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Abstract In this work, a physically reasonable metric
potential grr and a specific choice of the anisotropy has been
utilized to obtain closed-form solutions of the Einstein field
equation for a spherically symmetric anisotropic matter dis-
tribution. This class of solution has been used to develop
viable models for observed pulsars. Smooth matching of inte-
rior spacetime metric with the exterior Schwarzschild metric
and utilizing the condition that radial pressure is zero across
the boundary leads us to determine the model parameters.
A particular pulsar 4U1820 − 30 having current estimated
mass and radius (mass = 1.58M� and radius = 9.1 km)
has been allowed for testing the physical acceptability of the
developed model. The gross physical nature of the observed
pulsar has been analyzed graphically. The stability of the
model is also discussed given causality conditions, adiabatic
index and generalized Tolman–Oppenheimer–Volkov (TOV)
equation under the forces acting on the system. To show that
this model is compatible with observational data, few more
pulsars have been considered, and all the requirements of a
realistic star are highlighted. Additionally, the mass-radius
(M–R) relationship of compact stellar objects analyzed for
this model. The maximum mass for the presented model is
≈ 4M� which is compared with the realization of Rhoades
and Ruffini (Phys Rev Lett 32:324, 1974).

1 Introduction

Stars at the end of their stellar evolution, after exhausting
all its nuclear fuel end up with the formation of compact
objects. Compact relativistic stars, being one of the fascinat-
ing entities known in the Universe, have astonished all astro-
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physicists among the world. Neutron stars, a class of compact
object are supported by neutron degeneracy pressure against
the pull of gravity. White dwarf the other type of compact
objects supported by electron degeneracy pressures against
the gravity. The first exact solution representing the vacuum
exterior gravitational field of static spherically symmetric
compact object in hydrostatic equilibrium was obtained by
Schwarzschild in the year 1916 [2]. Since then the exact
solutions describing static compact stellar configurations has
continuously been investigated. The interior geometry, and
hence the complete structure of the stellar object depends
on the nature of the matter composition. The quest of the
exact solution of the Einstein field equation regarding the
modelling of the realistic compact stellar object has been an
intense area of relativistic astrophysics. Though the Einstein
gravity replaces classical gravity long ago, however, it got
tremendous importance to govern the study of the compact
stellar object only after the discovery of quasars in the 1960s.
Compact objects have the mass to radius ratio between 10−5

to 1 and are the natural laboratories which provide extreme
conditions like high gravity and density for test bed of Ein-
stein general relativity.

To study the equilibrium structure of the compact stellar
object one requires the proper nature of the nuclear equation
of states (EoS), i.e., how the pressure linked with density
of the matter. With the help of EoS, the physical properties
of a compact star can be studied by solving the Tolman–
Oppenheimer–Volkov (TOV) equation, the general relativis-
tic equations of stellar structures. Uncertainty in the knowl-
edge of nuclear EoS leads to uncertainty in the prediction of
Mass-radius relation and limiting the mass of neutron stars.
However, in the absence of the information of particle inter-
actions in extreme density, the researchers often use the alter-
native approach of assuming specific form of geometry or the
fall off behaviour of density, pressure or the matter source.
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In general relativity, the studies of compact stellar struc-
ture assumes the characterization of the matter distribution
to be isotropic in nature, i.e., perfect fluid, which has equal
radial (pr ) and tangential (pt ) pressures. Though in a com-
pact object, the pressures in radial and transverse directions
may not be equal and the difference of radial pressure and tan-
gential pressure produces anisotropy. The effects of pressure
anisotropy on the stellar objects are evident in different inves-
tigations for the neutral or charged stellar objects. In 1933,
Leimatre projected the first anisotropic model [3] exclusively
by pt and constant energy density (ρ). From the work of Mak
and Harko [4,5] it is evident that on reaching a maximum at
the surface, within the interior of the star anisotropy radial
decreases and at the centre of the fluid sphere the anisotropy
is expected to vanish.

