
Eur. Phys. J. C (2019) 79:855
https://doi.org/10.1140/epjc/s10052-019-7356-5

Regular Article - Theoretical Physics

Poisson–Lie identities and dualities of Bianchi cosmologies

Ladislav Hlavatý1,a, Ivo Petr2,b

1 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
2 Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic

Received: 24 July 2019 / Accepted: 29 September 2019 / Published online: 17 October 2019
© The Author(s) 2019

Abstract We investigate a special class of Poisson–Lie T-
plurality transformations of Bianchi cosmologies invariant
with respect to non-semisimple Bianchi groups. For six-
dimensional semi-Abelian Manin triples b �� a containing
Bianchi algebras b we identify general forms of Poisson–Lie
identities and dualities. We show that these can be decom-
posed into simple factors, namely automorphisms of Manin
triples, B-shifts, β-shifts, and “full” or “factorized” dualities.
Further, we study effects of these transformations and utilize
the decompositions to obtain new backgrounds which, sup-
ported by corresponding dilatons, satisfy Generalized Super-
gravity Equations.
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1 Introduction

Duality transformations play crucial role in the study of var-
ious aspects of string theory and related fields. They con-
nect theories in different coupling regimes or, in the case
of T-duality, backgrounds with distinct curvature properties.
Both Abelian T-duality [1] and its non-Abelian generaliza-
tion [2,3] rely on the presence of symmetries of sigma model
backgrounds. Dual sigma model related to the original one by
T-duality is obtained by gauging of the symmetry and intro-
duction of Lagrange multipliers. However, the symmetries
are not preserved in the non-Abelian case, meaning we may
not be able to return to the original model by dualization.
Despite this serious issue we see renewed interest in (non-)
Abelian T-duality (NATD). The procedure was extended to
RR fields in [4,5] and is used frequently to find new super-
gravity solutions, see e.g. [6,7] and references therein. It also
applies in the study of integrable models [8–10]. In this paper
we are going to present new solutions of the Generalized
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Supergravity Equations obtained by action of Poisson–Lie
identities and Poisson–Lie dualities introduced in [11] on
the Bianchi cosmologies [12]. This extends list of results
obtained in [13].

Poisson–Lie T-duality [14] introduces Drinfel’d double as
the underlying algebraic structure of T-duality and replaces
symmetry of the sigma model background by the so-called
Poisson–Lie symmetry [15]. This allows us to treat both mod-
els equally and solves the above mentioned problem. We shall
use this formalism through the whole paper. In the case of
(non-) Abelian T-duality the Lie group D of Drinfel’d dou-
ble splits into Lie subgroups G and ˜G of equal dimension,
where the former represents symmetries of the original back-
ground while the latter is Abelian. In this paper we consider
only these semi-Abelian Drinfel’d doubles as we focus on
dualization of particular backgrounds and the presence of
symmetries remains crucial in such case.1 Poisson–Lie dual-
ity exchanges roles of G and ˜G , and we understand it as
a change of decomposition (G | ˜G ) of D to ( ˜G |G ) and vice
versa. Beside (G | ˜G ) and ( ˜G |G ) there might be other decom-
positions ( ̂G |Ḡ ), (Ḡ | ̂G ) of a Drinfel’d double D that can
be used to construct mutually related sigma models. The
corresponding transformation between sigma models was
denoted Poisson–Lie T-plurality [17]. Decompositions of
low-dimensional Drinfel’d doubles were classified in papers
[18–20] in terms of Manin triples (d, g, g̃) that represent
decompositions of Lie algebra d of the Drinfel’d double D
into subalgebras g and g̃ corresponding to subgroups G and
˜G .

In our recent paper [11] we noted that besides (non-)
Abelian T-duality there exist other transformations that either
preserve or exchange the algebras g and g̃ of the Manin
triple (d, g, g̃). We shall call them Poisson–Lie identities and
Poisson–Lie dualities. Similar transformations were stud-
ied in [21] to get insight into the structure of the so-called
NATD group of T-duality transformations. Beside others,
this group contains automorphisms of the algebras forming
Manin triples, B-shifts, β-shifts,2 “factorized” dualities and
their compositions. These, however, have to be understood
as special cases of Poisson–Lie T-plurality. We continue the
investigation of the NATD group probing its structure for
low-dimensional Drinfel’d doubles, where general forms of
Poisson–Lie identities and dualities can be identified. We
show that all transformations are finite compositions of the
special elements of NATD group that were mentioned earlier.
It turns out that the effect of automorphisms and B-shifts on
resulting backgrounds can be often eliminated by a change
of coordinates, hence, we identify what parameters of the
transformations are relevant.

1 See [16] for discussion on this topic.
2 β-shifts are also referred to as TsT transformations, see [22,23].

Long-lasting problem appearing in discussion of non-
Abelian T-duality is that dualization with respect to non-
semisimple group G leads to mixed gauge and gravitational
anomaly, see [24], proportional to the trace of structure con-
stants of g. Authors of paper [13] have found non-Abelian
T-duals of Bianchi cosmologies [12] and have shown that
instead of standard beta function equations the dual back-
grounds satisfy the so-called Generalised Supergravity Equa-
tions containing Killing vector J whose components are
given by the trace of structure constants. For Bianchi V cos-
mology this was observed already in [25]. Therefore, it is
natural to ask if backgrounds and dilatons obtained from
Bianchi cosmologies by Poisson–Lie identities and duali-
ties satisfy Generalised Supergravity Equations as well and
what Killing vectors have to be used. We show that compo-
nents of J are determined by trace of structure constants,
however, one must carefully inspect what groups (or sub-
groups of) G truly participate in the duality transformation.
For Yang–Baxter deformations of AdS5 × S5 the problem of
finding J was addressed in [26,27] and physical meaning of
J was found in [28]. Discussion on the Poisson–Lie duality
and plurality of the Generalized Supergravity Equations can
be found e.g. in [29] and [30].

We start with a short description of Poisson–Lie T-
plurality in Sect. 2, where necessary formulas are summa-
rized and general forms of transformed backgrounds are
presented. In Sects. 3–7 we investigate various transforma-
tions of Bianchi cosmologies focusing on groups that are not
semisimple. Since calculations with general transformations
often result in rather complicated backgrounds that cannot be
displayed, detailed description is given only for special ele-
ments of the NATD group. Summary of transformed back-
grounds can be found in the Appendix.

2 Basics of Poisson–Lie T-plurality

In the first two subsections we recapitulate Poisson–Lie T-
plurality with spectators [14,17,31]. We follow the summary
given in [11].

2.1 Sigma models

Let M be (n + d)-dimensional (pseudo-)Riemannian tar-
get manifold and consider sigma model on M given by
Lagrangian

L = ∂−φμFμν(φ)∂+φν, φμ = φμ(σ+, σ−),

μ = 1, . . . , n + d

where tensor field F = G + B on M defines metric and
torsion potential (Kalb–Ramond field) of the target manifold.
Assume that there is a d-dimensional Lie group G with free
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action on M that leaves the tensor invariant. The action of G
is transitive on its orbits, hence we may locally considerM ≈
(M /G ) × G = N × G , and introduce adapted coordinates

{sα, xa}, α = 1, . . . , n = dim N , a = 1, . . . , d = dim G

where sα label the orbits of G and are treated as spectators,
and xa are group coordinates.3 Dualizable sigma model on
N ×G is given by tensor fieldF defined by (n+d)×(n+d)

matrix E(s) as

F(s, x) = E(x) · E(s) · ET (x), E(x) =
(

1n 0
0 e(x)

)

(1)

where e(x) is d × d matrix of components of right-invariant
Maurer–Cartan form (dg)g−1 on G .

Using non-Abelian T-duality one can find dual sigma
model on N × A , where A is Abelian subgroup of semi-
Abelian Drinfel’d double D = (G |A ). The necessary for-
mulas will be given in the following subsection as a special
case of Poisson–Lie T-plurality. In this paper the groups G
will be non-semisimple Bianchi groups. Bianchi cosmolo-
gies are defined on four-dimensional manifolds, henced = 3,
n = 1, and we denote the spectator as t := s1. Elements of the
group G shall be parametrized as g = ex1T1ex2T2ex3T3 where
ex2T2ex3T3 and ex3T3 are normal subgroups of G . Similarly,
elements of A are parametrized as g̃ = ex̃1˜T 1

ex̃2˜T 2
ex̃3˜T 3

.

2.2 Poisson–Lie T-plurality with spectators

For certain Drinfel’d doubles several decompositions may
exist. Suppose that D = (G | ˜G ) splits into another pair of
subgroups ̂G and Ḡ . Then we can apply the full framework
of Poisson–Lie T-plurality [14,17] and find sigma model on
N × ̂G .

The 2d-dimensional Lie algebra d of the Drinfel’d double
D is equipped with an ad-invariant non-degenerate symmet-
ric bilinear form 〈., .〉. Let d = g �� g̃ and d = ĝ �� ḡ be two
decompositions (Manin triples (d, g, g̃) and (d, ĝ, ḡ)) of d

into double cross sum of subalgebras [34] that are maximally
isotropic with respect to 〈., .〉. The pairs of mutually dual
bases Ta ∈ g, ˜T a ∈ g̃ and ̂Ta ∈ ĝ, T̄ a ∈ ĝ, a = 1, . . . , d,

satisfying

〈Ta, Tb〉 = 0, 〈˜T a, ˜T b〉 = 0, 〈Ta, ˜T b〉 = δba ,

〈̂Ta, ̂Tb〉 = 0, 〈T̄ a, T̄ b〉 = 0, 〈̂Ta, T̄ b〉 = δba (2)

then must be related by transformation
(

̂T
T̄

)

= C ·
(

T
˜T

)

(3)

3 Detailed discussion of the process of finding adapted coordinates can
be found e.g. in [31–33].

whereC is an invertible 2d×2d matrix. Due to ad-invariance
of the bilinear form 〈., .〉 the algebraic structure of d is given
both by

[Ti , Tj ] = f ki j Tk, [˜T i , ˜T j ] = f̃ i jk ˜T k,

[Ti , ˜T j ] = f j
ki

˜T k + f̃ jk
i Tk (4)

and

[̂Ti , ̂Tj ] = f̂ ki ĵTk, [T̄ i , T̄ j ] = f̄ i jk T̄ k,

[̂Ti , T̄ j ] = f̂ j
ki T̄

k + f̄ jk
i

̂Tk . (5)

Given the structure constants Fk
i j of d = g �� g̃ and ̂Fk

i j of
d = ĝ �� ḡ, the matrix C has to satisfy equation

C p
a C

q
b F

r
pq = ̂Fc

abC
r
c . (6)

To preserve the bilinear form 〈., .〉 and thus (2), C also has
to satisfy

C p
a C

q
b (D0)pq = (D0)ab (7)

where (D0)ab are components of matrix D0 that can be writ-
ten in block form as

D0 =
(

0d 1d
1d 0d

)

. (8)

In other words, C is an element of O(d, d) but, unlike the
case of Abelian T-duality, not every element of O(d, d) is
allowed in (3).

