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Abstract In this paper, we show (1) that the NLO correc-
tions do not change the power-like decrease of the scattering
amplitude at large impact parameter (b2 > r2 exp(2ᾱSη(1+
4ᾱS)), where r denotes the size of scattering dipole and
η = ln(1/xBj ) for DIS), and, therefore, they do not resolve
the inconsistency with unitarity; and (2) they lead to an oscil-
lating behaviour of the scattering amplitude at large b, in
direct contradiction with the unitarity constraints. However,
from the more practical point of view, the NLO estimates give
a faster decrease of the scattering amplitude as a function of b,
and could be very useful for description of the experimental
data. It turns out, that in a limited range of b, the NLO correc-
tions generates the fast decrease of the scattering amplitude
with b, which can be parameterized as N ∝ exp(−μ b) with
μ ∝ 1/r in accord with the numerical estimates in Cepila
et al. (Phys Rev D 99(5):051502, https://doi.org/10.1103/
PhysRevD.99.051502, arXiv:1812.02548 [hep-ph], 2019).
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1 Introduction

This paper is motivated and triggered by the result of the
numerical solution [1] of the Balitsky–Kovchegov (BK)
equation in the next-to-leading order (NLO), in which at large
impact parameter, the solution shows an exponential decrease
(∝ exp(−μ b)). Since the amplitude decreases at large b,
the non-linear term in the BK equation is small and can be
neglected, reducing the problem of large b behaviour, to the
solution of the BFKL equation. The large impact parame-
ter behaviour of the scattering amplitude remains the most
fundamental problem, which is still unsolved [3–5] in the
frame of the CGC/saturation approach (see Ref. [2] for a
review). Indeed, in the CGC/saturation approach, the scatter-
ing amplitude decreases as a power of b [3–5] contradicting
the Froissart theorem [6,7]. The intensive attempts to solve
this problem and introduce the non-perturbative corrections,
which bring the dimensional scale into the problem [8–18],
results in the widely held opinion, that we need to introduce
a new non-perturbative dimensional scale in the kernel of
the BFKL equation. With this in mind, the result of Ref. [1]
looks strange, since the NLO kernel, that has been used in
the paper, has conformal symmetry, and no dimensional scale
has been introduced.

The goal of this paper is to show, that in NLO we still
have power-like behaviour at large values of b, as the result
of the conformal symmetry of the BFKL kernel. However,
we find that there is a kinematic region where the solution
has a fast decrease with b (∝ e−μb) and this falloff can be
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parameterized as an exponential with μ ∝ 1/r , where r
denotes the size of the scattering dipole.

The paper is organized as follows. In the next section we
discuss general features of the BFKL Pomeron at large val-
ues of the impact parameter. In Sect. 3, we discuss the impact
parameter dependence in double log approximation (DLA)
of the leading order of the BFKL evolution equation, and
show that the scattering amplitude decreases as a power of b.
Section 4 is the main part of the paper and it deals with the
DLA for the next-to-leading (NLA) BFKL evolution equa-
tion. We show that the solution for b2 > r2 exp

( 1
2η
)
, where

η = ln(1/xBj ) in DIS, not only has power-like decrease
as function of b, but leads to an oscillating function, which
contradicts unitarity constraints. In Sect. 5 we argue that the
main features of the DLA will be preserved in a more gen-
eral approach. In the conclusion we discuss our findings, and
emphasize that we need to introduce the new dimensional
scale into the BFKL kernel, which is related to the non-
perturbative corrections, that resolve the difficulties at large
b in the framework of the CGC approach. On the other hand,
we note that the NLO corrections suppress the scattering
amplitude, and could possibly be useful for the description
of the experimental data (see Ref. [1]).

2 BFKL Pomeron

The BFKL evolution equation for the dipole-target scattering
amplitude N (x10,b,Y ) has the general form [2,19–23]:

∂

∂Y
N (x10,b,Y )

= ᾱS

∫
d2x2

2 π
K (x02, x12; x10)

(
N

(
x12,b − 1

2
x20,Y

)

+N

(
x20,b − 1

2
x12, η

)
− N (x10,b,Y )

)
(1)

wherexik = xi−xk andx10 ≡ r,x20 ≡ r′ andx12 ≡ r−r′.
Y is the rapidity of the scattering dipole and b is the impact
factor. ᾱS = αSNc/π where Nc is the number of colours, and
K (x02, x12; x10) is the kernel of the BFKL equation which
in leading order has the following form:

