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Abstract We investigate rotating effects on a charged
scalar field immersed in spacetime with a magnetic screw
dislocation. In addition to the hard-wall potential, which we
impose to satisfy a boundary condition from the rotating
effect, we insert a Coulomb-type potential and the Klein–
Gordon oscillator into this system, where, analytically, we
obtain solutions of bound states which are influenced not only
by the spacetime topology, but also by the rotating effects,
as a Sagnac-type effect modified by the presence of the mag-
netic screw dislocation.

1 Introduction

In the context of condensed matter physics, Katanaev and
Volovich [1] formulated a description of defects in a three-
dimensional continuous elastic solid medium, where such
defects may be associated with curvature or torsion of the
continuous medium. Then, Puntigam and Soleng [2] went
further with this formulation through the generalization of
the Volterra distortions, considering the temporal coordinate,
that is, (3 + 1) dimensions, in order to adapt these defects
in a Einstein–Cartan gravity and introduce the concept of
distorted spacetimes. According to this formulation, discli-
nations are associated with curvature, while dislocations are
associated with torsion. In particular, the dislocations can be
typified as spiral and screw [3]. Effects associated with the
topology of a medium with dislocations have been investi-
gated in crystal structures through differential geometry [4].

Recently, dislocations have been investigated in nonrela-
tivistic and relativistic quantum systems. The spiral disloca-
tion, in the nonrelativistic context, has been investigated in
the harmonic oscillator [5]; in the relativistic context, it has
been investigated in a scalar field in a noninertial frame [6].
The screw dislocation, in the nonrelativistic context, has been
applied in the harmonic oscillator [7,8], in the Landau quan-
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tization [9–11], in the doubly anharmonic oscillator [12], in
a Landau quantization for an induced electric dipole [13] and
in noninertial effects on a nonrelativistic Dirac particle [14];
in the relativistic context, it has been studied in the Dirac
oscillator [15,16], in the Klein–Gordon oscillator [17–19]
and in an analogue of the AharonovBohm effect for bound
states in a position-dependent mass system [20]. The metric
that characterizes the space-time with a screw dislocation is
defined as follows (c = h̄ = 1) [2]:

ds2 = −dt2 + dρ2 + ρ2dϕ2 + (dz + χdϕ)2, (1)

where ρ = √
x2 + y2 is the radial coordinate and χ is the

parameter associated to the screw dislocation, that, in con-
densed matter physics, this parameter is related to the Burgers
vector b via χ = b

2π
[1–4]. It is important to mention that

the screw dislocation (torsion) corresponds to a singularity
at the origin [7]. In addition, the spatial part of the metric
(1) is called in the literature as Katanaev and Volovich line
element [2].

In an analysis by Landau and Lifshitz on the effects of rota-
tion in the Minkowski spacetime with cylindrical symmetry,
they showed that the radial coordinate becomes restricted in
an interval, where this restriction is an effect directly related
to the uniform rotation [21]. This restriction from the effects
of uniform rotation has been widely used for studies in a rel-
ativistic quantum mechanics system, for example, in a Dirac
particle [22], in a relativistic Landau–He–McKellar–Wilkens
quantization [23], on the Dirac oscillator [24], on a scalar field
in the spacetime with space-like dislocation and in the space-
time with a spiral dislocation [6], on the quantum dynamics
of scalar bosons [25], in the relativistic quantum motion of
spin-0 particles under in the cosmic string spacetime [26],
in the Duffin–Kemmer–Petiau equation with magnetic cos-
mic string background [27]. In the nonrelativistic case, this
restriction has been studied in a Dirac particle in the space-
time with a screw dislocation [16] and on nonrelativistic topo-
logical quantum scattering [28]. However, a point that has
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not been analyzed in the literature is the rotating effect on
the scalar field by considering the spacetime with a magnetic
screw dislocation as background, that is, the screw disloca-
tion has in the core a magnetic field with magnetic quantum
flux �B and outside the topological defect this magnetic field
vanishes [7,11].