The different factors are identified for assuming the com-
pact star as anisotropic rather than isotropic. In the high-
density regime (> 1015 g/cc) of compact stars where the
nuclear interactions must be treated relativistically, there may
develop anisotropy inside the stellar objects as shown by
Ruderman [6] and Canuto [7]. In relativistic stars, anisotropy
might occur due to the existence of a solid core or type
3A superfluid as pointed out by Kippenhahn and Weigert
[8]. Strong magnetic fields can also regard as a source of
anisotropic pressure inside a compact object as discussed by
Weber [9]. Anisotropy may also develop due to the slow rota-
tion of fluids [10]. A mixture of perfect and a null fluid may
also be formally described as an anisotropic fluid [11]. The
existence of anisotropy in astrophysical objects may have
various reasons such as viscosity, different kinds of phase
transitions [12], pion condensation [13] and the presence of
strong electromagnetic field [14]. The factors contributing
to the pressure anisotropy have also been discussed by Dev
and Gleiser [15,16] and Gleiser and Dev [17]. Ivanov [18]
pointed out that influences of shear, electromagnetic field,
etc. on self-bound systems can be absorbed if the system
is considered to be anisotropic. Self-bound systems com-
posed of scalar fields, the so-called ‘boson stars’ are naturally
anisotropy [19]. Wormholes [20] and gravastars [21,22] are
also considered as anisotropic as well. Bowers and Liang [23]
first applied the anisotropic model on the equilibrium con-
figuration of a relativistic compact star like neutron stars. In
fact, it was Bowers and Lang who indicated that anisotropy
might have non-negligible effects on some parameters such
as equilibrium mass and surface redshift. A review of the ori-
gins and effects of local anisotropy in astrophysical objects
may also be found in Refs. [24,25]. In 1975, Heinzmann
and Hillebrandt have considered fully relativistic anisotropic
superdense neutron star models and have established that
there is no limiting mass of a neutron star for arbitrarily large
anisotropy. However, the maximum mass of the neutron star
was still past 3 − 4M� [26]. Hillebrandt et al. [27] have dis-
cussed the stability of fully relativistic anisotropic neutron

star and found that there exists a stability criterion just like
that are obtained in isotropic models.

Several anisotropic models have been investigated by
incorporating anisotropic pressure in the stress-energy tensor
of the material composition. Exact solutions corresponding
to static spherically symmetric anisotropic matter distribu-
tions have been developed and analyzed by Bayin [28], Krori
et al. [29], Bondi [30,31], Barreto [32], Barreto et al. [33],
Coley and Tupper [34], Martínez et al. [35], Singh et al.
[36], Hernández et al. [37], Dev and Gleiser [15,17], Harko
and Mak [38], Patel and Mehta [39], Lake [40], Böhmer and
Harko [41,42], Esculpi et al. [43], Khadekar and Tade [44],
Karmakar et al. [45], Abreu et al. [46], Ivanov [47], Her-
rera et al. [48], Mak and Harko [49], Sharma and Mukher-
jee [50], Harko and Mak [51], Herrera et al. [52], amongst
others. By introducing an algorithm, new exact solutions of
an anisotropic fluid distribution have proposed by Maharaj
and Maartens [53]. Utilizing the Maharaj and Maartens algo-
rithm, Gokhroo and Mehra [54] and Chaisi and Maharaj
[55,56] have developed and studied new anisotropic fluid
models. General algorithms for generating static anisotropic
solutions was also found by Lake [57]. Thomas and co-
workers [58–60] have proposed models of gravitationally
bound systems in equilibrium with an anisotropic fluid dis-
tribution. Assuming a linear EoS, Sharma and Maharaj
[61] provided an exact analytic solution for the compact
anisotropic matter distributions. Thirukkanesh and Maharaj
[62] have also analyzed an anisotropic fluid distribution to
obtain a new class of exact solutions. For example, using
the Finch and Skea [63] ansatz for the metric potential grr ,
Sharma and Ratanpal [64] have reported a static spherically
symmetric compact anisotropic star model which admits a
quadratic EoS. Pandya et al. [65] have developed a new class
of solutions of static spherically symmetric anisotropic sys-
tem by generalizing the Finch and Skea ansatz. The model
proposed by Sharma and Ratanpal [64] is a sub-class of the
solutions provided by Pandya et al. [65]. Bhar et al. [66] stud-
ied the static spherically symmetric relativistic anisotropic
compact object considering the Tolman VII solution as one
of the metric potentials. A new anisotropic model of a strange
star admitting the Chaplygin equation of state was proposed
by Bhar [67].

In the present work, we have developed a model describ-
ing a static spherically symmetric anisotropic matter distri-
bution. To develop the model a particular form of the met-
ric potential grr has been utilized. By assuming a particular
form of the anisotropy, the other metric potential has been
solved in simple analytic form. All the physical parameters
are shown to well behaved and regular inside the anisotropic
star which implies a realistic description of astrophysical
compact objects. The maximum mass has been estimated by
producing mass-radius relation graphically from our model.
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This paper has been organized as follows: In Sect. 2, the
basic Einstein field equations governing the anisotropic sys-
tem of the compact object has been presented. In Sect. 3, by
assuming the metric potential grr and a particular anisotropic
profile, the relevant field equations have been solved to
develop a new model. The physical requirements of a realis-
tic compact star are stated in Sect. 4. In Sect. 5, the exterior
Schwarzschild space-time is matched with the interior and
corresponding boundary conditions have laid down analyti-
cally. The various relevant physical parameters are derived
analytically in Sect. 6. The recently observed data of a pulsar
are shown to validate this model in Sect. 7 with some graphi-
cal representation. Stability of the model has been discussed
in Sect. 8. Finally, some concluding remarks and discussions
have been made in Sect. 9.

