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Abstract Using the gravitational decoupling by the mini-
mal geometric deformation approach, we build an anisotropic
version of the well-known Tolman VII solution, determining
an exact and physically acceptable interior two-fluid solu-
tion that can represent behavior of compact objects. Com-
parison of the effective density and density of the perfect
fluid is demonstrated explicitly. We show that the radial and
tangential pressure are different in magnitude giving thus
the anisotropy of the modified Tolman VII solution. The
dependence of the anisotropy on the coupling constant is
also shown.

1 Introduction

Einstein’s gravitational field equations are partial nonlin-
ear differential equations – their solution is very diffi-
cult with exception of some simplified situations. Immedi-
ately after Einstein introduced the general relativity(GR),
Schwarzschild solved the vacuum Einstein equations [1]
describing exterior of a spherically symmetric and static
sphere. The simple internal spherically symmetric solution
with special uniform distribution of matter has been found by
Schwarzschild [1], and generalized for spacetimes with non
zero cosmological constant in [2,3]. Some important inter-
nal solutions of the Einstein equations were found by Tolman
for perfect fluid spheres with fluid described by polytropic
equations of state [4]. The polytropes in spacetimes with
non-zero cosmological constant were extensively discussed
in [2,5]. Interesting properties of the spherically symmetric
polytropes were discussed in [5–9].

Anisotropic pressure in stellar distribution implies unequal
radial and tangential pressure. The possible reasons for
anisotropies in fluid pressure are presence of mixture of dif-
ferent fluids, different kinds of phase transitions [10], vis-
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cosity, rotation, magnetic field, superfluid [11] or existence
of a solid core. From our general notion, it is understandable
that anisotropic solutions could represent a realistic descrip-
tion of astrophysical interest. Anisotropy of pressure in a
perfect fluid sphere was first described by Lemaître [12].
In 1974, Bower and Liang [13] described importance of
locally anisotropic equations of state for relativistic spheres.
Ruderman has shown in his significant work that nuclear
matter may be anisotropic in very high density regions
(ρ > 1017 kg/m3) [14]. A few articles devoted to generating
anisotropic solutions are available in literature [15–17].

There are eight perfect fluid solutions of the Einstein field
equations presented by Tolman [4]. Among these solutions,
the Tolman IV and the Tolman VII solutions are physically
interesting and could depict some neutron star configurations.
For detailed analysis of the Tolman VII solution see [18–32].
Note that the Tolman IV and VII solutions represent a sim-
ple exact general relativistic model of neutron stars improv-
ing in a realistic way the well known unrealistic internal
Schwarzschild solution for the uniform energy density distri-
bution. For precision of the Tolman VII neutron star model as
compared to the neutron star models based on fully realistic
equations of state see [31].

Ovalle and his colleagues introduced an anisotropic mod-
ified version of the isotropic Tolman IV solution in [33], and
of the internal Schwarzschild solution in [34], by using the
so called minimal geometric deformation (MGD) method
developed in [33,35]. Our objective in the present paper is to
generate a new anisotropic solution from the isotropic Tol-
man VII solution [4], by using the Ovalle MGD method.

The MGD method is the first simple, systematic and direct
method of decoupling gravitational sources in GR. Initially,
MGD method was proposed [36,37] in the context of the
Randall–Sundrum braneworld model [38,39] –references for
earlier works on the MGD method, [40–45], and for some
recent applications see [33,46–73]). The notable feature of
the MGD method is that it preserves the spherical symme-
try, as well as the physical acceptability. MGD method thus
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opens up a new window to search for physically acceptable
anisotropic solutions.

We review first the formulation of decoupling the Einstein
field equations for different gravitational sources. We have
to solve

Ĝμν = −k2T̂μν; to find the metric ĝμν, (1)

and

G̃μν = −k2T̃μν; to find the metric g̃μν, (2)

instead of looking for solution for the total energy momentum
tensor Tμν = T̂μν + T̃μν ,

Gμν = −k2Tμν; to find the metric gμν, (3)

where the constant k2 = 8πG/c4, and in the geometric
units (c = 1 = G) there is k2 = 8π . Tμν is the total energy
momentum tensor, T̂μν is the energy momentum tensor for
one gravitational source and T̃μν is the energy momentum
tensor for another gravitational source. After solving Eqs. (1)
and (2), we can find metric gμν by combining ĝμν and g̃μν .