To introduce a uniform rotation in the spacetime with a
screw dislocation, consider the transformation ϕ → ϕ + wt
into the Eq. (1), where w is the constant angular frequency
of the rotating frame, which gives us the metric

ds2 = −(1 − ρ2w2 − χ2w2)dt2 + dρ2

+ (ρ2 + χ2)dϕ2 + 2(ρ2 + χ2)wdϕdt

+ 2χdϕdz + 2χwdtdz + dz2. (2)

In order to make the component g00 remain negative, we
extract the information that the radial coordinate becomes
restricted by consequence of the rotating frame:

0 ≤ ρ <

√
1 − χ2w2

w
. (3)

We can note that, in addition to the angular frequency of
the noninertial frame, the inequality (3) is determined by the
parameter related to the topological defect χ . We can also

note that, for ρ >

√
1−χ2w2

w
we would have a particle is

placed outside of the light-cone [6,14]. By taking χ = 0 we
recover the result obtained by Landau and Lifshitz [21].

In this paper, we investigate the relativistic Aharonov–
Bohm effect for bound states [29,30] on a scalar field in a
spacetime with a screw dislocation, where this field is sub-
ject to confinement potentials in a uniformly rotating frame.
We begin our analysis with the hard-wall potential. After, we
consider a scalar field with position-dependent mass interact-
ing with a Coulomb-type central potential. And, finally, we
inserted the Klein–Gordon oscillator [31] and investigated
the harmonic effects coming from this model of relativistic
oscillator. In all these cases, we obtain analytical solutions,
where they are not only influenced by the topology of the
spacetime, but also the effects of rotation.

For an electrically charged scalar field that interacts with
the electromagnetic field in a curved spacetime or a spacetime
with torsion, the KleinGordon equation is written in the form
[6,18,32]:

1√−g
(∂μ − iq Aμ)(

√−ggμν)(∂ν − iq Aν)φ − m2φ = 0,

(4)

where g = det(gμν), that, for the Eq. (2), we have g = −ρ2,
gμν is inverse metric tensor, m is the rest mass of the scalar
field and Aμ = (0, 0, Aϕ, 0) is the electromagnetic 4-vector
potential, where Aϕ is given by [18,33,34]

Aϕ = �B

2π
, (5)

where �B = const. is the Aharonov–Bohm quantum flux
through the core of the topological defect [7,11]. It is note-
worthy that the Aharonov–Bohm effect has been investigated
in several branches of physics, for example, in graphene [35],
in a neo-Newtonian theory [36], in bound states of massive
fermions [37], in scattering of dislocated wave fronts [38],
in torsion effects on a relativistic position-dependent mass
system [20], in Kaluza–Klein theory [39,40] and with a non-
minimal Lorentz-violating coupling [41]. In this way, from
the Eqs. (2) and (5), the Klein–Gordon equation (4) becomes

−∂2φ

∂t2 + 2w
∂2φ

∂t∂ϕ
− i

qw�B

π

∂φ

∂t
+ 1

ρ2

∂2φ

∂ϕ2

− i
q�B

πρ2

∂φ

∂ϕ
− q2�2

B

4π2ρ2 φ − w2 ∂2φ

∂ϕ2 + i
q�Bw2

π

∂φ

∂ϕ

− q2�2
Bw2

4π2 φ − 2χ

ρ2

∂2φ

∂ϕ∂z
+ i

qχ�B

πρ2

∂φ

∂z
+ ∂2φ

∂z2

+ χ2

ρ2

∂2φ

∂z2 + ∂2φ

∂ρ2 + 1

ρ

∂φ

∂ρ
− m2φ = 0, (6)

which describes an electrically charged scalar field in the
spacetime with a magnetic screw dislocation in a uniformly
rotating frame.

The structure of this paper is as follows: in the Sect. 2, for
a particular case, we investigate the effects of the spacetime
topology and of rotation on an electrically charged scalar
field subject to the hard-wall potential, where it is possible
to obtain the energy levels of this system; in the Sect. 3, we
inserted a Coulomb-type potential in the Klein–Gordon equa-
tion via the mass term and, for a particular case, extracted the
energy profile of this system; in the Sect. 4, through a non-
minimal coupling in the Klein–Gordon equation, we insert a
relativistic oscillator model and analyze the harmonic effects
on the scalar field in a uniformly rotating frame in the space-
time with a magnetic screw dislocation, where we determine
two energy profiles for the system; in the Sect. 5, we present
our conclusions.