KLO (x02, x12; x10) = x2
10

x2
02 x

2
12

(2)

In Refs. [22,23] it has been proved that the eigenfunction
of the BFKL equation has the following form

φγ (r,R,b) =
(

r2 R2

(
b + 1

2 (r − R)
)2 (

b − 1
2 (r − R)

)2

)γ

b� r,R−−−−→
(
r2 R2

b4

)γ

≡ eγ ξ with ξ = ln

(
r2 R2

b4

)

(3)

for any kernel, which satisfies the conformal symmetry. In
Eq. (3) r denotes the size of the scattering dipole, while R is
the size of the target. For the kernel of the LO BFKL equation
(see Eq. (2)) the eigenvalues take the form:

ωLO(ᾱS, γ ) = ᾱS χ LO(γ ) = ᾱS(2ψ(1)

− ψ(γ ) − ψ(1 − γ )) (4)

ψ(z) denotes the Euler psi-function ψ (z) = d ln �(z)/dz.
In the next-to-leading order the kernel is derived in Refs.

[24,25] and has the following form:

ωNLO(ᾱS, γ ) = ᾱS χ LO(γ ) + ᾱ2
S χNLO(γ ) (5)

The explicit form of χNLO(γ ) is given in Ref. [24]. However,
χNLO(γ ) turns out to be singular at γ → 1, χNLO(γ ) ∝
1/(1 − γ )3. Such singularities indicate, that to obtain a reli-
able result, it is necessary to calculate higher order correc-
tions. The procedure to re-sum high order corrections is sug-
gested in Refs. [26–29]. The resulting spectrum of the BFKL
equation in the NLO, can be found from the solution of the
following equation [26–28]

ωNLO(ᾱS, γ )= ᾱS

(
χ0 (ωNLO, γ ) + ωNLO

χ1(ωNLO, γ )

χ0(ωNLO, γ )

)

(6)

where

χ0(ω, γ ) = χ LO(γ ) − 1

1 − γ
+ 1

1 − γ + ω
(7)

and

χ1(ω, γ )

= χNLO(γ ) + F

(
1

1 − γ
− 1

1 − γ + ω

)

+ AT (ω) − AT (0)

γ 2 + AT (ω) − b

(1 − γ + ω)2 − AT (0) − b

(1 − γ )2

(8)

Functions χNLO(γ ) and AT (ω) as well as the constants (F
and b) are given in Refs. [26–28].

In Ref. [29] a simpler form of χ1(ω, γ ) was suggested,
which coincides with Eq. (8) to within 7%, and, therefore,
gives reasonable estimates of all constants and functions in
Eq. (8). The equation for ω takes the form

ω = ᾱS (1 − ω)

×
⎛

⎜
⎝

1

γ
+ 1

1−γ+ω
+ (2ψ(1)−ψ (2−γ ) −ψ (1+γ ))
︸ ︷︷ ︸

high twist contributions

⎞

⎟
⎠ (9)
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One can see that γ (ω) → 0 when ω → 1, as follows from
energy conservation.

The general solution to Eq. (1) takes the form:

N (ξ,Y ) =
∫ ε+i∞

ε−i∞
dγ

2 π i
eω(ᾱS ,γ ) Y+γ ξ φin(γ ) (10)

where φin can be found from the initial condition at Y = 0
and 1 > ε > 0 . As one can see from Eq. (10) the contour
of integration is situated to the right of all singularities of the
initial conditions. We suggest to take the initial condition in
the form:

N (ξ,Y = 0) = exp(−Be− 1
2 ξ ) = exp

(
−B

b2

r R

)
(11)

Taking the inverse Mellin transform, we obtain φin is equal
to

φin(γ ) = 2 B−2 γ �( 2 γ ) (12)

One can see that φin has a pole at γ = 0. To avoid this pole,
which occurs due to our simplifying the estimates, we modify
the initial conditions:

φin(γ ) = 2(B−2 γ
1 − B−2 γ

2 ) �(2 γ ) (13)

Equation (13) has no singularities at γ = 0, at any value of
B1 and B2.

