string limit,
similar to that of the giant magnons; the latter correspond to
genus one solutions with diverging real period, whereas the
former are the genus two generalization. As a consequence,
they have a dispersion relation that resembles the one of the
giant magnons, with an additional free parameter. The two
exact finite classes of solutions have identical energy and
angular momenta as their seeds.

The dependence of the conserved charges on the moduli
of the dressed string solutions exhibits some discontinuities.
One of these is related to the qualitative behaviour of the seed
solution, whereas the other one is related to the instabilities
of the seeds. Since the dispersion relation is connected to the
anomalous dimensions of operators of the boundary theory,
it would be interesting to identify these kinds of bifurcations
in the spectrum of the dual theory. The same holds true for
the sets of operators, which correspond to the exact finite
dressed strings and share the same charges with their seeds.

The techniques that were used for the construction of the
dressed elliptic strings on R x S? have obvious generaliza-
tions to other symmetric spaces, such as the AdS, dS, spheres
of higher dimensions or tensor products of the latter. Espe-
cially the AdS, x S" spaces have obvious interest in the
framework of the holographic correspondence. The findings
of this work suggest that similar phenomena exist in these
more interesting cases and deserve further investigation. Sim-
ilarly, identical techniques can be applied for the study of
minimal surfaces in AdS,4, which are interesting in the con-
text of the Ryu—Takayanagi conjecture, or Wilson loops.
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Appendix A: The asymptotics of the dressed elliptic
strings with D2 > 0

In the following we present some details of the algebra related
to the asymptotic behaviour of the dressed string solutions
with a propagating kink Pohlmeyer counterpart (D> > 0).
For simplicity we consider the case of static seeds. In a similar
manner one can study the asymptotic behaviour of dressed
strings with translationally invariant seeds.

The Egs. (2.22), (2.23) and (2.24) imply that the vectors
E;,in the case A = —D? < 0 can be written as

Ei = cosh (Déo +i® (Sl;&))el

+isinh (Ds°+i4> (g‘;a)) e, (A1)
E» = i sinh (Dgo rid (sl; a)) el

— cosh (DEO i (sl; a)) e, (A2)
E; = e3, (A.3)

where the vectors e, ey and e3 are given by (2.25). Far away
from the position of the kink, or else when

+ (D$O+iq§ (gl;gz)) =+ (50,51) > 1, (A4)
these vectors asymptotically assume the form
1 ; .5
Ey = St PEHOER) (0 tiey) (A.5)
1 ‘o (E5
Ey ~ 5ei(Dfo"'“j’(‘gl'“)) (—ex xiey), (A.0)
E3 >~ e3. (A7)

This implies that the solution of the auxiliary system (2.21),
asymptotically equals

1 . L~
U~ _zei(Ds%z@(s%a)) (e1 tiex —extie; 0). (AB)

It has to be noted that the signs =+ in the above expressions for
the asymptotic behaviour of the solution refer to the function
@ going to 0o and not necessarily the static gauge space-
like coordinate o'!. One has to be careful when studying the
asymptotic behaviour of the string in identifying the corre-
spondence between the limits of these two parameters. Using
the general vector p given by

acosb
p=| asinb |,
ia

(A9)

@ Springer

we may find that the vectors X, defined in Eq. (2.32), can
be written as

X, = wop~ —%’ei(’)f°+"">(51ﬁ))ﬂb (e1 +iey), (A.10)

X_=0¥opx~ —gei(Ds()HQ)(EI;‘E))iibO (e1 £iep),
(A11)

which finally implies that far away from the position of the
kink, the dressed solution assumes the form

i Dp/ SI+
1 (COS 0164 + lg)&é)[z)) + 26(0160aw2)

1
X' =-U— ip'@) . #'E+e) |,
02 +D (cos@lpa + lfe@i ) + %
—005915@24
(A.12)
where
Jo E ) — 9@ =g, (A.13)
x1—p (E + o) =01, (A.14)
Vo @ —9 (E ) =94 (A.15)

and the matrix U is given by Eq. (2.20).
The Weierstrass elliptic function obeys the identity

[0 @ =9 @) o B ®) -9 @) o @]
= @—p B [p? @ +4® @ -9 ©)
x (9 (b) — g (©) (9 (aFb)—p )],

which is going to be useful in the following. Trivially, if ¢ is
any of the half periods, implying that g (c) equals one of the
roots e;, the above identity assumes the form

[(9 (@) —e) ' (b) + (p (b) — &) ' @]
=4(p (a) — p (b))*
x (9 (@) —e;) (9 (b) — 1) (9 (@ F b) —er).