2 Hard-wall confining potential

In this section, we use the restriction in the radial coordinate,
which is a consequence of the rotating effects, to introduce
the hard-wall potential into the system. This type of potential
confinement has been studied in a Landau–Aharonov–Casher
system in the cosmic string spacetime [42], in a Landau-type
quantization from a Lorentz symmetry violation background
[43], in persistent currents for a moving neutral particle with a
permanent electric dipole moment [44] and on a Dirac neutral
particle in analogous way to a quantum dot [45]. Then, let
us return to the Eq. (6). The solution to Eq. (6) is given as
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follows

φ(ρ, ϕ, z, t) = e−i(E t−lϕ−kz)R(ρ), (7)

where l = 0,±1,±2, . . . is eigenvalue of angular momen-
tum operator L̂ z = −i∂ϕ and −∞ < z < ∞ is eigenvalue
of the linear momentum operator p̂z = −i∂z , where both
commute with the hamiltonian. Then, by substituting the Eq.
(7) into the Eq. (6), we obtain the radial differential equation
for the radial wave function R(ρ):

d2R

dρ2 + 1

ρ

dR

dρ
− ι2

ρ2 R + α2R = 0, (8)

where

α2 =
[
E + w

(
l − q�B

2π

)]2

− m2 − k2;

ι2 =
(
l − kχ − q�B

2π

)2

. (9)

The Eq. (8) is the Bessel equation [46] and its general
solution is given as follows

R(ρ) = C1 J|ι|(αρ) + C2N|ι|(αρ), (10)

with C1 and C2 being constants, J|ι| the Bessel function of
first kind and N|ι| the Neumann function [46]. It is important
to note that the Neumann function, or Bessel function of sec-
ond kind, diverges at ρ → 0. However, as we are interested
in well-behaved solutions, it is necessary that C2 = 0, by
making the Eq. (10) be rewritten as:

R(ρ) = C1 J|ι|(αρ). (11)

As seen earlier, in Eq. (3), the radial coordinate is lim-
ited due to the rotating effects. Thus, here we will impose
that the radial wave function R(ρ) vanishes according to the
boundary condition

lim
ρ→ρ0

R(ρ) = 0, (12)

where ρ0 =
√

1−χ2w2

w
. From the mathematical point of

view, this boundary condition is known in the literature as
the Dirichlet boundary condition; from the physical point of
view, the radial wave function is in a region where the hard-
wall potential is present at the point ρ0. To give continuity, let
us consider a particular case of asymptotic expansion of the
Bessel function of first kind, that is, let us consider αρ0 � 1.
In this particular case, we can write J|ι| in the form [46,47]

J|ι|(αρ0) ∝ cos

(
αρ0 − π |ι|

2
− π

4

)
. (13)

Therefore, by substituting the Eq. (13) into the Eq. (11),
and then into the Eq. (12), we obtain

Ek,l,n ≈ −w

(
l − q�B

2π

)

±
√

m2 + k2 + πw2

(1 − χ2w2)

(
n + 1

2

∣∣∣∣l − kχ − q�B

2π

∣∣∣∣ + 3

4

)2
,

(14)

where n = 0, 1, 2, 3, . . .. The Eq. (14) represents the rel-
ativistic energy levels of a charged scalar field under the
hard-wall potential effects induced for rotation in a space-
time with a magnetic screw dislocation. We can note that
the spacetime topology influences the relativistic energy lev-
els through the presence of the parameter associated with
the topological defect. This influence can be seen through
the change on the eigenvalues of the angular momentum by
providing an effective angular momentum leff = l − kχ ,
that is, a analogous effect to the Aharonov–Bohm effect for
bound states [30] and in the definition of the fixed radius