For large Y and ξ we can use the method of stepest descent
in calculating the integral of Eq. (10). The equation for the
saddle point (γ = γSP) is

dω(ᾱS, γ )

dγ

∣∣∣
γ = γSP

= − ξ

Y
(14)

For large |ξ | (|ξ |/Y � 1) at γ = γSP
dω(ᾱS ,γ )

dγ
should be

large. All kernels, that we have discussed in Eqs. (4)–(9) are
large at γ → 1 and, actually, accounting for this singular-
ity, corresponds to the double log approximation (DLA) of
perturbative QCD.

3 DLA for LO BFKL equation

For the case of the leading order BFKL equation at γ → 1,
ωLO = ᾱS

1−γ
and Eq. (14) takes the form

ᾱS

(1 − γSP)2 Y = −ξ (15)

leading to γ̄SP ≡ 1−γSP =
√

ᾱS Y|ξ | . Plugging this solution
into Eq. (10) we obtain that

N (Y, ξ) ∝ φin(γSP) exp
(

2
√

ᾱSY |ξ |−|ξ |
)

→ φin(γSP)

×
(

b4

r2 R2

)−1+2γ̄SP

(16)

Therefore, in the LO approximation we expect a power-
like decrease of the scattering amplitude at large b, in accord
with the general discussion in Refs. [3–5].

The solution of Eq. (16) can be derived directly from
Eq. (2) for the BFKL kernel. Indeed, DLA stems from r ′ � r
and the BFKL equation can be re-written as follows

∂

∂Y
N (ξ, Y ) = ᾱSr

2
∫

r2

d r ′2

r ′4 N (ξ ′,Y ) (17)

Substituting Ñ = N e−ξ and introducing a new variable
ξ̃ = −ξ we see that Eq. (17) takes the following form:

∂2 Ñ (ξ̃ , Y )

∂Y ∂ξ̃
= ᾱS Ñ (ξ̃ ,Y ) (18)

Identifying N (Y, ξ) ∝ eγ ′ ξ̃ we obtain the solution in the
form of Eq. (16).

4 DLA for NLO BFKL

4.1 Generalities

The large impact parameter behaviour of the scattering
amplitude in the NLO BFKL equation is also determined
by the values of γ , which are close to γ = 1 (γ → 1). The
singular part of the general kernel in the NLO (see Eq. (6))
has the following form:

ω = ᾱS

1 − γ + ω
; (19)

with the solution:

ω(γ ) = 1

2

(
−(1 − γ ) +

√
4 ᾱS + (1 − γ )2

)
(20)

Plugging Eq. (20) into Eq. (10), we obtain the solution in
the form:

N (ξ, Y ) =
∫ ε+i∞

ε−i∞

× dγ ′

2 π i
e

1
2

(
−γ ′ +

√
4 ᾱS + γ ′2

)
Y+γ ′ ξ̃−ξ̃

φin(γ
′, R)

(21)

where we introduce γ ′ = 1 − γ and ξ̃ = −ξ .
Note that Eq. (9) gives

ω = ᾱS

1 − γ + ω
(1 − ω) ; (22)

All other terms in Eq. (9) vanish at γ = 1. Solving Eq. (22)
we obtain

ω = 1

2

(
−(1 − γ + ᾱS +

√
4 ᾱS + (1 − γ + ᾱS)2

)
(23)
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For ω of Eq. (23) the solution of Eq. (21) can be re-written
as

N (ξ,Y ) =
∫ ε+i∞

ε−i∞

× dγ ′′

2 π i
e

1
2

(
−γ ′′ +

√
4 ᾱS + γ ′′2

)
Y+γ ′′ ξ̃−(1+ᾱS)ξ̃

φin(γ
′′)

(24)

where γ ′′ = γ ′ + ᾱS = 1 − γ + ᾱS .

4.2 DLA in coordinate representation

Recently, a new approach to the NLO BFKL has been devel-
oped (see Ref. [30] and references therein) in which the most
essential contributions were singled out and Eq. (6) has been
resolved with respect to ω. The NLO BFKL is written in the
coordinate representation in an elegant form with the follow-
ing kernel:

KrNLO(x02, x12; x10) = KLO (x02, x12; x10)

×
[

x2
01

min(x2
12, x

2
02)

]±ᾱS A1
J1(2

√
ᾱSρ2)

√
ᾱSρ2

. (25)

where the factor in square brackets leads to the contribution of
single collinear logarithms and factor J1(2

√
ᾱSρ2)/

√
ᾱSρ2

resums double collinear logarithms to all orders. Param-
eter A1 = 11/12 and the sign in front of A1 is posi-
tive, when x2

01 < min(r2
12, r

2
02) and negative otherwise. J1

denotes the Bessel function (see formula 8.402 of Ref. [32]),
ρ ≡ √

Lx02,x01Lx12,x01 and Lxi2,x01 ≡ ln(x2
i2/x

2
01). The

BFKL equation with the kernel of Eq. (25) is solved in
Ref. [1]. It should be stressed, that in the approach of Ref.
[30]. the rapidity Y should be replaced by the target rapidity

η = Y − ln
(
R2

r2

)
= ln(1/xBj ) for DIS scattering.