For the following formulas it will be convenient to intro-
duce d × d matrices P, Q, R, S as

(

T
˜T

)

= C−1 ·
(

̂T
T̄

)

=
(

P Q
R S

)

·
(

̂T
T̄

)

(9)

and extend these to (n + d) × (n + d) matrices

P =
(

1n 0
0 P

)

, Q =
(

0n 0
0 Q

)

, R =
(

0n 0
0 R

)

,

S =
(

1n 0
0 S

)

to accommodate the spectator fields. It is also advantageous
to introduce block form of E(s) as

E(s) =
(

Eαβ(s) Eαb(s)
Eaβ(s) Eab(s)

)

,

α, β = 1, . . . , n, a, b = 1, . . . , d.

The sigma model on N × ̂G related to (1) via Poisson–Lie
T-plurality is given by tensor
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̂F(s, x̂) = ̂E(x̂) · ̂E(s, x̂) · ̂ET (x̂), ̂E(x̂) =
(

1n 0
0 ê(x̂)

)

(10)

where ê(x̂) is d × d matrix of components of right-invariant
Maurer–Cartan form (dĝ)ĝ−1 on ̂G ,

̂E(s, x̂) = (1n+d + ̂E(s) · ̂
(x̂))−1 · ̂E(s)

= (̂E−1(s) + ̂
(x̂))−1, (11)

̂
(x̂) =
(

0n 0
0 ̂b(x̂) · â−1(x̂)

)

,

and matrices ̂b(x̂) and â(x̂) are submatrices of the adjoint
representation

adĝ−1(̂T ) = ̂b(x̂) · T̄ + â−1(x̂) · ̂T .

The matrix ̂E(s) is obtained by formula

̂E(s) = (P + E(s) · R)−1 · (Q + E(s) · S) (12)

so it is necessary4 that

det (P + E(s) · R) �= 0 �= det (Q + E(s) · S).

Formulas (10)–(12) reduce to those for full Poisson–Lie dual-
ity if we choose P = S = 0d and Q = R = 1d . Furthermore,
for a semi-Abelian Drinfel’d double the well-known Buscher
rules for (non-) Abelian T-duality are restored. If there are
no spectators the plurality is called atomic.

2.3 Poisson–Lie identities and Poisson–Lie dualities

Let us now restrict our considerations to mappings (3) that
preserve the Manin triple, i.e. ĝ = g, ḡ = g̃, and that sat-
isfy (6) and (7). They are the Poisson–Lie identities. The
Maurer–Cartan form (dg)g−1 remains unchanged but E(s)
transforms as in (12). Moreover, for non-Abelian T-duality
the algebra g̃ is Abelian, i.e. g̃ = a, thus ̂b and ̂
 vanish, and
we may write5

̂F(s, x) = E(x) · ̂E(s) · ET (x).

Let us note that both backgrounds F(s, x) and ̂F(s, x) are
invariant with respect to the group G .

For special transformations mentioned in the introduction
we can further specify the resulting backgrounds. Namely,
matrices

IA =
(

A 0
0 A−T

)

(13)

4 Invertibility of ̂E(s) is not required in the first expression in (11) and
only det (P + E(s) · R) �= 0 is required. However, for regular ̂E(s)
the formulas simplify.
5 Since ̂G = G we omit the hat over group coordinates and write simply
x .

are always among the transformations (3) preserving the
Manin triple d = g �� a if A is an automorphism6 of g.
Transformed ̂E(s) then reads

̂E(s) = A · E(s) · AT , A =
(

1n 0
0 A

)

.

Transformations (3) of the form

IB =
(

1d B
0 1d

)

, BT = −B (14)

are called B-shifts, since the background ̂F(s, x) obtained
by this transformation is given by

̂E(s) = (

E(s) − B̄
)

, B̄ =
(

0n 0
0 B

)

.

Tensor ̂F differs from the original one by an antisymmet-
ric term B′ = −E(x) · B̄ · E(x)T that, however, for solv-
able Bianchi algebras does not produce supplementary tor-
sion. Therefore, for all investigated Bianchi cosmologies ̂F
is gauge equivalent to the initial tensor F .

β-shifts are generated by transformation matrices

Iβ =
(

1d 0
β 1d

)

, βT = −β

and the transformed ̂F(s, x) is given by

̂E(s) = (

1 − E(s) · β̄
)−1 · E(s), β̄ =

(

0n 0
0 β

)

.

For invertible E(s), we may write ̂E(s) = (E(s)−1 − β̄)−1.
Beside these transformations we may also encounter map-

pings IF that switch some of the basis vectors Ti ↔ ˜Ti while
preserving structure coefficients of the Manin triple. These
“factorized” dualities can be interpreted as dualization with
respect to subgroups ofG . In general, these cannot be written
concisely in block form and we do not discuss them here. We
shall see many examples in the following sections.

Let us further investigate Poisson–Lie dualities, i.e. map-
pings (3) that change Manin triple d = g �� a to d = a �� g.
Equation (3) implies that
(

˜T
T

)

= D0 ·
(

T
˜T

)

= D0 · I ·
(

T
˜T

)

.

Therefore, Poisson–Lie dualities are composed of Poisson–
Lie identities I and “full” T-duality D0 that exchanges all
generators of g and a as Ti ↔ ˜Ti for i = 1, . . . , d. In this
way we can define dual B-shifts, dual β-shifts and dual auto-
morphisms.

6 Our approach differs from [21], where the authors consider vector
space isomorphisms of Lie algebra of the Drinfel’d double rather than
automorphisms of a chosen Manin triple.
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Backgrounds on ˜G = A obtained from (1) by Poisson–
Lie dualities have the form

˜F(s, x̃) =
(

̂E−1(s) + ˜
(x̃)
)−1

, ˜
(x̃) =
(

0n 0
0 ˜b(x̃)

)

because ẽ(x̃) = ã(x̃) = 1d . For solvable groups G we have
˜bab(x̃) = f cab x̃c.

It is possible to be more specific when we restrict to spe-
cific elements of the NATD group. In the presence of spec-
tators, however, the formulas for Poisson–Lie dualities are
quite complicated. Fortunately, we do not need their full form
since Eaβ(s) and Eαb(s) in E(s) vanish for the backgrounds
discussed in the rest of the paper. Hence ̂Fαβ(s) = Fαβ(s)
and plurality affects only Fab(s, x). The transformations we
are interested in, therefore, concern only the ̂Fab(s, x̂) block
of the resulting background tensor ̂F .

For the dual B-shift

DB = D0 · IB =
(

0 1d
1d B

)

, BT = −B

and vanishing Eaβ(s), Eαb(s) the matrix
(

̂E−1(s) + ˜
(x̃)
)

has the form
(

E−1
αβ (s) 0

0 Eab(s) − Bab +˜bab(x̃)

)

.

For solvable groups (˜b(x̃) − B)ab = f cab x̃c − Bab. As we
shall see, for some groups this enables us to get rid of some
parameters of Bab by coordinate transformations.

General formulas for dual β-shift

Dβ = D0 · Iβ =
(

β 1d
1d 0

)

, βT = −β

in the presence of spectators are complicated and not partic-
ularly illuminating. For vanishing Eaβ(s), Eαb(s) one gets

̂E(s) =
(

Eαβ(s) 0
0 E−1

ab (s) − β

)

.

Let us focus on the role of automorphisms IA and their
duals now. As conjectured in [21], it turns out that all
Poisson–Lie identities and Poisson–Lie dualities are gener-
ated by automorphisms of Manin triples, B-shifts, β-shifts
and factorised dualities. Moreover, in most of the examples
of Bianchi cosmologies discussed later we find that the gen-
eral C matrix in (3) splits as

C = IA2 · C ′ · IA1

where C ′ is either IB , Iβ , IF or their duals. Transformed
backgrounds then can be written as

̂F(s, x̂) = ̂E(x̂) · A2 · ̂E ′(s, x̂) · AT
2 · ̂ET (x̂) (15)

where

̂E ′(s, x̂)

=
(

(

Q′ + A1E(s)AT
1 S ′)−1 (

P ′ + A1E(s)AT
1 R′) + AT

2
̂
(x̂)A2

)−1

and P ′,Q′,R′,S ′ are found from C ′. As expected, these
expressions can be interpreted as application of Poisson–
Lie T-plurality on a background given by matrix E ′(s) =
A1E(s)AT

1 . Important is that A2 can be eliminated from
(15) by suitable transformation of group coordinates. Using
the transformation properties of the covariant tensor ̂F we
may try to integrate the Jacobi matrix

Jμ
λ = ∂ x̂ ′μ

∂ x̂λ
= ê(x̂)

k

λ(A2)
p
k (̂e−1(x̂))μp (16)

to find coordinates x̂ ′ such that (15) simplifies to

̂F(s, x̂) = ̂E(x̂) · ̂E ′(s, x̂) · ̂ET (x̂).

These transformations can be always found for Poisson–Lie
dualities on semi-Abelian Drinfel’d double where g̃ = a and
ê(x̂) = 1. In this case J = A, the transformation is linear and
can be even combined with the coordinate shifts mentioned
earlier for dual B-shifts.

