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Abstract We consider the production of a colourless sys-
tem at next-to-leading order in the strong coupling constant
αS. We impose a transverse-momentum cutoff, qcut

T , on the
colourless final state and we compute the power corrections
for the inclusive cross section in the cutoff, up to the fourth
power. The study of the dependence of the cross section
on qcut

T allows for an understanding of its behaviour at the
boundaries of the phase space, giving hints on the structure
at all orders in αS and on the identification of universal pat-
terns. The knowledge of such power corrections is also a
required ingredient in order to reduce the dependence on the
transverse-momentum cutoff of the QCD cross sections at
higher orders, when the qT-subtraction method is applied.
We present analytic results for both Drell–Yan vector boson
and Higgs boson production in gluon fusion and we illus-
trate a process-independent procedure for the calculation of
the all-order power corrections in the cutoff. In order to show
the impact of the power-correction terms, we present selected
numerical results and discuss how the residual dependence
on qcut

T affects the total cross section for Drell–Yan Z pro-
duction and Higgs boson production via gluon fusion at the
LHC.
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1 Introduction

The current precision-physics program at the Large Hadron
Collider (LHC) requires Standard Model (SM) theoreti-
cal predictions at the highest accuracy. Data belonging to
“benchmark” processes, which are measured with the utmost
precision at the LHC, need to be tested against theoretical
results at the same level of accuracy. This is not only impor-
tant for the extraction of SM parameters per se, but also for
searches of signals of new physics, that can appear as small
deviations in kinematic distributions with respect to the SM
predictions. Reaching the highest possible level of precision
is then the main goal and the calculation of perturbative QCD
corrections plays a dominant role in this context.

Until a few years ago, the standard for such calculations
was next-to-leading order (NLO) accuracy. In recent years,
a continuously-growing number of next-to-next-to-leading
order (NNLO) results for many important processes has
appeared in the literature, giving birth to the so called “NNLO
revolution”. For several “standard candles” processes, the
first steps towards the calculation of differential cross sec-
tions at N3LO have also been taken (see e.g. [1,2]).

The computation of higher-order terms in the perturba-
tive series becomes more involved due to the technical diffi-
culties arising in the evaluation of virtual contributions and
to the increasing complexity of the infrared (IR) structure
of the real contributions. In order to expose the cancella-
tion of the IR divergences between real and virtual contribu-
tions, the knowledge of the behaviour of the scattering ampli-

tudes at the boundaries of the phase space is then a crucial
ingredient and it is indeed what is used by the subtraction
methods in order to work. These methods can be roughly
divided into local and slicing. Among the first, the most
extensively used at NLO were proposed in Refs. [3,4]. As far
as the NNLO subtraction methods are concerned, the past few
years have witnessed a great activity in their development:
the transverse-momentum (qT) subtraction method [5–8], the
N -jettiness subtraction [9,10], the projection-to-Born [11],
the residue subtraction [12,13] and the antenna subtraction
method [14–16] have all been successfully applied to LHC
phenomenology. The first application of the qT-subtraction
method to differential cross sections at N3LO was recently
proposed in Ref. [1], in the calculation of the rapidity distri-
bution of the Higgs boson.

While a local subtraction is independent of any regular-
ising parameter, slicing methods require the use of a cutoff
to separate the different IR regions. Such separation of the
phase space introduces instabilities in the numerical evalua-
tion of cross sections and differential distributions [17–20],
and some care has to be taken in order to obtain stable and
reliable results.

The knowledge of logarithmic and power-correction terms
in the cutoff plays a relevant role in the identification of uni-
versal structures, in the development of regularisation pre-
scriptions and in resummation programs [21–31]. Accord-
ing to their behaviour in the zero limit, the cutoff-dependent
terms can be classified into logarithmically-divergent or finite
contributions, and power-correction terms, that vanish in that
limit. In particular, the terms that are singular in the small-
cutoff limit are universal and are cancelled by the applica-
tion of the subtraction methods, while finite and vanishing
terms are, in general, process dependent. However, after the
subtraction procedure, a residual dependence on the cutoff
remains as power corrections. While these terms formally
vanish in the null cutoff limit, they give a non-zero numeri-
cal contribution for any finite choice of the cutoff.

From a theoretical point of view, the knowledge of the
power corrections greatly increases our understanding of the
perturbative behaviour of the QCD cross sections, since more
non-trivial (universal and non-universal) terms appear. The
origin of these terms can be traced back both to the scattering
amplitudes, evaluated at phase-space boundaries, and to the
phase space itself. Thus, several papers have tackled the study
of power corrections in the soft and collinear limits [32–34],
while studies in the general framework of fixed-order and
threshold-resummed computations have also been performed
[35–42].

From a practical point of view, the knowledge of the power
corrections makes the numerical implementation of a sub-
traction method more robust, since the power terms weaken
the dependence of the final result on the arbitrary cutoff.
This is not only valid when the subtraction method is applied
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to NLO computations, but it is numerically more relevant
when applied to higher-order calculation, as pointed out, for
example, in the evaluation of NNLO cross sections in Refs.
[19,20].

Power corrections at NLO have been extensively studied
in Refs. [43–52] in the context of the N -jettiness subtraction
method, and in Refs. [53–58] within SCET-based subtrac-
tion methods. A numerical extraction of power corrections
in the context of NNLL’+NNLO calculations was done in
N -jettiness [31], and a general discussion in the context of
the fixed-order implementation of the N -jettiness subtraction
can be found in Ref. [10].

In this paper we consider the production of a colour-
less system at next-to-leading order in the strong coupling
constant αS. In particular, we discuss Drell–Yan (DY) V
production and Higgs boson production in gluon fusion at
NLO, in the infinite top-mass limit. We impose a transverse-
momentum cutoff, qcut

T , on the colourless system and we
compute the power corrections in the cutoff, up to order
(qcut

T )4, for the inclusive cross sections. The knowledge of
these terms will shed light upon the non-trivial behaviour of
cross sections at the boundaries of the phase space, and upon
the resummation structure at subleading orders. In addition,
it allows to have a better control on the cutoff-dependent
terms, when the qT-subtraction method of Ref. [5] is applied
to the numerical calculation of cross sections, allowing for a
use of larger values of the cutoff. We also describe a process-
independent procedure that can be used to compute the all-
order power corrections in the cutoff.

The outline of this paper is as follows. In Sect. 2 we intro-
duce our notation, and we briefly summarize the expressions
of the partonic and hadronic cross sections, in a form that
is suitable for what follows. In Sect. 3 we outline the calcu-
lation we have done and in Sect. 4 we present and discuss
our analytic results for V and H production, along with a
study of their numerical impact. We draw our conclusions in
Sect. 5. We leave to the appendixes all the technical details
of our calculation.

2 Kinematics and notation

We briefly introduce the notation used in our theoretical
framework and we recall some kinematic details of the cal-
culations presented in this paper.

2.1 Hadronic cross sections

We consider the production of a colourless system F of
squared invariant mass Q2 plus a coloured system X at a
hadron collider

h1 + h2 → F + X. (2.1)

We call S the hadronic squared center-of-mass energy and we
write the hadronic differential cross section for this process
as

dσ =
∑

a,b

∫ 1

τ

dx1

∫ 1

τ
x1

dx2 fa(x1) fb(x2) dσ̂ab, (2.2)

where

τ = Q2

S
, (2.3)

fa/b are the parton densities of the partons a and b, in the
hadron h1 and h2 respectively, and dσ̂ab is the partonic cross
section for the process a + b → F + X . The dependence on
the renormalisation and factorisation scales and on the other
kinematic invariants of the process are implicitly assumed.

In Appendix A we have collected all the formulae for the
calculation of the partonic cross section. Using Eqs. (A.19)
and (A.20), we write the hadronic cross section as

σ =
∑

a,b

∫ 1

τ

dx1

∫ 1

τ
x1

dx2 fa(x1) fb(x2)

×
∫

dq2
T dz

dσ̂ab(qT, z)

dq2
T

δ

(
z − Q2

s

)
, (2.4)

where s is the partonic center-of-mass energy, equal to

s = S x1 x2. (2.5)

We have also made explicit the dependence on z, the ratio
between the squared invariant mass of the system F and the
partonic center-of-mass energy, and on qT, the transverse
momentum of the system F with respect to the hadronic
beams. Using Eqs. (2.5) and (2.3) and integrating over x2 we
obtain

σ =
∑

a,b

τ

∫ 1

τ

dz

z

∫ 1

τ
z

dx1

x1
fa(x1) fb

(
τ

z x1

)

×1

z

∫
dq2

T
dσ̂ab(qT, z)

dq2
T

. (2.6)

We then introduce the parton luminosity Lab(y) defined by

Lab(y) ≡
∫ 1

y

dx

x
fa(x) fb

( y
x

)
, (2.7)

so that we can finally write

σ =
∑

a,b

τ

∫ 1

τ

dz

z
Lab

(
τ

z

)
1

z

∫
dq2

T
dσ̂ab(qT, z)

dq2
T

. (2.8)

2.2 Partonic differential cross sections

In this section we recall the formulae for the first-order real
corrections to the Drell–Yan production of a weak boson V
(W or Z ) and to the Higgs boson production in gluon fusion,
in the infinite top-mass limit.
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The partonic cross sections dσ̂ab(qT, z)/dq2
T in Eq. (2.8)

are computable in perturbative QCD as power series in αS

dσ̂ab(qT, z)

dq2
T

= dσ̂ (0)(qT, z)

dq2
T

+ αS

2π

dσ̂
(1)
ab (qT, z)

dq2
T

+ · · ·
(2.9)

The Born contribution dσ̂ (0)(qT, z)/dq2
T and the virtual con-

tributions to dσ̂
(1)
ab (qT, z)/dq2

T are proportional to δ(qT).
Applying the formulae detailed in Appendix A, with a

little abuse of notation,1 we can write the partonic differential
cross sections for the real corrections to V and H production
as

V production

• q(q̄) + g → V + q(q̄)

dσ̂
(1)
qg (qT, z)

dq2
T

= σ (0)
qq TR z

×
z (1 + 3z)

q2
T

Q2 + (1 − z) pqg(z)
√

(1 − z)2 − 4z
q2

T

Q2

1

q2
T

,

(2.10)

• q + q̄ → V + g

dσ̂
(1)
qq̄ (qT, z)

dq2
T

= σ (0)
qq CF z

×
− 4z

q2
T

Q2 + 2 (1 − z) p̂qq(z)
√

(1 − z)2 − 4z
q2

T

Q2

1

q2
T

,

(2.11)

where

σ (0)
qq = π

Nc

g2
(
g2
v + g2

a

)

c2
W

1

Q2 (2.12)

is the Born-level cross section for the process qq̄ → V , with
cW the cosine of the weak angle and g, gv , ga the weak,
the vector and the axial coupling, respectively. With Nc we
denote the number of colours, CF = (

N 2
c − 1

)
/2Nc = 4/3

and TR = 1/2. For W production, the flavours of the
quarks in Eqs. (2.10)–(2.12) are different, and the corre-
sponding Cabibbo–Kobayashi–Maskawa matrix element has

1 In the rest of the paper we deal only with the real corrections to V
and H production. We then use dσ̂

(1)
ab (qT, z)/dq2

T to indicate them.

to be included in Eq. (2.12). The expression of the Altarelli–
Parisi splitting functions pqg(z) and p̂qq(z) are given in
Appendix D.

H production

• g + q(q̄) → H + q(q̄)

dσ̂
(1)
gq (qT, z)

dq2
T

= σ (0)
gg CF z

×
− 3 (1 − z)

q2
T

Q2 + (1 − z) pgq(z)
√

(1 − z)2 − 4z
q2

T

Q2

1

q2
T

,

(2.13)

• g + g → H + g

dσ̂
(1)
gg (qT, z)

dq2
T

= σ (0)
gg CA z

×
4z

(
q2

T

Q2

)2

− 8 (1 − z)2 q2
T

Q2 + 2 (1 − z) p̂gg(z)

√

(1 − z)2 − 4z
q2

T

Q2

1

q2
T

,

(2.14)
where

σ (0)
gg = α2

S

72π

1

N 2
c − 1

1

v2 (2.15)

is the Born-level cross section for the process gg → H ,
with v the Higgs vacuum expectation value and CA = Nc =
3. The expression of the Altarelli–Parisi splitting functions
pgq(z) and p̂gg(z) are given in Appendix D.

We notice that the terms proportional to the Altarelli–
Parisi splitting functions in Eqs. (2.10)–(2.14) embody in a
single expression the whole infrared behaviour of the ampli-
tudes, i.e. their soft and collinear limits. The structure of
these terms was derived in a completely general form, from
the universal behaviour of the scattering amplitudes in those
limits, in Ref. [59].