2 Einstein field equations

We write the line element describing the interior space-time
of a spherically symmetric star in standard coordinates x0 =
t , x1 = r , x2 = θ , x3 = φ as

ds2− = −A2
0(r)dt

2 + B2
0 (r)dr2 + r2(dθ2 + sin2 θdφ2),

(1)

where A0(r) and B0(r) the gravitational potential are yet to
be determined.

We assume that the matter distribution of the stellar inte-
rior is anisotropic in nature and described by an energy-
momentum tensor of the form

Tαβ = (ρ + pt )uαuβ + pt gαβ + (pr − pt )χαχβ, (2)

where ρ represents the energy-density, pr and pt , respec-
tively denote fluid pressures along the radial and transverse
directions, uα is the 4-velocity of the fluid and χα is a
unit space-like 4-vector along the radial direction so that
uαuα = −1, χαχβ = −1 and uαχβ = 0.

The Einstein field equations governing the evolution of
the system is then obtained as (we set G = c = 1)

8πρ =
[

1

r2 − 1

r2B2
0

+ 2B ′
0

r B3
0

]
, (3)

8πpr =
[
− 1

r2 + 1

B2
0r

2
+ 2A′

0

r A0B2
0

]
, (4)

8πpt =
[

A′′
0

A0B2
0

+ A′
0

r A0B2
0

− B ′
0

r B3
0

− A′
0B

′
0

A0B3
0

]
. (5)

In Eqs. (3)–(5), a ‘prime’ denotes differentiation with respect
to r .

Making use of Eqs. (4) and (5), we define the anisotropic
parameter of the stellar system as

	(r) = 8π(pt − pr )

=
[

A′′
0

A0B2
0

− A′
0

r A0B2
0

− B ′
0

r B3
0

A′
0B

′
0

A0B3
0

− 1

r2B2
0

+ 1

r2

]
.

(6)

The anisotropic force is defined as 2	
r will be repulsive

or attractive in nature depending upon whether pt > pr or
pt < pr . The mass contained within a radius r of the sphere
is defined as

m(r) = 1

2

∫ r

0
ω2ρ(ω)dω. (7)

3 Generating a new model

To develop a physically reasonable model of the stellar con-
figuration, we assume that the metric potential grr is given
by

B2
0 (r) = 1(

1 − r2

R2

)4 , (8)

where R is the curvature parameter describing the geome-
try of the configuration having a dimension of length and
it will be determined from the matching conditions. This
choice of metric potential assures that the function B2

0 (r)
is finite, continuous and well defined within stellar inte-
rior range. Also B2

0 (r) = 1 for r = 0 ensures that it is
finite at the center. Again, the metric is regular at the center
since (B2

0 (r))′r=0 = 0. So the system of equations given by
Eqs. (3)–(6) is the system of four equations in six variables
(ρ, pr , pt , 	(r), A0(r), B0(r)). With this choice of B0(r)
Eq. (6) then reduces to

	(r) = (3r7 − 8r5R2 + 6r3R4)A0(r)

r R8A0(r)

+ (r2 − R2)3
(
(3r2 + R2)r(r2 − R2)A′′

0(r)
)

r R8A0(r)
. (9)

On rearranging Eq. (9) we get

A′′
0(r)

A0(r)
+ (3r2 + R2)A′

0(r)

r(r2 − R2)A0(r)
+ (3r6 − 8r4R2 + 6r2R4)

(r2 − R2)4

= 	(r)R8

(r2 − R2)4 . (10)

Now the above Eq. (10) can be solved for A0(r) if 	(r)
is specified in particular form. To make the equation easily
integrable it is assumed that
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	(r) = (3r6 − 8r4R2 + 6r2R4)

R8 . (11)

The above choice for anisotropy is physically reasonable,
as at the center (r = 0) anisotropy is vanishes as expected.
This feature will be explained graphically in Sect. 6. It is to be
marked that we have considered anisotropy in the polynomial
form as