2.4 Generalized supergravity equations and transformation
of dilaton

One of the goals of this paper is to verify whether back-
grounds obtained from Poisson–Lie identities and dualities
satisfy Generalized Supergravity Equations of Motion. We
adopt convention used in [13] so the equations read7

0 = Rμν − 1

4
Hμρσ H

ρσ
ν + ∇μXν + ∇νXμ, (17)

0 = −1

2
∇ρHρμν + XρHρμν + ∇μXν − ∇νXμ, (18)

0 = R − 1

12
Hρστ H

ρστ + 4∇μX
μ − 4XμX

μ (19)

where ∇ is covariant derivative and

Xμ = ∂μ� + J νFνμ.

For vanishing vector J the usual one-loop beta function
equations, i.e. conformal invariance conditions, are recov-
ered.

Under (non-) Abelian T-duality dilaton transforms as

˜� = � + 1

2
ln det M (20)

where matrix M is given by “group block” Eab of E(s) and
submatrices of adjoint representation as

M = (Eab(s) +˜b(x̃) · ã−1(x̃))−1 = (˜E−1
ab (s) +˜b(x̃) · ã−1(x̃))−1.

7 We consider purely bosonic backgrounds.
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The formula (20) can be utilized not only for “full” duality
given by D0, but also for factorized dualities. However, for
successful application of this rule it is necessary to identify
the dualized directions, meaning we have to consider only
subgroups of G and corresponding submatrices Eab, ã,˜b.

For general Poisson–Lie T-plurality the dilaton transfor-
mation rule was given in [17] and further studied in [37]. In
the current notation we can write it as

̂�(s, x̂) = �(s, x) − 1

2
ln

∣

∣

∣ det
((

N + ̂
(x̂)M
)

â(x̂)
)

∣

∣

∣

+ 1

2
ln

∣

∣

∣ det ((1 + 
(x)E(s)) a(x))
∣

∣

∣,

M = ST · E(s) − QT , N = PT − RT E(s). (21)

From the two possible decompositions of elements of Drin-
fel’d double

l = g(x)h̃(x̃) = ĝ(x̂)h̄(x̄),

l ∈ D, g ∈ G , h̃ ∈ ˜G , ĝ ∈ ̂G , h̄ ∈ Ḡ

we can in principle express coordinates x in terms of x̂ and
x̄ . The expression is thus nonlocal in the sense that ̂� may
depend also on coordinates x̄ of Ḡ . For Poisson–Lie identities
we do not encounter this problem so it is plausible to use (21)
to calculate dilatons corresponding to B-shifts and β-shifts.
For semi-Abelian Drinfel’d double we find that dilaton does
not change under B-shifts IB , while under Iβ it transforms
as

̂�(s, x) = �(s, x) − 1

2
ln

∣

∣

∣ det 1 − β · Eab(s)
∣

∣

∣. (22)

For duals DB = D0 · IB and Dβ = D0 · Iβ we get the
correct dilaton by formula (20) applied on the dilaton and
background obtained earlier from identities IB and Iβ .

3 Bianchi V cosmology

As a warm up we shall study the well-known Bianchi V
cosmology. Let us consider six-dimensional semi-Abelian
Drinfel’d double8 D = (BV |A ) whose Lie algebra d =
bV �� a is spanned by basis (T1, T2, T3, ˜T 1, ˜T 2, ˜T 3). The
non-trivial commutation relations of the generators of bV
are

[T1, T2] = T2, [T1, T3] = T3. (23)

The group BV is not semisimple and trace of its structure
constants does not vanish.

8 ByBV , resp. bV , we denote the Bianchi V group, resp. its Lie algebra.
A and a denote three dimensional Abelian group and its Lie algebra
respectively. Similar notation will be used in the following sections.

The sigma model background9 is given by metric (B = 0
and F = G)

F(t, x1) =

⎛

⎜

⎜

⎝

−1 0 0 0
0 t2 0 0
0 0 e2x1 t2 0
0 0 0 e2x1 t2

⎞

⎟

⎟

⎠

. (24)

Left-invariant vector fields that satisfy (23) and generate sym-
metries of this background are

V1 = ∂x1 − x2 ∂x2 − x3 ∂x3, V2 = ∂x2 , V3 = ∂x3 .

In fact, the background is flat and torsionless so the standard
beta function equations are satisfied if we choose zero dilaton
� = 0. This background was studied already in [38], where
it was first noticed that duals with respect to non-semisimple
groups are not conformal. The related gravitational-gauge
anomaly was later investigated in [39].

3.1 Poisson–Lie identities and dualities

Mappings C that preserve the algebraic structure of Manin
triple (d, bV , a) and generate Poisson–Lie identities are given
by matrices

I1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 c12 c13 −c12c15 − c13c16 c15 c16

0 c22 c23 −c15c22 − c16c23 0 0
0 c32 c33 −c15c32 − c16c33 0 0
0 0 0 1 0 0
0 0 0 c13c32−c12c33

c22c33−c23c32

c33
c22c33−c23c32

c32
c23c32−c22c33

0 0 0 c13c22−c12c23
c23c32−c22c33

c23
c23c32−c22c33

c22
c22c33−c23c32

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

I2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 c12 c13 c12c15 + c13c16 c15 c16

0 0 0 c12c25 + c13c26 c25 c26

0 0 0 c12c35 + c13c36 c35 c36

0 0 0 −1 0 0
0 c36

c25c36−c26c35

c35
c26c35−c25c36

c16c35−c15c36
c26c35−c25c36

0 0

0 c26
c26c35−c25c36

c25
c25c36−c26c35

c16c25−c15c26
c25c36−c26c35

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

One can see that for c15 = c16 = 0 the matrix I1 simplifies
to the block form (13) given by automorphisms of algebra
bV that in general read

A =
⎛

⎝

1 a12 a13

0 a22 a23

0 a32 a33

⎞

⎠ . (25)

For c12 = c13 = c23 = c32 = 0 and c22 = c33 = 1 matrix
I1 reduces to B-shift (14) of the form

IB =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 c15 c16

0 1 0 −c15 0 0
0 0 1 −c16 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (26)

9 E(s) is restored from F(s, x) by setting group coordinates to zero.
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On the other hand, for c12 = c13 = c26 = c35 = 0, c25 =
c36 = 1 matrix I2 equals to

IF =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −1 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (27)

Matrix IF switches basis vectors T2, T3 and ˜T 2, ˜T 3. We iden-
tify its action as factorized duality with respect to Abelian
subgroup generated by T2, T3. The change of sign of T1 is
necessary for being an automorphism of bV �� a.

To study models generated by I1 and I2 we decompose
these matrices into product of special elements of NATD
group. Namely, we note that I1 can be written as

I1 = IA · IB

where IA is given by (25) and IB is the B-shift (26). Similarly,
I2 can be decomposed as

I2 = IA2 · IF · IA1

for automorphisms A1 and A2 of the form (25). This decom-
position is not unique. To identify relevant parameters of I2
we choose the simplest possible IA1 while including the rest
of the parameters in IA2 as follows:

A1 =
⎛

⎝

1 −c12 −c13

0 1 0
0 0 1

⎞

⎠ , A2 =
⎛

⎝

1 c15 c16

0 c25 c26

0 c35 c36

⎞

⎠ .

(28)

Matrices generating Poisson–Lie dualities can be obtained
from those above by left-multiplication by matrix (8) repre-
senting canonical or “full” duality. This way we get dual
automorphisms generated by

DA = D0 · IA =
(

0d (AT )−1

A 0d

)

,

dual B-shifts generated by

DB = D0 · IB =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 c15 c16

0 1 0 −c15 0 0
0 0 1 −c16 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and factorized duality

DF = D0 · IF =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 −1 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(29)

that can be interpreted as Buscher duality with respect to T1

accompanied by a change of sign in the dual coordinate.

3.2 Transformed backgrounds

3.2.1 B-shifts

Let us now apply Poisson–Lie identities on the sigma model
(24). Plugging I1 into formulas (9)–(12) we get rather com-
plicated background tensor. Nevertheless, I1 decomposes as
I1 = IA · IB and we can get rid of the parameters that come
from IA by a change of coordinates found by integrating the
Jacobi matrix (16). Indeed, after coordinate transformation

y1 = x1, y2 = −c12e
−x1 + c22x2 + c32x3,

y3 = −c13e
−x1 + c23x2 + c33x3

we find that the symmetric part of ̂F equals to the original
metric (24). The antisymmetric part

̂B(y1) =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 −ey1c15 −ey1c16

0 ey1c15 0 0
0 ey1c16 0 0

⎞

⎟

⎟

⎠

generated by the B-shift represents a torsionless B-field. Up
to coordinate transformations we would get the same back-
ground using IB instead of the full I1 so, from the point
of view of Poisson–Lie identity, we consider these matri-
ces equivalent. In other words, Poisson–Lie identity with
respect to IB and I1 is just a gauge transformation of the
original background, there is no change in the dilaton field,
and ̂� = � satisfies beta function equations.

Background calculated using D1 = D0 · I1 is too extensive
to be displayed. Nevertheless, a change of coordinates (16)
simplifies it to the form that one would obtain using DB .
Subsequent coordinate shift

x̃1 = c12(ỹ2 − c15) + c13(ỹ3 − c16) + ỹ1,

x̃2 = c22(ỹ2 − c15) + c23(ỹ3 − c16),

x̃3 = c32(ỹ2 − c15) + c33(ỹ3 − c16)

that agrees with the discussion in Sect. 2.3 eliminates the
parameters of D1 completely, producing tensor
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˜F(t, ỹ2, ỹ3)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0

0 t2

t4+ỹ2
2+ỹ2

3

ỹ2
t4+ỹ2

2+ỹ2
3

ỹ3
t4+ỹ2

2 +ỹ2
3

0 − ỹ2
t4+ỹ2

2 +ỹ2
3

t4+ỹ2
3

t2
(

t4+ỹ2
2+ỹ2

3

) − ỹ2 ỹ3

t2
(

t4+ỹ2
2+ỹ2

3

)

0 − ỹ3
t4+ỹ2

2 +ỹ2
3

− ỹ2 ỹ3

t2
(

t4+ỹ2
2+ỹ2

3

)

t4+ỹ2
2

t2
(

t4+ỹ2
2 +ỹ2

3

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(30)

The same background can be obtained via full duality using
D0, and, as discussed in [38,39], it is not conformal. The
standard beta function equations cannot be satisfied by any
dilaton ˜�. On the other hand, dilaton

˜�(t, ỹ2, ỹ3) = −1

2
ln

(

t2
(

ỹ2
2 + ỹ2

3 + t4
))

together with background (30) satisfy Generalized Super-
gravity Equations (17)–(19) if we choose J = (0, 2, 0, 0).
Components of the Killing vector J are given by trace of
structure constants10 of bV as J a = f iai . The dilaton agrees
with the formula (20), and we conclude that up to a coordi-
nate transformation the background (30) found using DB or
D1 is equivalent to non-Abelian T-dual investigated in [13].