3 Description of the calculation

In the small-qT region, i.e. qT � Q, the real contribution to
the perturbative cross sections of Eqs. (2.10)–(2.14) contains
well-known logarithmically-enhanced terms that are singular
in the qT → 0 limit [21–30]. In the context of inclusive NLO
fixed-order calculations, the logarithmic terms are cancelled
when using the subtraction prescriptions. For more exclusive
quantities, such as the transverse-momentum distribution of
the colourless system, the same logarithmic terms need to be
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resummed at all orders in the strong coupling constant to pro-
duce reliable results. Although our studies are of value in the
context of the transverse-momentum resummation, here we
limit ourselves to the case of inclusive fixed-order predictions
at NLO, leaving the resummation program to future inves-
tigations. In this paper we compute power-correction terms
to the cross section that, although vanishing in the small-qT

limit, may give a sizable numerical contribution when using
a slicing subtraction method.

To explicitly present the perturbative structure of these
terms at small qT, it is customary in the literature [47,59]
to compute the following cumulative partonic cross section,
integrating the differential cross section in the range 0 ≤
qT ≤ qcut

T ,

σ̂ <
ab(z) ≡

∫ (qcut
T )

2

0
dq2

T
dσ̂ab(qT, z)

dq2
T

. (3.1)

The cross section in Eq. (3.1) receives contributions from
the Born and the virtual terms, both proportional to δ(qT),
and from the part of the real amplitude that describes the
production of the F system with transverse momentum less
than qcut

T . The virtual and real contributions are separately
divergent and are typically regularised in dimensional regu-
larisation. Since the total partonic cross section is finite and
analytically known for the processes under study, following
what was done in Refs. [60,61], we compute the above inte-
gral as

σ̂ <
ab(z) = σ̂ tot

ab (z) − σ̂ >
ab(z), (3.2)

with

σ̂ tot
ab (z) =

∫ (qmax
T )

2

0
dq2

T
dσ̂ab(qT, z)

dq2
T

, (3.3)

σ̂ >
ab(z) =

∫ (qmax
T )

2

(qcut
T )

2
dq2

T
dσ̂ab(qT, z)

dq2
T

, (3.4)

where qmax
T is the maximum transverse momentum allowed

by the kinematics, σ̂ tot
ab (z) is the total partonic cross section

and σ̂ >
ab(z) is the partonic cross section integrated above qcut

T .
The advantage of using Eq. (3.2) is that the partonic cross
section integrated in the range 0 ≤ qT ≤ qcut

T is obtained as
difference of the total cross section (formally free from any
dependence on qcut

T ) and the partonic cross section integrated
in the range above qcut

T of Eq. (3.4). Since qT > qcut
T > 0, the

last integration can be performed in four space-time dimen-
sions, with no further use of dimensional regularisation. In
Refs. [60,61] the computation of the cumulative cross section
was performed in the limit qcut

T � Q, neglecting terms of
O(

(qcut
T )2

)
on the right-hand side of Eq. (3.2). In this paper,

we compute these terms up to O(
(qcut

T )4
)

included.

3.1 qT-integrated partonic cross sections

In this section we present the results for the partonic cross
section in Eq. (3.4), integrated in qT, from an arbitrary value
qcut

T up to the maximum transverse momentum qmax
T allowed

by the kinematics of the event, given by

(
qmax

T

)2 = Q2 (1 − z)2

4 z
, (3.5)

at a fixed value of z. The integrations are straightforward
and do not need any dedicated comment. To lighten up the
notation, we introduce the dimensionless quantity2

a ≡
(
qcut

T

)2

Q2 , (3.6)

that will be our expansion parameter in the rest of the paper,
and we define

π2
T ≡ 4az

(1 − z)2 , (3.7)

that will allow us to write the upcoming differential cross
sections in a more compact form.

V production

• q(q̄) + g → V + q(q̄)

σ̂>(1)
qg (z) =

∫ (qmax
T )

2

(qcut
T )

2
dq2

T
dσ̂

(1)
qg (qT, z)

dq2
T

= σ (0)
qq TR z

{
1

2
(1 + 3z)(1 − z)

×
√

1 − 4az

(1 − z)2

+ pqg(z)

[
− log

az

(1 − z)2

+ 2 log
1

2

(√

1 − 4az

(1 − z)2 + 1

)]}

= σ (0)
qq TR z

⎧
⎨

⎩
1

2
(1 + 3z)(1 − z)

√
1 − π2

T

+pqg(z) log
1 +

√
1 − π2

T

1 −
√

1 − π2
T

⎫
⎬

⎭, (3.8)

2 In the literature, the parameter a is also referred to as r2
cut (see e.g.

[19]).
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• q + q̄ → V + g

σ̂
>(1)
qq̄ (z) =

∫ (qmax
T )

2

(qcut
T )

2

dσ̂
(1)
qq̄ (qT, z)

dq2
T

= σ (0)
qq CF z

{
− 2 (1 − z)

×
√

1 − 4az

(1 − z)2

+2 p̂qq(z)

[
− log

az

(1 − z)2

+2 log
1

2

(√

1 − 4az

(1 − z)2 + 1

)]}

= σ (0)
qq CF z

⎧
⎨

⎩ − 2 (1 − z)
√

1 − π2
T

+2 p̂qq(z) log
1 +

√
1 − π2

T

1 −
√

1 − π2
T

⎫
⎬

⎭. (3.9)

H production

• g + q(q̄) → H + q(q̄)

σ̂>(1)
gq (z) =

∫ (qmax
T )

2

(qcut
T )

2

dσ̂
(1)
gq (qT, z)

dq2
T

= σ (0)
gg CF z

{
− 3(1 − z)2

2z

×
√

1 − 4az

(1 − z)2

+pgq(z)

[
− log

az

(1 − z)2

+2 log
1

2

(√

1 − 4az

(1 − z)2 + 1

)]}

= σ (0)
gg CF z

⎧
⎨

⎩ − 3(1 − z)2

2z

√
1 − π2

T

+pgq(z) log
1 +

√
1 − π2

T

1 −
√

1 − π2
T

⎫
⎬

⎭, (3.10)

• g + g → H + g

σ̂ >(1)
gg (z) =

∫ (qmax
T )

2

(qcut
T )

2

dσ̂
(1)
gg (qT, z)

dq2
T

= σ (0)
gg CA z

{
− 4(1 − z)3

z

×
√

1 − 4az

(1 − z)2

+4 z

[
1 − z

2z

(1 − z)2

6z

√

1 − 4az

(1 − z)2

×
(

1 + 2az

(1 − z)2

)]

+ 2 p̂gg(z)

[
− log

az

(1 − z)2

+ 2 log
1

2

(√

1 − 4az

(1 − z)2 + 1

)]}

= σ (0)
gg CA z

⎧
⎨

⎩ − 11

3

(1 − z)3

z

×
(

1 − π2
T

22

)√
1 − π2

T

+2 p̂gg(z) log
1 +

√
1 − π2

T

1 −
√

1 − π2
T

⎫
⎬

⎭ . (3.11)

We do not consider the process qq̄ → Hg since it is not
singular in the limit qT → 0 and the corresponding ana-
lytic/numeric integration in the transverse momentum can
be performed setting explicitly qcut

T = 0.
A couple of further comments about the above expres-

sions are also in order. In first place, the part of the cross
sections proportional to the Altarelli–Parisi splitting func-
tions in Eqs. (3.8)–(3.11) has a universal origin, due to the
factorisation of the collinear singularities on the underlying
Born. The rest of the above cross sections is, in general, not
universal. In addition, for Higgs boson production, the NLO
cumulative cross sections that we have computed coincide
exactly with the jet-vetoed cross sections σ veto(pveto

T ) of Ref.
[62], provided we identify qcut

T = pveto
T .

3.2 Extending the integration in z

According to Eq. (2.8), in order to compute the hadronic
cross section we need to integrate the partonic cross sections
convoluted with the corresponding luminosities. In the cal-
culation of the total cross sections, the upper limit in the z
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integration is unrestricted and is equal to 1. When a cut on the
transverse momentum qT is applied, the reality of Eqs. (3.8)–
(3.11) imposes the non negativity of the argument of the
square roots, i.e.

1 − π2
T ≥ 0, (3.12)

that in turn gives

z ≤ zmax ≡ 1 − f (a),

f (a) ≡ 2
√
a
(√

1 + a − √
a
)

. (3.13)

Since our aim is to make contact with the transverse-
momentum subtraction formulae, that describe the behaviour
of the cross sections in the soft and collinear limits, we need
to extend the integration range of the z variable up to 1, i.e. the
upper integration limit of z in a Born-like kinematics. In fact,
only in the z → 1 limit we recover the logarithmic structure
from the soft region of the emission. In order to obtain explic-
itly all the logarithmic-enhanced terms in the small-qcut

T limit,
we have then to expand our results in powers of a. Since both
the integrand and the upper limit of the integral depend on a,
the naïve approach of expanding only the integrand does not
work, due to the appearance of divergent terms in the z → 1
limit, that have to be handled with the introduction of plus
distributions.

Using the notation of Ref. [60], we first introduce the func-
tion R̂ab(z), defined by

σ<
ab = τ

∫ 1− f (a)

τ

dz

z
Lab

(
τ

z

)
1

z
σ̂ <
ab(z)

≡ τ

∫ 1

τ

dz

z
Lab

(
τ

z

)
σ̂ (0) R̂ab(z), (3.14)

where the upper integration limit in z in the last integral is
exactly 1 and σ̂ (0) is the partonic Born-level cross section
for the production of the colourless system F . The function
R̂ab(z) can be written as a perturbative expansion in αS

R̂ab(z) = δB δ(1 − z) +
∞∑

n=1

( αS

2π

)n
R̂(n)
ab (z), (3.15)

where the δ(1 − z) term is the Born-level contribution, and
δB = 1 when partons a and b are such that a + b → F is a
possible Born-like process, otherwise its value is 0.

The coefficient functions R̂(n)
ab (z) can be computed as

power series in a. It is in fact well known in the literature [60]
that the NLO coefficient R̂(1)

ab (z) has the following form3

R̂(1)
ab (z) = log2(a) R̂(1,2,0)

ab (z) + log(a) R̂(1,1,0)
ab (z)

+R̂(1,0,0)
ab (z) + O

(
a

1
2 log a

)
, (3.16)

3 The notation for the expansion of R(1)
ab (z) follows from the number

of powers of αS, log(a) and a
1
2 , i.e.

and the aim of this paper is to compute the first unknown
terms in Eq. (3.16) that were neglected in Refs. [60] and
[61], namely R(1,m,r)

ab (z), for r up to 4 and for any m.

In a way similar to what was done in Eq. (3.14) for R̂ab(z),
we introduce the function Ĝab(z) defined by

σ>
ab = τ

∫ 1− f (a)

τ

dz

z
Lab

(
τ

z

)
1

z
σ̂ >
ab(z)

≡ τ

∫ 1

τ

dz

z
Lab

(
τ

z

)
σ̂ (0) Ĝab(z). (3.17)

Since

σ<
ab + σ>

ab = τ

∫ 1

τ

dz

z
Lab

(
τ

z

)
σ̂ tot
ab (z) ≡ σ tot

ab , (3.18)

and σ tot
ab is independent of a, the coefficients of the terms that

vanish in the small-qT limit in the series expansion in a of
R̂ab(z) and Ĝab(z) are equal but with opposite sign, at any
order in αS. We recall that R̂ab(z) contains terms of the form
δ(1− z), coming from the Born and the virtual contributions,
that are independent of a and are obviously absent in Ĝab(z).

In the rest of the paper we compute the first terms of the
expansion in a of Ĝ(1)

ab (z), that will be obtained from the
following identity

σ
>(1)
ab = τ

∫ 1− f (a)

τ

dz

z
Lab

(
τ

z

)
1

z
σ̂

>(1)
ab (z)

= τ

∫ 1

τ

dz

z
Lab

(
τ

z

)
σ̂ (0) Ĝ(1)

ab (z). (3.19)

We have elaborated a process-independent formula to trans-
form an integral of the form of the first one in Eq. (3.19) into
the form of the second one, producing the series expansion
of Ĝ(1)

ab (z) in a. The application of our formula reorganizes
the divergent terms in the z → 1 limit into terms that are
integrable up to z = 1 and logarithmic terms in a. Since
this is a very technical procedure, we have collected all the
details in Appendix B, and we refer the interested reader to
that Appendix for the description of the method.

4 Results

In this section we summarize our findings. We present in
Sect. 4.1 the analytic results for the Ĝ(1)

ab (z) functions we have

Footnote 3 continued

R̂(1)
ab (z) =

∑

m,r

logm(a) a
r
2 R̂(1,m,r)

ab (z).

In Refs. [6,60], the leading-logarithmic R(1,2,0)
ab (z) and next-to-leading-

logarithmic R(1,1,0)
ab (z) coefficient functions are directly associated to

�
F(1;2)
cc̄←ab(z) and �

F(1;1)
cc̄←ab(z), respectively. The hard-virtual coefficient

function HF(1)
cc̄←ab corresponds to R(1,0,0)

ab (z).
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computed. In the calculation of these functions, we kept trace
of all the terms originating from the manipulation of the con-
tributions proportional to the Altarelli–Parisi splitting func-
tions, in the partonic cross sections of Eqs. (2.10)–(2.14).
These terms constitute what we call the “universal part” of
our results, as detailed in Sects. 2.2 and 3.1. We will indicate
these terms with the superscript “U”, while the remaining
terms will have a superscript “R”. We stress here that the dis-
tinction between universal and non-universal part is purely
formal, and it does not have a physical implication. The rea-
son of this separation is to have hints on the general structure
of the qcut

T dependence of inclusive cross sections for the pro-
duction of arbitrary colorless systems. We comment on the
results that we have obtained in Sect. 4.2.