	 = X1(r
2)3 + X2(r

2)2 + X3(r
2),

i.e. up to order 6 of Taylor Series for 	 in terms of r . Sim-
ilar polynomial form of anisotropy (	 = ∑

i Xir i ) can be
found to study charged anisotropic system in several liter-
atures [68–71]. The isotropic condition can be regained by
choosing arbitrary constants to zero in their work. Maharaj
et al. [68] and Sunzu et al. [69] found new exact solutions
to the Einstein-Maxwell system of equations of a charged
anisotropic matter distribution by assuming the anisotropy
in the polynomial form 	 = ∑3

i=0 Xir i . Anisotropy in the
form 	 = ∑3

i=1 Xir i can be found in the work of Sunzu et
al. [70] for describing charged anisotropic stars. Anisotropy,
	 = ∑5

i=1 Xir i have been discussed by Sunzu et al. [71] and
anisotropy in the form of 	 = X3r3 +X4r4 is also fashioned
in the work of Sunzu and Mahali [72]. As a limitation of our
model, we can not generate the isotropic pressure condition
from the specified anisotropic form.

Also, this choice provides a solution for Eq. (10) in closed
form. Substituting Eqs. (11) in (10), we obtain,

A′′
0(r) + (3r2 + R2)

r(r2 − R2)
A′

0(r) = 0. (12)

We obtain a simple solution of the Eq. (12)

A0(r) = C

2(R2 − r2)
+ D, (13)

where C and D are integration constants will be obtained
from the boundary conditions. With the choices of the met-
ric potentials the matter density, radial pressure, transverse
pressure and mass are obtained as

8πρ = (−9r6 + 28r4R2 − 30r2R4 + 12R6)

R8 , (14)

8πpr = C(−3r6 + 8r4R2 − 6r2R4)

R8(C + 2D(R2 − r2))

−D(r8 − 5r6R2 + 10r4R4 − 10r2R6 + 4R8)

R8(C + 2D(R2 − r2))
,

(15)

8πpt = 8πpr + 	

= −8D(r2 − R2)4

R8
(
C + 2D(R2 − r2)

) , (16)

m(r) = (−r9 + 4r7R2 − 6r5R4 + 4r3R6)

2R8 . (17)

4 Physical requirements

For a physically viable stellar model, should satisfy the fol-
lowing conditions throughout the stellar configuration:

(i) The gravitational potentials A0(r), B0(r) and the mat-
ter variables ρ, pr , pt should be well defined at the
center and regular as well as singularity free through-
out the interior of the star.

(ii) The energy density ρ should be positive throughout
the stellar interior i.e., ρ ≥ 0. Its value at the cen-
ter of the star should be positive finite and monotoni-
cally decreasing towards the boundary inside the stel-
lar interior, mathematically dρ

dr ≤ 0.
(iii) The radial pressure pr and the tangential pressure pt

must be positive inside the fluid configuration i.e.,
pr ≥ 0, pt ≥ 0. The gradient of the pressure must be
negative inside the stellar body, i.e., dpr

dr < 0, dpt
dr < 0.

At the stellar boundary r = b the radial pressure pr
should vanish but the tangential pressure pt may not
zero at the boundary.
At the centre both the pressures are equal which
means the anisotropy should vanish at the centre,
	(r = 0) = 0.

(iv) For an anisotropic fluid sphere fulfillment of the
either of one energy conditions refers to the following
inequalities in every point inside the fluid sphere are
required:

(1) Weak energy condition (WEC): pr +ρ > 0, ρ > 0,
(2) Null energy condition (NEC): pr + ρ > 0, ρ > 0,
(3) Strong energy condition (SEC): ρ + pr ≥ 0; ρ +

pt ≥ 0; ρ − pr − 2pt ≥ 0.
(4) Dominant energy conditions (DEC): ρ ≥ pr and

ρ ≥ pt .

(v) Causality condition has to be satisfied to be realistic
model i.e. the speed of sound must be smaller than 1
(assuming the speed of light c = 1) in the interior of
the star, i.e., 0 ≤ dpr

dρ ≤ 1, 0 ≤ dpt
dρ ≤ 1.

(vi) The interior metric functions should match smoothly
to the exterior Schwarzschild space-time metric at the
boundary.

(vii) For a stable model, the adiabatic index should be
greater than 4

3 .
(viii) Herrera [73] cracking method to study the stability of

anisotropic stars suggests that a viable model should
also satisfy −1 < v2

t − v2
r < 0, where vr and vt are

it’s radial and transverse speed respectively.
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5 Exterior space-time and boundary conditions

The exterior space-time for a not radiating star is empty and
is described by the exterior Schwarzschild solution which is

ds2 = −
(

1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2

+r2
(
dθ2 + sin2 θdφ2

)
, (18)

where r > 2m, m being the total mass of the stellar object.
The interior spacetime metric (1) must be matched to

the exterior Schwarzschild spacetime metric Eq. (18) at the
boundary of the star r = b. The continuity of the metric
functions across the boundary r = b yields

A2
0(b) =

(
1 − 2m

b

)
, (19)

B2
0 (b) =

(
1 − 2m

b

)−1

. (20)

Radial pressure drops to zero at a finite value of the radial
parameter r , defined as the radius of the star. Hence the radius
of the star can be obtained by utilizing the condition pr (r =
b) = 0.