Generally, we can extend this formalism for any number
of gravitational sources. In that case we have to solve Ein-
stein’s field equations for each source term, and combine the
separately found metrics in order to get the metric related
to the total energy momentum tensor. The number of phys-
ically acceptable solutions is not large. Delgaty and Lake
examined physically acceptability of 127 known isotropic
solutions [75]. They found that only 16 of them has physical
relevance.

The paper is organized as follows. In Sect. 2 we discuss
decoupling of Einstein’s field equations. In Sect. 3 we intro-
duce the MGD method. In Sect. 4 we study the condition for
matching the interior solution to the exterior one. Section 5 is
devoted to description of the Tolman VII perfect fluid solu-
tion. In Sect. 6 we derive the new anisotropic solution and
demonstrate its interesting properties. After that in Sect. 7 we
investigate the physical viability of new anisotropic solution.
In Sect. 8 conclusions are presented.

2 Decoupling of Einstein’s field equations

We shortly review the method of the gravitational decoupling
developed by Ovalle [35]. In the framework of the decoupling
method, Einstein’s field equations are expressed in the form

Rμν − 1

2
Rgμν = −k2T (tot)

μν , (4)

where,

T (tot)
μν = T (perfectfluid)

μν + T (othersource)
μν . (5)

The energy momentum tensor for perfect fluid reads

T (perfectfluid)
μν = (ρ + p) uμuν − pgμν, (6)

where, ρ, p and uμ are density, pressure and four velocity
of perfect fluid, respectively. We consider the contribution
from other gravitational source(θμν) modified by an intensity
parameter α

T (othersource)
μν = αθμν. (7)

The total energy momentum tensor for perfect fluid coupled
with another gravitational source causing anisotropy in the
self gravitating system then reads

T (tot)
μν = (ρ + p) uμuν − pgμν + αθμν. (8)

The term θμν in Eq. (7) stands for any source like scalar,
vector, or tensor field, causing anisotropies in the fluid. As a
consequence of Bianchi identity the conservation law holds

∇νT
(tot)μν = 0. (9)

The line element of spherically symmetric spacetime in
Schwarzschild coordinates (t, r, θ, φ) takes the form

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2θdφ2), (10)

where, ν(r) and λ(r) are functions of the radial coordinate (r )
which ranges from the compact object centre (r = 0) to its
surface (r = R). Four-velocity of the static fluid is given
by uμ = e−ν/2δ

μ
0 , at radii 0 ≤ r ≤ R. The general metric

given by Eq. (10) obeys the Einstein field equations having
the following form

− k2
(
ρ + αθ0

0

)
= − 1

r2 + e−λ

(
1

r2 − λ′

r

)
, (11)

−k2
(
−p + αθ1

1

)
= − 1

r2 + e−λ

(
1

r2 + ν′

r

)
, (12)

−k2
(
−p+αθ2

2

)
= 1

4
e−λ

(
2ν′′+ν′2−λ′ν′ + 2

ν′ − λ′

r

)
.

(13)

The conservation Eq. (9), which is linear combination of
Eqs. (11), (12) and (13), reads

−p′ − ν′

2
(ρ + p) + α

(
θ1

1

)′ − ν′

2
α

(
θ0

0 − θ1
1

)

−2

r
α

(
θ2

2 − θ1
1

)
= 0. (14)
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Here ′ denotes differentiation of the function with respect to
r . We want to emphasize that the spherical symmetry implies
G2

2 = G3
3 and therefore T (tot)2

2 = T (tot)3
3 . Hence θ2

2 = θ3
3 .