Writing the dressed solution in spherical coordinates as
usual

(A.16)

(A.17)

SN Bgressed COS Pdressed

X'=| sin Odressed SIN Qdressed | (A.18)
COS Odressed
we may read from Eq. (A.12) that
1 -
£ cos Ogressed = ——5 | cos 0191 (p (a) — o (a))
®a
./ / 1
: + w
_@ll@ (a)iDKJ (& 2) . (A19)
20 261
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The above equation gets simplified via the use of the identity

s )]
_ip@ 9@

(=3 )]

In the last step we used the Egs. (2.10) and (2.28). The above
equation implies that

_ 1—tan®x _ cot’x—1
cos 2x = I+tan?x — cot?x+1°
cos 01 (p (a) — g (a))

1

= —— % 1+t

4cos1|: (+an )
1

:—Z[m2+<1 tan —) m%

(A.20)

1 "(a 7 (gl
£cos Odressed = ——5 160 @) + Dp (g +w2)
> | &
£ 2D 21
1

2(p (' + w2) — 0 (@)
5 (9 (E"+w2) —x1) 9 (@) F (9 (@) —x1) ' (§'+w2)

J =9 (' +02)) (9 @ — x1)

(A.21)
Direct application of identity (A.17) results in
Ezcoszedressed =X1— & (El +wr Zl)
= £2c0520ueq (gl + Zz). (A.22)

In the case of seeds with rotating counterparts, where
cosbseeq has a given sign for all points of the seed solu-
tion, i.e. the whole seed solution lies in a single hemisphere,
Eq. (A.21) implies that the asymptotic behaviour of the
dressed string has the same property. However, whether this is
the same hemisphere is determined by the sign of —g’ (@). In
other words when a > 0 is positive, the seed and asymptotic
behaviour of the dressed solution lie in the same hemisphere,
whereas when a < 0 they lie in opposite hemispheres. This
is exactly the behaviour described in Sect. 4.1.

In a similar manner, it is a matter of algebra to show that
the azimuthal angle of the dressed solution assumes the form

‘ —DPy — L (Py£ P3) n
= arctan
Pdressed = T+ (P, — D (P, + P3) Pseed

N t 1
= F arctan D F arctan —(Pz Py + @seceds
(A.23)
where
Pi=(p(s'+02) -9 @)ig @, (A24)
Pr=(p(s'+@2)—p @) @. (A.25)

=@ -p@p (§+). (A.26)
It is trivial that
00@Pdressed = 00Pseeds (A.27)
while
91 iressed = T (Pyx P3) 01 P — P10 (P2 £ P3)+81¢ ;
IeSSel P12 + (P2 :i: P3)2 seed -
(A.28)

The denominator of the fraction in (A.28) can be simpli-
fied via the direct application of the identity (A.16),

Pl (PPt = (9 (' +2) — 9 @) 9/ @
F (0@ —p @ (5 )]
(o (&'t o) —p @) 9”@
=4 (' + ) 9 @) (i (&' + ) 9 @)

—p@) (p (8 +ota)-p@).
(A.29)

x (o (a)

The numerator can also be simplified using Weierstrass dif-
ferential equation, g’ 2 (x) = 493 (x) — g2 (x) — g3 and its
derivative, p” (x) = 692 (x) — g2/2,

(Py £ P3)01 P — P19 (P2 £ P3)

= +ip' (a) (p (@) — p (@)
x [p” (sl + wz) (5@ (Sl + wz) - (5))
Z (gl + wz) + (El + wz) 24 (5)]

= lp()(m)— (@)

x [20" (6" +02) (0 (6" +2) —p @)
2(' +or) + 92 @ — (9 (6" +02) 76/ (&))2}

= 2i @ (9 @ ~ @) (5 (6 +2) ~p @)

o’ (€1+w2)¢@’ @\’ | i
> — | —20 (¢'+e2) -p @

(E'+wn) — 9 @)