The above boundary conditions determine the constants
which are

R =
√√√√ b2

1 − (1 − 2m
b )

1
4

, (21)

C = −[1 + (1 − 2m
b )

1
4 ][1 + (1 − 2m

b )
1
2 ]b2

2[−1 + (1 − 2m
b )

1
4 ]

, (22)

D = − (1 − 2m
b )

3
4 [3m + 2(−1 + (1 − 2m

b )
3
4 )b]

2[−1 + (1 − 2m
b )

1
4 ](b − 2m)

. (23)

6 Physical analysis

1. The gravitational potentials in this model satisfy, A2
0(0) =

( C
2R2 + D)2 = constant , B2

0 (0) = 1, i.e., finite at the
center (r = 0) of the stellar configuration. Also one can
easily check that (A2

0(r))
′
r=0 = (B2

0 (r))′r=0 = 0. These
imply that the metric is regular at the center and well
behaved throughout the stellar interior.

2. The central density, central radial pressure and central
tangential pressure in this case are:

ρ(0) = 12

R2 ,

pr (0) = −8D

(C + 2DR2)
,

pt (0) = −8D

(C + 2DR2)
.

Note that the density is always positive as R is a positive
quantity. The radial pressure and tangential pressure at
the centre are equal which means pressure anisotropy
vanishes at the center. The radial and tangential pressure
at the center will be non-negative if one choose the model
parameters satisfying the conditions D < 0 and C >

2DR2 or D > 0 and, C < 2DR2. Also according to
Zeldovich’s condition, pr/ρ must be ≤ 1 at the centre.
Therefore,

−8DR2

12(C + 2DR2)
≤ 1.

Using above equation along with the central pressure
leads to the inequality |CD | ≥ 5R2

6 .
3. The gradient of energy density, radial pressure and tan-

gential pressure are respectively obtained as:

dρ

dr
= (−54r5 + 112r3R2 − 60r R4)

R8 , (24)

dpr
dr

= 2rC2(−9r4 + 16r2R2 − 6R4)

R8(C + 2D(R2 − r2))2

+8CDr(r2 − R2)(r4 − 2R4)

R8(C + 2D(R2 − r2))2

+8Dr(r2 − R2)2(3r4 − 8r2R2 + 6R4))

R8(C + 2D(R2 − r2))2 , (25)

dpt
dr

= 32Dr(r2 − R2)3(−2C + 3D(r2 − R2))

R8(C + 2D(R2 − r2))2 . (26)

The gradient of the density, radial pressure and tangential
pressure are negative inside the stellar body are shown
graphically in the next section.

4. The radial and transverse velocity of sound (c = 1) are
obtained as

v2
sr = dpr

dρ
= −4CD(r2 − R2)(r4 − 2R4)

(27r4 − 56r2R2 + 30R4)(C + 2D(R2 − r2))2

+ C2(9r4 − 16r2R2 + 6R4)

(27r4 − 56r2R2 + 30R4)(C + 2D(R2 − r2))2

− 4D2(r2 − R2)2(3r4 − 8r2R2 + 6R4)

(27r4 − 56r2R2 + 30R4)(C + 2D(R2 − r2))2 ,

(27)

v2
st = dpt

dρ
= 16D(r2 − R2)3(2C − 3Dr2 + 3DR2)

(27r4 − 56r2R2 + 30R4)(C + 2D(R2 − r2))2 .

(28)

In this model the speed of sound are smaller than 1 in the
interior of the star, i.e., 0 ≤ dpr

dρ ≤ 1, 0 ≤ dpt
dρ ≤ 1 which

has been shown graphically in the next section.
Based on the ‘cracking’ method to study the stability of
anisotropic stars proposed by Herrera [73], Abreu et al.

123



853 Page 6 of 12 Eur. Phys. J. C (2019) 79 :853

[46] proved that the region of an anisotropic fluid sphere
is stable where 1 ≤ v2

st−v2
sr ≤ 0 is potentially stable. Our

model is shown to be stable considering this condition.
5. Energy condition: The energy conditions for an anisotropic

fluid sphere implies the positive values of the terms
ρ+ pr ≥ 0, ρ+ pt ≥ 0 and ρ− pr −2pt ≥ 0, throughout
the stellar interior. These quantities are shown to remain
positive throughout the compact sphere graphically in the
next section.