ρ0 =
√

1−χ2w2

w2 . We can also note that the quantum flux
�B present in the screw dislocation modifies the energy
levels through the change on the eigenvalues of the angu-
lar momentum, thus providing us with a relativistic ana-
log of the Aharanov–Bohm effect for bound states [18–
20,48]. Besides, the energy spectrum is a periodic function
of the quantum flux �B with periodicity �0 = 2π

q η, where
η = 0, 1, 2, 3, . . ., that is, Ek,l,n(�B + �0) = Ek,l∓η,n(�B).
In addition, the relativistic energy spectrum is influenced by
the rotation through the coupling between the eigenvalue of
the angular momentum influenced by the Aharonov–Bohm
quantum flux leff = l − q�B

2π
and the angular frequency w,

giving us, then, a Sagnac-type effect [22,49,50]. For �B = 0
and χ 
= 0 we recover the result obtained in the Ref. [6]; for
�B 
= 0 and χ = 0 we obtain the relativistic energy levels of
a charged scalar field subject to the Aharonov–Bohm effect
in the Minkowski spacetime in a uniformly rotating frame.

3 Coulomb-type potential

The standard procedure of inserting the Coulomb potential
into relativistic wave equations is through the minimum cou-
pling p̂μ → p̂μ − q Aμ via temporal component A0 [51].
Another procedure of inserting central potentials is by mod-
ifying the mass term of the relativistic wave equations via
transformationm → m+V (r), where V (r) is a scalar poten-
tial. The latter procedure entails a feature which is known in
the literature as a position-dependent mass system. This type
of system has been studied in atomic physics [52], in the rotat-
ing cosmic string spacetime [53,54], on a two-dimensional
Klein–Gordon particle [55], quark–antiquark interaction [56]
and on a scalar particle in a Gödel-type spacetime [57].

In this section, we insert a Coulomb-type potential into the
Klein–Gordon equation by modifying the mass term through
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the transformation

m → m + a

ρ
, (15)

where a is a constant that characterizes the Coulomb-type
potential. The Coulomb-type potential has been studied
in propagation of gravitational waves [58], in a magnetic
quadrupole moment [59], in a neutral particle with perma-
nent magnetic dipole moment [60] and in Lorentz symmetry
violation scenarios [61,62]. Then, by substituting the Eq. (15)
into the Eq. (6), we obtain from the solution (7) the radial
differential equation

d2R

dρ2 + 1

ρ

dR

dρ
− ῑ2

ρ2 R − 2am

ρ
R − ᾱ2R = 0, (16)

where we define the new parameters

ῑ2 =
(
l − kχ − q�B

2π

)2

+ a2;

ᾱ2 = m2 + k2 −
[
E + w

(
l − q�B

2π

)]2

, (17)

where ᾱ must be real such that we can obtain solutions of
bound states.

In order to obtain solutions of bound states, let us consider
the case where a = −|a| and the change of variables ξ =
2ᾱρ, such that Eq. (17) becomes

d2R

dξ2 + 1

ξ

dR

dξ
− ῑ2

ξ2 R + β

ξ
R − 1

4
R = 0, (18)

with

β = |a|m
ᾱ

. (19)

We must now impose that the radial wave function R(ξ)

be well behaved at the origin, since it is a singular point
of Eq. (18). In this case, for lim

ξ→0
R(ξ) = 0 the solution is

R(ξ) ∼ ξ |ῑ|. Besides, let us consider the particular case where
the frequency of rotation is very small, w � 1, such that

in the vicinity of the fixed point ρ0 =
√

1−χw2

w
we have

lim
w→0

ρ → ∞ which implies ξ → ∞. In this particular case,

for lim
ξ→∞ R(ξ) = 0 the solution is R(ξ) ∼ e− 1

2 ξ . Thus, the

solution possible for Eq. (18) is given in terms of a function
f (ξ):

R(ξ) = ξ |ῑ|e− 1
2 ξ f (ξ). (20)

By substituting the Eq. (20) into the Eq. (18), we have

ξ
d2 f

dξ2 + (2|ῑ| + 1 − ξ)
d f

dξ
+

(
β − |ῑ| − 1

2

)
f = 0. (21)

The Eq. (21) is known in the literature as the conflu-
ent hypergeometric equation [46] and f (ξ) is a conflu-

ent hypergeometric function: f (ξ) = 1F1 (b, c; ξ), where
b = |ῑ| + 1

2 − β and c = 2|ῑ| + 1. Again, let us consider
the particular case where the angular frequency of rotation is
very small, w � 1 such that in the vicinity of the fixed point

