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1 Introduction

Duality transformations play crucial role in the study of var-
ious aspects of string theory and related fields. They con-
nect theories in different coupling regimes or, in the case
of T-duality, backgrounds with distinct curvature properties.
Both Abelian T-duality [1] and its non-Abelian generaliza-
tion [2,3] rely on the presence of symmetries of sigma model
backgrounds. Dual sigma model related to the original one by
T-duality is obtained by gauging of the symmetry and intro-
duction of Lagrange multipliers. However, the symmetries
are not preserved in the non-Abelian case, meaning we may
not be able to return to the original model by dualization.
Despite this serious issue we see renewed interest in (non-)
Abelian T-duality (NATD). The procedure was extended to
RR fields in [4,5] and is used frequently to find new super-
gravity solutions, see e.g. [6,7] and references therein. It also
applies in the study of integrable models [8—10]. In this paper
we are going to present new solutions of the Generalized
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Supergravity Equations obtained by action of Poisson-Lie
identities and Poisson—Lie dualities introduced in [11] on
the Bianchi cosmologies [12]. This extends list of results
obtained in [13].

Poisson—Lie T-duality [14] introduces Drinfel’d double as
the underlying algebraic structure of T-duality and replaces
symmetry of the sigma model background by the so-called
Poisson—Lie symmetry [15]. This allows us to treat both mod-
els equally and solves the above mentioned problem. We shall
use this formalism through the whole paper. In the case of
(non-) Abelian T-duality the Lie group & of Drinfel’d dou-
ble splits into Lie subgroups ¢ and & of equal dimension,
where the former represents symmetries of the original back-
ground while the latter is Abelian. In this paper we consider
only these semi-Abelian Drinfel’d doubles as we focus on
dualization of particular backgrounds and the presence of
symmetries remains crucial in such case.! Poisson—Lie dual-
ity exchanges roles of ¢ and ¢, and we understand it as
a change of decomposition (¢ |€2) of 7 to (5!7 |¢) and vice
versa. Beside (¢ |€!7 ) and (g~|g ) there might be other decom-
positions (@{!;), ({!7 |§?) of a Drinfel’d double & that can
be used to construct mutually related sigma models. The
corresponding transformation between sigma models was
denoted Poisson—Lie T-plurality [17]. Decompositions of
low-dimensional Drinfel’d doubles were classified in papers
[18-20] in terms of Manin triples (0, g, g) that represent
decompositions of Lie algebra 0 of the Drinfel’d double &
into subalgebras g and g corresponding to subgroups ¢ and
g

In our recent paper [11] we noted that besides (non-)
Abelian T-duality there exist other transformations that either
preserve or exchange the algebras g and g of the Manin
triple (0, g, g). We shall call them Poisson—Lie identities and
Poisson—Lie dualities. Similar transformations were stud-
ied in [21] to get insight into the structure of the so-called
NATD group of T-duality transformations. Beside others,
this group contains automorphisms of the algebras forming
Manin triples, B-shifts, 8 -shifts, “factorized” dualities and
their compositions. These, however, have to be understood
as special cases of Poisson—Lie T-plurality. We continue the
investigation of the NATD group probing its structure for
low-dimensional Drinfel’d doubles, where general forms of
Poisson—Lie identities and dualities can be identified. We
show that all transformations are finite compositions of the
special elements of NATD group that were mentioned earlier.
It turns out that the effect of automorphisms and B-shifts on
resulting backgrounds can be often eliminated by a change
of coordinates, hence, we identify what parameters of the
transformations are relevant.

! See [16] for discussion on this topic.

2 B-shifts are also referred to as TsT transformations, see [22,23].
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Long-lasting problem appearing in discussion of non-
Abelian T-duality is that dualization with respect to non-
semisimple group ¢ leads to mixed gauge and gravitational
anomaly, see [24], proportional to the trace of structure con-
stants of g. Authors of paper [13] have found non-Abelian
T-duals of Bianchi cosmologies [12] and have shown that
instead of standard beta function equations the dual back-
grounds satisfy the so-called Generalised Supergravity Equa-
tions containing Killing vector J whose components are
given by the trace of structure constants. For Bianchi V cos-
mology this was observed already in [25]. Therefore, it is
natural to ask if backgrounds and dilatons obtained from
Bianchi cosmologies by Poisson—Lie identities and duali-
ties satisfy Generalised Supergravity Equations as well and
what Killing vectors have to be used. We show that compo-
nents of 7 are determined by trace of structure constants,
however, one must carefully inspect what groups (or sub-
groups of) ¢ truly participate in the duality transformation.
For Yang—Baxter deformations of AdSs x S the problem of
finding 7 was addressed in [26,27] and physical meaning of
J was found in [28]. Discussion on the Poisson—Lie duality
and plurality of the Generalized Supergravity Equations can
be found e.g. in [29] and [30].