We can easily identify from Eqs. (11), (12) and (13) the
effective density

ρeff(radial) = ρ + αθ0
0 , (15)

the effective isotropic pressure

pr = p − αθ1
1 , (16)

and the effective tangential pressure

pt = p − αθ2
2 . (17)

It is evident that the θμν source introduces an anisotropy into
perfect fluid which is given by

π = pt − pr = α(θ1
1 − θ2

2 ). (18)

Now, we have five unknowns, namely the metric coefficients
ν(r), λ(r), the effective density (ρeff ), the effective radial
pressure (pr ), and the effective tangential pressure (pt ). To
solve the Einstein equations to obtain these functions, we
have to proceed using the MGD method.

3 Minimal geometric deformation

MGD method is a very strong technique to decouple Ein-
stein’s field equations for different source terms. This method
has been developed in a simple and elegant way recently [35],
we shortly review this method. We consider a perfect fluid
solution of energy density ρ and pressure p that is described
by the metric coefficients (eε, eγ ). The line element of the
corresponding spherically symmetric solution reads

ds2 = eε(r)dt2 − eγ (r)dr2 − r2(dθ2 + sin2θdφ2), (19)

where the radial metric coefficient takes the form

eγ (r) =
(

1 − 2m(r)

r

)−1

, (20)

with m(r) being so called GR mass function. We introduce
the MGD transformations in the form [35]

eε �→ eν = eε+αg, (21)

e−γ �→ e−λ = e−γ + α f, (22)

where g and f are deformations of temporal and radial met-
ric coefficients respectively, arising as an effect of introduc-
tion of the anisotropy. The minimal geometric deformation

is given by the conditions

g �→ 0, (23)

and

f �→ f ∗. (24)

Then temporal component of the metric eν remains
unchanged, while the additional gravitational source (θμν)
causes a deformation of the radial component according to
Eq. (22). If we incorporate the deformed metric into Eqs.
(11), (12) and (13), we see that each equation can be decom-
posed into two equations – one holds for the perfect fluid, the
other one is involving θμν . The set of equations for perfect
fluid (α = 0) is fully determined by the metric coefficient
ε(r) = ν(r) and takes the form

k2ρ = 1

r2 − e−γ

(
1

r2 − γ ′

r

)
, (25)

k2 p = − 1

r2 + e−γ

(
1

r2 + ν′

r

)
, (26)

k2 p = 1

4
e−γ

(
2ν′′ + ν′2 + 2ν′

r

)
− 1

4
γ ′e−γ

(
ν′ + 2

r

)
.

(27)

The conservation equation takes the form

p′ = −ν′

2
(ρ + p). (28)

The equations involving the θμν term read

k2θ0
0 = − f ∗

r2 − f ∗′

r
, (29)

k2θ1
1 = − f ∗

(
1

r2 + ν′

r

)
, (30)

k2θ2
2 = − f ∗

4

(
2ν

′′ + ν′2 + 2ν′

r

)
− f ∗′

4

(
ν′ + 2

r

)
. (31)

The conservation equation for the θμν term takes the form

(θ1
1 )′ − ν′

2
(θ0

0 − θ1
1 ) − 2

r
(θ2

2 − θ1
1 ) = 0, (32)

and it is a linear combination of Eqs. (29), (30) and (31).
We see that Einstein’s equations (11), (12) and (13) are

decoupled by deforming the radial metric component accord-
ing to Eq. (21). The conservation Eqs. (28) and (32) for
the MGD solution have to be satisfied simultaneously with
the general conservation law given by Eq. (9). We con-
clude that both systems, perfect fluid and other gravitational
source, conserve independently, i.e., these two systems can-
not exchange energy-momentum, and their interaction is
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solely gravitational [35]. Such an approach seems to be rel-
evant e.g. for configurations accreting dark matter that inter-
acts only gravitationally.