6. The smooth matching of the interior metric function with
that of the Schwarzschild exterior at the boundary is
shown graphically in the next section.

7. Equation of state (EoS) parameter: Equation of state
parameter is given by

ωr = pr
ρ

; ωt = pt
ρ

. (29)

To be non-exotic in nature the value of ω should lie within
0 and 1. Our model is shown to satisfies the condition
0 ≤ ωr ≤ 1, 0 ≤ ωt ≤ 1.

7 Compatibility with observational data

7.1 Discussions around 4U1820 − 30

The physical acceptability of this model has been examined
by plugging the masses and radii of observed pulsars as input
parameters. In order to validate our model, we have con-
sidered the pulsar 4U1820 − 30 whose estimated mass and
radius are M = 1.58 M� and b = 9.1 km, respectively [74].
Using these values of mass and radius as an input parameter,
the boundary conditions have been utilized to determine the
constants as C = 785.818, D = −0.234 and R = 22.451.
Making use of these values of constants and plugging the val-
ues of G and c in the expressions, various physical variables
have been plotted graphically.

Regular and well-behaved nature of all the relevant phys-
ically meaningful quantities imply that all the requirements
of a realistic star are satisfied in this model. Figures 1 and 2
depict the regularity of the metric potentials considering the
pulsar 4U1820 − 30.

Figure 3 shows the variation of gradients which are nega-
tive throughout the stellar configuration ensures the decreas-
ing nature of density, radial and transverse pressures.

Figure 4 shows that the density decrease from its maxi-
mum value at the center towards its boundary.

Variation of radial and tangential pressures has been plot-
ted in Fig. 5, which are also radially decreasing outwards
from its maximum value at the center and in case of radial
pressure it drops to zero at the boundary as it should be but
the tangential pressure remains non zero at the boundary.
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Fig. 1 Metric potential A0(r)2
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Fig. 2 Metric potential B0(r)2
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G
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Fig. 3 Gradient of pressures and density for 4U1820 − 30

Radial variation of anisotropy has been shown in Fig. 6
which is zero as center as expected and is maximum at the
surface.

In Figs. 7 and 8, the sound speed in radial and transverse
directions have been plotted against the radial parameter
which ensures the non-violations of causality condition in
the interior of the star.
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Fig. 6 Anisotropy 	 for the pulsar 4U1820 − 30

The energy conditions are plotted in Fig. 9, which are
positive throughout the stellar configuration as required for
a physically meaningful stellar model.

Figures 10 and 11 depicted the smooth matching of the
interior and exterior metrices at the boundary.

The relationship between the thermodynamic parameters
energy density and pressure which reflects the nature of the
equation of state (EoS) of the matter distribution of a given
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Fig. 7 Radial velocity of sound against ‘r’ for 4U1820 − 30
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Fig. 8 Transverse velocity of sound against ‘r’ for 4U1820 − 30
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Fig. 9 Energy conditions plotted against radius ‘r’ for the pulsar
4U1820 − 30

pulsar is plotted in Fig. 12 which shows an almost linear
relationship.

In Fig. 12, we have plotted the data for ρ and pr across
the range of the radius for the pulsar 4U1820 − 30. We esti-
mated that best fitted relation between ρ and pr is given
by the expression 0.410478x − 194.495 which is illustrated
in Fig. 13. Though we have not prescribed any EoS of the
anisotropic matter distribution for modelling the compact
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Fig. 12 EoS for the pulsar 4U1820 − 30

object, it is observed that linear EoS holds good for our
model.

The mass function is given in Eq. (17) is monotonically
increasing the function of r and m(0) = 0 as depicted in
Fig. 14.

For the compactness of a model (u(r) = m(r)/r ) limit
condition need to be satisfied as suggested by Buchdahl [75].
The ratio of mass to the radius should lie within the range
2M
r < 8

9 [75]. It can be easily checked that m(r)
r = 0.25611 <

4
9 = 0.44, i.e. Buchdahl conditions are being satisfied with
this model.

Fig. 13 Best fit curve
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Fig. 14 Mass function corresponding to ‘r’ for the pulsar 4U1820−30

R =  22.451

C = 785.818

D = -0.234

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

r Km

Z

Fig. 15 Surface red shift z for the pulsar 4U1820 − 30

The surface redshift is

z =
(

1 − 2M

R

)− 1
2 − 1. (30)

In Fig. 15 the radial variation of the surface redshift is plotted.
According to Bohmer and Harko [76], the surface red shift
should always be ≤ 5. The surface redshift of this model is
0.159.
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M

Fig. 16 M − R relation for 4U1820−30. Here Mmax = 4.0971 when
r = 12.94

Fig. 17 EoS parameter ωt for 4U1820 − 30

For a given value of the surface density (ρ(r = b) =
1.5 × 1015 g cm−3), we have also obtained the mass–radius
(M − R) relationship in our model shown in Fig. 16.