We start with a short description of Poisson-Lie T-
plurality in Sect.2, where necessary formulas are summa-
rized and general forms of transformed backgrounds are
presented. In Sects.3—7 we investigate various transforma-
tions of Bianchi cosmologies focusing on groups that are not
semisimple. Since calculations with general transformations
often result in rather complicated backgrounds that cannot be
displayed, detailed description is given only for special ele-
ments of the NATD group. Summary of transformed back-
grounds can be found in the Appendix.

2 Basics of Poisson-Lie T-plurality

In the first two subsections we recapitulate Poisson-Lie T-
plurality with spectators [14,17,31]. We follow the summary
givenin [11].

2.1 Sigma models

Let .# be (n + d)-dimensional (pseudo-)Riemannian tar-
get manifold and consider sigma model on .# given by
Lagrangian

L=0_¢"Fu($)d ¢,
uw=1,....,n+d

Pt = ¢" (o4, 0-),

where tensor field 7 = G + B on .# defines metric and
torsion potential (Kalb—Ramond field) of the target manifold.
Assume that there is a d-dimensional Lie group ¢ with free
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action on ./ that leaves the tensor invariant. The action of ¢
is transitive on its orbits, hence we may locally consider .Z ~
(M])9) x G =N x4, and introduce adapted coordinates

{SarXa}, a=1,...,n=dimA, a=1,...,d =dim¥

where s, label the orbits of ¢ and are treated as spectators,
and x,, are group coordinates.’ Dualizable sigma model on
N x ¥ is given by tensor field F defined by (n+d) x (n+d)
matrix E(s) as

F(s,x) =Ex) - E(s)-ET(x), E(x) = <1(;1 e(?c))

ey

where e(x) is d x d matrix of components of right-invariant
Maurer—Cartan form (dg)g~! on ¢.

Using non-Abelian T-duality one can find dual sigma
model on .4 x o7, where <7 is Abelian subgroup of semi-
Abelian Drinfel’d double Z = (¢|.<). The necessary for-
mulas will be given in the following subsection as a special
case of Poisson-Lie T-plurality. In this paper the groups ¢
will be non-semisimple Bianchi groups. Bianchi cosmolo-
gies are defined on four-dimensional manifolds, henced = 3,
n = 1,and we denote the spectator as ¢ := s1. Elements of the
group ¢ shall be parametrized as g = ¢*171e%272¢%373 where
e¥212¢%373 and ¢%373 are normal subgroups of ¢. Similarly,

. - TR Y )
elements of .o/ are parametrized as § = e*!7 %27 %77,

2.2 Poisson-Lie T-plurality with spectators

For certain Drinfel’d doubles several decompositions may
exist. Suppose that ¥ = (¢ |§2) splits into another pair of
subgroups & and &. Then we can apply the full framework
of Poisson-Lie T-plurality [14,17] and find sigma model on
N xG.

The 2d-dimensional Lie algebra ? of the Drinfel’d double
2 is equipped with an ad-invariant non-degenerate symmet-
ric bilinear form (., .). Let? = g >« §and 0 = g b« g be two
decompositions (Manin triples (0, g, §) and (0, g, g)) of 0
into double cross sum of subalgebras [34] that are maximally
isotropic with respect to (., .). The pairs of mutually dual
bases T, € g, Ta eﬁandﬁ €g, T ega=1,....d,
satisfying

(Tu, T) =0, (T, 7% =0, (T, T?) = 8",
(T,,Ty) =0,  (T9,TPy=0, (T,,T")=68" (2

then must be related by transformation

-

3 Detailed discussion of the process of finding adapted coordinates can
be found e.g. in [31-33].

where C is an invertible 2d x 2d matrix. Due to ad-invariance
of the bilinear form (., .) the algebraic structure of ? is given
both by

[T, Tj1 = fiTh, (T, T/1=f'T",

v DO
(T;, T/ = f.T" + f" 1% )
and
(T;. T} = fATe. (1. T71= jJ T,
o
(T;, T/1 = f.T" + f"Tx. Q)

Given the structure constants Fi]} of 0 = g < g and i’:’; of
0 = g < g, the matrix C has to satisfy equation

CECYFpy = FapCL. (©)

To preserve the bilinear form (., .) and thus (2), C also has
to satisfy

Ci/C} (Do) pg = (Do)ab @)

where (Dg),p are components of matrix Dy that can be writ-
ten in block form as

(0 1y
Do = <1d Od) . 3
In other words, C is an element of O(d, d) but, unlike the
case of Abelian T-duality, not every element of O(d, d) is
allowed in (3).