4 Matching condition

The matching of the interior (r < R) and exterior (r > R)
solutions of any mass distribution at the boundary of the
interior (r = R), has to be considered very carefully in the
case of mixed sources treated in the framework of the MGD
method [35]. The interior metric of our consideration is given
by Eq. (19) along with Eqs. (20), (21), (22) and (23), and its
line element can be written as

ds2 = eν−(r)dt2−
(

1 − 2m̃

r

)−1

dr2−r2(dθ2+sin2θdφ2),

(33)

where the interior mass function reads

m̃ = m(r) − r

2
α f ∗(r), (34)

m(r) is the standard GR mass function in Eq. (20), and the
function f ∗ has to be calculated later. We assume there is
no matter outside, i.e., ρ+ = p+ = 0. In general, additional
gravitational source θμν could influence the exterior geom-
etry, and in such a case the general exterior metric can be
written as

ds2 = eν+(r)dt2 − eλ+(r)dr2 − r2(dθ2 + sin2θdφ2), (35)

where the functional form of ν+(r) and λ+(r) can be deter-
mined by solving Einstein’s equations for the exterior geom-
etry

Rμν − 1

2
Rgμν = −k2αθμν. (36)

Continuity of the first fundamental form implies

ds2|r→R+ − ds2|r→R− = 0. (37)

From above we obtain equations

ν−(R) = ν+(R), (38)

and

1 − 2M0

R
+ α f ∗

R = e−λ+(R). (39)

Here M0 = m(R) and f ∗
R is the minimal geometric

deformation at the boundary of the fluid distribution. Con-
sidering the Israel–Darmois matching condition at the sur-
face (r = R), we get second fundamental form that reads

Gμνr
ν |r→R+ − Gμνr

ν |r→R− = 0, (40)

where rμ is the unit radial vector. Proportionality of Gμν and
Tμν implies

T (tot)
μν rν |r→R+ − T (tot)

μν rν |r→R− = 0. (41)

Equation (41) can be rewritten with the help of Eq. (12)
in the form

(p − αθ1
1 )|r→R+ − (p − αθ1

1 )|r→R− = 0. (42)

As there is no fluid (matter) assumed outside the configu-
ration, we can write

pR − α(θ1
1 )−R = −α(θ1

1 )+R , (43)

where pR = p−(R). With the use of Eq. (30) for the inner
and the outer geometry, we can write

pR+α
f ∗
R

k2

(
1

R2 + ν
′
R

R

)
=α

g∗
R

k2

⎡
⎣ 1

R2 + 2Ms

R3

1(
1 − 2Ms

R

)
⎤
⎦ ,

(44)

here g∗
R is the deformation of the outer geometry due to the

matter term θμν , and Ms is the Schwarzschild mass. So,
for matching the interior geometry with the exterior one,
Eqs. (38), (39) and (44) are necessary and sufficient con-
dition. If the outside geometry is the Schwarzschild vacuum
one, Eq. (44) reduces to

pR + α
f ∗
R

k2

(
1

R2 + ν
′
R

R

)
= 0, (45)

which implies that the effective radial pressure at the surface
should vanish.

5 Interior perfect fluid Tolman VII solution

Let us summarize properties of the well known interior Tol-
man VII perfect fluid solution [4] for which we apply the
MGD method. Its metric coefficients are given by
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Fig. 1 The dependence of the
effective quantities of the new
anisotropic solution and Tolman
VII perfect fluid solution with
dimensionless radius (r/R) for
α = 0.2 are shown. The pictures
are drawn for M0 = 1 and
R = 5

eν(r) = B2

⎡
⎣sin

⎛
⎝log

√
e−γ (r)/2 + 2r2

A2 − A2

4R2

C

⎞
⎠

⎤
⎦

2

, (46)

e−γ (r) = 1 − r2

R2 + 4r4

A4 , (47)

where A, B, C are constants of the solution, yet to be deter-
mined. The line element for this solution is described by
Eq. (19) with eε(r) = eγ (r). Using Eqs. (25) and (26), we
calculate radial profiles of the pressure and density of the
perfect fluid

p(r) = −A4 + 4R2r2 + 4R2b1A2 cot z

8πR2A4 , (48)

and

ρ(r) = − 20r2

A4 + 3
R2

8π
, (49)

where z =
⎡
⎣log

√
2r2

A2 − A2

4R2 +b1

C

⎤
⎦, b1 =

√
1 + 4r4

A4 − r2

R2 .