In Sect. 4.3 we study the numerical significance of the
power-correction terms we have computed, discussing first
their impact on the different production channels for Drell–
Yan Z boson and Higgs boson production in gluon fusion.
Then we present their overall effect, normalising the results
with respect to the total NLO cross section, in order to have
a better grasp on the size of these contributions.

4.1 Results for the Ĝ(1)
ab (z) functions

We indicate with ĝU(1)
ab (z) the universal part of the Ĝ(1)

ab (z)

functions, and with ĝR(1)
ab (z) the remaining part, stripped off

of a common colour factor. Our expressions for Ĝ(1)
ab (z) con-

tain derivatives of the Dirac δ function, δ(n)(z), up to n = 5,
and plus distributions up to order 5. We report here the defi-
nition of a plus distribution of order n
∫ 1

0
dz l(z) [g(z)]n+

≡
∫ 1

0
dz

{
l(z) −

n−1∑

i=0

1

i ! l
(i)(1) (z − 1)i

}
g(z), (4.1)

where g(z) has a pole of order n for z = 1, and l(z) is a con-
tinuous function in z = 1, together with all its derivatives up
to order (n−1). For completeness, we collect in Appendix E
more details on the plus distributions, and the identities we
have used to simplify our results.

V production

• q(q̄)+g → V + q(q̄)

Ĝ(1)
qg (z)=TR ĝ(1)

qg (z), ĝ(1)
qg (z) = ĝU(1)

qg (z) + ĝR(1)
qg (z),

(4.2)

where

ĝU(1)
qg (z) = −pqg(z) log(a) − pqg(z) log

z

(1 − z)2

+
{
δ(1)(1 − z) − 3 δ(1 − z)

}
a log(a)

+
{
δ(1 − z) − 2 z pqg(z)

[
1

(1 − z)2

]

2+

}
a

+
{
−9 δ(1 − z) + 21

2
δ(1)(1 − z)

− 3 δ(2)(1 − z) + 1

4
δ(3)(1 − z)

}
a2 log(a)

+
{
+2 δ(1 − z) + 7

4
δ(1)(1 − z)

− 5

4
δ(2)(1 − z) + 1

6
δ(3)(1 − z)

− 3 z2 pqg(z)

[
1

(1 − z)4

]

4+

}
a2

+O
(
a

5
2 log(a)

)
, (4.3)

ĝR(1)
qg (z) = 1

2
(1 + 3z)(1 − z) − z(1 + 3z)

[
1

1 − z

]

+
a

−z2(1 + 3z)

[
1

(1 − z)3

]

3+
a2

+ 2 δ(1 − z) a log(a) − 2 δ(1 − z) a

+
{

5 δ(1 − z) − 11

2
δ(1)(1 − z)

+δ(2)(1 − z)
}
a2 log(a)

+
{
−2 δ(1 − z) − 3

4
δ(1)(1 − z)

+ 1

2
δ(2)(1 − z)

}
a2 + O

(
a

5
2 log(a)

)
,

(4.4)

and

pqg(z) = 2z2 − 2z + 1. (4.5)

• q + q̄ → V + g

Ĝ(1)
qq̄ (z) = CF ĝ(1)

qq̄ (z), ĝ(1)
qq̄ (z) = ĝU(1)

qq̄ (z) + ĝR(1)
qq̄ (z),

(4.6)

where

ĝU(1)
qq̄ (z) = δ(1 − z) log2(a) − 2 pqq(z) log(a)

−π2

3
δ(1 − z) − 2 p̂qq(z) log(z)

+4 (1 − z) p̂qq(z)

[
log(1 − z)

1 − z

]

+
+

{
6 δ(1 − z) − 8 δ(1)(1 − z)

+2 δ(2)(1 − z)
}
a log(a)
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+
{

− 6 δ(1 − z) + 4 δ(1)(1 − z)

−4 z (1 − z) p̂qq(z)

[
1

(1 − z)3

]

3+

}
a

+
{

3 δ(1 − z) − 12 δ(1)(1 − z)

+21

2
δ(2)(1 − z) − 3 δ(3)(1 − z)

+1

4
δ(4)(1 − z)

}
a2 log(a)

+
{

− 4 δ(1 − z) + 6 δ(1)(1 − z)

−1

2
δ(2)(1 − z) − δ(3)(1 − z)

+1

6
δ(4)(1 − z) − 6z2(1 − z)

× p̂qq(z)

[
1

(1 − z)5

]

5+

}
a2

+O
(
a

5
2 log(a)

)
, (4.7)

ĝR(1)
qq̄ (z) = −2 (1 − z) + 4 z

[
1

1 − z

]

+
a

+4 z2
[

1

(1 − z)3

]

3+
a2

−2 δ(1 − z) a log(a) + 2 δ(1 − z) a

+
{
−2 δ(1 − z) + 4 δ(1)(1 − z)

−δ(2)(1 − z)
}
a2 log(a)

+
{

2 δ(1 − z) − 1

2
δ(2)(1 − z)

}
a2

+O
(
a

5
2 log(a)

)
, (4.8)

and

p̂qq(z) = 1 + z2

1 − z
, pqq(z) = 1 + z2

(1 − z)+
. (4.9)

In Eq. (4.7) we have written the (1 + z2) terms coming
from the numerator of the p̂qq(z) splitting function as

1 + z2 = (1 − z) p̂qq(z), (4.10)

in order to keep track of the universal origin of those
terms.

H production

• g + q(q̄) → H + q(q̄)

Ĝ(1)
gq (z) = CF ĝ(1)

gq (z), ĝ(1)
gq (z) = ĝU(1)

gq (z) + ĝR(1)
gq (z),

(4.11)

where

ĝU(1)
gq (z) = −pgq(z) log(a) − pgq(z) log

z

(1 − z)2

+δ(1)(1 − z) a log(a) +
{
δ(1 − z)

−2 z pgq(z)

[
1

(1 − z)2

]

2+

}
a

+
{
−3

2
δ(1 − z) + 3

2
δ(1)(1 − z)

−3

4
δ(2)(1 − z) + 1

4
δ(3)(1 − z)

}
a2 log(a)

+
{

1

4
δ(1 − z) + 1

4
δ(1)(1 − z)

+1

4
δ(2)(1 − z) + 1

6
δ(3)(1 − z)

−3 z2 pgq(z)

[
1

(1 − z)4

]

4+

}
a2

+O
(
a

5
2 log(a)

)
, (4.12)

ĝR(1)
gq (z) = − 3

2z
(1 − z)2 + 3 a + 3 z

[
1

(1 − z)2

]

2+
a2

+3

2

{
δ(1 − z) − δ(1)(1 − z)

}
a2 log(a)

−3

4

{
δ(1 − z) + δ(1)(1 − z)

}
a2

+O
(
a

5
2 log(a)

)
, (4.13)

and

pgq(z) = z2 − 2z + 2

z
. (4.14)

• g + g → H + g

Ĝ(1)
gg (z) = CA ĝ(1)

gg (z),

ĝ(1)
gg (z) = ĝU(1)

gg (z) + ĝR(1)
gg (z), (4.15)

where

ĝU(1)
gg (z) = δ(1 − z) log2(a) − 2 pgg(z) log(a)

−π2

3
δ(1 − z) − 2 p̂gg(z) log(z)
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+4 (1 − z) p̂gg(z)

[
log(1 − z)

1 − z

]

+
+
{

12 δ(1 − z) − 8 δ(1)(1 − z)

+2 δ(2)(1 − z)
}
a log(a)

+
{

− 6 δ(1 − z) + 4 δ(1)(1 − z)

−4z (1 − z) p̂gg(z)

[
1

(1 − z)3

]

3+

}
a

+
{

18 δ(1 − z) − 30 δ(1)(1 − z)

+15 δ(2)(1 − z) − 3 δ(3)(1 − z)

+1

4
δ(4)(1 − z)

}
a2 log(a)

+
{
−15

2
δ(1 − z) + 3 δ(1)(1 − z)

+5

2
δ(2)(1 − z) − δ(3)(1 − z)

+1

6
δ(4)(1 − z) − 6 z2 (1 − z)

× p̂gg(z)

[
1

(1 − z)5

]

5+

}
a2

+O
(
a

5
2 log(a)

)
, (4.16)

ĝR(1)
gg (z) = −11

3z
(1 − z)3 + 8 (1 − z) a

+6 z

[
1

1 − z

]

+
a2

−3 δ(1 − z) a2 log(a)

−5

2
δ(1 − z) a2 + O

(
a

5
2 log(a)

)
, (4.17)

and

p̂gg(z) = 2(z2 − z + 1)2

z(1 − z)
. (4.18)

In Eq. (4.16) we have written the 2(z2 − z + 1)2/z terms
coming from the numerator of the p̂gg(z) splitting func-
tion as

2(z2 − z + 1)2

z
= (1 − z) p̂gg(z), (4.19)

in order to keep track of the universal origin of those
terms.

4.2 Comments on Ĝ(1)
ab (z)

The leading-logarithmic (LL) and next-to-leading-
logarithmic (NLL) coefficients of the Ĝ(1)

ab (z) functions that

we have computed agree with the ones in the literature, along
with the finite term. Their values have been known for a while
[26,29] and are related to the perturbative coefficients of
the transverse-momentum subtraction/resummation formu-
lae for V [28] and Higgs boson production [63], as pointed
out in Sect. 3.2. The coefficients of the terms of order a log(a)

and a, and of order a2 log(a) and a2 are instead the new
results computed in this paper.

The general form of the Ĝ(1)
ab (z) functions we have com-

puted reads4

Ĝ(1)
ab (z) = log2(a) Ĝ(1,2,0)

ab (z)

+ log(a) Ĝ(1,1,0)
ab (z) + Ĝ(1,0,0)

ab (z)

+ a log(a) Ĝ(1,1,2)
ab (z) + a Ĝ(1,0,2)

ab (z)

+ a2 log(a) Ĝ(1,1,4)
ab (z) + a2 Ĝ(1,0,4)

ab (z)

+O
(
a

5
2 log(a)

)
, (4.20)

all the other coefficients being zero.
We will refer to the terms in the first and in the second line

of Eq. (4.20) as leading terms (LT). These terms are either
logarithmically divergent or finite in the a → 0 limit. We
name the terms in the sum in the third line of Eq. (4.20) as
next-to-leading terms (NLT), and the terms in the fourth line
as next-to-next-to-leading terms (N2LT), and so forth.

We notice that the NLT and N2LT terms are at most lin-
early dependent on log(a), consistently with the fact that
the LL contribution is a squared logarithm. In addition, no
odd-power corrections of

√
a = qcut

T /Q appear in the NLT
and N2LT terms. This behaviour is in agreement with what
found, for example, in Ref. [48], i.e. that, at NLO, the power
expansion of the differential cross section for colour-singlet
production is in (qcut

T )2. We do not expect this to be true in
general when cuts are applied to the final state.

4.2.1 Soft behaviour of the universal part

The origin of some of the terms in the diagonal channels,
i.e. the qq̄ channel for V production and the gg channel for
H production, can be traced back to the behaviour of the
Altarelli–Parisi splitting functions in the soft limit, i.e. z →
1. In fact, in this limit,

P̂qq(z) ≈ 2CF

1 − z
, P̂gg(z) ≈ 2CA

1 − z
, (4.21)

4 The notation for the expansion of G(1)
ab (z) follows from the number

of powers of αS, log(a) and a
1
2 (in the same way as for R̂(1)

ab (z)), i.e.

Ĝ(1)
ab (z) =

∑

m,r

logm(a)
(
a

1
2

)r
Ĝ(1,m,r)

ab (z).
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so that

p̂qq(z) ≈ p̂gg(z) ≈ 2

1 − z
≡ p̂(z). (4.22)

Inserting p̂qq(z) and p̂gg(z) in Eqs. (3.9) and (3.11), respec-
tively, they give rise to a contribution of the form

∫ 1− f (a)

τ

dz

z
L
(

τ

z

)
2 p̂(z) log

1 +
√

1 − π2
T

1 −
√

1 − π2
T

=
∫ 1

0

dz

z
L
(

τ

z

){
δ(1 − z) log2(a)

−2 p(z) log(a) − π2

3
δ(1 − z) + · · ·

}
(4.23)

where, following the notation of Appendix D, we have
defined

p(z) =
[

2

1 − z

]

+
. (4.24)

The details for the derivation of Eq. (4.23) are collected in
Appendix C.5. Inspecting the first three terms of the universal
function ĝU(1)

qq̄ (z) in Eq. (4.7) and ĝU(1)
gg (z) in Eq. (4.16), we

recognize exactly the three terms on the right-hand side of
Eq. (4.23).