For the following formulas it will be convenient to intro-
duce d x d matrices P, Q, R, S as

N _ 1 (T\_(P 0@\ (T
H-O-E9O o
and extend these to (n + d) x (n + d) matrices
1, O (0, O 0, O
r=(5 b o=(v o) ==(C &)
1, O
s=(53)

to accommodate the spectator fields. It is also advantageous
to introduce block form of E (s) as

_ Eaﬂ(s) Eap(s)
B = (Ea,g(s) Eab(s)>’
o,f=1,....,n, a,b=1,...,d.

The sigma model on .4~ x 7 related to (1) via Poisson—Lie
T-plurality is given by tensor

@ Springer
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Fs,9) =E@) - E6s, 5 - & (%), 5@):(16’ a&))
(10)

where €(x) is d x d matrix of components of right-invariant
Maurer—Cartan form (d8)g~" on ¢,

E(s, %) = (Qyga + E(s) - TIE) ™ - E(s5)
=(E ")+ TE) ", (11)

N 0
) = ( 0 b -ﬁ%ﬁ))’

and matrices 75()2) and a(x) are submatrices of the adjoint
representation

=)

ady-1(T) =b(®)-T+a '@ - T.

The matrix E (s) is obtained by formula

E(s)=(P+E() R (Q+E@)-S) (12)
s0 it is necessary* that

det (P+ E(s)-R)#0 # det (Q+ E(s) - S).

Formulas (10)—(12) reduce to those for full Poisson-Lie dual-
ity if wechoose P = § = 0y and Q = R = 1. Furthermore,
for a semi-Abelian Drinfel’d double the well-known Buscher
rules for (non-) Abelian T-duality are restored. If there are
no spectators the plurality is called atomic.

2.3 Poisson—Lie identities and Poisson—Lie dualities

Let us now restrict our considerations to mappings (3) that
preserve the Manin triple, i.e. § = g, § = @, and that sat-
isfy (6) and (7). They are the Poisson—-Lie identities. The
Maurer—Cartan form (dg)g~! remains unchanged but E (s)
transforms as in (12). Moreover, for non-Abelian T-duality
the algebra g is Abelian, i.e. g = a, thus band TI vanish, and
we may write

Fs,x) =Ex)-EGs)-ET(x).

Let us note that both backgrounds F (s, x) and F (s, x) are
invariant with respect to the group ¢.

For special transformations mentioned in the introduction
we can further specify the resulting backgrounds. Namely,
matrices

Iy = (3 AOT) (13)

4 Invertibility of E(s) is not required in the first expression in (11) and
only det (P + E(s) - R) # 0 is required. However, for regular E(s)
the formulas simplify.

5 Since ¥ = ¢ we omit the hat over group coordinates and write simply
X.

@ Springer

are always among the transformations (3) preserving the
Manin triple 0 = g < a if A is an automorphism® of g.
Transformed E(s) then reads

EGs)=A-E(s) AT, A=<16l 2).

Transformations (3) of the form
IBz(l(;’ i) B" =-B (14)

are called B-shifts, since the background F (s, x) obtained
by this transformation is given by

= = = 0, O
E(s) = (E(s) — B), B:(O B).
Tensor F differs from the original one by an antisymmet-
ric term B = —E(x) - B - £E(x)T that, however, for solv-
able Bianchi algebras does not produce supplementary tor-
sion. Therefore, for all investigated Bianchi cosmologies F
is gauge equivalent to the initial tensor F.

B-shifts are generated by transformation matrices

_(la O T _
Iﬂ_(ﬁ ld)’ :3 —_,3

and the transformed 7 (s, x) is given by

E()=1-E()-p) - E6). B= (% 2) :
For invertible E (s), we may write E(s) =(E(s)"! = 5)’1.
Beside these transformations we may also encounter map-
pings I that switch some of the basis vectors 7; <> T", while
preserving structure coefficients of the Manin triple. These
“factorized” dualities can be interpreted as dualization with
respect to subgroups of ¢. In general, these cannot be written
concisely in block form and we do not discuss them here. We
shall see many examples in the following sections.
Let us further investigate Poisson—Lie dualities, i.e. map-
pings (3) that change Manin triple d = g atod = av< g.
Equation (3) implies that

()= (-nr-()

Therefore, Poisson-Lie dualities are composed of Poisson—
Lie identities / and “full” T-duality Dy that exchanges all
generators of g and a as T; < 7~", fori = 1,...,d. In this
way we can define dual B-shifts, dual §-shifts and dual auto-
morphisms.