From Eq. (49) we can calculate the central density of the
stellar object. There is ρ0 = 3

8πR2 ∼ 10−3 for typical com-
pactness Cm = M0/R = 1/5. Combining Eqs. (48) and
(49) we can obtain direct analytical relationship between the
density and the pressure in the form

p(r) =
−A2(1 + 4πR2ρ) + z1 cot

(
log

√
A2(1−16πR2ρ)+2z1

20CR2

)

20π A2R2 ,

(50)

where z1 is given by,

z1 = R2

√
100 + 2A4(1 + 4πR2ρ)(−3 + 8πR2ρ)

R4 .

The expression in Eq. (50) shows that is not possible to
write a simple equation of state.

The constants A, B and C are calculated according to
the matching conditions given by Eqs. (37) and (40), under
assumption of the outside Schwarzschild vacuum solution,
and read

A = ±
(

4R5

R − 2M0

) 1
4

, (51)

B = ± csc

[
cot−1

(
M0b2b3

R7

)]
b2, (52)

C = e
−2 cot−1

(
M0b2b3

R7

) (
2R3b2 − 4M0b3 + Rb3

)

2R3 , (53)

where M0
R ≤ 4/9 , b2 =

√
1 − 2M0

R , b3 =
(

R5

−2M0+R

) 3
2
,

and M0 = m(R) is the total mass of the fluid configu-
ration given by Eq. (20). For the realistic fluid configura-
tions, the perfect fluid density should be positive everywhere
within 0 < r < R. For such configurations, the condition
ρ2 < 3R2

5(R−2M0)
has to be satisfied for all values of r . The con-

figurations that do not satisfy this condition are not physically
acceptable. Using expression of A from (51) and Eq. (49), we
can calculate the density at the surface of the stellar object,
this is given by ρ(R) = (2/8πR2)(5Cm − 1), where Cm

is the compactness. We can clearly see that the density at
the surface is positive if Cm > 1/5 and it vanishes when
Cm = 1/5. So, it is relevant and interesting to consider this
special compactness (Cm = 1/5) to illustrate the situation in
figures. Examples of the density and pressure radial profiles
of the Tolman VII solution are shown in Fig. 1. We can see
they resemble profiles attained for (neutron) stars and could
be thus applied in astrophysical context. For detailed study
and application of the Tolman VII solution see [4,31].

6 Anisotropic Tolman VII solution by gravitational
decoupling

Now let us turn-on the parameter α to get an anisotropic
solution. According to the matching condition (Eq. (45)),
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the effective pressure should vanish at the boundary which
implies from Eq. (12) that pR ∼ α(θ1

1 )R . If we choose the
deformation in the radial component of metric

f ∗ = −e−γ + 1

1 + rν ′
(r)

, (54)

it essentially means that

θ1
1 (r) = p(r). (55)

Equation (54) is denoted as ‘mimic’ constraint by Ovalle
[35], and it requires to effective pressure to vanish at the
boundary. Using Eqs. (22) and (48), we get the radial metric
component

e−λ = e−γ + α

(
A2b1

A2b1 + 4r2 cot z
− e−γ

)
. (56)

So, Eqs. (46) and (56) represent the Tolman VII solu-
tion being minimally deformed by the gravitational source
θμν ; the original Tolman VII perfect fluid solution can be
recovered while α → 0. Now, we have a new anisotropic
solution ((46) and (56)). Our task is to match the new solu-
tion with the exterior Schwarzschild vacuum metric. Due to
the matching conditions (Eqs. (38) and (39)) we arrive to the
relations

B2 sin2 z|r=R = 1 − 2Ms

R
, (57)

and

(1 −α)e−γ |r=R +α

(
A2b1

A2b1 + 4r2 cot z

)
|r=R = 1 − 2Ms

R
.