1
4
(A.30)

Finally, using the addition theorem for the Weierstrass elliptic
function yields
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(P2 £ P3) 91 Py — P101 (P2 £ P3)
= 25 @ (0 @ — 9 @) (1 (£ +2) ~ 9 @)
[ole o) o (e o)

Putting everything together, we yield

(A31)

01 Qdressed
gl @ [p (8 +orta) —p (8 +an)]
 2(p (E'+w) —p (@) (p (' +wntd) —p (@)
+ 01 Pseed

_ i (a) B i’ (a)
2(9 ('4m) —p (@) 2 (9 ('+w2ta) —p (a))
+ 01 @Pseed
ip' (a) 0 o1, ~
= - = 01 @see == .
2 (p (E'rantd) —p @) (S d a>
(A.32)
This finally, implies that
Pdressed (go» é:]) = Pseed (SO, 51 + d) + o+. (A.33)

The above hold in the case of seeds with static counter-
parts. In a trivial manner one could obtain the analogous
asymptotic expressions in the case of translationally invari-
ant seeds. They emerge from Eqs. (A.22) and (A.33) after
the trivial operation £¥ < £!. Converting Eqgs. (A.22) and
(A.33) to the static gauge trivially results in the asymptotic
formulae (4.14), (4.15), (4.16) and (4.17).

We would like to determine the constants ¢1. We recall
that the above expressions are given in the linear gauge.
Determining the asymptotic behaviour of a snapshot of the
string in the physical time X° requires determining them in
the static gauge. The values of the constants at the two gauges
are obviously not identical. In the following ¢+ denote the
constants in the static gauge. Converting to the latter, we get

a
Pdressed (007 01) = QPseed (UO» ol + ;) + ¢+. (A.34)
Comparing the above to Eq. (A.23) we get
a
O+ = QPdressed (0, 0) — @seed (09 i;) s (A.35)
where
DP;(0,0)+£P>(0,0)

0,0) = % arct , (A.36
@dressed ( ) arctan ¢P1 (0.0) — DP, (0.0) ( )
P1(0,0) = (x3 — p (@) ip (a), (A.37)
P, (0,0) = (x3 — p (a) 9’ (@), (A.38)
P5(0,0) =0, (A.39)
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since @geed (0, 0) = 0. Finally, the elliptic solution implies

Pseed (0, i%) =F (pa+ ¢ (a;a)), (A.40)

which in turn results in

+or =tBa+ D (a;a)
D (x3—p(@)ip' (a)+L£(x3 —p (a) p' (@)

L(x3—p (@) ip'(a)— D (x3—gp(a)p' (@)
(A41)

—+ arctan

It is a matter of algebra and careful use of the appropriate
properties of Weierstrass functions to show that this formula
is equivalent to the formula (4.18) for the case of seed solu-
tions with static Pohlmeyer counterparts. In a similar manner
one can specify this angle in the case of seeds with transla-
tionally invariant counterparts.

Appendix B: The angular momentum of the dressed
strings

In the following, we post some details of the proof of
Eq. (7.15). The variation of the sigma model charge by the
dressing is given by Egs. (2.17) and (2.16). Using the defi-
nitions (2.32) and (2.18), the projector P assumes the form

XXt
P:@U@XT oU'e. (B.1)

-

Taking advantage of the asymptotic form of the vectors X4
(A.10) and (A.11), we find

A2!? =2ising, <b+Fl|gl_5+”l‘”lS¢>‘7
- Y

— b_F1|Ul_6_rllw1ys¢&) ) (BZ)

where

_ KSK(% F s DK(% (B.3)

T N2 2 :

(k)" + (x5)

and F is given by (2.6).