3.2.2 Factorized dualities

Using I2 = IA2 · IF · IA1 in formulas (9)–(12) we get back-
ground that can be brought to the form

̂F(t, y1) =

⎛

⎜

⎜

⎜

⎝

−1 0 0 0
0 t2 −ey1c12 −ey1c13

0 ey1c12
e2y1

t2
0

0 ey1c13 0 e2y1

t2

⎞

⎟

⎟

⎟

⎠

by coordinate transformation

y1 = x1, y2 = −c15e
−x1 + c25x2 + c35x3,

y3 = −c16e
−x1 + c26x2 + c36x3

whose Jacobi matrix (16) is determined by A2 in (28). The
background differs from ̂F calculated using IF since IA1

changes E(s) before the factorized duality is applied. How-
ever, the only difference is in the antisymmetric part ̂B. For
I2 there is a torsionless B-field, while for IF the B-field van-
ishes completely. The metric has vanishing scalar curvature
but is not flat. Further coordinate transformation

t =
√

−2u v + 2u + z2
3 + z2

4, y2 = u z3,

y1 = 1

2
ln

(

−2u v + 2u + z2
3 + z2

4

u2

)

, y3 = u z4

10 Compared to [13], in the present nomenclature the matrices F rep-
resenting background tensors are transposed. This results in change of
sign of J .

brings it to the Brinkmann form of plane parallel wave [40]
with

ds2 = 2
z2

3 + z2
4

u2 du2 + 2du dv + dz2
3 + dz2

4.

Corresponding dilaton follows from the formula (20) if
the factorized duality (27) is interpreted as Buscher duality11

with respect to two-dimensional Abelian subgroup generated
by left-invariant fields V2 = ∂x2 , V3 = ∂x3 . Metric (24) is
written in coordinates adapted to the action of this subgroup
and for the duality given by IF we can write

̂�(t, x1) = 1

2
ln det M = 1

2
ln det

(

e2x1

t2
0

0 e2x1

t2

)

= − ln t2 + 2y1 = −2 ln u.

Dual dilaton for background given by I2 is derived from
the altered E ′(s) = A1E(s)AT

1 and differs from the previ-
ous expression by a constant. We again conclude that back-
grounds found using IF and I2 differ only by a coordinate
and gauge transformation and can be considered equivalent.
They satisfy beta function equations, or Generalized Super-
gravity Equations (17)–(19) where J is zero vector.

Background obtained by Poisson–Lie transformation using
matrix DF has the form

˜F(t, ỹ2, ỹ3)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0

0 1
t2

(

ỹ2
2+ỹ2

3+1
)

ỹ2

ỹ2
2+ỹ2

3+1
ỹ3

ỹ2
2+ỹ2

3+1

0 − ỹ2

ỹ2
2+ỹ2

3+1

t2
(

ỹ2
3+1

)

ỹ2
2+ỹ2

3+1
− t2 ỹ2 ỹ3

ỹ2
2+ỹ2

3+1

0 − ỹ3

ỹ2
2+ỹ2

3+1
− t2 ỹ2 ỹ3

ỹ2
2+ỹ2

3+1

t2
(

ỹ2
2+1

)

ỹ2
2+ỹ2

3+1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(31)

The same background is obtained using D2 = D0 · I2 =
D0 · IA2 · IF · IA1 after change of coordinates

x̃1 = c15(ỹ2 − c12) + c16(ỹ3 − c13) + ỹ1,

x̃2 = c25(ỹ2 − c12) + c26(ỹ3 − c13),

x̃3 = c35(ỹ2 − c12) + c36(ỹ3 − c13).

Thus, we are able to eliminate all parameters appearing in
D2. The background is torsionless and together with dilaton

˜�(t, ỹ2, ỹ3) = −1

2
ln

(

t2
(

ỹ2
2 + ỹ2

3 + 1
))

(32)

satisfies beta function equations, i.e. the Killing vector in
the Generalized Supergravity Equations is zero. Explana-
tion is that we can interpret the factorized duality (29) as
Buscher duality of (24), this time with one-dimensional

11 Followed by a change of sign in the spectator coordinate x1.
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Abelian subgroup generated by left-invariant field V1 =
∂x1 − x2 ∂x2 − x3 ∂x3 . In adapted coordinates {s1, s2, s3, y1}
t = s1, x1 = y1, x2 = s2e

−y1 , x3 = s3e
−y1 ,

where V1 = ∂y1 , the tensor (24) is manifestly invariant with
respect to shifts in y1 since

F(s1, s2, s3) =

⎛

⎜

⎜

⎜

⎝

−1 0 0 0
0 s2

1 0 −s2
1 s2

0 0 s2
1 −s2

1 s3
0 −s2

1 s2 −s2
1 s3 s2

1

(

s2
2 + s2

3 + 1
)

⎞

⎟

⎟

⎟

⎠

.

Buscher duality with respect to y1 then restores the tensor
(31) and dilaton (32) agrees with formula (20).

To sum up, in this section we have shown that backgrounds
emerging from general Poisson–Lie identities or dualities
differ from those obtained from special elements of NATD
group only by a coordinate or gauge transformation. From
now on we shall display results for these special elements
and only comment on the general cases.

4 Bianchi I I I cosmology

Several results for Bianchi I I I cosmology are similar to
those for Bianchi V . The algebra d = bI I I �� a of six-
dimensional semi-Abelian Drinfel’d double (BI I I |A ) is
spanned by basis (T1, T2, T3, ˜T 1, ˜T 2, ˜T 3). Non-trivial com-
mutation relations of the generators of bI I I are

[T1, T3] = −T3, (33)

while a is Abelian. The trace of structure constants does not
vanish and group BI I I is not semisimple. The background
given by metric

F(t, x1) =

⎛

⎜

⎜

⎝

−1 0 0 0
0 t2 0 0
0 0 1 0
0 0 0 t2e−2x1

⎞

⎟

⎟

⎠

(34)

is flat, torsionless, and invariant with respect to symmetries
generated by left-invariant vector fields

V1 = ∂x1 + x3 ∂x3, V2 = ∂x2 , V3 = ∂x3

satisfying (33). As the background is flat and torsionless the
dilaton � can be chosen zero. Authors of [41] mention this
background in their analysis and note that its non-Abelian
dual does not satisfy the standard beta function equations.

4.1 Poisson–Lie identities and dualities

Table 1 summarizes all eight types of solutions of equations
(6) and (7) with structure constants F = ̂F . These give rise
to Poisson–Lie identities and dualities of (BI I I |A ). Nev-
ertheless, all the identities are composed of automorphisms
(13) with

A =
⎛

⎝

1 a12 a13

0 a22 0
0 0 a33

⎞

⎠ , (35)

B-shifts of the form (26), and factorized dualities12

IF1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(36)

and

IF2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (37)

Matrices generating Poisson–Lie dualities can be again
obtained from those above by left-multiplication by the
matrix (8) representing full duality.

4.2 Transformed backgrounds

4.2.1 B-shifts

Using IB (26) in the formulas (9)–(12) we find that the back-
ground ̂F has the same metric as the original model (34). In
addition to that, a torsionless B-field

̂B(x1) =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 −c15 −c16e−x1

0 c15 0 0
0 c16e−x1 0 0

⎞

⎟

⎟

⎠

(38)

appears. This agrees with the interpretation of action of IB as
gauge transformation. There is no change in the dilaton and
̂� = �. With the full solutions I4 and I8 we get the same
background as for IB . Indeed, both these matrices decompose
as

I4 = IA · IB, I8 = IA · IB
with IA given by (35). A linear change of coordinates (16)
thus restores the metric (34) and torsionless B-field (38).13

Dual background calculated using matrix DB = D0 · IB
produces tensor

12 IA and IB appear as special cases of I4 and I8, factorized dualities
IF1 , IF2 and their composition appear in I1, I2, I3, I5, I6, I7 and their
duals.
13 The parameter c15 has to be replaced by − c14+c13c16

c12
for I4.
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Table 1 PLT-identities of
Drinfel’d double (BI I I |A )

(BI I I |A ) C matrix

I1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 c12 c13 c14
c14−c13c16

c12
c16

0 0 0 c12
c52

1
c52

0
0 0 0 c13c36 0 c36
0 0 0 −1 0 0
0 c52 0 (c14−c13c16)c52

c12
0 0

0 0 1
c36

c16
c36

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

I2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 c12 c13 c14
c14−c13c16

c12
c16

0 c22 0 (c14−c13c16)c22
c12

0 0
0 0 0 c13c36 0 c36
0 0 0 −1 0 0
0 0 0 c12

c22

1
c22

0
0 0 1

c36

c16
c36

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

I3

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 c12 c13 c14 − c14+c13c16
c12

c16

0 0 0 − c12
c52

1
c52

0
0 0 c33 −c16c33 0 0
0 0 0 1 0 0
0 c52 0 (c14+c13c16)c52

c12
0 0

0 0 0 − c13
c33

0 1
c33

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

I4

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 c12 c13 c14 − c14+c13c16
c12

c16

0 c22 0 (c14+c13c16)c22
c12

0 0
0 0 c33 −c16c33 0 0
0 0 0 1 0 0
0 0 0 − c12

c22

1
c22

0
0 0 0 − c13

c33
0 1

c33

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

I5

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 c13 c13c16 c15 c16

0 0 0 0 1
c52

0
0 0 0 c13c36 0 c36
0 0 0 −1 0 0
0 c52 0 c15c52 0 0
0 0 1

c36

c16
c36

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

I6

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 c13 c13c16 c15 c16
0 c22 0 c15c22 0 0
0 0 0 c13c36 0 c36
0 0 0 −1 0 0
0 0 0 0 1

c22
0

0 0 1
c36

c16
c36

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

I7

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 c13 −c13c16 c15 c16

0 0 0 0 1
c52

0
0 0 c33 −c16c33 0 0
0 0 0 1 0 0
0 c52 0 −c15c52 0 0
0 0 0 − c13

c33
0 1

c33

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

I8

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 c13 −c13c16 c15 c16
0 c22 0 −c15c22 0 0
0 0 c33 −c16c33 0 0
0 0 0 1 0 0
0 0 0 0 1

c22
0

0 0 0 − c13
c33

0 1
c33

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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˜F(t, x̃3)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0