4.2.2 The non-universal part

It is also interesting to notice that the non-universal part of
the Ĝ(1)

ab (z) functions contains terms proportional to log(a),
multiplied by powers of a. These powers are controlled by
the form of the non-universal parts in Eqs. (3.8)–(3.11), and
to the way they enter in our generating procedure described
in Appendix B. In fact, by inspecting Eq. (B.10), we see that
they contribute to ĝR(1)

ab with terms of the form

∫ 1− f (a)

τ

dz (1 − z)n
√

1 − π2
T

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+a2 log(a) + a log(a) + · · · n = 1
−2 a2 log(a) + · · · n = 2
+a2 log(a) + · · · n = 3
−6 a3 log(a) + · · · n = 4
+2 a3 log(a) + · · · n = 5

(4.25)

where the dots stand for power terms in a with no logarithms
attached. This also explains why, for V production, ĝR(1)

qg (z)

in Eq. (4.4) and ĝR(1)
qq̄ (z) in Eq. (4.8) contain both terms

a log(a) and a2 log(a): they receive contributions from all
the terms in Eq. (4.25) starting from n = 1, since Eqs. (3.8)

and (3.9) contain a term proportional to (1 − z)
√

1 − π2
T.

Instead, ĝR(1)
gq (z) in Eq. (4.13) and ĝR(1)

gg (z) in v (4.17) con-
tain only the term a2 log(a), since they receive contributions
from the terms in Eq. (4.25) starting from n = 2, due to the

fact that Eqs. (3.10) and (3.11) contain a term proportional

to (1 − z)2
√

1 − π2
T and (1 − z)3

√
1 − π2

T, respectively.
As far as the finite term in the diagonal channels is con-

cerned, we notice that, in the qq̄ channel of DY produc-
tion, the first term in Eq. (4.8) happens to correspond to the
first-order collinear coefficient function defined in the “hard-
resummation scheme”, introduced in Refs. [64,65] within
the qT-subtraction formalism. Instead, the first term in the
gg channel of H production in Eq. (4.17) has no connection
with the first-order collinear coefficient function, that is zero
for this production channel. In conclusion, the structure of
the terms in the non-universal part depends on the peculiar
form of the differential cross sections.

4.2.3 Higher-order soft behaviour of the squared
amplitudes

In this section, we extend the study performed in Sect. 4.2.1
in order to investigate the origin of the power-suppressed
terms a log(a) and a2 log(a), present both in the universal
and in the non-universal parts. We will show that their origin
can be connected to the higher-order soft behaviour of the
squared amplitudes. To this aim, we have performed a Lau-
rent expansion in the energy k0 of the final-state parton of
the exact squared amplitudes of Eqs. (A.23), (A.29), (A.34)
and (A.39). In the following, we call leading soft (LS) the
term proportional to the highest negative power of k0, next-
to-leading soft (N1LS) the subsequent term, and so on. All
the technical details and expressions of the expansion terms
are collected in Appendix A.3.

We have then applied the algorithm described in this paper
to each of the terms of the expansions that we have calculated,
in order to compute their behaviour as a function of a. This
has allowed us to trace the origin of the a log(a) and a2 log(a)

terms. Our findings are collected in the following:

• q(q̄) + g → V + q(q̄)

We reproduce the a log(a) behaviour of ĝ(1)
qg (z) in

Eq. (4.2) if we consider the soft-expansion of the exact
amplitude up to the N1LS level, i.e. if we sum Eqs. (A.24)
and (A.25), and the a2 log(a) behaviour if we consider
the soft-expansion up to the N3LS level, i.e. if we sum
Eqs. (A.24)–(A.27).

• q + q̄ → V + g
We reproduce the a log(a) behaviour of ĝ(1)

qq̄ (z) in
Eq. (4.6) if we consider the soft-expansion of the exact
amplitude up to the N1LS level, i.e. if we sum Eqs. (A.30)
and (A.31), and the a2 log(a) behaviour if we consider
the soft-expansion up to the N2LS level, i.e. if we sum
Eqs. (A.30)–(A.32).

• g + q(q̄) → H + q(q̄)

123



852 Page 12 of 31 Eur. Phys. J. C (2019) 79 :852

We reproduce the a log(a) behaviour of ĝ(1)
gq (z) in

Eq. (4.11) if we consider the soft-expansion of the exact
amplitude up to the N1LS level, i.e. if we sum Eqs. (A.35)
and (A.36), and the a2 log(a) behaviour if we consider
the soft-expansion up to the N2LS level, i.e. if we sum
Eqs. (A.35)–(A.37).

• g + g → H + g
We reproduce the a log(a) behaviour of ĝ(1)

gg (z) in
Eq. (4.15) if we consider the soft-expansion of the
exact amplitude up to the N2LS level, i.e. if we sum
Eqs. (A.40)–(A.42), and the a2 log(a) behaviour if we
consider the soft-expansion up to the N4LS level, i.e. if
we sum Eqs. (A.40)–(A.44).

Collecting our result in a table, we have:

V H

ĝ(1)
qg (z) ĝ(1)

qq̄ (z) ĝ(1)
gq (z) ĝ(1)

gg (z)

a log(a) N1LS N1LS N1LS N2LS
a2 log(a) N3LS N2LS N2LS N4LS

In summary, the next-to-leading-soft approximation of the
exact amplitudes reproduces thea log(a) term only forV pro-
duction and for the non-diagonal channel of H production.
For the diagonal channel of H production, only the expan-
sion up to next-to-next-to-leading-soft order reproduces the
a log(a) term. We would like to point out that, of the three
terms contributing to the N2LS of Eq. (A.42), only the con-
stant one, i.e. the number 16, is needed to reproduce the
a log(a) coefficient. The u/t and t/u terms do not give rise
to any a log(a) contribution.

Moreover, only the expansion up to next-to-next-to-
leading-soft order in the diagonal channel for V production
and in the non-diagonal channel for H production reproduces
the a2 log(a) coefficient. Higher orders in the expansion in
the softness of the final-state parton are needed for the non-
diagonal channel of V production and for the diagonal chan-
nel of H production.

4.2.4 qT-subtraction method

In the original paper on the qT-subtraction method [5], the
expansion in αS of the transverse-momentum resummation
formula generates exactly the three terms in Eq. (3.16), plus
extra power-correction terms.

In the formula for R̂(1)
ab (z) that we can build from our

expression of Ĝ(1)
ab (z), by changing the overall sign and

adding the δ(1 − z) contribution from the virtual correc-
tion, the power-correction terms are exactly those produced
by the expansion of the real amplitudes. If one is interested

in using our formula for R̂(1)
ab (z) to reduce the dependence on

the transverse-momentum cutoff, within the qT-subtraction
method, the aforementioned extra terms need then to be sub-
tracted from our expression of R̂(1)

ab (z).

4.3 Numerical results

As previously pointed out, NLO (and NNLO) cross sections
computed with theqT-subtracted formalism exhibit a residual
dependence on qcut

T , i.e. the parameter a we have introduced
in Eq. (3.6). This residual dependence is due to power terms
which remain after the subtraction of the IR singular con-
tributions, and vanish only in the limit a → 0 (limit which
is unattainable in a numerical computation). In this section
we discuss the residual systematic dependence on qcut

T due
to terms beyond LT, NLT and N2LT accuracy.

We present our results for Z and H production at the
LHC, at a center-of-mass energy of

√
S = 13 TeV. In our

NLO calculations we have set the renormalisation and fac-
torisation scales equal to the mass of the corresponding pro-
duced boson, and we have used the MSTW2008nlo parton-
distribution function set [66]. The mass of the Z boson mZ

and of the Higgs boson mH have been set to the values
91.1876 GeV and 125 GeV, respectively.

As an overall check of our calculation, we compared the
results obtained with the analytically qT-integrated cross sec-
tions in Eqs. (3.8)–(3.11) with the numerically-integrated
results computed with both the DYqT-v1.0 [67,68] and
HqT2.0 [6,69] codes, and found an excellent agreement.

Then, in order to study the residual qcut
T dependence of

the NLO cross sections for all the partonic subprocesses, we
insert the expansion in Eq. (4.20) into Eq. (3.19), and we
introduce the following definitions

σLT
ab ≡ τ

∫ 1

τ

dz

z
Lab

(
τ

z

)
σ̂ (0)

×
[
log2(a) Ĝ(1,2,0)

ab (z)

+ log(a) Ĝ(1,1,0)
ab (z) + Ĝ(1,0,0)

ab (z)
]
, (4.26)

σNLT
ab ≡ τ

∫ 1

τ

dz

z
Lab

(
τ

z

)
σ̂ (0)

×
[
a log(a) Ĝ(1,1,2)

ab (z) + a Ĝ(1,0,2)
ab (z)

]
, (4.27)

σN2LT
ab ≡ τ

∫ 1

τ

dz

z
Lab

(
τ

z

)
σ̂ (0)

×
[
a2 log(a) Ĝ(1,1,4)

ab (z) + a2 Ĝ(1,0,4)
ab (z)

]
, (4.28)

where we have dropped the > and (1) superscripts for ease
of notation, since there is no possibility of misunderstanding
in this section, because we present only the NLO results we
have computed for the Ĝ(1)

ab (z) functions.
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Fig. 1 Difference of the total cross sections
(
σ>(1) − σ̃

)
as a function

of qcut
T , for Z boson production, in the qg → Zq (left pane) and in the

qq̄ → Zg channel (right pane). The three curves correspond to the three
possible choices of σ̃ : results for σ̃ = σLT are displayed in blue, for

σ̃ = σLT+σNLT are displayed in black and for σ̃ = σLT+σNLT+σN2LT

are displayed in red. The corresponding values of a = (
qcut

T /mZ
)2 are

displayed on the top of the figure. The statistical errors of the integration
are also shown, but they are totally negligible on the scale of the figure
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Fig. 2 Difference of the total cross sections
(
σ>(1) − σ̃

)
as a function of qcut

T , for H boson production, in the qg → Hq (left pane) and in the

gg → Hg channel (right pane). Same legend as in Fig. 1. The corresponding values of a = (
qcut

T /mH
)2 are displayed on the top of the figure

The Ĝ(1,n,m)
ab (z) functions in Eqs. (4.26)–(4.28) contain

plus distributions up to order 5 and to compute these cross
sections we have first built interpolations of the luminosity
functions Lab(y), defined in Eq. (2.7), for the channels that
contribute to Z and H production at NLO. We have expanded
the luminosity functions on the basis of the Chebyshev poly-
nomials up to order 30. In this way, the computation of the
derivatives of the luminosity functions can be performed in
a fast and sound way.

In the forthcoming figures, we plot the following quan-
tities as a function of qcut

T (the corresponding value of a is
given on top of each figure):

1. (σ
>(1)
ab − σLT

ab ),

2. (σ
>(1)
ab − σLT

ab − σNLT
ab ),

3. (σ
>(1)
ab − σLT

ab − σNLT
ab − σN2LT

ab ),

where σ
>(1)
ab is the cumulative cross section defined on the

left-hand side of Eq. (3.19), obtained by integrating the exact

differential cross sections of Eqs. (3.8)–(3.11). We expect
that, by adding higher-power terms in a, these differences
tend to zero more and more quickly when qcut

T → 0. And in
fact, the results shown in the following figures confirm this
behaviour.

We first present our findings separated according to the
partonic production channels. In all the figures presented in
this paper, the statistical errors of the integration procedure
are also displayed, but they are always totally negligible on
the scales of the figures.

In Fig. 1 we collect the results for the aforementioned
cross-section differences, as a function of qcut

T , for the qg →
Zq (left) and qq̄ → Zg (right) channels, and in Fig. 2
we collect similar results for the gq → Hq (left) and
gg → Hg (right) channels. As expected, NLT and N2LT
contributions increase the accuracy of the expanded cross
section, with respect to the exact one.

To give a more quantitative estimation of the power-
suppressed corrections, we present results for the total
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boson production, in pp → Z j . Same legend as in Fig. 1. In the left
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region in qcut
T is shown. The total cross section at NLO for Z production,

σNLO, has been taken equal to 55668.1 pb
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Fig. 4 Results for 1 − (
σ>(1) − σ̃

)
/σNLO as a function of qcut

T , for
H boson production, in pp → H j . Same legend as in Fig. 1. In the
left pane, the low-qcut

T region is displayed, while, in the right pane, a

larger region in qcut
T is shown. The total cross section at NLO for H

production, σNLO, has been taken equal to 31.52 pb

hadronic cross section, normalised with respect to the corre-
sponding exact NLO cross section σNLO (i.e. including also
the virtual contributions). The results are shown in Figs. 3
and 4, where we have used σNLO = 55668.1 pb for Z pro-
duction and 31.52 pb for H production. On the left panes we
plot results in a smaller qcut

T region, while, on the right panes,
we extend the qcut

T interval to higher values.

These plots show exactly how the residual cutoff depen-
dence of the cross sections changes when the qT-subtraction
counterterm is corrected by the NLT and N2LT power terms.
For example, for Z production and for qcut

T = 10 GeV, cor-
responding to a = 0.012, the LT cross section gives an esti-
mate of the exact cross section within the 5‰, that reduces
to below the 1‰ when the NLT contribution is added and
becomes less than 0.01‰ when also the N2LT is present.
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Fig. 5 Same as Fig. 3, but using only the universal part of Ĝ(1,n,m)
ab (z) in computing the cross sections of Eqs. (4.26)–(4.28)

For Higgs boson production, the residual cutoff dependence
is even more pronounced: in fact, at qcut

T = 10 GeV, corre-
sponding toa = 0.0064, the LT is precise within the 1% level.
When the NLT is added, the precision reaches the 0.2‰, and
is below 0.001‰ with the addition of the N2LT.