ρ0 =
√

1−χ2w2

w
the radial coordinate is very large, that is,

ξ0 → ∞. In this particular, for large values of its argument,
the confluent hypergeometric function is given by

1F1 (b, c; ξ0 = 2ᾱρ0) ≈ �(c)

�(b)
eξ0ξb−c

0 [1 + O(|ξ0|−1)],
(22)

where it is diverges for this particular case. Then, in the search
for solutions of bound states, it is necessary to impose that
b = −n, with n = 0, 1, 2, . . ., consequently, the confluent
hypergeometric function becomes well behaved for ξ0 → ∞
[46]. Then, with b = |ῑ| + 1

2 − β = −n, we obtain the
expression

Ek,l,n = −w

(
l − q�B

2π

)

±
√√√√√√√

m2 + k2− a2m2

[

n+
√(

l − kχ − q�B
2π

)2 +a2+ 1
2

]2 ,

(23)

which represents the relativistic energy levels of a charged
scalar field subject to a Coulomb-type potential in a uni-
formly rotating frame in the spacetime with a magnetic screw
dislocation. We can observe the influence of the spacetime
topology on the relativistic energy spectrum given in Eq. (23).
This influence is characterized by the change in the eigen-
values of the angular moment which are redefined by the
parameter χ and by the quantum flux �B , both associated to
the topological defect, that is, leff = l−kχ− q�B

2π
, resulting in

an effect analogous to the Aharanov–Bohm effect for bound
states [30]. We can also note that the relativistic energy spec-
trum is a periodic function of the quantum flux �B with peri-
odicity �0 = 2π

q η, that is, Ek,l,n(�B +�0) = Ek,l∓η,n(�B),
where η = 0, 1, 2, . . .. Again, we can also observe a Sagnac-
type effect [22,49,50], which is characterized by the coupling
between the angular frequency w and the effective angular
momentum quantum number leff = l − q�B

2π
. By making

w = 0 we recover the result obtained in the Ref. [19]. For
�B = 0 and χ 
= 0, the Eq. (23) represents the relativistic
energy levels of scalar field of position-dependent mass under
effects of a Coulomb-type potential in a uniformly rotating
frame in the spacetime with a screw dislocation; for �B 
= 0
and χ = 0, the Eq. (23) represents the relativistic energy lev-
els of charged scalar field of position-dependent mass under
effects of a Coulomb-type potential in the Minkowski space-
time.
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4 Klein–Gordon oscillator

Based on the model for a relativistic quantum oscillator that
interacts with a spin- 1

2 fermionic field, which is known in
the literature as the Dirac oscillator [63–74], Bruce and Min-
ning proposed a model for a relativistic quantum oscilla-
tor that interacts with a scalar field, where this model has
become known in the literature as the Klein–Gordon oscil-
lator [31,75–86]. The Klein–Gordon oscillator is described
through the coupling ∂μ + mωXμ into the Klein–Gordon
equation, where ω is the angular frequency of the Klein–
Gordon oscillator and Xμ = (0, ρ, 0, 0). In this way, the Eq.
(4) is rewritten in the form [17,19]:

1√−g
(∂μ − iq Aμ + mωXμ)(

√−ggμν)

× (∂ν − iq Aν − mωXν)φ − m2φ = 0. (24)

In the spacetime with a magnetic screw dislocation
described by the line element (2) and the 4-vector poten-
tial (5), and following the steps from Eq. (6) to the Eq. (8),
we obtain the following radial equation

d2R

dρ2 + 1

ρ

dR

dρ
− ι2

ρ2 R − m2ω2ρ2R + γ R = 0, (25)

where ι is defined in the Eq. (9) and

γ =
[
E + w

(
l − q�B

2π

)]2

− m2 − k2 − 2mω. (26)

Let us consider the change of variables � = mωρ2, such
that Eq. (27) becomes

d2R

d�2 + 1

�

dR

d�
− ι2

4�2 R + γ

4mω�
R − 1

4
R = 0. (27)

Again, we must now impose that the radial wave function
R(ξ) be well behaved. In this case, for lim