Upper bound to the maximum mass for a neutron star,
which is obtained by integrating Oppenheimer–Volkoff equa-
tion for density EoS [77], is approximately 3.2M� [1]. For
uniform density spheres where causality is not inherent, this
limit in general relativity ≈ 5.2M� [78]. The equation of
State (EoS) parameter as is shown in Figs. 12 and 17 lies
between 0 and 1.

7.2 Discussions around other Pulsars

To show that this model has a wide range of applicability
for highly compact stars, we have also analyzed the validity
of our model by considering some well-known pulsars such
as RX J 1856 − 37 (Mass = 0.9 ± 0.2M�, Radius≈ 6 km)
[79], EXO 1785 − 248 (Mass = 1.3 ± 0.2M�, Radius =
8.849 ± 0.4 km)[80], Her X-1 (Mass = 0.85 ± 0.15M�,
Radius = 8.1 ± 0.41 km) [81], PSR J 1614 − 2230 (Mass =
1.97±0.04M�, Radius = 9.69±0.2 km), Cen X-3 (Mass =
1.49 ± 0.08M�, Radius = 9.178 ± 0.13 km) and 4U1608 −
52 (Mass = 1.74 ± 0.14M�, Radius = 9.52 ± 0.15 km).

The estimated masses and radii of these pulsars have been
used to determine the corresponding model parameters C, D
and R as given in Table 1. Making use of these values, in
Table 2, we have calculated the values of the physically rea-
sonable parameters which are sufficient to justify the require-
ments of a physically realistic star. Note that we have used
()|0 and ()|R to denote the evaluated values of the physical
parameters at the center and surface of the star, respectively.

From Table 2 it is clear that central density is greater than the
surface density for all of the listed compact objects, which
shows that the density of a compact star is maximum at the
centre and decrease towards the surface as one of the impor-
tant criteria for a compact star. Also, radial pressure is zero at
the boundary for all the compact object since we have used
this condition to determine the model parameters along with
the matching of the interior metric potentials at the boundary
with that of the Schwarzschild exterior. Here, radial veloc-
ity and transverse velocity of the sound for these pulsars at
the centre as well as at the surface is less than 1, satisfying
the casuality condition throughout the stellar interior. Also,
ρ − pr − 2pt ≥ 0 for all the compact object at the cen-
tre as well as at the surface indicates that the strong energy
condition is satisfied throughout the stellar configuration. It
can be seen from Table 2 that this presented model satisfy
Buchdahl condition as well as surface redshift condition for
other pulsars as zs ≤ 2. So a wide range of compact object
can be accommodated in this presented model.

8 Stability analysis of the model

8.1 Stability under three different forces

A star remains in static equilibrium under the forces namely,
gravitational force, hydrostatics force and anisotropic force.
This condition is formulated mathematically as TOV equa-
tion by Tolman–Oppenheimer–Volkoff which is

− MG

r
(ρ + pr )

A0(r)

B0(r)
− dpr

dr
+ 2

r
(pt − pr ) = 0, (31)

where MG(r) is the gravitational mass of the star within the
radius r , can be derived from the Tolman–Whittaker formula
and Einstein’s field equations and is defined by

MG(r) = r B0(r)A′
0(r)

A2
0(r)

. (32)

Using the expression of MG(r) in Eq. (31) we obtain

− A′
0(r)

A0(r)
(ρ + pr ) − dpr

dr
+ 2

r
(pt − pr ) = 0. (33)

The above equation is equivalent to

Fg + Fh + Fa = 0, (34)

where

Fg = − A′
0(r)

A0(r)
(ρ + pr ), (35)

Fh = −dpr
dr

, (36)

Fa = 2

r
(pt − pr ), (37)
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Table 1 Values of model parameters

Pulsar Mass (M�) Radius (km) C D R

RX J 1856 − 37 0.9 ± 0.2 ≈ 6 431.23 − 0.1953 16.275

EXO 1785 − 248 1.3 ± 0.2 8.849 ± 0.4 968.04 − 0.1905 24.319

Her X-1 0.85 ± 0.15 8.1 ± 0.41 1298.06 − 0.1289 27.235

PSR J 1614 − 2230 1.97 ± 0.04 9.69 ± 0.2 672.61 − 0.2887 21.422

Cen X-3 1.49 ± 0.08 9.178 ± 0.13 892.01 − 0.2152 23.668

4U1608 − 52 1.74 ± 0.14 9.52 ± 0.15 788.02 − 0.2503 22.687

Table 2 Values of physical quantities

Pulsar ρ|0 ρ|b dpr
dρ |0 dpr

dρ |b dpt
dρ |0 dpt

dρ |b (ρ − pr − 2pt )|0 (ρ − pr − 2pt )|b z|b
RX J 1856 − 37 1373 963 0.38 0.32 0.18 0.14 941 809 0.195