Using the definitions (2.29) and (2.30)

—k2k} £ s D (k} cos 0 — k!

isinfpy = —10—"2 (kg cos 1), (B.4)

p (ox) — g (@)

where o4 are given by (7.8). The quantities k6 /1 are deter-
mined by the seed elliptic solution through the equations
UT (8;U) = k] T;, where the matrix U is given by (2.20) and
T; are the generators of the SO(3) group defined as usual. It
is a matter of algebra to show that
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oscillating seed rotating seed
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Fig. 27 The Egressed — Esced and Jaressed — Jseed as functions of the angle 6,
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2ilsin01by Fy

Table 3 The dependence of the signs of @, D? and the sign s¢ on the
angle 6

9" (01) £5¢ D [2 (9 (01) =g (a)) cos 91+m/e(a)]
9 (02) — (@) '

(B.5)

Using the formula (A.20), the above expression assumes the
form

9 (0x) — 9 (£504)

2ilsinb1bL F| = ~
$ (0+) — o (£50a)

F 2s¢ D cos 6y,

(B.6)

which finally implies that

2
40} = =2 [-2m¢ @) +¢ (00) — ¢ (0-)

+2s5¢ (¢ (@) — Dcosby)]. (B.7)

This equation leads to the Eq. (7.10) and in turn to Eq. (7.11),
which provides the angular momentum of the dressed string.
This derivation concerns dressed strings with static seeds. In
a similar manner one can repeat the proof for strings with
translationally invariant seeds.

The interval of the worldsheet coordinate o' that covers
the whole closed dressed string depends on the value of @ and
the sign s¢ . This in turn has consequences on the variation of
the energy and angular momentum that the dressing proce-
dure has induced. In order to understand how these quantities
depend on the position of the poles of the dressing factor,
which is determined by the angle 6; we have to consider the
Figs. 5 and 11.

Figure 11 shows that in all cases the dependence of a on
01 is monotonous. When 6; = 0, a is equal to —2w; (it is
congruent to zero). Then, as 0] increases, a increases until a
given angle 6] = 6 (or6; = 6_ in the case of rotating seeds),
where a equals —w; (which is congruent to w;). Then, a
continues increasing, either immediately in the case of oscil-
lating seeds, or after some range of 6; where it is complex in
the case of rotating seeds. Then, it continues increasing until
01 = 7 when it vanishes.

Returning to Fig. 5, and bearing in mind that the mean
kink velocity is an odd function of a, we may conclude the
following: in the case of translationally invariant seeds, the
sign sy is the sign of 1+ Bvg. In our analysis, the parameter 8
is positive and smaller than 1. Therefore, when E < E., s¢
is always positive. When E. < E < p? and the maximum
kink velocity is larger that 1/, there are two critical values
of 61, let them be 6,1 and 6,7, being both larger than 6, since
they correspond to negative a, and s¢ is negative when 6, <
01 < Oc». Similarly, when E > pL2 and the maximum kink
velocity is larger than 1/8, there is one critical value of 6;
let it be 6., which is larger than 6 and s¢ is negative when
§+ < 01 < 6.
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61 S@ sgna sgnD? s sgna
Unstable trans. invariant oscillating

(0,6) + + + +
©.6c1) + - + —
(6e1, 6c2) - - + +
(Bc2, ) + - + -
Stable trans. invariant oscillating

(0,6) + + + +
6, 7) + - + -
Unstable trans. invariant rotating

(0,6-) + + + +
6-.6,) ¢R -

0+ 6c) - - + +
(e, ) + - + -
Stable trans. invariant rotating

(0,0-) + + + +
(6-.04) ¢R -

(CH)) + - + -
Static oscillating

©0.6) - + + -
@, 6 - - + +
(e, ) + - + -
Static rotating

0,6-) - + + -
0-.64) ¢R -

b4, 7) + - + -

In the case of static seeds, the sign s¢ is the opposite of the
signof B+1/v;. Itfollows that s¢ is always negative for 9; <
6 in the case of oscillating seeds and 8; < 6_ in the case of
rotating seeds. In the latter case, when 6; > 6., s is always
positive as the mean kink velocity is always subluminal. On
the contrary in the former case, there is always a critical 6,
let it be 6., where 8 + 1/v; vanishes, since the kink velocity
diverges as a — *w;. The sign s¢ is positive when 8; > 6,
and negative when 6 < 6,. These are summarized in Table 3.

The product of the signs of a with s¢ directly determines
whether the dressed string has larger or smaller energy than
its seed, as shown by the Eq. (7.14). In Fig. 27, the variation
of the energy and angular momentum that got induced by the
dressing is plotted versus the angle 9.
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