Finally, in the DLA the BFKL equation in the re-summed
NLO takes the form:

dN (r, b,Y )

dη
= ᾱS

∫

r

dr ′2 r2

r ′4
J1

(
2
√

ᾱSρ2
)

√
ᾱSρ2

×N

(
r ′,b − 1

2
(r′ − r)

)
(26)

In Eq. (26) we did not include the factor
(
r2

r ′2
)ᾱS A1

for

simplicity. It can be easily be inserted and has been taken
into account in Eq. (24). The difference with Eq. (23) is that
the argument 1−γ +ᾱS should be replaced by 1−γ +A1ᾱS .

Since in the DLA ρ = ln κ2 with κ2 = r2/r ′2 we have
the following equations for the eigenvalues.

ω(γ, ᾱS) = ᾱS

∫
dr ′2r2

r ′4
J1

(√
2ᾱSρ2

)

√
ᾱSρ2

(
r ′

r

)2γ

(27)

In the variable ρ Eq. (27) takes the form:

∫

0

1

dk2k−2γ J1(
√

2ᾱS ln k2)√
ᾱS ln k2

=
∫

0

∞
dρe−ρ (1−γ ) J1(

√
2ᾱSρ)√
ᾱSρ

(28)

From formulae 6.621(2) of Ref. [32] and 15.3.19 of Ref.
[31]

ω(γ, ᾱS) = 1

2
(1 − γ )

(√
4 ᾱS

(1 − γ )2 + 1 − 1

)

ᾱS	 1 in LO BFKL−−−−−−−−−−−−−−→ ᾱS

(1 − γ )
(29)

Therefore, we see that the Eq. (26) has the solution given by
Eq. (21) for γ ′ = 1 − γ .

4.3 Difficulties present in the method of steepest descent

In the LO to evaluate the integral of Eq. (10) we use the
method of steepest descent. We now attempt to use it for the
case of the NLO.

The explicit equation for the saddle point has the form
(see Eqs. (14) and (29)):

1

2
η

⎛

⎝ 1
√

4ᾱS
γ ′2 + 1

− 1

⎞

⎠+ ξ̃ = 0;

1

2
η

1
√

4ᾱS
γ ′2 + 1

= 1

2
η − ξ̃ ; (30)

From Eq. (30) one can see that for 1
2η > ξ̃ the saddle point is

real, and we can obtain the reasonable asymptotic behaviour
of the scattering amplitude. However, for ξ̃ > 1

2 η the saddle
point should be a complex number which, generally speak-
ing, leads to the oscillating behaviour, which contradict the
unitarity constraint: N > 0.

The solutions to Eq. (30) are:

γSP

(
η, ξ̃
)

= ± i
√

ᾱS |2 ξ̃ − η|
√

ξ̃

√
ξ̃ − η

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

± 2 i
√

ᾱS

(
1 + 1

8
η2

ξ̃2

)
+ O

((
η

ξ̃

)3
)

for ξ̃ � η

±
(√

ᾱS η

ξ̃
− 3

2

√
ᾱS ξ̃
η

)
+ O

((
ξ
η

)3/2
)

for η � ξ̃ ;
(31)

From Eq. (31) one can see, that we have two complex
conjugate saddle points, which in general lead to an oscillat-
ing solution. Since N is the imaginary part of the scattering
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amplitude, which is positive, we expect, that we will have
some difficulties with this method.