EXO 1785 − 248 615 435 0.37 0.31 0.17 0.14 429 368 0.189

Her X-1 490 391 0.29 0.27 0.09 0.08 406 352 0.125

PSR J 1614 − 2230 793 459 0.60 0.42 0.40 0.26 279 339 0.298

Cen X-3 649 438 0.41 0.34 0.21 0.17 410 359 0.216

4U1608 − 52 707 444 0.49 0.37 0.28 0.21 365 347 0.255

represents the gravitational, hydrostatics and anisotropic
forces respectively.

The expression for Fg , Fh and Fa can be written as,

Fg = −8Cr(r2 − R2)2(3C − 4Dr2 + 4DR2)

R8(C − 2Dr2 + 2DR2)2 , (38)

Fh = −
[

2rC2(−9r4 + 16r2R2 − 6R4)

R8(C + 2D(R2 − r2))2

+8CDr(r2 − R2)(r4 − 2R4)

R8(C + 2D(R2 − r2))2

+8Dr(r2 − R2)2(3r4 − 8r2R2 + 6R4))

R8(C + 2D(R2 − r2))2

]
, (39)

Fa = 2r

R8 (3r4 − 8r2R2 + 6R4). (40)

The three different forces are plotted in Fig. 18. The figure
shows that hydrostatics and anisotropic force are positive and
is dominated by the gravitational force which is negative to
keep the system in static equilibrium.

8.2 Adiabatic index

The adiabatic index which is defined as

� = ρ + p

p

dp

dρ
, (41)

is related to the stability of a relativistic anisotropic stellar
configuration. A Newtonian isotropic sphere will be in stable
equilibrium if the adiabatic index � > 4

3 as per Heintzmann
and Hillebrandth’s concept [26] and for � = 4

3 , isotropic
sphere will be in neutral equilibrium. Based on some recent

Fg
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Fig. 18 Different types of forces as function of radial coordinate ‘r’
for the pulsar 4U1820 − 30

works of Chan et al. [82] one can demand the following
condition for the stability of a relativistic anisotropic sphere

� > γ, (42)

where

γ = 4

3
−

[
4(pr − pt )

3|p′
r |r

]
max

, (43)

and � > 4
3 . In Fig. 19, we have plotted �r , �t , γ respectively.

clearly, it can be seen that values of �r and �t are greater
than γ throughout the stellar interior and hence the stability
condition is fulfilled.

Finally, it is to be noted that the adiabatic index γ is a local
characteristic of a specific EoS and depends on the interior
fluid density.
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8.3 Causality condition

For a physically acceptable model of relativistic anisotropic
star the radial and transverse velocity speed of sound must
be smaller than 1(c = 1) in the interior of the star, i.e.,
0 ≤ dpr

dρ ≤ 1, 0 ≤ dpt
dρ ≤ 1. This condition is known as

causality condition and are verified in Figs. 7 and 8.
Based on Herrera cracking method, Abreu et al. [46]

proved that the region of an anisotropic fluid sphere where
1 ≤ v2

st −v2
sr ≤ 0 is potentially stable which is shown graph-

ically in Fig. 20.

9 Discussions

In this work, a static spherically symmetric anisotropic fluid
model has been developed by assuming a physically reason-
able metric potential and a particular form of the anisotropy.
The presented solution satisfies all the physical criterion of
a physically well behaved compact object. All the physical
quantities are regular and well behaved throughout the stel-
lar interior. Energy density, radial pressure and transverse
pressure are decreasing functions towards the surface of the

star. Here anisotropy is finite, continuous and monotonically
increasing function of the radial coordinate ‘r’ away from
the stellar centre i.e. anisotropic force is repulsive in nature.
Similar profile for anisotropy can be found in the work of
Sunzu et al. [69]. The model is shown to remain stable in
hydrostatic equilibrium against different forces. The devel-
oped model has been shown to fit a wide range of recently
observed values of masses and radii of pulsars. The mass-
radius relation is also explored here. The maximum mass for
the model is 4.0971 and it is obtained for r = 12.9416, which
is stable as the mass ≤ 5M� [1].
The above model can be of significant study for modelling
of astrophysical objects with a wide variety of masses and
radii. The developed model can be analyzed further by using
different metric potentials, a different measure of anisotropy
for new results.
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