0 t2

t4+c2
15 t

2+(c16−x̃3)2
t2c15

t4+c2
15 t

2+(c16−x̃3)2
c16−x̃3

t4+c2
15 t

2+(c16−x̃3)2

0 − t2c15
t4+c2

15 t
2+(c16−x̃3)2

t4+(c16−x̃3)2

t4+c2
15 t

2+(c16−x̃3)2
c15(x̃3−c16)

t4+c2
15 t

2+(c16−x̃3)2

0 x̃3−c16
t4+c2

15 t
2+(c16−x̃3)2

c15(x̃3−c16)

t4+c2
15 t

2+(c16−x̃3)2

t2+c2
15

t4+c2
15 t

2+(c16−x̃3)2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(39)

whose curvature and torsion do not vanish. We can get rid of
the parameter c16 by shift in x̃3, but c15 remains. As earlier,
backgrounds calculated using D4 = D0 · I4 = D0 · IA · IB
or D8 = D0 · I8 = D0 · IA · IB differ from ˜F only by a
transformation of coordinates. For nonzero c15 the tensor ˜F
is not the same as non-Abelian dual of (34) that can be found
using D0. Nevertheless, if we understand the duality with
respect to DB = D0 · IB as full duality applied to background
changed by IB , the correct dilaton can be found from (20) as

˜�(t, x̃3) = −1

2
ln

(

t4 + c2
15t

2 + (c16 − x̃3)
2
)

. (40)

Such ˜� satisfies the Generalized Supergravity Equations for
Killing vector J = (0,−1, 0, 0) whose components are
given by trace of structure constants of bI I I as suggested
in [13].

4.2.2 Factorized dualities

Poisson–Lie identities (36) and (37) can be interpreted as
Buscher dualities with respect to one-dimensional Abelian
subgroups generated by left-invariant fields V3 = ∂x3 resp.
V2 = ∂x2 .

Dualization with respect to V2 does not changeF at all due
to the form of the metric (34). The background is invariant
with respect to IF2 . Its dual given by DF2 = D0 · IF2 needs
to be understood as dual with respect to non-Abelian group
generated by V1, V3 that is not semisimple. The background
and dilaton are the same as for the full duality D0. We can read
them from (39), (40) setting c15 = c16 = 0. The same results,
up to a coordinate or gauge transformation, are obtained for
the full solutions I3, I7, see Table 1, and their duals D3, D7

since

I3 = IA2 · IF2 · IB · IA1 , I7 = IA2 · IF2 · IB .

Dualization with respect to V3, i.e. Poisson–Lie identity
IF1 , produces metric

̂F(t, x1) =

⎛

⎜

⎜

⎝

−1 0 0 0
0 t2 0 0
0 0 1 0

0 0 0 e−2x1

t2

⎞

⎟

⎟

⎠

(41)

whose scalar curvature vanishes. In coordinates

t =
√

z2
3 − 2u(v − 1), x2 = z4,

x1 = −1

2
ln

(

z2
3 − 2u(v − 1)

u2

)

, x3 = uz3

it acquires the Brinkmann form of a plane parallel wave with

ds2 = 2
z2

3

u2 du
2 + 2du dv + dz2

3 + dz2
4.

As expected, dilaton calculated via formula (20)

̂�(t, x1) = 1

2
ln det M = 1

2
ln det

⎛

⎝

1 0

0 e−2x1

t2

⎞

⎠

= −1

2
ln t2 − x1

satisfies beta function equations, or Generalized Supergravity
Equations with J = 0, since we have dualized with respect
to Abelian subgroup of BI I I . Poisson–Lie identities I1, I2,
I5 and I6 decompose as

I1 = IA2 · IF1 · IF2 · IA1 , I2 = IA2 · IF1 · IB · IA1 ,

I5 = IA2 · IF1 · IF2 · IA1 , I6 = IA2 · IF1 · IB · IA1 .

Resulting backgrounds differ from (41) only by a change of
coordinates and torsionless B-field of the form (38) and can
be found in Table 3 in the Appendix.

Dual background produced by DF1 = D0 · IF1 reads

˜F(t, x̃3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0

0 1
t2

(

x̃2
3+1

) 0 − x̃3
x̃2

3+1

0 0 1 0

0 x̃3
x̃2

3+1
0 t2

x̃2
3+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Together with the dilaton

˜�(t, x̃3) = −1

2
ln

(

t2
(

x̃2
3 + 1

))

found from (20) this background satisfies beta function equa-
tions. Factorized duality given by DF1 can be once again
interpreted as Buscher duality with respect to symmetry gen-
erated byV1, V2. The same result is obtained for D5 = D0·I5.
For D1, D2, D6 the tensor ˜F and dilaton ˜� contain a param-
eter that cannot be eliminated by coordinate or gauge trans-
formation. Interested reader may find its full form in Table 3
in the Appendix.
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5 Bianchi V Iκ cosmology

Semi-Abelian Drinfel’d double D = (BV Iκ |A ) has Lie
algebra d = bV Iκ �� a spanned by basis (T1, T2,

T3, ˜T 1, ˜T 2, ˜T 3) and the nontrivial comutation relations of
bV Iκ are14

[T1, T2] = κ T2, [T1, T3] = T3, κ �= −1. (42)

Trace of structure constants does not vanish and group BV Iκ
is not semisimple. In the parametrization used in [13] Bianchi
V Iκ cosmology is given by metric

F(t, x1)

=

⎛

⎜

⎜

⎝

−e−4�(t)a1(t)2a2(t)2a3(t)2 0 0 0
0 a1(t)2 0 0
0 0 e2κx1a2(t)2 0
0 0 0 e2x1a3(t)2

⎞

⎟

⎟

⎠

(43)

where the functions ai (t) are

a1(t) = e�(t)
(

p1

κ + 1

) κ2+1
(κ+1)2

e
(κ−1)p2 t

2(κ+1) sinh
− κ2+1

(κ+1)2 (p1t),

a2(t) = e�(t)
(

p1

κ + 1

) κ
κ+1

e
p2 t
2 sinh− κ

κ+1 (p1t),

a3(t) = e�(t)
(

p1

κ + 1

) 1
κ+1

e
−p2 t

2 sinh− 1
κ+1 (p1t). (44)

The background is invariant with respect to symmetry gen-
erated by left-invariant vector fields

V1 = ∂x1 − κ x2 ∂x2 − x3∂x3 , V2 = ∂x2 , V3 = ∂x3

satisfying (42). For dilaton �(t) = c1t the beta function
equations reduce to condition

c2
1 =

(

κ2 + κ + 1
)

p2
1

(κ + 1)2 − p2
2

4
.

The background is torsionless and for c1 = 0 also Ricci flat.

5.1 Poisson–Lie identities and dualities

Poisson–Lie identities of Drinfel’d double (BV Iκ |A ) are
given by matrices

14 Note that for κ = 0, or κ = 1, these are comutation relations of
bI I I , or bV , respectively. The case κ = −1 will be treated separately
in Sect. 6.

I1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 c12 c13 −c12c15 − c13c16 c15 c16
0 c22 0 −c15c22 0 0
0 0 c33 −c16c33 0 0
0 0 0 1 0 0
0 0 0 − c12

c22
1
c22

0

0 0 0 − c13
c33

0 1
c33

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

I2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 c12 c13 c12c15 + c13c16 c15 c16
0 0 0 c12c25 c25 0
0 0 0 c13c36 0 c36
0 0 0 −1 0 0
0 1

c25
0 c15

c25
0 0

0 0 1
c36

c16
c36

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The algebra bV Iκ admits automorphisms (35) and matrices
IA of the form (13) are among the special cases of I1. Clearly,
I1 is a product I1 = IA · IB of automorphisms and B-shifts
(26). Matrix I2 can be written as I2 = IA2 · IF · IA1 where
IF is the factorized duality (27) and IA1 , IA2 are given by
automorphisms (28). Poisson–Lie dualities are obtained by
multiplication by D0.

5.2 Transformed backgrounds

5.2.1 B-shifts

Using I1 directly in formulas (9)–(12) we get rather compli-
cated background tensor. However, since I1 splits as I1 =
IA · IB , the dependence of ̂F on the parameters appearing
in IA can be eliminated by transformation (16). The back-
ground obtained using I1 is equivalent to that obtained by
B-shift (26) and reads

̂F(t, x1)

=

⎛

⎜

⎜

⎝

−e−4�(t)a1(t)2a2(t)2a3(t)2 0 0 0
0 a1(t)2 −eκx1c15 −ex1c16

0 eκx1c15 e2κx1a2(t)2 0
0 ex1c16 0 e2x1a3(t)2

⎞

⎟

⎟

⎠

.

Beside the original metric (43) we have obtained a torsionless
B-field. Together with the original dilaton �(t1) = c1t the
background satisfies beta function equations.

Dual background ˜F calculated using D1 = D0 · I1 =
D0 · IA · IB is again too complicated to display. Nevertheless,
linear transformation of coordinates (16) followed by shift
in ỹ2, ỹ3 simplifies the background to
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˜F(t, ỹ2, ỹ3) =

⎛

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a1(t)2a2(t)2a3(t)2 0 0 0

0 a2(t)2a3(t)2

�
κa3(t)2 ỹ2

�
a2(t)2 ỹ3

�

0 − κa3(t)2 ỹ2
�

a1(t)2a3(t)2+ỹ2
3

�
− κ ỹ2 ỹ3

�

0 − a2(t)2 ỹ3
�

− κ ỹ2 ỹ3
�

a1(t)2a2(t)2+κ2 ỹ2
2

�

⎞

⎟

⎟

⎟

⎟

⎠

,

where

� = a1(t)
2a2(t)

2a3(t)
2 + κ2 ỹ2

2a3(t)
2 + a2(t)

2 ỹ2
3 .