As a check to see whether we can apply this method suc-
cessfully, we calculate d2ω(γ = γSP)/dγ 2 and d3ω(γ =
γSP)/dγ 3, They have the following explicite forms:

d2ω(γ = γSP)

dγ 2 = 2ᾱS

(4 ᾱS + γ 2
SP)3/2

;

d3ω(γ = γSP)

dγ 3 = − 6ᾱS γSP

(4 ᾱS + γ 2
SP)5/2

(32)

Plugging Eq. (14) in Eq. (32) we can see that

ξ̃ � η η
d2ω(γ = γSP)

dγ 2 ∝ ξ̃3

η2 ;

η
d2ω(γ = γSP)

dγ 2 ∝ ξ̃5

η4 ; (33)

η � ξ̃ η
d2ω(γ = γSP)

dγ 2 ∝ ξ̃3/2

η1/2 ;

η
d2ω(γ = γSP)

dγ 2 ∝ ξ̃2

η
; (34)

From Eq. (33) we see that taking the Gaussian inte-

gral exp

(
1
2η

d2ω(γ=γSP)

dγ 2 (γ − γSP)2
)

we obtain the typical

(γ − γSP) ∝ 1/

√
1
2η

d2ω(γ=γSP)

dγ 2 ∝ η/ξ̃3/2. Inserting this

estimate into exp

(
1
6η

d3ω(γ=γSP)

dγ 3 (γ − γSP)3
)

we see that

this contribution is large (proportional to exp
(√

ξ̃ /η
)
). This

shows that we cannot use the method of steepest decent, at
least for ξ̃ � η. It should be noted that Eq. (34) leads to a
small contribution of the term of the order (γ − γSP)3, in
accord with the method of steepest descent. It is instructive
to note that these conclusions are in accord with the values of
γSP, which is pure imaginary at ξ̃ � η and real for η � ξ̃ .

4.4 Expansion in series

First, we re-write Eq. (21) in a slightly different form as

Ñ (ξ,Y ) =
∫ ε+i∞

ε−i∞
dγ ′

2π i
e

1
2

√
4ᾱS + γ ′2 Y + γ ′

(
ξ̃− 1

2 Y
)

φin(γ
′)

(35)

Equation (35) we expand in the following way

Ñ
(
ξ̃ ,Y

)
=
∫

C1

dγ ′

2π i
e
γ ′
(
ξ̃− 1

2 Y
)

φin(γ
′)

×
∞∑

n=0

(
1
2

√
4ᾱS + γ ′2 Y

)n

n! (36)

In Fig. 1a we plot the contour C1 for the integration in
Eq. (36). Each term has singularities in the right semi-plane,
at points n/2, from φin(γ ) (see Eq. (12)) and also every
term with even n has singularities: the branch point from
− i 2

√
ᾱS to i 2

√
ᾱS . For ξ − 1

2Y > 0 we can move the con-
tour C1 to the left and integrate each term with the contour
C2. Note, that for ξ − 1

2Y < 0 we can close the contour on
the singularities of the initial conditions, or make an analyt-
ical continuation of the scattering amplitude from the region
ξ − 1

2Y > 0. For large ξ(Y − ξ), we can use the method
of steepest descend to obtain the answer in this kinematic
region.

Hence the solution can be written in the form:

Ñ (ξ̃ ,Y ) = 1

2 π

∫

C2

dγ ′ ei γ ′
(
ξ̃− 1

2 Y
)

φin(i γ ′)

×
∞∑

n=0

(
1
2

√
4ᾱS − γ ′2 Y

)2n + 1

(2n + 1)! (37)

For small values of ᾱS we can safely replace γ ′ by γ ′ = 0
in φin(iγ ′) and take the integral, using formula 3.771(8) of
Ref. [32]:

∫ 2
√

ᾱS

−2
√

ᾱS

dγ ′ ei γ ′
(
ξ̃− 1

2 Y
)
(

1
2

√
4ᾱS − γ ′2 Y

)2n + 1

(2n + 1)!
× = φin (0) 2

√
π(2 αS)

n+1Y 2n+1

× �
(
n + 3

2

)

�(2n + 2)
Jn+1(

√
αS|2 ξ̃ − Y |)(√αS|2 ξ̃ − Y |)−(n+1)

= φin (0)
2
√

αSπY

|2 ξ̃ − Y |
1

n! Jn+1(
√

αS|2 ξ̃ − Y |)

×
(

2
(
√

αSY/2)2

√
αS|2 ξ̃ − Y |

)n

(38)

where we use the duplication formula of the Gamma func-
tion(see formula 8.335(1) of Ref. [32]): � (2(n + 1)) =(
22n+1/

√
π
)
� (n + 1) � (n + 3/2).