ξ→0
R(ξ) = 0 the

solution is R(ξ) ∼ ξ
|ι|
2 . Let us consider the particular case

where the frequency of rotation is very small, w � 1, such

that in the vicinity of the fixed point ρ0 =
√

1−χw2

w
we have

lim
w→0

ρ → ∞ which implies � → ∞. In this particular case,

for lim
�→∞ R(�) = 0 the solution is R(�) ∼ e− 1

2 �. Thus, the

solution for the Eq. (27) is given in terms of a function g(�):

R(�) = �
|ι|
2 e− 1

2 �g(�). (28)

Then, by substituting the Eq. (28) into the Eq. (27), we
obtain

�
d2g

d�2 +(|ι|+1−�)
dg

d�
−

( |ι|
2

+1

2
− γ

4mω

)
g = 0. (29)

Note that the Eq. (29) is also the confluent hypergeomet-
ric equation [46] and g(�) is the confluent hypergeometric

function: g(�) = 1F1
(
b̄, c̄; �

)
, where b̄ = |ι|

2 + 1
2 − γ

4mω
and

c̄ = |ι| + 1.
It is possible to discuss two energy profiles for this system.

One for any value of the angular frequency of rotation which
induces a hard-wall potential (general case) and another for
very small values of the angular frequency of rotation (par-
ticular case).

4.1 General case

For an arbitrary value of the angular frequency of rotation
implies in a similar case seen in Sect. 2, that is, the wave func-

tion must vanish in �0 = mω(1−χ2w2)

w2 , restriction imposed
by the rotation. This means that the charged scalar field is
restricted in a region where this restriction is characterized
by the presence of a hard-wall potential induced by the effects
of rotation in a spacetime with a magnetic screw dislocation.
This kind of confinement is described by the boundary con-
dition given in the Eq. (12).

Let us consider the case where γ
4mω

� 1, or mω � 1,
while c̄ is fixed. In this case, the parameter b̄ can be con-
sidered large and, in the fixed point �0, 1F1

(
b̄, c̄; �

)
can be

written in the form [47]:

g(�0) = 1F1
(
b̄, c̄; �0

)

∝ cos

(
π

4
− c̄

2
+

√
2(c̄ − 2b̄)�0

)
. (30)

Thus, by substituting the Eqs. (28) and (30) into the Eq.
(12), we obtain expression

Ek,l,n ≈ −w

(
l − q�B

2π

)

±
√

m2 + k2 + 2mω + π2w2

(1 − χ2w2)

(
n+ 1

2

∣∣∣∣l − kχ−q�B

2π

∣∣∣∣ +
3

4

)2
,

(31)

which represents the relativistic energy spectrum of a charged
scalar field subject to a Klein–Gordon oscillator and a hard-
wall potential induced by a uniformly rotating frame in the
spacetime with a magnetic screw dislocation. We can see
that the relativistic energy spectrum (31) is influenced by
the spacetime topology through the redefinition of the eigen-
values of the angular momentum in terms of the parame-
ters χ and �B , both associated to the magnetic screw dis-
location, leff = l − kχ − q�B

2π
, producing an effect anal-

ogous to the Aharonov–Bohm effect for bound states [30].
We can also note that the relativistic energy spectrum is a
periodic function of the quantum flux �B with periodicity
�0 = 2π

q η, where η = 0, 1, 2, . . ., that is, Ek,l,n(�B+�0) =
Ek,l∓η,n(�B). Again, we can observe a Sagnac-type effect
[22,49,50] on relativistic energy levels from the rotating
effects, which is influenced by the quantum flux of the topo-
logical defect. In contrast to the Eq. (14), we have a new
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contribution to the relativistic energy spectrum given by the
term 2mω that stems from the Klein–Gordon oscillator. For
�B = 0 and χ 
= 0 we have relativistic energy levels of
a scalar field subject to the Klein–Gordon oscillator and a
hard-wall potential induced by a uniformly rotating frame
in the spacetime with a screw dislocation; for �B 
= 0 and
χ = 0 we have relativistic energy levels of a charged scalar
field subject to the Klein–Gordon oscillator and a hard-wall
potential induced by a uniformly rotating frame subject to
the Aharonov–Bohm effect in the Minkowski spacetime.