(58)

By using Eq. (20), the above equation gives the Schwarzs-
child mass(Ms) due to the relation

2Ms

R
= 2M0

R
+ α

(
1 − 2M0

R

)
− α

A2b1

A2b1 + 4r2 cot z
|r=R .

(59)

Considering the Schwarzschild vacuum outside, the sec-
ond fundamental form (Eq. (43)) reads

pR − α(θ1
1 )−R = 0, (60)

and as a consequence of the ‘mimic’ constraint (Eq. (54)), it
reduces to the condition

pR = 0. (61)

Using Eq. (48) this implies for the constant C the relation

C =
(

− A2

4R2 + 2R2

A2 + 2
R2

A2

)
e
−2 cot−1

(
A4

8R2 ( 1
R2 − 4R2

A4

)
. (62)

Using the expression for the Schwarzschild mass given in
Eq. (58), we obtain from Eq. (57)

B2 sin2 z = (1−α)

(
1 − 2M0

R

)
+α

A2b1

A2b1 + 4r2 cot z
|r=R,

(63)

from which we can determine B whileC is given by Eq. (61).
Eqs. (61) and (62) are necessary and sufficient conditions
for matching the anisotropic interior solution with exterior
Schwarzschild vacuum.

By using the ‘mimic’ constraint (Eq. (54)) in Eq. (16),
from Eq. (48) we get the radial pressure in the form

pr (r, α) = (1 − α)
(−A4 + 4R2r2 + 4R2b1A2 cot z)

8πRA4 . (64)

The radial profiles of the effective density and the tangen-
tial pressure are then given by the relations

ρeff(r, α) = ρ(r) + δρ(r, α), (65)

and

pt (r, α) = pr (r, α) + π(r, α), (66)

here δρ is change in density and π(r, α) is measure of
anisotropy, being defined as

δρ = α
Y1 cot z + Y2b1 cot2 z − A2b1(Y3 + Y4 csc2 z)

8π A6R4b1(A2b1 + 4r2 cot z)2 ,

(67)

π(r, α) = α
r2 cot z csc2 z(Y5 cos z2 + A2b1Y5 sin z2)

4πb1Y5(A3b1 + 4Ar2 cot z)2 ,

(68)

where the parameters are determined by the relations
Y1 = 4[160r8R4+A8(6r4−8r2R2+3R4)+A4(−64r6R2+
44r4R4)] ,
Y2 = 16A2r2R2[20r4R2 + A2(−3r2 + R2)] ,
Y3 = [−80r6A4 − 3A8(r2 − R2) + 4A4(8r4R2 − 5r2R4)] ,
Y4 = 8A4r2R4 ,
Y5 = 4r4R2 + A4(−2r2 + 3R2) .

In the left panel of Fig. 1 comparison of the energy den-
sity profile for the perfect fluid Tolman VII solution, and
the new anisotropic solution is shown. In the right panel of
Fig. 1 comparison of the pressure profile for the perfect fluid
Tolman VII and the new anisotropic solution is shown. The
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=

=

=

Fig. 2 The dependence of anisotropy with dimensionless radius (r/R)
for different values of coupling constant(α) are shown. The pictures are
drawn for M0 = 1 and R = 5

dependences of the anisotropy on the radius and the coupling
constant (α) are shown in Fig. 2. We have chosen M0 = 1
and R = 5 (in the geometric units c = 1 = G), which corre-
spond to a compact configuration of radius R ∼ 13 km, and
central energy density ρc ∼ 1017 kg/m3.

We see that the behavior of the effective density ρeff and
pressures do not show any signal of instability. In this respect,
it would be useful to obtain a simple equation of state to
analyze the speed of sound. Unfortunately, the exact analyt-
ical expressions relating directly pressure and energy den-
sity (p = p(ρ)) cannot be obtained due to complex depen-
dence of ρ on the radius r . However, this does not prevent
to study the causality conditions by the standard way [see
further Eqs. (69) and (70)]. The equation of state is given in
a parametric form with radius r taking the role of the param-
eter; we thus use the relation dp/dρ = dp/dr

dρ/dr in order to
handle the equation of state.