Plugging Eq. (38) into Eq. (36) we obtain

N (ξ̃ , Y ) = e−ξ̃ φin (0)

√
ᾱSY

|2 ξ̃−Y |
∞∑

n=0

τn

n! Jn+1(
√

ᾱS | 2 ξ̃−Y |)

(39)

with τ = 2 (
√

αS
1
2Y )2/(

√
ᾱS|2 ξ̃−Y |). For |ξ̃−Y |2 > Y 2/2

the series term can be summed using formula 5.7.6.1 in Ref.
[33]. Hence, we obtain the explicit form of the solution

N (ξ̃ ,Y ) = e−ξ̃ φin (0) ᾱSY
J1

(
2

√
ᾱS ξ̃

(
ξ̃−Y

))

√
ᾱS ξ̃ (ξ̃−Y )

(40)
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1/2 1 3/2 2 5/2 3 7/2

C1

C2

S
1/2

S
1/2

1/2 1 3/2

C1

0i

C2

0i

0r
0

(a) (b)

Fig. 1 The γ -plane: the contours of integrations over γ ′ in Eq. (21) and in Eq. (36) (a); and the contours of integrations in general case (b)

Fig. 2 Solution Ñ (Y, ξ) of
Eq. (40) versus ξ (solid lines).
The dotted lines are the fit
Ñ ∝ exp(−μ2b2) with
μ2 = 0.07/(r R) for a, b and
μ2 = 0.007/(r R) for c, d. In
all estimates ᾱS = 0.2

(a) (b)

(c) (d)

In Fig. 2 we plot Ñ
(
ξ̃ ,Y

)
. For the LO BFKL equation this

function increases with ξ̃ . From Fig. 2 one can see that (1)
at large b the solution decreases as the power of b; (2) in
the limited range of ξ we can parameterize this decrease as
Ñ ∝ exp

(−μ2b2
)

with μ2 = Const/(r R) for sufficiently
small values of Const; and (3) at large b we have oscillating
behaviour, which is in contradiction to Ñ > 0, that follows
from the unitarity constraints.

All these features can be seen from the asymptotic
behaviour of Eq. (40) at large ξ � Y . One can see that
the scattering amplitude

N (ξ̃ ,Y ) ∝ e−ξ̃
cos
(

π
4 − 2

√
ᾱS ξ̃

)

(
2
√

ᾱS ξ̃
)3/2 ≤ r2 R2

b4 (41)

Therefore, we have power-like bahaviour of the scattering
amplitude at large b, which leads to the violation of the Frois-
sart theorem [3–5].

For ξ̃ < Y the solution takes the form

N (ξ̃ ,Y ) = e−ξ̃ φin (0) ᾱSY

⎛

⎜⎜
⎝

I1

(
2
√

ᾱS ξ̃ (Y − ξ̃ )

)

√
ᾱS ξ̃ (Y − ξ̃ )

⎞

⎟⎟
⎠

(42)
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Therefore, the general solution can be written as

N (ξ̃ ,Y ) = e−ξ̃ φin (0) ᾱSY

×

⎛

⎜⎜
⎝

I1

(
2
√

ᾱS ξ̃ (Y − ξ̃ )

)

√
ᾱS ξ̃

(
Y − ξ̃

) �(Y − ξ̃ )

+
J1

(
2
√

ᾱS ξ̃ (ξ̃ − Y )

)

√
ᾱS ξ̃ (ξ̃ − Y )

�(ξ̃ − Y )

⎞

⎟⎟
⎠ (43)

This solution, is similar to the solution of the BFKL equa-
tion with time ordering (see Eq. (3.35) in Ref. [30]), if we
replace ξ̃ by ρ = ln

(
R2/r2

)
. We cannot claim that ξ̃ > Y

corresponds to the unphysical kinematic region due to the
time ordering, since the BFKL kernel does not depend on
impact parameters.