These results are the same as results obtained by full duality
D0. Dual dilaton

˜�(t, ỹ2, ỹ3) = c1t − 1

2
ln �

found from formula (20) satisfies the generalized supergrav-
ity equations (17)–(19) where components of Killing vector
J = (0, κ + 1, 0, 0) correspond to trace of structure con-
stants of bV Iκ . Dualization with respect to D1 can be treated
as canonical duality in spite of the fact that it contains also
B-shifts and automorphisms.

5.2.2 Factorized dualities

Poisson–Lie identity IF in (27) can be interpreted as Buscher
duality with respect to two-dimensional Abelian subgroup
generated by left-invariant fields V2 = ∂x2 , V3 = ∂x3 .
Resulting curved background

̂F(t, x1)

=

⎛

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a1(t)2a2(t)2a3(t)2 0 0 0
0 a1(t)2 0 0

0 0 e2κx1

a2(t)2 0

0 0 0 e2x1

a3(t)2

⎞

⎟

⎟

⎟

⎟

⎠

(45)

and dilaton

̂�(t, x1) = c1t + 1

2
ln

(

e2(κ+1)x1

a2(t)2a3(t)2

)

(46)

calculated by formula (20) satisfy beta function equations
with vanishing Killing vector J since we have dualized with
respect to Abelian group.

Poisson–Lie identity I2 = IA2 · IF · IA1 gives a back-
ground whose metric can be brought to the form (45) by
coordinate transformation (16). There is also a torsionless
B-field depending on constants coming from IA1 that trans-
forms E(s) to E ′(s) = A1E(s)AT

1 . Dilaton found by (20)
from E ′(s) differs from (46) only by a constant shift and we

may conclude that results of duality with respect to I2 devi-
ate from those obtained by IF only by coordinate and gauge
transformation.

After a suitable coordinate transformation we find that
both matrices DF = D0 · IF and D2 = D0 · IA2 · IF · IA1

produce background

˜F(t, ỹ2, ỹ3)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a2
1a

2
2a

2
3 0 0 0

0 1
�

κa2
2 ỹ2
�

a2
3 ỹ3
�

0 − κa2
2 ỹ2
�

a2
2

(

a2
1+a2

3 ỹ
2
3

)

� − κa2
2a

2
3 ỹ2 ỹ3
�

0 − a2
3 ỹ3
� − κa2

2a
2
3 ỹ2 ỹ3
�

a2
3

(

a2
1+κ2a2

2 ỹ
2
2

)

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where

� = a1(t)
2 + κ2a2(t)

2 ỹ2
2 + a3(t)

2 ỹ2
3 .

This background is the same as the one that would be obtained
by performing Buscher duality with respect to symmetry gen-
erated by V1. Dilaton

˜�(t, ỹ2, ỹ3) = c1t − 1

2
ln �

satisfies ordinary beta function equations.
Let us note that results of this section hold also for

κ = 0, 1, i.e. for Bianchi I I I and Bianchi V . Dualities with
respect to these groups were treated in Sects. 3 and 4 with
different initial backgrounds.

6 Bianchi V I−1 cosmology

For Bianchi V I−1 cosmology we shall consider Manin triple
(d, bV I−1 , a) whose algebraic structure is given by comuta-
tion relations (42) with κ = −1. Structure coefficients of
Lie algebra bV I−1 are traceless and the group BV I−1 is not
semisimple. Metric has the form (43) with functions

a1(t) = √
p1 exp

((

e2p2t + p1t

2

)

+ �(t)

)

,

a2(t) = a3(t) = √
p2e

p2 t
2 +�(t) (47)

and dilaton is again �(t) = c1t . The beta function equations
are satisfied if

c2
1 = 1

4
(2p1 p2 + p2

2).
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6.1 Poisson–Lie identities and dualities

Poisson–Lie identities of Drinfel’d double (BV I−1 |A ) are
given by matrices

I1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 c12 c13 c12c15 + c13c16 c15 c16

0 0 c32
c32c56−c36c52

c16c32−c12c36
c32c56−c36c52

c36
c36c52−c32c56

0
0 c32 0 c15c32 + c13c36 0 c36

0 0 0 −1 0 0
0 c52 0 c15c52 + c13c56 0 c56

0 0 c52
c36c52−c32c56

c16c52−c12c56
c36c52−c32c56

c56
c32c56−c36c52

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

I2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 c12 c13 −c12c15 − c13c16 c15 c16

0 c33
c33c55−c35c53

0 c15c33−c13c35
c35c53−c33c55

0 c35
c35c53−c33c55

0 0 c33 −c16c33 − c12c35 c35 0
0 0 0 1 0 0
0 0 c53 −c16c53 − c12c55 c55 0
0 c53

c35c53−c33c55
0 c15c53−c13c55

c33c55−c35c53
0 c55

c33c55−c35c53

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

As special cases we find two types of automorphisms IA and
IA′ given by

A =
⎛

⎝

1 a12 a13

0 a22 0
0 0 a33

⎞

⎠ , A′ =
⎛

⎝

−1 a12 a13

0 0 a23

0 a32 0

⎞

⎠ ,

B-shifts generated by matrix

IB =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 b12 b13

0 1 0 −b12 0 b23

0 0 1 −b13 −b23 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (48)

β-shifts

Iβ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 β23 0 1 0
0 −β23 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and factorized dualities (27). To analyze results following
from application of Poisson–Lie identities I1 and I2 it is
helpful to find their decomposition into products of special
elements of NATD group. Depending on the values of param-
eters the matrices can be written as

I1 =
⎧

⎨

⎩

IA′ · IB · Iβ for c56 �= 0
IA′ · Iβ · IB for c56 = 0, c32 �= 0
IA · IB · IF for c56 = c32 = 0

and

I2 =
⎧

⎨

⎩

IA · IB · Iβ for c55 �= 0
IA · Iβ · IB for c55 = 0, c33 �= 0
IA′ · IB · IF for c55 = c33 = 0

for some IA, IA′ , IB , Iβ and IF . The parameters rising from
IA and IA′ can be again eliminated by coordinate transforma-
tion (16). It is thus sufficient to discuss backgrounds obtained
from IB , Iβ , IF and their products. Multiplying these matri-
ces by D0 we get Poisson–Lie dualities.

6.2 Transformed backgrounds

6.2.1 B-shifts

Transformed background

̂F(t, x1)

=

⎛

⎜

⎜

⎝

−e−4�(t)a1(t)2a2(t)4 0 0 0
0 a1(t)2 −b12e

−x1 −b13e
x1

0 b12e
−x1 e−2x1a2(t)2 −b23

0 b13e
x1 b23 e2x1a2(t)2

⎞

⎟

⎟

⎠

(49)

given by B-shift differs from original F by a torsionless B-
field and together with the dilaton ̂� = c1t satisfies beta
function equations.

Coordinate shifts eliminate b12, b13 in the dual obtained
from D0 · IB so it reads

˜F(t, ỹ2, ỹ3)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a2
1a

4
2 0 0 0

0
a4

2+b2
23

�
− ỹ2a

2
2+b23 ỹ3

�

a2
2 ỹ3−b23 ỹ2

�

0
a2

2 ỹ2−b23 ỹ3
�

a2
1a

2
2+ỹ2

3
�

b23a
2
1+ỹ2 ỹ3
�

0 − ỹ3a
2
2+b23 ỹ2

�

ỹ2 ỹ3−b23a
2
1

�

a2
1a

2
2+ỹ2

2
�

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where

� =
(

a2(t)
4 + b2

23

)

a1(t)
2 + a2(t)

2
(

ỹ2
2 + ỹ2

3

)

.

The constant b23 remains. For dilaton

˜�(t, ỹ2, ỹ3) = c1t − 1

2
ln �

beta function equations are satisfied. Vanishing of vector J
corresponds to the fact that structure constants of bV I−1 are
traceless.

6.2.2 β-shifts

Background given by β-shift is

̂F(t, x1)

=

⎛

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a1(t)2a2(t)4 0 0 0
0 a1(t)2 0 0

0 0 e−2x1 a2(t)2

β2
23a2(t)4+1

β23a2(t)4

β2
23a2(t)4+1

0 0 − β23a2(t)4

β2
23a2(t)4+1

e2x1 a2(t)2

β2
23a2(t)4+1

⎞

⎟

⎟

⎟

⎟

⎠

(50)

and together with the dilaton calculated by formula (22)

̂�(t) = c1t − 1

2
ln

(

β2
23a2(t)

4 + 1
)
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satisfy beta function equations. Although matrices IB and
Iβ do not commute, backgrounds obtained from IB · Iβ and
Iβ · IB are the same and differ from ̂F in (50) only by a
torsionless B-field.

The dual obtained from D0 · Iβ is

˜F(t, x̃2, x̃3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a2
1a

4
2 0 0 0

0
a2

2
a2

1a
2
2+x̃2

2+x̃2
3

β23a2
2 x̃3−x̃2

a2
1a

2
2+x̃2

2+x̃2
3

β23 x̃2a2
2+x̃3

a2
1a

2
2+x̃2

2+x̃2
3

0
β23 x̃3a2

2+x̃2

a2
1a

2
2+x̃2

2+x̃2
3

a2
1a

2
2+(

β2
23a

4
2+1

)

x̃2
3

a2
2

(

a2
1a

2
2+x̃2

2+x̃2
3

)

(

β2
23a

4
2+1

)

x̃2 x̃3−β23a2
1a

4
2

a2
2

(

a2
1a

2
2+x̃2

2+x̃2
3

)

0
β23a2

2 x̃2−x̃3

a2
1a

2
2+x̃2

2+x̃2
3

β23a2
1a

4
2+(

β2
23a

4
2+1

)

x̃2 x̃3

a2
2

(

a2
1a

2
2+x̃2

2+x̃2
3

)

a2
1a

2
2+(

β2
23a

4
2+1

)

x̃2
2

a2
2

(

a2
1a

2
2+x̃2

2+x̃2
3

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and with dilaton

˜�(t, x̃2, x̃3) = c1t

−1

2
ln

(

a2(t)
2
(

a1(t)
2 a2(t)

2 + x̃2
2 + x̃2

3

))

they satisfy beta function equations. Tensors ˜F arising from
D0 · IB · Iβ and D0 · Iβ · IB are too extensive to be displayed
here. Nevertheless, it is straightforward to calculate them and
verify that together with corresponding dilatons they satisfy
beta function equations.