7 Physical viability

In this section, we check some most important conditions for
physically acceptability of new anisotropic solution.

7.1 Energy conditions

We now write the four well-known energy conditions [76]
and we check if these hold for anisotropic version of Tolman
VII solution. Energy conditions are given by,

(a) null energy condition (NEC): ρeff + pr ≥ 0, ρeff + pt ≥
0,

(b) weak energy condition (WEC): ρeff ≥ 0, ρeff + pr ≥ 0,
ρeff + pt ≥ 0,

(c) strong energy condition (SEC): ρeff +pr ≥ 0, ρeff +pt ≥
0, ρeff + 2pt + pr ≥ 0

(d) dominant energy condition (DEC): ρeff −|pr | ≥ 0, ρeff −
|pt | ≥ 0.

From Fig. 1, it is evident that these four energy conditions
are holding for new anisotropic solution.

7.2 Causality conditions

In order to be a physically relevant solution, the speed of
sound both in radial and tangential direction should be less
than the speed of light (in geometrical units c = 1) which
mathematically means

vr (r) =
√
dpr (r)

dρ(r)
≤ 1, (69)

vt (r) =
√
dpt (r)

dρ(r)
≤ 1. (70)

We can see in Fig. 3, that the speed of sound holds the
causality condition. Also we notice that these two velocity
profile are not monotonically decreasing with radius, which
could be interpreted as a signal of instability. However this is
not true when anisotropic effects are presents, as the stability
conditions become non trivial [77,78].

Fig. 3 The dependence of the
velocity of sound and adiabatic
index with dimensionless
radius (r/R) for α = 0.2 are
shown. The pictures are drawn
for M0 = 1 and R = 5
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7.3 Stability conditions

To check the stability of the solution, we have to calculate
the adiabatic index (�) of our solution. In order to avoid
gravitational collapse � should be greater than 4/3 . The
expressions of adiabatic index are given by [79]

�r = d(log pr )

d(log ρ)
, (71)

�t = d(log pt )

d(log ρ)
. (72)

We see from Fig. 3 that the adiabatic index in tangen-
tial direction (�t ) is not always obeying this condition but
this condition is holding always for the adiabatic index in
radial direction (�r ). We can say it is enough to check �

only in radial direction [79] as gravitational collapse occurs
in this direction. So, in our case, new anisotropic solution is
in agreement with stability condition.

8 Conclusions

We started from the Tolman VII perfect fluid solution and
using the framework of MGD we get a new exact and ana-
lytical solution. This new solution represents the anisotropic
version of the Tolman VII solution, which satisfies all crite-
ria for physical acceptability, namely, regular at the origin,
pressure and density defined positive, well defined mass and
radius, monotonic decrease of the density and pressure with
increasing radius, dominant energy condition satisfied, sub-
liminal sound speed, etc. Hence, this could be used to model
realist stellar configurations, like neutron stars.

We demonstrate that the effect of anisotropy is increasing
with increasing coupling constant(α). We also demonstrate
that with increasing radius the radial profile of the anisotropy
effect increases reaching its maximum value and then it is
decreasing to vanish at the edge of the configuration. We
calculate the Schwarzschild mass, Ms (from Eq. 58) which
is same as the mass of the perfect fluid stellar distribution,
M0. So, in the case considered here, the anisotropy effect is
not affecting the mass of the stellar distribution. The reason
behind this is evident from the Fig. 1 where we see that
the effective density crosses the perfect fluid density profile.
The effect of trapping of null geodesics in the anisotropic
solution has the same character as in the perfect fluid solution
[30], because the corresponding effective potential of the null
geodesics depends on the metric components gtt and gφφ on,
which remain unchanged in comparison with the isotropic
solution – only grr changes in the case considered in our
paper.
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