An interesting question is to estimate the impact of the
universal parts of the Ĝ(1,n,m)

ab (z) functions, with respect to
the non-universal ones. We have then computed the cross
sections in Eqs. (4.26)–(4.28), taking into account only the
universal parts of the Ĝ(1,n,m)

ab (z) functions. Our results are
displayed in Fig. 5, for Z production, and in Fig. 6, for H
production.

Comparing these figures with the corresponding ones with
the full Ĝ(1,n,m)

ab (z) functions, i.e. Figs. 3 and 4 , we see that
the non-universal contributions play a crucial role for Z pro-
duction, while their role is minor in Higgs boson production.
This is due to the fact that the non-universal part in Eqs. (3.10)
and (3.11) is suppressed by higher powers of (1 − z), with
respect to the corresponding expression for Z production,
in Eqs. (3.8) and (3.9), confirming the conclusions drawn in
Sect. 4.2.2.

5 Conclusions

In this paper we considered the production of a colourless
system at next-to-leading order in the strong coupling con-
stant αS. We imposed a transverse-momentum cutoff,qcut

T , on
the colour-singlet final state and we computed the power cor-
rections for the inclusive cross section in the cutoff, up to the
fourth power. Although we studied Drell–Yan vector boson
production and Higgs boson production in gluon fusion, the

procedure we followed is general and can be applied to other
similar cases, up to any order in the powers of qcut

T .
We presented analytic results, reproducing the known log-

arithmic terms from collinear and soft regions of the phase
space, along with the finite contribution, and adding new
terms as power corrections in qcut

T . We found that the loga-
rithmic terms in qcut

T show up at most linearly in the power-
correction contributions, consistently with the fact that the
LL contribution is a squared logarithm. In addition, no odd-
power corrections in qcut

T appeared in our calculation, in
agreement with known results in the literature for the NLO
differential cross section in colour-singlet production. We do
not expect this to be true in general when cuts are applied to
the final state.

Along the calculation we kept track of the origin of the
newly-computed terms, so that we were able to separate them
into a universal part, and a part that depends on the pro-
cess at stake. In particular we derived and identified the con-
tribution to the universal part coming from soft radiation,
present in the diagonal partonic channels for Z and H pro-
duction. We could also explain some features about the pres-
ence of power-suppressed logarithmic terms, appearing in
the non-universal part of the power corrections. Furthermore
we showed that the knowledge of the squared amplitudes at
the next-to-leading-soft approximation is not enough to pre-
dict the (qcut

T )2 log qcut
T behaviour of the power corrections.

The same conclusion can be drawn for the knowledge of the
next-to-next-to-leading-soft approximation in predicting the
(qcut

T )4 log qcut
T power correction.

We also studied the numerical impact of the power terms
in the hadronic cross sections for Z and H production at the
LHC at 13 TeV, both by keeping track of the different par-
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Fig. 6 Same as Fig. 5 but for Higgs boson production

tonic production channels and by summing over all of them.
We plotted the behaviours of the cross sections while adding
more and more orders of the power-correction terms, as a
function of qcut

T , and comparing them with the exact cross
sections. For example, in Z production and for a value of
qcut

T = 10 GeV, the sensitivity on the cutoff can be reduced
from 5 to 0.01‰, when adding the (qcut

T )4 contributions to the
(qcut

T )2 ones. Higgs boson production suffers from a larger
sensitivity on the cutoff, and the dependence goes from 1%
to 0.2‰, when all the power corrections we computed are
added. By performing the same numerical comparisons for
just the universal part of the power corrections, we showed
that the non-universal contributions play a crucial role for Z
production, while their role is minor in Higgs boson produc-
tion.

The knowledge of the power terms is crucial for under-
standing both the non-trivial behaviour of cross sections at
the boundaries of the phase space, and the resummation struc-
ture at subleading orders. Within the qT-subtraction method,
the knowledge of the power terms helps in reducing the cut-
off dependence of the cross sections. While the application
of the qT-subtraction method in NLO calculations is super-
seded by well-known local subtraction methods, at NNLO it
still plays a major role, also in view of the fact that, as shown
in Refs. [1,19], the sensitivity to the numerical value of the
cutoff increases at higher orders.
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A Partonic phase space and partonic cross sections at
NLO

In this section we collect some basic formulae used to com-
pute the cross section of the partonic process

a(p1) + b(p2) → F(q) + c(k), (A.1)

where a, b and c are quarks or gluons, in a combination com-
patible with the production process of the colourless system
F . In parentheses, the four momenta of the particles are given.

A.1 Partonic phase space

The standard Mandelstam relativistic invariants are given by

s = (p1 + p2)
2 , t = (p1 − k)2 = −2p1 · k,

u = (p2 − k)2 = −2p2 · k, q2 = Q2, (A.2)

and we also define the threshold variable z

z = Q2

s
. (A.3)
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The phase-space volume with the appropriate flux factor is
given by

d�2 = 1

2s

d3q

(2π)32q0

d3k

(2π)32k0

×(2π)4δ4(p1 + p2 − q − k)

= 1

2s

1

(2π)2

d3k

2k0 δ
(
(p1 + p2 − k)2 − Q2

)
. (A.4)

Since the colourless system recoils against the final coloured
parton, their transverse momenta are equal. Calling θ the
angle between p1 and k, we can write

qT = kT = k0 sin θ, (A.5)

t = −√
sk0(1 − cos θ). (A.6)

Inverting the system, we find the relations

k0 = − sq2
T + t2

2
√
st

, (A.7)

cos θ = sq2
T − t2

sq2
T + t2

, (A.8)

which lead to an expression of the phase-space volume in
terms of qT and t

1

(2π)2

d3k

2k0 = 1

4π
k0dk0d cos θ

= − 1

4π

sq2
T + t2

2
√
st

√
s

sq2
T + t2

dq2
T dt

= − 1

8π

dt

t
dq2

T. (A.9)

On the other hand, using the identity

t u = s q2
T, (A.10)

we can write the argument of the δ function in Eq. (A.4) as

(p1 + p2 − k)2 − Q2 = s + t + u − Q2

= s + t + sq2
T

t
− Q2

= 1

t

[
t2 +

(
s − Q2

)
t + sq2

T

]

= 1

t
(t − t+) (t − t−) , (A.11)

where

t± = 1

2

[
Q2 − s ±

√(
Q2 − s

)2 − 4 s q2
T

]
. (A.12)

As a consequence, it is possible to write

δ
(
(p1 + p2 − k)2 − Q2

) dt

t

= t

t2 − t+t−
[
δ (t − t+) + δ (t − t−)

]
dt

= 1√(
Q2 − s

)2 − 4 s q2
T

[
δ (t − t+) + δ (t − t−)

]
dt, (A.13)

and using Eqs. (A.9) and (A.13), we can write Eq. (A.4) as

d�2 = 1

16π

1

s

1√(
Q2 − s

)2 − 4 s q2
T

× [
δ (t − t+) + δ (t − t−)

]
dt dq2

T. (A.14)

We then add a dummy integration over the z variable,

d�2 = 1

16π

1

s

1√(
Q2 − s

)2 − 4 s q2
T

× [
δ (t − t+) + δ (t − t−)

]

× δ

(
z − Q2

s

)
dt dq2

T dz, (A.15)

that allows us to rewrite the phase-space volume as

d�2 = 1

16π

z2

Q4

1
√

(1 − z)2 − 4z
q2

T

Q2

× [
δ(t − t+) + δ(t − t−)

]

× δ

(
z − Q2

s

)
dt dq2

T dz, (A.16)

where

t± = Q2

2z

⎡

⎣z − 1 ±
√

(1 − z)2 − 4z
q2

T

Q2

⎤

⎦ . (A.17)

A.2 Partonic cross sections

We can write the partonic cross sections for a 2 → 2 process
as

dσ̂ = |M(s, t, u)|2 d�2, (A.18)

where M is the amplitude for the partonic process, that in
general can be written as a function of the Mandelstam vari-
ables s, t and u. From Eqs. (A.3) and (A.10) we can express
s and u as functions of z, qT and t , and using Eq. (A.16) we
can write

dσ̂ = 1

16π

z2

Q4

1
√

(1 − z)2 − 4z
q2

T

Q2

× [
δ(t − t+) + δ(t − t−)

]

×δ

(
z − Q2

s

)
|M (z, t, qT)|2 dt dq2

T dz

= 1

16π

z2

Q4

1
√

(1 − z)2 − 4z
q2

T

Q2

×
[
|M (z, t+, qT)|2 + |M (z, t−, qT)|2

]
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×δ

(
z − Q2

s

)
dq2

T dz

= dσ̂ab(qT, z)

dq2
T

δ

(
z − Q2

s

)
dq2

T dz, (A.19)

where we have defined

dσ̂ab(qT, z)

dq2
T

≡ 1

16π

z2

Q4

1
√

(1 − z)2 − 4z
q2

T

Q2

×
[
|M (z, t+, qT)|2 + |M (z, t−, qT)|2

]
.

(A.20)

A.3 Squared amplitudes and their soft limit

In this section, for completeness, we collect the squared
amplitudes |M(s, t, u)|2 for V+jet and H+jet, at the low-
est order in αS, stripped off of trivial coupling, colour and
spin factors. The normalization of the following amplitudes
is such that

z

2

q2
T

Q2

[
|M (z, t+, qT)|2 + |M (z, t−, qT)|2

]
(A.21)

is exactly the numerator of Eqs. (2.10)–(2.14).
Together with the exact squared matrix elements, we give

also the soft behaviour of the amplitudes, using the energy
k0 of the final-state parton as expansion parameter. We have
computed the soft expansion adopting the following proce-
dure: we first got rid of s in favour of Q2, t and u using the
identity

s = Q2 − t − u. (A.22)

In this way, the only dependence on the energy of the final-
state parton is through t and u, that are linearly dependent
on k0 (see Eq. (A.2)). Then we perform a Laurent expansion
in k0, and define leading soft (LS) the term proportional to
the highest negative power of k0, next-to-leading soft (N1LS)
the subsequent term, and so on. Finally we re-express all the
soft-expansion contributions in terms of t and u. As a result,
at each order of the expansion, all the terms proportional
to a given power of k0 are included, and only them. This
is an unambiguous way to define the softness order of the
expansion.

V production

• q(q̄) + g → V + q(q̄)

The exact squared amplitude is given by

|M(s, t, u)|2 = −2

[
t

s
+ s

t
+ 2

Q2u

st

]
(A.23)

with soft-expansion terms

|M|2LS = −2
Q2

t
(A.24)

|M|2N1LS = −2
u

t
+ 2 (A.25)

|M|2N2LS = − 2

Q2

[
2
u2

t
+ 2u + t

]
(A.26)

|M|2N3LS = − 2

Q4

[
2
u3

t
+ 4 u2 + 3 tu + t2

]
(A.27)

|M|2N4LS = · · · (A.28)

• q + q̄ → V + g
The exact squared amplitude is given by

|M(s, t, u)|2 = 4 Q4

tu

−4

[
Q2

u
+ Q2

t

]
+ 2

[
u

t
+ t

u

]

(A.29)

with soft-expansion terms

|M|2LS = 4
Q4

t u
(A.30)

|M|2N1LS = −4

[
Q2

t
+ Q2

u

]
(A.31)

|M|2N2LS = 2

[
u

t
+ t

u

]
(A.32)

|M|2NnLS = 0, n ≥ 3 (A.33)

We notice that, for q(q̄)+g → V +q(q̄) production, the LS
term of Eq. (A.24) has only one negative power of k0, while
in q+ q̄ → V +g the LS term of Eq. (A.30) has two negative
powers of k0, in agreement with the eikonal approximation
for soft-gluon emission.

H production

• g + q(q̄) → H + q(q̄)

The exact squared amplitude is given by

|M(s, t, u)|2 = − 2

Q2

s2 + u2

t
(A.34)

with soft-expansion terms

|M|2LS = −2
Q2

t
(A.35)

|M|2N1LS = 4
u

t
+ 4 (A.36)
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|M|2N2LS = − 2

Q2

[
2
u2

t
+ 2 u + t

]
(A.37)

|M|2NnLS = 0, n ≥ 3 (A.38)

• g + g → H + g
The exact squared amplitude is given by

|M(s, t, u)|2 = 2

Q2

(
Q2

)4 + s4 + t4 + u4

s t u
(A.39)

with soft-expansion terms

|M|2LS = 4
Q4

t u
(A.40)

|M|2N1LS = −4

[
Q2

t
+ Q2

u

]
(A.41)

|M|2N2LS = 8

[
u

t
+ t

u
+ 2

]
(A.42)

|M|2N3LS = 0 (A.43)

|M|2N4LS = 4

Q4

(
u2 + t u + t2

)2

t u
(A.44)

|M|2N5LS = · · · (A.45)

Similar conclusions to V production can be drawn for H
production: one negative power of k0 in g + q(q̄) → H +
q(q̄), see Eq. (A.35), and two negative powers for g + g →
H + g, see Eq. (A.40).