© Qur approach differs from [21], where the authors consider vector
space isomorphisms of Lie algebra of the Drinfel’d double rather than
automorphisms of a chosen Manin triple.
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Backgrounds on & = of obtained from (1) by Poisson—
Lie dualities have the form
~ ~ ~ I ~ 0, 0
Fs.%) = (E (s) + H(x)) s (6 < 0 Z;@>
because e(x) = a(x) = 1. For solvable groups ¢ we have
bap(X) = facb Xe-

It is possible to be more specific when we restrict to spe-
cific elements of the NATD group. In the presence of spec-
tators, however, the formulas for Poisson—Lie dualities are
quite complicated. Fortunately, we do not need their full form
since Eqg(s) and Eyp(s) in E(s) vanish for the backgrounds
discussed in the rest of the paper. Hence faﬁ (s) = Fap(s)
and plurality affects only F,; (s, x). The transformations we
are interested in, therefore, concern only the fub(s, X) block
of the resulting background tensor F.

For the dual B-shift

DBZDO‘IB=<1(L llg), BT =—B

and vanishing E,g(s), Eqp(s) the matrix (E‘l(s) + ﬁ(i))
has the form

(E;ﬁl (s) 0 )
0 Eup(s) — Bap + bap (%) .

For solvable groups (5()?) — B)ap = f;Xc — Bap. As we
shall see, for some groups this enables us to get rid of some
parameters of B, by coordinate transformations.

General formulas for dual g-shift

1
D,g=D0-1,3=<fd O”’) Bl =-p

in the presence of spectators are complicated and not partic-
ularly illuminating. For vanishing E,g(s), Eqp(s) one gets

~  (Eu(s) 0
Em‘( 0 E;;<s>—ﬂ)'

Let us focus on the role of automorphisms /4 and their
duals now. As conjectured in [21], it turns out that all
Poisson—Lie identities and Poisson-Lie dualities are gener-
ated by automorphisms of Manin triples, B-shifts, g-shifts
and factorised dualities. Moreover, in most of the examples
of Bianchi cosmologies discussed later we find that the gen-
eral C matrix in (3) splits as

C=1A2-C/-IA1

where C’ is either I, Ig, IF or their duals. Transformed
backgrounds then can be written as

Fo.5) =ER) - Ay-E'(s. %) - AF - ET (%) (15)

where

E'(s, %)

B —1
= ((g + A E©ATS') ] (P'+ MEGATR') + Agﬁ(;e)AQ)

and P/, @', R/, S are found from C’. As expected, these
expressions can be interpreted as application of Poisson—
Lie T-plurality on a background given by matrix E’(s) =
ALE (s)AlT. Important is that A, can be eliminated from
(15) by suitable transformation of group coordinates. Using
the transformation properties of the covariant tensor F we
may try to integrate the Jacobi matrix

2= B AP e (16)
Py 9ih A\A2) g P

to find coordinates X’ such that (15) simplifies to
F, ) =ER)-E'(s.%) - ET ).

These transformations can be always found for Poisson-Lie
dualities on semi-Abelian Drinfel’d double where g = a and
e(x) = 1.Inthis case J = A, the transformation is linear and
can be even combined with the coordinate shifts mentioned
earlier for dual B-shifts.

2.4 Generalized supergravity equations and transformation
of dilaton

One of the goals of this paper is to verify whether back-
grounds obtained from Poisson—Lie identities and dualities
satisfy Generalized Supergravity Equations of Motion. We
adopt convention used in [13] so the equations read’

1
0= Ry — 3 Hypo B/ + Vu Xy + Vo Xy, (17)
1
0= 3V Hppy + X Hppy + Y, Xy = Vo X, (18)
1
0= R~ 5 Hyor H"" +4V, X" — 4X, X" (19)

where V is covariant derivative and
Xy =0,Q2+T"Fou.

For vanishing vector [J the usual one-loop beta function
equations, i.e. conformal invariance conditions, are recov-
ered.