6.2.3 Factorized dualities

Poisson–Lie identity (27), interpreted as Buscher duality
with respect to symmetry generated by V2 and V3, pro-
duces metric (45) with κ = −1 and functions a2(t) =
a3(t) given by (47). Dilaton calculated by the formula
(20)

̂�(t) = c1t − 1

2
ln a2(t)

4 = −(c1 + p2) t + const.

satisfies beta function equations. Background obtained from
IB · IF differs from this ̂F only by a torsionless B-field that is
the same as in (49). Let us note that for c1 = −p2 the metric
is Ricci flat.

Dual background produced by D0 · IF reads

˜F(t, x̃2, x̃3)

=

⎛

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a2
1a

4
2 0 0 0

0 1
�

− a2
2 x̃2
�

a2
2 x̃3
�

0
a2

2 x̃2
�

a2
2

(

a2
1+a2

2 x̃
2
3

)

�

a4
2 x̃2 x̃3
�

0 − a2
2 x̃3
�

a4
2 x̃2 x̃3
�

a2
2

(

a2
1+a2

2 x̃
2
2

)

�

⎞

⎟

⎟

⎟

⎟

⎠

where

� = a1(t)
2 + a2(t)

2
(

x̃2
2 + x̃2

3

)

.

This background and dilaton

˜�(t, x̃2, x̃3) = c1t − 1

2
ln �

satisfy beta function equations. Background

˜F(t, ỹ2, ỹ3) =

⎛

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a2
1a

4
2 0 0 0

0
b2

23a
4
2+1

�
− a2

2

(

b23 ỹ3a2
2+ỹ2

)

�

a2
2 ỹ3−b23a4

2 ỹ2
�

0
a2

2 ỹ2−b23a4
2 ỹ3

�

a2
2

(

a2
1+a2

2 ỹ
2
3

)

�

a4
2

(

b23a2
1+ỹ2 ỹ3

)

�

0 − a2
2

(

b23 ỹ2a2
2+ỹ3

)

�
− a4

2

(

b23a2
1−ỹ2 ỹ3

)

�

a2
2

(

a2
1+a2

2 ỹ
2
2

)

�

⎞

⎟

⎟

⎟

⎟

⎠

where

� =
(

b2
23a2(t)

4 + 1
)

a1(t)
2 + a2(t)

2
(

ỹ2
2 + ỹ2

3

)

is obtained from D0 · IB · IF and with dilaton

˜�(t, ỹ2, ỹ3) = c1t − 1

2
ln �

it satisfies beta function equations.

7 Bianchi I I cosmology

Lie algebra d = bI I �� a of the Drinfel’d double D =
(BI I |A ) is spanned by basis (T1, T2, T3, ˜T 1, ˜T 2, ˜T 3) where
nontrivial comutation relations of bI I are

[T2, T3] = T1. (51)

Trace of structure constants is zero and group BI I is not
semisimple.
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Cosmology invariant with respect to symmetry generated
by left-invariant vector fields

V1 = ∂x1, V2 = −x3 ∂x1 + ∂x2 , V3 = ∂x3

satisfying (51) is given by the metric

F(t, x2) =

⎛

⎜

⎜

⎝

−e−4�(t)a1(t)2a2(t)2a3(t)2 0 0 0
0 a1(t)2 0 a1(t)2x2

0 0 a2(t)2 0
0 a1(t)2x2 0 a1(t)2x2

2 + a3(t)2

⎞

⎟

⎟

⎠

(52)

where the functions ai (t) are

a1(t) = e�(t)
√

p1

cosh(p1t)
,

a2(t) = e�(t)+ p2 t
2

√

cosh(p1t),

a3(t) = e�(t)+ p3t
2

√

cosh(p1t) (53)

as in [13]. For dilaton �(t) = c1 t the beta function equations
reduce to

4c2
1 = p3 p2 − p2

1 .

The background is torsionless and for c1 = 0 also Ricci flat.

7.1 Poisson–Lie identities and dualities

Unfortunately, we are not able to display general forms of
matrices generating Poisson–Lie identities of Manin triple
(d, bI I , a) because the expressions are too extensive. How-
ever, we were able to decompose them into products of auto-
morphisms, B-shifts and β-shifts. To be more specific, all the
solutions can be written in one of the two forms

I1 = IA · IB · Iβ, I2 = IA · Iβ · IB (54)

where automorphisms have the form (13) with

A =
⎛

⎝

� 0 0
a21 a22 a23

a31 a32 a33

⎞

⎠ , � = det

(

a22 a23

a32 a33

)

,

B-shifts are generated by matrix (48), and β-shifts are
given by

Iβ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 β12 β13 1 0 0

−β12 0 0 0 1 0
−β13 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (55)

There are no factorized dualities satisfying (6) and (7).
Poisson–Lie dualities can be obtained from identities by left-
multiplication by the matrix (8) representing full duality.

7.2 Transformed backgrounds

We already know that if Poisson–Lie identity decomposes as
in (54), coordinate transformations can eliminate parameters
of IA in the resulting backgrounds. Thus it is sufficient to
investigate the effects of IB , Iβ and their products.

7.2.1 B-shifts

Structure coefficients of Manin triple (d, bI I , a) remain
invariant under B-shift (48) that transforms the background
(52) to

̂F(t, x2) =

⎛

⎜

⎜

⎝

−e−4�(t)a2
1a2

2a3
2 0 0 0

0 a2
1 −b12 a2

1x2 − b13

0 b12 a2
2 b12x2 − b23

0 x2a2
1 + b13 b23 − b12x2 a3

2 + a1
2x2

2

⎞

⎟

⎟

⎠

.

Up to gauge transformation of the antisymmetric part it
is equivalent to (52). Together with dilaton ̂�(t) = c1t the
background satisfies beta function equations.

Dependence on b23 can be eliminated in background
obtained from DB = D0 · IB and we have

˜F(t, y1)

=

⎛

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a2
1a

2
2a

2
3 0 0 0

0
a2

2a
2
3+ỹ2

1
�

b12a2
3−b13 ỹ1
�

b13a2
2 +b12 ỹ1
�

0 − b12a2
3 +b13 ỹ1
�

b2
13+a2

1a
2
3

�

a2
1 ỹ1−b12b13

�

0
b12 ỹ1−b13a2

2
�

− ỹ1a2
1+b12b13

�

b2
12+a2

1a
2
2

�

⎞

⎟

⎟

⎟

⎟

⎠

where

� = a1(t)
2
(

a2(t)
2a3(t)

2 + ỹ2
1

)

+ b2
13a2(t)

2 + b2
12a3(t)

2.

With dilaton

˜�(t, ỹ1) = c1t − 1

2
ln �
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given by (20) the beta function equations are satisfied. Results
for the dual B-shift differ from the canonical dual obtained by
D0 not only by a shift in y1 but also by other terms depending
on b12, b13.

7.2.2 β-shifts

Let us now investigate the transformation of metric (52) given
by β-shift (55). This Poisson–Lie identity generates

̂F(t, x2) =

⎛

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a2
1a

2
2a

2
3 0 0 0

0
a2

1
�

a2
1a

2
2β12
�

a2
1

(

β13a2
3+x2

)

�

0 − a2
1a

2
2β12
�

a2
2

(

a2
1a

2
3β2

13+1
)

�
− a2

1a
2
2β12

(

β13a2
3+x2

)

�

0
a2

1

(

x2−a2
3β13

)

�

a2
1a

2
2β12

(

x2−a2
3β13

)

�

(

a2
1a

2
2β2

12+1
)

a2
3+a2

1 x
2
2

�

⎞

⎟

⎟

⎟

⎟

⎠

where

� =
(

a2(t)
2β2

12 + a3(t)
2β2

13

)

a1(t)
2 + 1.

Together with corresponding dilaton

̂�(t) = c1t − 1

2
ln �

the background satisfies beta function equations. Poisson–
Lie identity IB acting on this background adds a torsionless
B-field, so we conclude that backgrounds obtained from IB ·
Iβ and Iβ can be considered equivalent. Despite the fact that
IB and Iβ do not commute, ̂F obtained from Iβ · IB is exactly
the same as for IB · Iβ .

Dual background resulting from Dβ = D0 · Iβ is

˜F(t, x̃1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a2
1a

2
2a

2
3 0 0 0

0
(

a2
3+β2

12a
2
1 x̃

2
1

)

a2
2+(

β2
13a

2
1a

2
3+1

)

x̃2
1

a2
1

(

a2
2a

2
3+x̃2

1

)

a2
3

(

β13 x̃1−β12a2
2

)

a2
2a

2
3+x̃2

1
− a2

2

(

β13a2
3+β12 x̃1

)

a2
2a

2
3+x̃2

1

0
a2

3

(

β12a2
2+β13 x̃1

)

a2
2a

2
3+x̃2

1

a2
3

a2
2a

2
3+x̃2

1

x̃1
a2

2a
2
3+x̃2

1

0
a2

2

(

β13a2
3−β12 x̃1

)

a2
2a

2
3+x̃2

1
− x̃1

a2
2a

2
3+x̃2

1

a2
2

a2
2a

2
3+x̃2

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The dilaton is

˜�(t, x̃1) = c1t − 1

2
ln

(

a1(t)
2
(

a2(t)
2a3(t)

2 + x̃2
1

))

and it is interesting that it does not depend on β12 and β13.
Together they satisfy beta function equations.

Dual backgrounds and dilatons found from D0 · IB · Iβ and
D0 · Iβ · IB are too complicated to display and not particularly
illuminating so we omit them here. Nevertheless, one can
check that they satisfy beta function equations.