B Process-independent procedure for extending the z
integration

In this section we describe the procedure followed to extend
the integration range of the z variable up to 1, as displayed
in Eq. (3.19), performing an expansion in a. We consider an
integral of the following form

I =
∫ 1− f (a)

τ

dz l(z) g(z), (B.1)

with g(z) not defined for z > 1− f (a), l(z) well behaved for
τ ≤ z ≤ 1 and l(z) = 0 for z < τ . We also assume that l(z)
is C∞, so that we can derive it as many times as necessary.
We then suppose that g(z) can be written as an expansion in
(negative) powers of (1 − z)

g(z) = g0(z, a) + g1(z, a)

1 − z
+ g2(z, a)

(1 − z)2

+ · · · =
∞∑

n=0

gn(z, a)

(1 − z)n
, (B.2)

where, in z = 1, the gi (z, a) are not singular or have an
integrable singularity. If not identically zero everywhere, the
gi (z, a) are different from 0 for z = 1 and i ≥ 1, and, in
general, the gi (z, a) functions contain growing powers of a
as i increases.

The point we would like to make here is that the right-
hand side of Eq. (B.2) is convergent only for z ≤ 1 − f (a),
and it converges to g(z). For z > 1 − f (a) the series does
not converge to g(z), otherwise g(z) would be defined in this
region too.

We also assume that we can exchange the order of inte-
gration and summation of the series, and we write Eq. (B.1)
as

I =
∞∑

n=0

In, (B.3)

where

In ≡
∫ 1− f (a)

τ

dz l(z)
gn(z, a)

(1 − z)n

=
∫ 1− f (a)

0
dz l(z)

gn(z, a)

(1 − z)n
, (B.4)

where we have extended the z-integration down to 0, since
l(z) = 0 for z < τ . Each term of the series can now be
manipulated as shown in the following.

I0

I0 =
∫ 1− f (a)

0
dz l(z) g0(z, a) =

∫ 1

0
dz l(z) g0(z, a)

−
∫ 1

1− f (a)

dz l(z) g0(z, a) (B.5)

is finite and poses no problems.

I1

I1 = +
∫ 1− f (a)

0
dz

[
l(z) − l(1)

]g1(z, a)

1 − z

+
∫ 1− f (a)

0
dz l(1)

g1(z, a)

1 − z

= +
∫ 1

0
dz

[
l(z) − l(1)

]g1(z, a)

1 − z

−
∫ 1

1− f (a)

dz
[
l(z) − l(1)

]g1(z, a)

1 − z

+
∫ 1− f (a)

0
dz l(1)

g1(z, a)

1 − z
, (B.6)

where we have added and subtracted the first term of the Tay-
lor expansion of l(z) around the point z = 1, and performed
straightforward manipulations of the integration limits. The
first and second integrands in the above equation are well
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behaved when z → 1, since the numerator goes to zero at
least as fast as (1−z), cancelling the divergence of the denom-
inator.

I2

In a similar way, we can manipulate I2 to have

I2 = +
∫ 1

0
dz

[
l(z) − l(1) − (z − 1) l(1)(1)

] g2(z, a)

(1 − z)2

−
∫ 1

1− f (a)

dz
[
l(z) − l(1) − l(1)(1) (z − 1)

] g2(z, a)

(1 − z)2

+
∫ 1− f (a)

0
dz

[
l(1) + l(1)(1) (z − 1)

] g2(z, a)

(1 − z)2 , (B.7)

where we have added and subtracted the first two terms of
the Taylor expansion of l(z) around z = 1. Again the first
two integrands are finite when z → 1, since the numerator
is O(

(1 − z)2
)
.

Final expression

The same procedure can be applied to all the integrals In and
leads to the final result

I = Ĩ1 + Ĩ2 + Ĩ3, (B.8)

where

Ĩ1 = +
∫ 1

0
dz l(z) g0(z, a)

+
∫ 1

0
dz [l(z) − l(1)]

g1(z, a)

1 − z

+
∫ 1

0
dz

[
l(z) − l(1) − l(1)(1) (z − 1)

]

× g2(z, a)

(1 − z)2 + · · · (B.9)

Ĩ2 = +
∫ 1− f (a)

0
dz l(1)

[
g(z) − g0(z, a)

]

+
∫ 1− f (a)

0
dz l(1)(1) (z − 1)

×
[
g(z) − g0(z, a) − g1(z, a)

1 − z

]

+
∫ 1− f (a)

0
dz

1

2! l
(2)(1) (z − 1)2

×
[
g(z) − g0(z, a) − g1(z, a)

1 − z
− g2(z, a)

(1 − z)2

]
+ . . .

(B.10)

Ĩ3 = −
∫ 1

1− f (a)

dz l(z) g0(z, a)

−
∫ 1

1− f (a)

dz
[
l(z) − l(1)

]g1(z, a)

1 − z

−
∫ 1

1− f (a)

dz
[
l(z) − l(1) − l(1)(1) (z − 1)

]

× g2(z, a)

(1 − z)2 + · · · (B.11)

Notice that in Ĩ2 the sum of the terms of the series add up to
give back g(z), since the upper integration limit is 1 − f (a),
so that we are within the region of convergence of the series.
The integrals in Ĩ2 have to be evaluated exactly analytically,
and this is the harsh part of the calculation.

The integrals in Ĩ3 can instead be computed by performing
an expansion in a, and this part of the calculation poses no
problems. Examples of resolution of these integrals are given
in Appendix C.

Finally, by using of the plus distributions defined in
Appendix E, we can write Ĩ1 in a more compact form

Ĩ1 =
∫ 1

0
dz l(z) g0(z, a) +

∫ 1

0
dz l(z)

[
g1(z, a)

1 − z

]

+

+
∫ 1

0
dz l(z)

[
g2(z, a)

(1 − z)2

]

2+
+ · · · (B.12)

This completes our process-independent procedure for the
manipulation of the integral in Eq. (B.1).

C Detailed derivation of the results for V and H
production

In this section we present in detail how we applied the method
described in Appendix B to perform the series expansion in
a for every production channel of the processes at stake. In
particular, we specify for each channel which functions are
assumed to be the l(z) and g(z) functions of Eq. (B.1).

For ease of notation, in the following sections, the sub-
scripts of the parton luminosities are suppressed, since any
misunderstanding is prevented by the title of the section itself.

Also, in the summary of each of the following sections,
a distinction is made while separating the final result in a
universal and a non-universal part. As detailed in Sects. 2.2
and 3.1, the contributions proportional to the Altarelli–Parisi
splitting functions constitute what we call the universal
part of the results. The remaining ones constitute the non-
universal one.

C.1 V production: qg channel

The relevant integral, corresponding to that in Eq. (B.1), is

I =
∫ 1− f (a)

τ

dz L
(

τ

z

){
1

2z
(1 + 3z)(1 − z)

×
√

1 − 4az

(1 − z)2

123



Eur. Phys. J. C (2019) 79 :852 Page 21 of 31 852

+pqg(z)
1

z

[
− log

az

(1 − z)2

+2 log
1

2

(√

1 − 4az

(1 − z)2 + 1

)]}
, (C.1)

where

pqg(z) = 2z2 − 2z + 1. (C.2)

We can express I as the sum of three integrals

I = I a + I b + I c, (C.3)

where

I a =
∫ 1− f (a)

τ

dz
1

2z
(1 + 3z)(1 − z)

×L
(

τ

z

)√

1 − 4az

(1 − z)2 , (C.4)

I b = −
∫ 1− f (a)

τ

dz pqg(z)
1

z
L
(

τ

z

)
log

az

(1 − z)2 , (C.5)

I c =
∫ 1− f (a)

τ

dz pqg(z)
2

z
L
(

τ

z

)

× log
1

2

(√

1 − 4az

(1 − z)2 + 1

)
, (C.6)

and for each of the three integrals we apply the procedure
detailed in Appendix B.

Integral I a

We define

l(z) = 1

2z
(1 + 3z)L

(
τ

z

)
, (C.7)

g(z) = (1 − z)

√

1 − 4az

(1 − z)2 , (C.8)

and expanding g(z) according to Eq. (B.2), we have

g(z) = (1 − z) − 2az

1 − z
− 2a2z2

(1 − z)3 + O
(
a3

)
(C.9)

so that

g0(z, a) = 1 − z, g1(z, a) = −2az,

g2(z, a) = 0, g3(z, a) = −2a2z2. (C.10)

With this assignment of the different terms of the expansion
of g(z), we perform the integrations in Eqs. (B.9)–(B.11).

Integral I b

The integrand of I b is defined up to z = 1. For this reason, the
computation of this contribution is easier than the previous

one. In particular we can write

I b ≡ I b1 + I b2 , (C.11)

where

I b1 = −
∫ 1

0
dz pqg(z)

1

z
log

az

(1 − z)2 L
(

τ

z

)
, (C.12)

I b2 = +
∫ 1

1− f (a)

dz pqg(z)
1

z
log

az

(1 − z)2 L
(

τ

z

)
. (C.13)

Defining

l(z) =
(

2z2 − 2z + 1
) 1

z
L
(

τ

z

)
, (C.14)

we expand it as a power series in (z − 1), so that

I b2 =
∞∑

n=0

1

n! l
(n)(1)

∫ 1

1− f (a)

dz (z − 1)n log
az

(1 − z)2

(C.15)

and the integration becomes straightforward.

Integral I c

We define

l(z) = 2

z

(
2z2 − 2z + 1

)
L
(

τ

z

)
, (C.16)

g(z) = log
1

2

(√

1 − 4az

(1 − z)2 + 1

)
, (C.17)

and expanding g(z) according to Eq. (B.2), we have

g(z) = − az

(1 − z)2 − 3

2

a2z2

(1 − z)4 + O
(
a3

)
, (C.18)

so that

g0(z, a) = g1(z, a) = g3(z, a) = 0, g2(z, a) = −az,

g4(z, a) = −3

2
a2z2. (C.19)

We then perform the integrations in Eqs. (B.9)–(B.11).

C.1.1 Summary

Summarising our results, and writing I in Eq. (C.1) as a sum
of the universal and the non-universal part, we have

I = IU + IR, (C.20)

where

IU = − log(a)

∫ 1

0
dz

1

z
pqg(z)L

(
τ

z

)

−
∫ 1

0
dz

1

z
pqg(z) log

z

(1 − z)2 L
(

τ

z

)
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−2 a
∫ 1

0
dz pqg(z)L

(
τ

z

)[
1

(1 − z)2

]

2+

−3 a2
∫ 1

0
dz z pqg(z)L

(
τ

z

)[
1

(1 − z)4

]

4+
+

{
−2L(τ ) + τ L(1)(τ )

}
a log(a) + L(τ ) a

+
{

− 3L(τ ) + 3 τ L(1)(τ )

−3

4
τ 2 L(2)(τ ) + 1

4
τ 3 L(3)(τ )

}
a2 log(a)

+
{

9

4
L(τ ) − 1

4
τ L(1)(τ )

+ 1

4
τ 2 L(2)(τ ) + 1

6
τ 3 L(3)(τ )

}
a2

+O
(
a

5
2 log(a)

)
, (C.21)

IR = +
∫ 1

0
dz

1

2z
(1 + 3z)(1 − z)L

(
τ

z

)

−a
∫ 1

0
dz (1 + 3z)L

(
τ

z

)[
1

1 − z

]

+

− a2
∫ 1

0
dz z (1 + 3z)L

(
τ

z

)[
1

(1 − z)3

]

3+
+2L(τ ) a log(a) − 2L(τ ) a

+
{

3

2
L(τ ) − 3

2
τ L(1)(τ ) + τ 2 L(2)(τ )

}
a2 log(a)

+
{
−7

4
L(τ ) + 5

4
τ L(1)(τ )

+1

2
τ 2 L(2)(τ )

}
a2 + O

(
a

5
2 log(a)

)
. (C.22)

Then, writing IU and IR in the form

IU =
∫ 1

0

dz

z
L
(

τ

z

)
ĝU(1)
qg (z),

IR =
∫ 1

0

dz

z
L
(

τ

z

)
ĝR(1)
qg (z), (C.23)

we get the expression of ĝU(1)
qg (z) and ĝR(1)

qg (z) in Eqs. (4.3)
and (4.4), respectively.

C.2 V production: qq̄ channel

The relevant integral, corresponding to that in Eq. (B.1), is

I =
∫ 1− f (a)

τ

dz L
(

τ

z

){
− 2

z
(1 − z)

×
√

1 − 4az

(1 − z)2

+ 2

z
p̂qq(z)

[
− log

az

(1 − z)2

+ 2 log
1

2

(√

1 − 4az

(1 − z)2 + 1

)]}
, (C.24)

where

p̂qq(z) = 1 + z2

1 − z
. (C.25)

We can express I as the sum of three integrals

I = I a + I b + I c, (C.26)

where

I a = −
∫ 1− f (a)

τ

dz L
(

τ

z

)

×2

z
(1 − z)

√

1 − 4az

(1 − z)2 , (C.27)

I b = −
∫ 1− f (a)

τ

dz
2

z
p̂qq(z)

×L
(

τ

z

)
log

az

(1 − z)2 , (C.28)

I c =
∫ 1− f (a)

τ

dz
4

z
p̂qq(z)L

(
τ

z

)

× log
1

2

(√

1 − 4az

(1 − z)2 + 1

)
, (C.29)

and for each of the three integrals we apply the procedure
detailed in Appendix B.