Under (non-) Abelian T-duality dilaton transforms as

~ 1
$ =+ Indet M (20)

where matrix M is given by “group block™ E,j of E(s) and
submatrices of adjoint representation as

M = (Eqp(s) + b -a @)~ = (B, () + b -a~ @)y~

7 We consider purely bosonic backgrounds.

@ Springer
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The formula (20) can be utilized not only for “full” duality
given by Dy, but also for factorized dualities. However, for
successful application of this rule it is necessary to identify
the dualized directions, meaning we have to consider only
subgroups of ¢ and corresponding submatrices Ep, d, b.

For general Poisson-Lie T-plurality the dilaton transfor-
mation rule was given in [17] and further studied in [37]. In
the current notation we can write it as

. I N
B(s.£) = ©(s.x) = 5 In | det (N + i M) @) |

+ % In | det (1 + M) E(5)) a(x)) )

M=8"Eis)-9", N=P'-RTE®. 1)
From the two possible decompositions of elements of Drin-
fel’d double

I = g()h(¥) = g®)h(X),
€D, g9 he¥, 39 he?

we can in principle express coordinates x in terms of X and
X. The expression is thus nonlocal in the sense that o may
depend also on coordinates ¥ of &. For Poisson—Lie identities
we do not encounter this problem so it is plausible to use (21)
to calculate dilatons corresponding to B-shifts and g-shifts.
For semi-Abelian Drinfel’d double we find that dilaton does
not change under B-shifts /g, while under /4 it transforms
as

a(s, x) = d(s,x) — %ln detl — B - Egp(s)|. (22)

For duals Dg = Do - Ip and Dg = Dy - Ig we get the
correct dilaton by formula (20) applied on the dilaton and
background obtained earlier from identities /p and Ig.

3 Bianchi V cosmology

As a warm up we shall study the well-known Bianchi V
cosmology. Let us consider six-dimensional semi-Abelian
Drinfel’d double® 2 = (%y|4/) whose Lie algebra d =
by >< ais spanned by basis (T1, T, T3, Tl, T2, f3)_ The
non-trivial commutation relations of the generators of by

are
[T, l=T, [T1,T3]=Ts. (23)

The group Ay is not semisimple and trace of its structure
constants does not vanish.

8 By %y, resp. by, we denote the Bianchi V group, resp. its Lie algebra.
</ and a denote three dimensional Abelian group and its Lie algebra
respectively. Similar notation will be used in the following sections.

@ Springer

The sigma model background” is given by metric (B = 0
and F = G)

-1 0 0 0
0 2 0 0

F(t,x1) = 0 0 e2p? 0 (24)
0 0 0 e21y?

Left-invariant vector fields that satisfy (23) and generate sym-
metries of this background are

Vl = 8)(1 — X2 8)62 — X3 ax:;’ V2 = 8)(27 V3 = 8x3~

In fact, the background is flat and torsionless so the standard
beta function equations are satisfied if we choose zero dilaton
® = 0. This background was studied already in [38], where
it was first noticed that duals with respect to non-semisimple
groups are not conformal. The related gravitational-gauge
anomaly was later investigated in [39].

3.1 Poisson—Lie identities and dualities
Mappings C that preserve the algebraic structure of Manin

triple (9, by, a) and generate Poisson—Lie identities are given
by matrices

1 cnn c3 —cncrs —ciscis 15 16
0 c» 3 —ciscn —ciec23 0 0
0 c32 ¢33 —ci15632 —C16C33 0 0
=10 o0 0 1 0 0 s
0 0 0 2;2;;’; _zéii‘;; 522633413‘:23632 (‘23‘-‘32(12(‘22033
0 0 0 C13¢22—C12€23 3 s
€23€32—C22C33 €23€32—C€22€33 €22€33—C23C32
-1 c12 c13 cra€1s +c13cie €15 Cl6
0 0 0 C12025 +€13¢26 €25 €26
0 0 0 C12035 +€13¢36 €35 €36
L = 0 0 0 —1 0 0
O 625(‘3:16626(‘35 526635615‘-‘25 €36 z;((:z:: —2222 0 O
O €26 €25 €16€25—C15C26 0 0

€26€35—C25C36 €25€36 —C26C35 €25€36—C26C35

One can see that for ;5 = c1¢ = 0 the matrix /; simplifies
to the block form (13) given by automorphisms of algebra
by that in general read

I app a3
A=10 axpyp axn|. (25)
0 azxn a3

For cip = ¢13 = ¢33 = ¢33 = 0 and ¢p» = ¢33 = 1 matrix
I reduces to B-shift (14) of the form

0 0 0
—C15

0

I —cis6
0 1
0

0

€16

(26)

(=N elo oo
)
S = o ooz

0
0
0
0
1

e eNeNel

9 E(s) is restored from F (s, x) by setting group coordinates to zero.
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On the other hand, for cjp = c13 = 6 = ¢35 = 0, ¢35 =
c36 = | matrix I> equals to

100 0 00
0 00 0 1 0
0 00 0 0 1

Ir=19 00 -1 0 0 @7
0 1.0 0 0 0
0 01 0 00

Matrix I switches basis vectors 7>, T3 and Tz, T3. Weiden-
tify its action as factorized duality with respect to Abelian
subgroup generated by 7>, T3. The change of sign of T is
necessary for being an automorphism of by < a.