4.5 Numerical estimates

Summing over n in Eq. (37) we can re-write the solution in
the form:

Ñ (ξ, Y ) = 1

2 π

∫ 2
√

ᾱS

−2
√

ᾱS

dγ ′ (e
1
2

√
4ᾱS − γ ′2 Y − e− 1

2

√
4ᾱS − γ ′2 Y

)

×e
i γ ′
(
ξ− 1

2 Y
)

φin(i γ ′) (44)

In Fig. 3 we plot N , which comes from the numerical cal-
culation for Eq. (44), choosing B1 = 1

2 and B2 = 1 in
Eq. (13), taking ᾱS = 0.2 and fixing Y = 10. The log-
arithmic plot in this figure shows, first, that at large b we
have the power-like decrease, as we have discussed, and, sec-
ond, that we can reproduce the solution which decreases as
e−1.06b/

√
r R in the region of ξ = 4–10. It should be stressed

that such fast decrease cannot be achieved in the LO BFKL,
for which, Ñ increases at large b. We will discuss this in
detail in the conclusions below. It is interesting to note that
the slope 1.06/

√
r R is close to one, that has been found in

Ref. [1] for r = R = 10 GeV−1.

Tables 1 and 2 as well as Fig. 4 show that the slope
μ(N ∝ e−μ b) depend on the values of Y and on the ini-
tial conditions. One can see that the range of b in which we
can trust the exponential parameterization also depends on
the values of r and Y , reproducing the main pattern of the
solution given in Ref. [1].

Fig. 3 Numerical estimates for N , which comes from Eq. (44) fixing
B1 = 1

2 and B2 = 1 in Eq. (13), ᾱS = 0.2 and Y = 10 (solid line). The

dotted line is N ∝ exp
(
−1.06 e

1
4 ξ
)

Table 1 Numerical value for the slope μ in GeV versus Y = ln(1/x)

r (GeV−1) Y = 10 Y = 3

1 0.079 0.394

10 0.058 0.092

25 0.043 0.082

63 0.026 0.038

Table 2 Numerical value for the slope μ in GeV for Y = 10 and for
different values of B1 and B2

r (GeV= 1) B1=1/2, B2=1 B1=1/2, B2=2 B1=1/3, B2=1

1 0.079 0.067 0.076

10 0.058 0.053 0.057

25 0.043 0.036 0.039

63 0.026 0.023 0.022

5 Beyond DLA

In this section we modify the solution taking into account
more complicated expressions for the eigenvalues than
Eqs. (20) and (23). We consider Eq. (9) and the eigenval-
ues ω (ᾱS, γ ) take the form

ω(ᾱS, γ ) = −ᾱS+γ−1+ᾱSγ�(γ )

2(α�(γ ) + 1)
︸ ︷︷ ︸

ω′(ᾱS ,γ )

+
√

(ᾱS(−γ )�(γ )+ᾱS−γ+1)2−4(ᾱS�(γ )+1)(ᾱSγ�(γ )−ᾱS�(γ )−ᾱS)

2(α�(γ ) + 1)
︸ ︷︷ ︸

ω′′(ᾱS ,γ )

(45)

with

�(γ ) = 1

γ
+ 2ψ(1) − ψ(2 − γ ) − ψ(1 + γ ) (46)

The singularities of ω(ᾱS, γ ) are related to the poles of
�(γ ), the zeroes of 1 + ᾱS�(γ ) = 0 and ω′′(ᾱS, γ ) has a
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Fig. 4 Numerical estimates of
Eq. (44) for different values of
r = R at Y = ln(1/x) = 10
(solid lines). The dotted lines
denote N ∝ exp(−μb). The
slope μ is in GeV , while r and
b are in GeV−1. For all
estimates ᾱS = 0.2

(a) (b)

(c) (d)

Fig. 5 γ0r (solid line) and γ0i (dotted line) versus ᾱS . The roots for
the DLA approach (see Eq. (23)) are shown by the dotted lines. In this
case γ0r = 1 + ᾱS and γ0i = 2ᾱ

1/2
S

branch point when the radicand is equal to zero. Near the
zero of the radicand ω′′(ᾱS, γ ) takes the form

ω′′(ᾱS, γ ) = A(ᾱS)

√
(γ − γ0r )2 + γ 2

0i (47)

Eq. (47) has two complex roots: γ = γ0r ± i γ0i . In Fig. 5
we plot γ0r and γ0i as functions of ᾱS . From this figure shows
that for very small values of ᾱS our solution coincides with
the DLA approximation. However, for ᾱS > 0.05 the val-
ues of γ0r and γ0i differ considerably from their DLA values,
approaching their maxima at large ᾱS . Function A (ᾱS) is cal-
culated expanding ω′′(ᾱS, γ ) in the vicinity of the complex
roots and its dependence versus ᾱS is shown in Fig. 6.