8 Conclusions

We have identified general forms of Poisson–Lie identities
and Poisson–Lie dualities for six-dimensional semi-Abelian
Manin triples d = b �� a where b’s are Bianchi algebras that
generate isometries of Bianchi cosmologies. Subsequently
we have managed decomposing both the Poisson–Lie iden-
tities and Poisson–Lie dualities into simple factors, namely
automorphisms of Manin triples, B-shifts, β-shifts and “full”
or “factorized” dualities. This supports the conjecture posed

in [21] that NATD group is generated by these elements.
Finally, we have used these decompositions to transform
Bianchi cosmologies supplemented by dilaton fields [12].
For these transformations we used Poisson–Lie T-plurality
and dilaton formula described in Sect. 2.

In this way we have obtained many new backgrounds
and corresponding dilatons that solve the Generalized Super-
gravity Equations, and confirmed that the Killing vector J
in Generalized Supergravity Equations is given by trace of
structure constants [13]. One must, however, carefully evalu-
ate what groups, more precisely what subgroups of Drinfel’d
double, truly participate in the transformation since it influ-
ences resulting Killing vector. For factorized dualities these
subgroups often become Abelian and the Generalized Super-
gravity Equations reduce to standard beta function equa-
tions. New backgrounds, dilatons and corresponding Killing

vectors are summarized in the Tables in the Appendix. The
backgrounds obtained by Poisson–Lie identities are again
invariant with respect to Bianchi groups.
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Appendix

For reader’s convenience we recapitulate backgrounds and
dilatons yielded from Poisson–Lie identities and dualities
in the following tables. We add vector J as well to indicate

whether the backgrounds satisfy standard beta function equa-
tions (in which case J = 0) or Generalized Supergravity
Equations (17)–(19). In the first column we display which
one of the special transformations was used to get the result.
Automorphisms IA are not mentioned. Nevertheless, since
we want to include results obtained from general Poisson–
Lie identities and dualities, some parameters appearing in the
tensors may arise from automorphisms. We recommend to
check details in previous sections (Tables 2, 3, 4, 5, 6).

Table 2 Results for Poisson–Lie identities and dualities of Bianchi I I cosmology. Functions ai (t) are given by (53) and �(t) = c1t

BI I Transformed backgrounds, dilatons and vectors J

IB
̂F(t, x2) =

⎛

⎜

⎜

⎝

−e−4�(t)a2
1a

2
2a

2
3 0 0 0

0 a2
1 −b12 a2

1 x2 − b13

0 b12 a2
2 b12x2 − b23

0 x2a2
1 + b13 b23 − b12x2 a2

3 + a2
1 x

2
2

⎞

⎟

⎟

⎠

̂�(t) = c1t, J = 0

DB

˜F(t, y1) =

⎛

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a2
1a

2
2a

2
3 0 0 0

0
a2

2a
2
3+ỹ2

1
�

b12a2
3−b13 ỹ1
�

b13a2
2+b12 ỹ1
�

0 − b12a2
3+b13 ỹ1
�

b2
13+a2

1a
2
3

�

a2
1 ỹ1−b12b13

�

0
b12 ỹ1−b13a2

2
�

− ỹ1a2
1+b12b13

�

b2
12+a2

1a
2
2

�

⎞

⎟

⎟

⎟

⎟

⎠

� = a1(t)2
(

a2(t)2a3(t)2 + ỹ2
1

) + b2
13a2(t)2 + b2

12a3(t)2

˜�(t, ỹ1) = c1t − 1
2 ln �, J = 0

Iβ

̂F(t, x2) =

⎛

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a2
1a

2
2a

2
3 0 0 0

0
a2

1
�

a2
1a

2
2β12
�

a2
1

(

β13a2
3+x2

)

�

0 − a2
1a

2
2β12
�

a2
2

(

a2
1a

2
3β2

13+1
)

�
− a2

1a
2
2β12

(

β13a2
3+x2

)

�

0
a2

1

(

x2−a2
3β13

)

�

a2
1a

2
2β12

(

x2−a2
3β13

)

�

(

a2
1a

2
2β2

12+1
)

a2
3+a2

1 x
2
2

�

⎞

⎟

⎟

⎟

⎟

⎠

� = (

a2(t)2β2
12 + a3(t)2β2

13

)

a1(t)2 + 1
̂�(t) = c1t − 1

2 ln �, J = 0

Dβ

˜F(t, x̃1) =
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a2
1a

2
2a

2
3 0 0 0

0
(

a2
3+β2

12a
2
1 x̃

2
1

)

a2
2+(

β2
13a

2
1a

2
3+1

)

x̃2
1

a2
1

(

a2
2a

2
3+x̃2

1

)

a2
3

(

β13 x̃1−β12a2
2

)

a2
2a

2
3+x̃2

1
− a2

2

(

β13a2
3+β12 x̃1

)

a2
2a

2
3+x̃2

1

0
a2

3

(

β12a2
2+β13 x̃1

)

a2
2a

2
3+x̃2

1

a2
3

a2
2a

2
3+x̃2

1

x̃1
a2

2a
2
3+x̃2

1

0
a2

2

(

β13a2
3−β12 x̃1

)

a2
2a

2
3+x̃2

1
− x̃1

a2
2a

2
3+x̃2

1

a2
2

a2
2a

2
3+x̃2

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

˜�(t, x̃1) = c1t − 1
2 ln

(

a1(t)2
(

a2(t)2a3(t)2 + x̃2
1

))

, J = 0
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Table 3 Results for
Poisson–Lie identities and
dualities of Bianchi I I I
cosmology and dilaton � = 0

BI I I Transformed backgrounds, dilatons and vectors J

IB
̂F(t, x1) =

⎛

⎜

⎜

⎝

−1 0 0 0
0 t2 −c15 −c16e−x1

0 c15 1 0
0 c16e−x1 0 t2e−2x1

⎞

⎟

⎟

⎠

˜� = 0, J = 0

DB

˜F(t, x̃3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0

0 t2

t4+c2
15t

2+x̃2
3

t2c15
t4+c2

15t
2+x̃2

3
− x̃3

t4+c2
15t

2+x̃2
3

0 − t2c15
t4+c2

15t
2+x̃2

3

t4+x̃2
3

t4+c2
15t

2+x̃2
3

c15 x̃3
t4+c2

15t
2+x̃2

3

0 x̃3
t4+c2

15t
2+x̃2

3

c15 x̃3
t4+c2

15t
2+x̃2

3

t2+c2
15

t4+c2
15t

2+x̃2
3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

˜�(t, x̃3) = − 1
2 ln

(

t4 + c2
15t

2 + x̃2
3

)

, J = (0,−1, 0, 0)

IF1

̂F(t, x1) =

⎛

⎜

⎜

⎝

−1 0 0 0
0 t2 −c12 −c13e−x1

0 c12 1 0

0 c13e−x1 0 e−2x1

t2

⎞

⎟

⎟

⎠

̂�(t, x1) = − ln t − x1, J = 0

DF1

˜F(t, x̃3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0

0 1
c2

15+t2
(

x̃2
3 +1

)

c15
c2

15+t2
(

x̃2
3 +1

) − t2 x̃3
c2

15+t2
(

x̃2
3 +1

)

0 − c15
c2

15+t2
(

x̃2
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⎞

⎟

⎟

⎟

⎟

⎟

⎠

˜�(t, x̃3) = − 1
2 ln

(

c2
15 + t2 x̃2

3 + t2
)

, J = 0

Table 4 Results for
Poisson–Lie identities and
dualities of Bianchi V
cosmology and dilaton � = 0

BV Transformed backgrounds, dilatons and vectors J
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⎞

⎟

⎟

⎠
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⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0

0 t2

t4+x̃2
2 +x̃2

3

x̃2
t4+x̃2

2 +x̃2
3

x̃3
t4+x̃2

2 +x̃2
3

0 − x̃2
t4+x̃2

2 +x̃2
3

t4+x̃2
3

t2
(

t4+x̃2
2 +x̃2

3

) − x̃2 x̃3
t2

(

t4+x̃2
2 +x̃2

3

)

0 − x̃3
t4+x̃2

2 +x̃2
3

− x̃2 x̃3
t2

(

t4+x̃2
2 +x̃2

3

)

t4+x̃2
2

t2
(
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3

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

˜�(t, x̃2, x̃3) = − 1
2 ln

(

t2
(

x2
2 + x2
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, J = (0, 2, 0, 0)

IF
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⎜

⎜
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⎠
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x̃2
3 +1
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⎞

⎟

⎟

⎟
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Table 5 Results for
Poisson–Lie identities and
dualities of Bianchi V Iκ
cosmology. Functions ai (t) are
given by (44), κ �= −1 and
�(t) = c1t

BV Iκ Transformed backgrounds, dilatons and vectors J
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̂F(t, x1) =
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⎝
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⎞
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⎟
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DB

˜F(t, x̃2, x̃3) =
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�

⎞

⎟
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⎟
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3

˜�(t, x̃2, x̃3) = c1t − 1
2 ln �, J = (0, κ + 1, 0, 0)

IF
̂F(t, x1) =

⎛

⎜

⎜

⎜

⎜

⎝
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2
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2
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2

0
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3

⎞

⎟

⎟

⎟

⎟

⎠
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⎛

⎜

⎜

⎜

⎜

⎝
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2
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2
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0 1
�
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�
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�
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3 x̃
2
3

)
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2
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�
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3
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3

˜�(t, x̃2, x̃3) = c1t − 1
2 ln �, J = 0

Table 6 Results for
Poisson–Lie identities and
dualities of Bianchi V I−1
cosmology. Functions ai (t) are
given by (47) and �(t) = c1t

BV I−1 Transformed backgrounds, dilatons and vectors J
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⎛

⎜

⎜

⎜

⎜

⎝

−e−4�(t)a2
1a

4
2 0 0 0

0
a4

2+b2
23

�
− ỹ2a2
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Table 6 continued
BV I−1 Transformed backgrounds, dilatons and vectors J

Dβ

˜F(t, x̃2, x̃3) =
⎛

⎜

⎜

⎜

⎜

⎜

⎜
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)
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⎟

⎟

⎟
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