To study models generated by I; and I, we decompose
these matrices into product of special elements of NATD
group. Namely, we note that /1 can be written as

I=14-1p

where 14 is given by (25) and Ip is the B-shift (26). Similarly,
I can be decomposed as

I =1x,-IF - 14

for automorphisms A1 and A, of the form (25). This decom-
position is not unique. To identify relevant parameters of I
we choose the simplest possible /4, while including the rest
of the parameters in /4, as follows:

1 —cip —c13 1 c5 ci6
Ar=10 1 0 , A>=10 c5 26
0 0 1 0 ¢35 c36

(28)

Matrices generating Poisson—Lie dualities can be obtained
from those above by left-multiplication by matrix (8) repre-
senting canonical or “full” duality. This way we get dual
automorphisms generated by

_ _ (04 (AT
DA—DO'IA—<A 0, ,

dual B-shifts generated by

00 0 1 0 0
000 0 1 0
000 O o0 1
Pp=Do-Ig=11 o ¢ o cis cie |
0 1 0 —C15 0 0
0 01 —cg 0 O

and factorized duality

0 00 -1 00
0 10 0 00
0 01 0 00
Pr=Dbo-lr=1_1 690 0 0 0 (29
0 00 0 1 0
0 00 0 01

that can be interpreted as Buscher duality with respect to 77
accompanied by a change of sign in the dual coordinate.

3.2 Transformed backgrounds
3.2.1 B-shifts

Let us now apply Poisson—Lie identities on the sigma model
(24). Plugging I; into formulas (9)—(12) we get rather com-
plicated background tensor. Nevertheless, I; decomposes as
Iy = 14 - Ip and we can get rid of the parameters that come
from I4 by a change of coordinates found by integrating the
Jacobi matrix (16). Indeed, after coordinate transformation
yI=X1, y2=—cpe ' +cnx+c3xs,

y3 = —cize !+ c23x2 + €333

we find that the symmetric part of F equals to the original
metric (24). The antisymmetric part

0 0 0 0
= 0 0 —edlcys —edlcyg
B(y1) = 0 eMeps 0 0

0 eMcig 0 0

generated by the B-shift represents a torsionless B-field. Up
to coordinate transformations we would get the same back-
ground using /p instead of the full I} so, from the point
of view of Poisson—Lie identity, we consider these matri-
ces equivalent. In other words, Poisson-Lie identity with
respect to Ip and I is just a gauge transformation of the
original background, there is no change in the dilaton field,
and ® = @ satisfies beta function equations.

Background calculated using D1 = Dy- I is too extensive
to be displayed. Nevertheless, a change of coordinates (16)
simplifies it to the form that one would obtain using Dp.
Subsequent coordinate shift

X1 =c12(02 — c15) + c13(y3 — c16) + V1,
X2 =02 — c15) + c23(33 — ci6),
X3 =322 — c15) + ¢33(93 — c16)

that agrees with the discussion in Sect.2.3 eliminates the
parameters of D completely, producing tensor

@ Springer



855 Page 8 of 22

Eur. Phys. J. C (2019) 79:855

F(t, y2. ¥3)
—1 0 0 0
i? A3 73
A+52+53 t‘H;ﬁ%-E_ﬁ% A+52+53
=lo -9 )3 _ 233
Ay 2(d42453)  2(453432)
0 —_»n _ 23 453
A5t 2(e3d)  2(453453)

(30)

The same background can be obtained via full duality using
Do, and, as discussed in [38,39], it is not conformal. The
standard beta function equations cannot be satisfied by any
dilaton ®. On the other hand, dilaton

N 1 o
(1, 52, §3) = =7 In <t2 (y§ + 53 + t4))

together with background (30) satisfy Generalized Super-
gravity Equations (17)-(19) if we choose J = (0, 2, 0, 0).
Components of the Killing vector [J are given by trace of
structure constants'® of by as 7 = fcfi. The dilaton agrees
with the formula (20), and we conclude that up to a coordi-
nate transformation the background (30) found using Dp or
D is equivalent to non-Abelian T-dual investigated in [13].