The contours of the integration over γ ′ = 1−γ are shown
in Fig. 1b. The integration over contour C2 in Fig. 1b can be
written in the form

Ñ (ξ, Y ) = 1

2 π

∫ γ0i

−γ0i

dγ ′′

× exp

(
ω′ (ᾱS, γ = γ0r ) Y + i

dω′ (ᾱS, γ = γ0r )

dγ
γ ′′ Y + iγ ′′ ξ

)

×
(

exp

(
A (ᾱS) Y

√
γ 2

0i − γ ′′2
)

− exp

(
−A (ᾱS) Y

√
γ 2

0i − γ ′′2
))

(48)

Introducing the new notation: ω0 (ᾱS) = ω′ (ᾱS, γ = γ0r )

and B (ᾱS) = dω′(ᾱS ,γ=γ0r )
dγ

we can evaluate the integral of
Eq. (48) using the same procedure, as we have discussed in
section IV-D, or using formula 3.711 of Ref. [32] continuing
it analytically for imaginary A.

Finally,

Ñ (ξ,Y ) = Y γ0i A (ᾱS) e
ω0(ᾱS)Y

×
J1

(
γ0,i

√
(ξ + B (ᾱS) Y )2 − A2 (ᾱS) Y 2

)

√
(ξ + B (ᾱS) Y )2 − A2 (ᾱS) Y 2

(49)

The ᾱS dependence of all parameters in Eq. (49) are shown
in Fig. 6.

In Fig. 7 we give several examples of the behaviour of Ñ
in different kinematic regions. One can see that in spite of
numerical differences, the claim that ξ < Y give the main
contribution is correct.
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Fig. 6 ω0 (ᾱS) , A (ᾱS) , B (ᾱS) versus ᾱS

6 Conclusions

In this paper, we show that the NLO corrections do not change
the power-like decrease of the scattering amplitude at large
impact parameter and, therefore, they cannot resolve the con-

tradiction with the unitarity [3–5]. On the other hand, in a lim-
ited range of b, the NLO corrections lead to a fast decrease of
the scattering amplitude with b, which can be parameterized
as N ∝ exp(−μ2 b2) with μ2 ∝ 1/r2, in accord with the
numerical estimates in Ref. [1].

We demonstrate that the NLO correction leads to an oscil-
lating behaviour of the scattering amplitude as function of b.
Such oscillations contradict the unitarity constraints, as N ,
being the imaginary part of the scattering amplitude, should
be positive (N > 0).

However, from the more practical point of view, the NLO
estimates give the faster decrease of the scattering amplitude
as a function of b (see Fig. 8) and could be useful in the
description of the experimental data (see Ref. [1]).

In a sense, we showed that the scattering amplitude is neg-
ligibly small at ξ̃ > Y ( b2 > r2 exp

( 1
2 η
)
). The violation

of the Froissart theorem stems from the smaller values of ξ .
Indeed, for ξ < Y the scattering amplitude is proportional
to N ∝ exp

(
2
√

ᾱS ξ (Y − ξ) − ξ
)

(see Eq. (43)) and

Fig. 7 Solutions of Eq. (49)
(solid lines) and solution of
Eq. (43) (dotted lines) in
different kinematic regions

(a) (b)

(c) (d)

(e) (f)
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Fig. 8 Comparison of the NLO calculation(solid line) with the LO
estimates (dotted line). ᾱS = 0.2. Y = 3

N 	 1 for ξ ≥ 4ᾱSY/(1+4 ᾱS). Choosing ξ0 = ln(b2
0/r

2)

we see that

σ = 2
∫

d2bN ≤ 2π

∫ b2
0
d b2 ∼ b2

0

= r2e4ᾱSη/(1+4 ᾱS) � Y 2 (50)

Therefore, the range of b2 < r2 e4ᾱSη/(1+4 ᾱS) turns out to be
wide enough to violate the Froissart theorem [3–5]. Hence,
the resumed NLO kernel cannot heal the problem of violation
of the Froissart theorem and has an additional defect of the
oscillating behaviour at ξ > Y , which is in contradiction to
the unitarity constraints, which lead to N > 0.

We believe that we need to introduce non-perturbative cor-
rections with an additional dimensional scale to the BFKL
kernel, and that their influence will be much more important
than that of the NLO BFKL kernel that we have discussed
here.
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