4.2 Particular case

Now, let us consider the particular case in which the fre-
quency of rotation is very small, w � 1 so that the radial
coordinate in the vicinity of the point fixed �0 tends to the
infinity, as seen in Sect. 3. In this particular case, the conflu-
ent hypergeometric function admits polynomial solutions of
degree n imposing that b̄ = −n, with n = 0, 1, 2, . . .. Then,
by following the discussion made in the Eq. (22) to the (23),
we obtain the expression

Ek,l,n = −w

(
l − q�B

2π

)

±
√

m2 + k2 + 4mω

(
n+1

2

∣∣∣∣l−kχ−q�B

2π

∣∣∣∣+1

)
,

(32)

which represents the relativistic energy levels of a charged
scalar field subject to the Klein–Gordon oscillator in a uni-
formly rotating frame in the spacetime with a magnetic screw
dislocation. We can note that the relativistic energy levels
(31) is influenced by the spacetime topology through the
redefinition of the eigenvalues of the angular momentum
in terms of the parameters χ and �B , both associated to
the topological defect, leff = l − kχ − q�B

2π
, producing an

relativistic effect analogous to the Aharonov–Bohm effect
for bound states [30]. We can also note that the relativistic
energy spectrum is a periodic function of the quantum flux
�B with periodicity �0 = 2π

q η, where η = 0, 1, 2, . . ., that
is, Ek,l,n(�B + �0) = Ek,l∓η,n(�B). In addition, again, we
can see a Sagnac-type effect [22,49,50] on relativistic energy
levels from the rotating effects, which is influenced by the
quantum flux of the magnetic screw dislocation. By taking
w = 0 we recover the particular results obtained in the Refs.
[17,18]. For �B = 0 and χ 
= 0 we have relativistic energy
levels of a scalar field subject to the Klein–Gordon oscillator
in a uniformly rotating frame in the spacetime with a screw
dislocation; for �B 
= 0 and χ = 0 we have relativistic
energy levels of a charged scalar field subject to the Klein–
Gordon oscillator in a uniformly rotating frame subject to
the Aharonov–Bohm effect in the Minkowski spacetime; for

�B = χ = 0 we recover the result obtained in the Ref. [26]
without cosmic string.

5 Conclusion

We have investigated the effects of a uniformly rotating frame
on a charged scalar field in the spacetime with a magnetic
screw dislocation. Due to the rotating effects in this back-
ground, we can note that the radial coordinate is restricted
and this restriction is determined by the spacetime topology.
Through this restriction in the radial coordinate, we deter-
mine solutions of bound states, hence, we extract the energy
profiles for the systems analyzed. Our investigation starts
with the hard-wall potential, which, from the mathematical
point of view, is a Dirichlet boundary condition imposed by
the rotating effects, and with that we determine the relativistic
energy profile of this system.

Through the definition of position-dependent mass sys-
tem, we inserted a Coulomb-type potential into the Klein–
Gordon equation by modifying the mass term. Analytically,
for very small values of the frequency of rotation, we deter-
mine solutions of bound states and we can note that the pres-
ence of the Coulomb-type potential modifies the energy spec-
trum of the system.

We also investigate the Klein–Gordon oscillator, where,
for well-defined rotating frequency scales, it is possible to
determine two energetic profiles for this system. First, we
determine the energy profile of the Klein–Gordon oscillator
in a uniformly rotating frame for arbitrary values of the fre-
quency of rotation, which induces a hard-wall potential. Next
for very small values of the frequency of rotation. We can see
that the two energy profiles are totally different.

It is worth mentioning that in all cases we can note the
influence of the spacetime topology by redefining the angu-
lar momentum eigenvalue which is described in terms of
the parameter associated with the screw dislocation and the
parameter associated with the internal quantum flux of the
defect. Consequently, the Sagnac-type effect, which arises
at all energy levels due to rotation, is also influenced by the
internal quantum flux of the topological defect.
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