3.2.2 Factorized dualities

Using I = 14, - IF - 14, in formulas (9)—(12) we get back-
ground that can be brought to the form

—1 0 0 0
~ 0 12 —edleyy —edleys
F,y) = 0 eVepp % 0

0 eeps 0 ej%

by coordinate transformation

Y1 =X1, y2=—ci5¢ !+ co5x0 + 35%3,

y3 = —ciee ' + c26x2 + C36X3

whose Jacobi matrix (16) is determined by A in (28). The
background differs from F calculated using [r since 4,
changes E (s) before the factorized duality is applied. How-
ever, the only difference is in the antisymmetric part B. For
I> there is a torsionless B-field, while for I the B-field van-
ishes completely. The metric has vanishing scalar curvature
but is not flat. Further coordinate transformation

t:\/—2uv+2u+z%+zi, Y2 =uzs,

1 —2uv~|—2u—|—z%—i—z?1
y1=§1n - , y3i=1uz4

u?

10 Compared to [13], in the present nomenclature the matrices F rep-
resenting background tensors are transposed. This results in change of
sign of 7.

@ Springer

brings it to the Brinkmann form of plane parallel wave [40]
with
2.2

+
ds® =23 "4’ 1 2du dv + d + 2.

u

Corresponding dilaton follows from the formula (20) if

the factorized duality (27) is interpreted as Buscher duality !
with respect to two-dimensional Abelian subgroup generated
by left-invariant fields V, = 0y,, V3 = 0y;. Metric (24) is
written in coordinates adapted to the action of this subgroup
and for the duality given by Ir we can write

®(1, x1)

1 1 i)
—IndetM = —Indet| ©*  ,,
2 2 o <!

-
=—In t2+2y1 = —2Inu.

Dual dilaton for background given by I is derived from
the altered E'(s) = .AlE(s)AIT and differs from the previ-
ous expression by a constant. We again conclude that back-
grounds found using /r and I, differ only by a coordinate
and gauge transformation and can be considered equivalent.
They satisfy beta function equations, or Generalized Super-
gravity Equations (17)—(19) where J is zero vector.

Background obtained by Poisson-Lie transformation using
matrix D g has the form

F(t, y2, y3)
-1 0 0 0
1 Y2 V3
PO+ SR+ V3 +53+1
=1 o __» (73+1) 2573
F+7a+1 F24+72+1 2&%—2§§+1
¥ _ 5 2 (F3+1)
453+l 3R+l F+

The same background is obtained using D> = Dy - I =
Dq - 14, - IF - 14, after change of coordinates

X1 =c150n —c12) + c16(33 — c13) + 1,
X2 = c25(32 — c12) + c26(33 — c13),
X3 = c35(02 — c12) + c36(y3 — c13).

Thus, we are able to eliminate all parameters appearing in
D5 . The background is torsionless and together with dilaton

B 5,5 = 5 (2 (B +33+1)) (32)

satisfies beta function equations, i.e. the Killing vector in
the Generalized Supergravity Equations is zero. Explana-
tion is that we can interpret the factorized duality (29) as
Buscher duality of (24), this time with one-dimensional

T Followed by a change of sign in the spectator coordinate x7.
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Abelian subgroup generated by left-invariant field Vi =
0y, — X2 dy, — X3 Jy;. In adapted coordinates {s1, 52, 53, y1}

t=s1, x1=y, Xxa=se ", x3=s3¢"",

where V| = 0,,, the tensor (24) is manifestly invariant with
respect to shifts in y; since

—1 0 0 0

0 sl2 0 —S2S2
F(s1.82,83) =] 0 52 —sis3

0 —51232 —512S3 sl2 (322 + s% + 1)

Buscher duality with respect to y; then restores the tensor
(31) and dilaton (32) agrees with formula (20).

To sum up, in this section we have shown that backgrounds
emerging from general Poisson-Lie identities or dualities
differ from those obtained from special elements of NATD
group only by a coordinate or gauge transformation. From
now on we shall display results for these special elements
and only comment on the general cases.