Integral I a

We define

l(z) = −2

z
L
(

τ

z

)
, (C.30)

g(z) = (1 − z)

√

1 − 4az

(1 − z)2 , (C.31)

and expanding g(z) according to Eq. (B.2), we have

g(z) = (1 − z) − 2az

1 − z
− 2a2z2

(1 − z)3 + O
(
a3

)
, (C.32)

so that

g0(z, a) = 1 − z, g1(z, a) = −2az,

g2(z, a) = 0, g3(z, a) = −2a2z2. (C.33)

We then perform the integrations in Eqs. (B.9)–(B.11).
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Integral I b

We start by separating I b into two further integrals, writing

I b = I b1 + I b2, (C.34)

where

I b1 = −
∫ 1− f (a)

τ

dz
2

z
p̂qq(z)L

(
τ

z

)
log(az), (C.35)

I b2 = +
∫ 1− f (a)

τ

dz
4

z
p̂qq(z)L

(
τ

z

)
log(1 − z), (C.36)

and for each of them we follow our integration and expansion
procedure.

• Integral I b1

We define

l(z) = −2

z

(
1 + z2

)
log(az)L

(
τ

z

)
, (C.37)

g(z) = 1

1 − z
, (C.38)

and we deal with this case as with a case with g0 = 0,
g1(z, a) = 1 and all the other gi functions equal to 0.
Then, we perform the integrations in Eqs. (B.9)–(B.11).

• Integral I b2

We define

l(z) = 4

z

(
1 + z2

)
L
(

τ

z

)
, (C.39)

g(z) = log(1 − z)

1 − z
, (C.40)

and we deal with this case as with a case with g0 = 0,
g1(z, a) = log(1− z) and all the other gi functions equal
to 0. Then, we perform the integrations in Eqs. (B.9)–
(B.11).

Integral I c

We define

l(z) = 4

z

(
1 + z2

)
L
(

τ

z

)
, (C.41)

g(z) = 1

1 − z
log

1

2

(√

1 − 4az

(1 − z)2 + 1

)
, (C.42)

and expanding g(z) according to Eq. (B.2), we have

g(z) = − az

(1 − z)3 − 3

2

a2z2

(1 − z)5
+ O

(
a3

)
, (C.43)

so that

g0(z, a) = g1(z, a) = g2(z, a) = g4(z, a) = 0,

g3(z, a) = −az, g5(z, a) = −3

2
a2z2. (C.44)

We then perform the integrations in Eqs. (B.9)–(B.11).

C.2.1 Summary

Summarising our results, and writing I in Eq. (C.24) as a
sum of a universal and non-universal part, we have

I = IU + IR, (C.45)

where

IU = −2 log(a)

∫ 1

0
dz

1

z
L
(

τ

z

)
pqq(z)

−2
∫ 1

0
dz

1

z
p̂qq(z) log(z)L

(
τ

z

)

+
∫ 1

0
dz

4

z
(1 − z) p̂qq(z)L

(
τ

z

)[
log(1 − z)

1 − z

]

+

−4a
∫ 1

0
dz (1 − z) p̂qq(z)L

(
τ

z

)[
1

(1 − z)3

]

3+

−6a2
∫ 1

0
dz z (1 − z) p̂qq(z)L

(
τ

z

)[
1

(1 − z)5

]

5+

+L(τ ) log(a)2 − π2

3
L(τ )

+
{
L(τ ) + 2 τ 2 L(2)(τ )

}
a log(a)

+
{
−2L(τ ) + 4 τ L(1)(τ )

}
a

+
{

3

2
τ 2 L(2)(τ ) + τ 3 L(3)(τ )

+1

4
τ 4 L(4)(τ )

}
a2 log(a)

+
{
−L(τ ) + 2 τ L(1)(τ ) + 5

2
τ 2 L(2)(τ )

+5

3
τ 3 L(3)(τ ) + 1

6
τ 4 L(4)(τ )

}
a2

+O
(
a

5
2 log(a)

)
, (C.46)

IR = −
∫ 1

0
dz

2

z
(1 − z)L

(
τ

z

)

+4a
∫ 1

0
dz L

(
τ

z

)[
1

1 − z

]

+

+4a2
∫ 1

0
dz z L

(
τ

z

)[
1

(1 − z)3

]

3+
−2L(τ ) a log(a) + 2L(τ ) a

− τ 2 L(2)(τ ) a2 log(a)
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+
{
L(τ ) − 2 τ L(1)(τ ) − 1

2
τ 2 L(2)(τ )

}
a2

+O
(
a

5
2 log(a)

)
, (C.47)

where we have written the (1 + z2) terms coming from the
numerator of the qq̄ splitting function as

1 + z2 = (1 − z) p̂qq(z). (C.48)

Then, writing IU and IR in the form

IU =
∫ 1

0

dz

z
L
(

τ

z

)
ĝU(1)
qq̄ (z),

IR =
∫ 1

0

dz

z
L
(

τ

z

)
ĝR(1)
qq̄ (z), (C.49)

we get the expression of ĝU(1)
qq̄ (z) and ĝR(1)

qq̄ (z) in Eqs. (4.7)
and (4.8), respectively.

C.3 H production: gq channel

The relevant integral, corresponding to that in Eq. (B.1), is

I =
∫ 1− f (a)

τ

dz L
(

τ

z

){
− 3(1 − z)2

2z2

×
√

1 − 4az

(1 − z)2

+ 1

z
pgq(z)

[
− log

az

(1 − z)2

+2 log
1

2

(√

1 − 4az

(1 − z)2 + 1

)]}
, (C.50)

where

pgq(z) = z2 − 2z + 2

z
. (C.51)

We can express I as the sum of three integrals

I = I a + I b + I c, (C.52)

where

I a =
∫ 1− f (a)

τ

dz

[
−3

2

(1 − z)2

z2

]

×L
(

τ

z

)√

1 − 4az

(1 − z)2 , (C.53)

I b =
∫ 1− f (a)

τ

dz

(
−1

z

)
pgq(z)

×L
(

τ

z

)
log

az

(1 − z)2 , (C.54)

I c =
∫ 1− f (a)

τ

dz
2

z
pgq(z)

×L
(

τ

z

)
log

1

2

(√

1 − 4az

(1 − z)2 + 1

)
, (C.55)

and for each of the three integrals we apply the procedure
detailed in Appendix B.

Integral I a

We define

l(z) = −3

2

1

z2 L
(

τ

z

)
, (C.56)

g(z) = (1 − z)2

√

1 − 4az

(1 − z)2 , (C.57)

and expanding g(z) according to Eq. (B.2), we have

g(z) = (1 − z)2 − 2az − 2a2z2

(1 − z)2 + O
(
a3

)
, (C.58)

so that

g0(z, a) = (1 − z)2 − 2az, g1(z, a) = 0,

g2(z, a) = −2a2z2, g3(z, a) = 0. (C.59)

We then perform the integrations in Eqs. (B.9)–(B.11).

Integral I b

The integrand of I b is defined up to z = 1. Thus, the compu-
tation of this contribution is easier than the previous one. In
particular, we can proceed by separating it into two further
integrals

I b ≡ I b1 + I b2 , (C.60)

where

I b1 =
∫ 1

0
dz

(
−1

z

)
pgq(z)L

(
τ

z

)
log

az

(1 − z)2 , (C.61)

I b2 =
∫ 1

1− f (a)

dz
1

z
pgq(z)L

(
τ

z

)
log

az

(1 − z)2 . (C.62)

Then, after defining

l(z) =
[
z2 − 2z + 2

z2

]
L
(

τ

z

)
, (C.63)

we expand I b2 as a power series in (z − 1), so that

I b2 =
∞∑

n=0

1

n! l
(n)(1)

∫ 1

1− f (a)

dz (z − 1)n log
az

(1 − z)2 ,

(C.64)

and this integration is straightforward to be performed.
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Integral I c

We define

l(z) = 2
z2 − 2z + 2

z2 L
(

τ

z

)
, (C.65)

g(z) = log
1

2

(√

1 − 4az

(1 − z)2 + 1

)
, (C.66)

and expanding g(z) according to Eq. (B.2), we have

g(z) = − az

(1 − z)2 − 3

2

a2z2

(1 − z)4 + O
(
a3

)
, (C.67)

so that

g0(z, a) = g1(z, a) = g3(z, a) = 0,

g2(z, a) = −az, g4(z, a) = −3

2
a2z2. (C.68)

We then perform the integrations in Eqs. (B.9)–(B.11).

C.3.1 Summary

Summarising our results, and writing I in Eq. (C.50) as a
sum of a universal and non-universal part, we have

I = IU + IR, (C.69)

where

IU = − log(a)

∫ 1

0
dz

1

z
pgq(z)L

(
τ

z

)

−
∫ 1

0
dz

1

z
pgq(z)L

(
τ

z

)
log

z

(1 − z)2

−2 a
∫ 1

0
dz pgq(z)L

(
τ

z

)[
1

(1 − z)2

]

2+

−3 a2
∫ 1

0
dz z pgq(z)L

(
τ

z

)[
1

(1 − z)4

]

4+
+

{
L(τ ) + τ L(1)(τ )

}
a log(a) + L(τ ) a

+
{

3 τ L(1)(τ ) + 3

2
τ 2 L(2)(τ )

+1

4
τ 3 L(3)(τ )

}
a2 log(a)

+
{

2L(τ ) + 17

4
τ L(1)(τ )

+7

4
τ 2 L(2)(τ ) + 1

6
τ 3 L(3)(τ )

}
a2

+O
(
a

5
2 log(a)

)
, (C.70)

IR = −3

2

∫ 1

0
dz

1

z2 (1 − z)2 L
(

τ

z

)

+3 a
∫ 1

0
dz

1

z
L
(

τ

z

)

+3 a2
∫ 1

0
dz L

(
τ

z

)[
1

(1 − z)2

]

2+

−3

2
τ L(1)(τ ) a2 log(a) +

{
−3

2
L(τ )

−3

4
τ L(1)(τ )

}
a2 + O

(
a

5
2 log(a)

)
. (C.71)

Then, writing IU and IR in the form

IU =
∫ 1

0

dz

z
L
(

τ

z

)
ĝU(1)
gq (z),

IR =
∫ 1

0

dz

z
L
(

τ

z

)
ĝR(1)
gq (z), (C.72)

we get the expression of ĝU(1)
gq (z) and ĝR(1)

gq (z) in Eqs. (4.12)
and (4.13), respectively.

C.4 H production: gg channel

The relevant integral, corresponding to that in Eq. (B.1), is

I =
∫ 1− f (a)

τ

dz L
(

τ

z

){
− 11

3

(1 − z)3

z2

×
√

1 − 4az

(1 − z)2 + 2

3
a

1 − z

z

√

1 − 4az

(1 − z)2

+2

z
p̂gg(z)

[
− log

az

(1 − z)2

+2 log
1

2

(√

1 − 4az

(1 − z)2 + 1

)]}
, (C.73)

where

p̂gg(z) = 2(z2 − z + 1)2

z(1 − z)
. (C.74)

We can express I as the sum of four integrals

I = I a1 + I a2 + I b + I c, (C.75)

where

I a1 =
∫ 1− f (a)

τ

dz

(
−11

3

)
(1 − z)3

z2

×L
(

τ

z

)√

1 − 4az

(1 − z)2 , (C.76)

I a2 =
∫ 1− f (a)

τ

dz
2

3
a

1 − z

z

×L
(

τ

z

)√

1 − 4az

(1 − z)2 , (C.77)

I b =
∫ 1− f (a)

τ

dz

(
−2

z

)
p̂gg(z)
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×L
(

τ

z

)
log

az

(1 − z)2 , (C.78)

I c =
∫ 1− f (a)

τ

dz
4

z
p̂gg(z)

×L
(

τ

z

)
log

1

2

(√

1 − 4az

(1 − z)2 + 1

)
, (C.79)

and for each of the four integrals we apply the procedure
detailed in Appendix B.

Integral I a1

We define

l(z) = −11

3

1

z2 L
(

τ

z

)
, (C.80)

g(z) = (1 − z)3

√

1 − 4az

(1 − z)2 , (C.81)

and expanding g(z) according to Eq. (B.2), we have

g(z) = (1 − z)3 − 2az(1 − z) − 2a2z2

1 − z
+ O

(
a3

)
, (C.82)

so that

g0(z, a) = (1 − z)3 − 2az(1 − z), g1(z, a) = −2a2z2,

(C.83)

g2(z, a) = 0, g3(z, a) = O
(
a3

)
. (C.84)

We then perform the integrations in Eqs. (B.9)–(B.11).

Integral I a2

We define

l(z) = 2

3
a

1

z
L
(

τ

z

)
, (C.85)

g(z) = (1 − z)

√

1 − 4az

(1 − z)2 , (C.86)

and expanding g(z) according to Eq. (B.2), we have

g(z) = (1 − z) − 2az

1 − z
− 2a2z2

(1 − z)3 + O
(
a3

)
, (C.87)

so that

g0(z, a) = (1 − z), g1(z, a) = −2az,

g2(z, a) = 0, g3(z, a) = −2a2z2. (C.88)

We then perform the integrations in Eqs. (B.9)–(B.11).

Integral I b

We start by separating I b into two further integrals

I b = I b1 + I b2, (C.89)

where

I b1 =
∫ 1− f (a)

τ

dz

(
−2

z

)
p̂gg(z)L

(
τ

z

)
log(az), (C.90)

I b2 =
∫ 1− f (a)

τ

dz
4

z
p̂gg(z)L

(
τ

z

)
log(1 − z), (C.91)

and for each of them we follow our integration and expansion
procedure.

• Integral I b1

We define

l(z) = −4
(
z2 − z + 1

)2

z2 log(az)L
(

τ

z

)
, (C.92)

g(z) = 1

1 − z
, (C.93)

We deal with this case as with a case with g0 = 0,
g1(z, a) = 1 and all the other gi functions equal to 0.
Then, we perform the integrations in Eqs. (B.9)–(B.11).

• Integral I b2

We define

l(z) = 8
(
z2 − z + 1

)2

z2 L
(

τ

z

)
(C.94)

g(z) = log(1 − z)

1 − z
(C.95)

We deal with this case as with a case with g0 = 0,
g1(z, a) = log(1− z) and all the other gi functions equal
to 0. Then, we perform the integrations in Eqs. (B.9)–
(B.11).

Integral I c

We define

l(z) = 8
(
z2 − z + 1

)2

z2 L
(

τ

z

)
, (C.96)

g(z) = 1

1 − z
log

1

2

(√

1 − 4az

(1 − z)2 + 1

)
, (C.97)

and expanding g(z) according to Eq. (B.2), we have

g(z) = − az

(1 − z)3 − 3

2

a2z2

(1 − z)5
+ O

(
a3

)
, (C.98)
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so that

g0(z, a) = g1(z, a) = g2(z, a) = g4(z, a) = 0,

g3(z, a) = −az, g5(z, a) = −3

2
a2z2. (C.99)

We then perform the integrations in Eqs. (B.9)–(B.11).

C.4.1 Summary

Summarising our results, and writing I in Eq. (C.73) as a
sum of a universal and non-universal part, we have

I = IU + IR, (C.100)

where

IU = −2 log(a)

∫ 1

0
dz

1 − z

z
p̂gg(z)L

(
τ

z

)[
1

1 − z

]

+

−2
∫ 1

0
dz

1

z
p̂gg(z) log(z)L

(
τ

z

)

+4
∫ 1

0
dz

1 − z

z
p̂gg(z)L

(
τ

z

)[
log(1 − z)

1 − z

]

+

−4 a
∫ 1

0
dz (1 − z) p̂gg(z)L

(
τ

z

)[
1

(1 − z)3

]

3+

−6 a2
∫ 1

0
dz z(1 − z) p̂gg(z)L

(
τ

z

)[
1

(1 − z)5

]

5+

+L(τ ) log2(a) − π2

3
L(τ )

+
{

8L(τ ) + 2 τ 2 L(2)(τ )
}
a log(a)

+
{
−2L(τ ) + 4 τ L(1)(τ )

}
a

+
{

6L(τ ) + 6 τ 2 L(2)(τ )

+ τ 3 L(3)(τ ) + 1

4
τ 4 L(4)(τ )

}
a2 log(a)

+
{
−3

2
L(τ ) + 11 τ L(1)(τ ) + 11

2
τ 2 L(2)(τ )

+5

3
τ 3 L(3)(τ ) + 1

6
τ 4 L(4)(τ )

}
a2

+O
(
a

5
2 log(a)

)
, (C.101)

IR = −11

3

∫ 1

0
dz

1

z2 (1 − z)3 L
(

τ

z

)

+8a
∫ 1

0
dz

1

z
(1 − z)L

(
τ

z

)

+6 a2
∫ 1

0
dz L

(
τ

z

)[
1

1 − z

]

+

−3L(τ ) a2 log(a) − 5

2
L(τ ) a2

+O
(
a

5
2 log(a)

)
. (C.102)

Then, writing IU and IR in the form

IU =
∫ 1

0

dz

z
L
(

τ

z

)
ĝU(1)
gg (z),

IR =
∫ 1

0

dz

z
L
(

τ

z

)
ĝR(1)
gg (z), (C.103)

we get the expression of ĝU(1)
gg (z) and ĝR(1)

gg (z) in Eqs. (4.16)
and (4.17), respectively.

C.5 Study of a universal term of the form 1/(1− z)

In this section we apply the procedure described in Appendix B
to study the universal part of the Altarelli–Parisi splitting
functions that accounts for soft radiation, i.e. the z → 1 limit.
In this approximation, the Altarelli–Parisi splitting functions
p̂qq(z) and p̂gg(z) behave like 1/(1 − z). The relevant inte-
gral, corresponding to that in Eq. (B.1), is given by

IU =
∫ 1− f (a)

τ

dz L
(

τ

z

)
1

z
p(z)

[
− log

az

(1 − z)2

+2 log
1

2

(√

1 − 4az

(1 − z)2 + 1

)]
, (C.104)

where

p(z) = 1

1 − z
. (C.105)

We write I as the sum of two integrals

I = I b + I c, (C.106)

where

I b =
∫ 1− f (a)

τ

dz

(
−1

z

)
p(z)

×L
(

τ

z

)
log

az

(1 − z)2 , (C.107)

I c =
∫ 1− f (a)

τ

dz
2

z
p(z)

×L
(

τ

z

)
log

1

2

(√

1 − 4az

(1 − z)2 + 1

)
, (C.108)

and for each of the two integrals we apply the procedure
detailed in Appendix B.

Integral I b

We write I b as sum of two further integrals

I b = I b1 + I b2, (C.109)

where

I b1 =
∫ 1− f (a)

τ

dz

(
−1

z

)
p(z)L

(
τ

z

)
log(az), (C.110)
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I b2 =
∫ 1− f (a)

τ

dz
2

z
p(z)L

(
τ

z

)
log(1 − z), (C.111)

Integral I b1

We define

l(z) = −1

z
log(az)L

(
τ

z

)
, (C.112)

g(z) = 1

1 − z
, (C.113)

and we treat this case as the case with g0(z, a) = 0 and
g1(z, a) = 1 and all the other gi functions equal to 0. We
then perform the integrations in Eqs. (B.9)–(B.11).

Integral I b2

We define

l(z) = 2

z
L
(

τ

z

)
, (C.114)

g(z) = log(1 − z)

1 − z
, (C.115)

and we treat this case as the case with g0(z, a) = 0 and
g1(z, a) = log(1 − z) and all the other gi functions equal to
0. We then perform the integrations in Eqs. (B.9)–(B.11).

Integral I c

We define

l(z) = 2

z
L
(

τ

z

)
, (C.116)

g(z) = 1

1 − z
log

1

2

(√

1 − 4az

(1 − z)2 + 1

)
, (C.117)

and expanding g(z) according to Eq. (B.2), we have

g(z) = − az

(1 − z)3 − 3

2

a2z2

(1 − z)5
+ O

(
a3

)
, (C.118)

so that

g0(z, a) = g1(z, a) = g2(z, a) = g4(z, a) = 0,

g3(z, a) = −az, g5(z, a) = −3

2
a2z2. (C.119)

We then perform the integrations in Eqs. (B.9)–(B.11).

C.5.1 Summary

Summarising our results, we have

IU = − log(a)

∫ 1

0
dz

1

z
L
(

τ

z

)[
1

1 − z

]

+

−
∫ 1

0
dz

1

z(1 − z)
log(z)L

(
τ

z

)

+
∫ 1

0
dz

2

z
L
(

τ

z

)[
log(1 − z)

1 − z

]

+

−2a
∫ 1

0
dz L

(
τ

z

)[
1

(1 − z)3

]

3+

−3a2
∫ 1

0
dz z L

(
τ

z

)[
1

(1 − z)5

]

5+

+1

4
L(τ ) log2(a) − π2

12
L(τ )

+
{
τ L(1)(τ ) + 1

2
τ 2 L(2)(τ )

}
a log(a)

+
{

1

2
L(τ ) + τ L(1)(τ )

}
a

+
{

3

4
τ 2 L(2)(τ ) + 1

2
τ 3 L(3)(τ )

+ 1

16
τ 4 L(4)(τ )

}
a2 log(a)

+
{
−1

8
L(τ ) + 1

2
τ L(1)(τ ) + 13

8
τ 2 L(2)(τ )

+ 7

12
τ 3 L(3)(τ ) + 1

24
τ 4 L(4)(τ )

}
a2

+O
(
a

5
2 log(a)

)
. (C.120)

Then, writing IU in the form

IU =
∫ 1

0
dz

1

z
L
(

τ

z

)
ĝU(1)(z), (C.121)

we get

ĝU(1)(z) = +1

4
δ(1 − z) log2(a) −

[
1

1 − z

]

+

× log(a) − π2

12
δ(1 − z)

− 1

(1 − z)
log(z) + 2

[
log(1 − z)

1 − z

]

+

+
{

1

2
δ(2)(1 − z) − δ(1)(1 − z)

}
a log(a)

+
{
−1

2
δ(1 − z) + δ(1)(1 − z)

−2z

[
1

(1 − z)3

]

3+

}
a

+
{

3

4
δ(2)(1 − z) − 1

2
δ(3)(1 − z)

+ 1

16
δ(4)(1 − z)

}
a2 log(a)

+
{

1

8
δ(1 − z) + 1

2
δ(1)(1 − z)
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−5

8
δ(2)(1 − z) − 1

12
δ(3)(1 − z)

+ 1

24
δ(4)(1 − z) − 3z2

[
1

(1 − z)5

]

5+

}
a2

+O
(
a

5
2 log(a)

)
. (C.122)

D Altarelli–Parisi splitting functions

The zero-order Altarelli–Parisi splitting functions are defined
as

Pqq(z) = Pq̄q̄(z) = CF

[
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

]

= CF

[
1 + z2

1 − z

]

+

≡ CF pqq(z) + 3

2
CF δ(1 − z), (D.1)

Pqg(z) = Pq̄g(z) = TR

[
z2 + (1 − z)2

]

= TR

[
2z2 − 2z + 1

]
≡ TR pqg(z), (D.2)

Pgq(z) = Pgq̄(z) = CF

[
1 + (1 − z)2

z

]

= CF

[
z2 − 2z + 2

z

]
≡ CF pgq(z), (D.3)

Pgg(z) = 2CA

[
z

(1 − z)+
+ 1 − z

z
+ z(1 − z)

]

+1

6
[11CA − 4nfTR] δ(1 − z)

≡ CA pgg(z) + 1

6
[11CA − 4nfTR] δ(1 − z). (D.4)

The unregularised Altarelli–Parisi splitting functions are
given by

P̂qq(z) = P̂q̄q̄(z) = CF
1 + z2

1 − z
≡ CF p̂qq(z), (D.5)

P̂gg(z) = 2CA

[
z

1 − z
+ 1 − z

z
+ z(1 − z)

]

= CA
2
(
z2 − z + 1

)2

z(1 − z)
≡ CA p̂gg(z). (D.6)

E Plus distributions

We define a plus distribution of order n as
∫ 1

0
dz l(z) [g(z)]n+

≡
∫ 1

0
dz

{
l(z) −

n−1∑

i=0

1

i ! l
(i)(1) (z − 1)i

}
g(z), (E.1)

where g(z) has a pole of order n for z = 1, and l(z) is
a continuous function around z = 1, together with all its
derivatives up to order (n − 1). For example, the first three
plus distributions read
∫ 1

0
dz l(z) [g(z)]+

≡
∫ 1

0
dz {l(z) − l(1)} g(z), (E.2)

∫ 1

0
dz l(z) [g(z)]2+

≡
∫ 1

0
dz

{
l(z) − l(1) − l(1)(1) (z − 1)

}
g(z), (E.3)

∫ 1

0
dz l(z) [g(z)]3+

≡
∫ 1

0
dz

{
l(z) − l(1) − l(1)(1) (z − 1)

− 1

2! l
(2)(1) (z − 1)2

}
g(z). (E.4)

With simple manipulations, some useful identities follow
∫ 1

0
dz l(z)

[
n(z)

d(z)

]

+
=
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0
dz

{
l(z) n(z)

[
1

d(z)

]

+

−l(1) n(z)

[
1

d(z)

]
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}
, (E.5)

∫ 1

0
dz l(z)

[
n(z)

d(z)

]

2+
=
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dz
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l(z) n(z)

[
1
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[
1
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, (E.6)

∫ 1
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dz l(z)
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]
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dz
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l(z) n(z)

[
1
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(E.7)

and, in general,

∫ 1

0
dz l(z)

⎡

⎣n(z)

d(z)

⎤

⎦

p+
=

∫ 1

0
dz

⎧
⎨

⎩l(z) n(z)

[
1

d(z)
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1
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⎭ . (E.8)
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