4 Bianchi 111 cosmology

Several results for Bianchi /1 cosmology are similar to
those for Bianchi V. The algebra 0 = b;;; >< a of six-
dimensional semi-Abelian Drinfel’d double (%;;;|</) is
spanned by basis (T, T, T3, Tl, fz’ T3). Non-trivial com-
mutation relations of the generators of b;;; are

[T, T3] = — T3, (33)

while a is Abelian. The trace of structure constants does not
vanish and group % is not semisimple. The background
given by metric

-1 0 0 0
0 2 0 0

F(t,x1) = 0o 0 1 0 (34)
0 0 0 220

is flat, torsionless, and invariant with respect to symmetries
generated by left-invariant vector fields

Vl = axl + x3 8x37 V2 = axzs V3 = 8x3

satisfying (33). As the background is flat and torsionless the
dilaton ® can be chosen zero. Authors of [41] mention this
background in their analysis and note that its non-Abelian
dual does not satisfy the standard beta function equations.

4.1 Poisson-Lie identities and dualities

Table 1 summarizes all eight types of solutions of equations
(6) and (7) with structure constants F = F. These give rise
to Poisson—Lie identities and dualities of (%;|<). Nev-
ertheless, all the identities are composed of automorphisms
(13) with

I app a3
0 an 0 |, (35)
0 0 az

A=

B-shifts of the form (26), and factorized dualities'?

100 0 00
0 1.0 0 0 0
0 00 0 0 1
In=19 00 -1 0 o0 (36)
0 00 0 1 0
0 01 0 0 0
and
1 00000
00 0 010
001 000
=10 001 0 0 (37)
01 0000
00 00 0 1

Matrices generating Poisson-Lie dualities can be again
obtained from those above by left-multiplication by the
matrix (8) representing full duality.

4.2 Transformed backgrounds
4.2.1 B-shifts
Using Ip (26) in the formulas (9)—(12) we find that the back-

ground F has the same metric as the original model (34). In
addition to that, a torsionless B-field

0 0 0 0

= 0 0 —c —ciee !

Baoo=|o .. o o (38)
0 cige™! 0 0

appears. This agrees with the interpretation of action of /p as
gauge transformation. There is no change in the dilaton and
® = ®. With the full solutions 14 and I3 we get the same
background as for /5. Indeed, both these matrices decompose
as

Iy =14 - Ip, Is =14 -1p

with 14 given by (35). A linear change of coordinates (16)
thus restores the metric (34) and torsionless B-field (38).!3

Dual background calculated using matrix Dp = Dy - Ip
produces tensor

12 1, and Ip appear as special cases of I and Ig, factorized dualities
IF,, IF, and their composition appear in /1, I, I3, Is, Is, 17 and their
duals.

13 The parameter c;5 has to be replaced by fc‘“ff;“”’ for .
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Table 1 PLT-identities of

P -
Drinfel’d double (%;;;|<) il € matrix
-1 cp 13 Cl4 et
0 0 0 % % 0
/ 0 0 0 C13C36 36
1
0 0 0 —1 0 0
) (cla—cizcie)e
0 c5n 0 Cl4 F;lz;lé €52 0 0
0 0 é as 0 0
-1 c2 13 cl4 St
0 o) 0 (014*121325‘1())C22 0 0
It 0 0 0 C13C36 0 36
2 0 0 0 -1 0 0
2 1
0 0 0 o > 0
0 0 = s 0 0
I cnn ci3 cl4 —76”?1;3“6 c16
0 0 0 - L 0
52 52
L 0 0 ¢33 —C16C33 0 0
0 0 0 1 0 0
0 cs5 0 (Cl4+fgl3flﬁ)552 0 0
s 1
0 0 0 — o 0 =
I cnn ci3 cl4 —76”?1;3“6 c16
0 cx» 0 (clatcizcie)en 0 0
Cc12
I 0 0 ¢33 —C16C33 0 0
4 0 0 0 1 0 0
_cn 1
0 0 o0 = L 0
0 0 0 - 0 L
33 €33
-1 0 «c3 cisce C}S Cl6
0 0 0 0 — 0
52
I 0 0 0 ci3c36 0 c36
5 0 0 0 -1 0 0
0 ¢2 0 ci5c52 0 0
o o L a9 0
36 36
-1 0 «c3 cisci6 15 cCl6
0 2 0 C15C22 0 0
0 0 0 ci3c36 0  c¢36
Is 0 0 0 -1 0 0
0 0 0 0 = 0
0 0 4+ & 0 0
I 0 «ci3 —ci3ci6 c15 ci6
0 0 0 0 é 0
/ 0 0 ¢33 —ciee33 00
7 0 0 0 1 0 0
0 ¢5p 0 —cises2 O 0
oo o -« o L
33 33
I 0 c13 —ci3cie ci5 <6
0 ¢ 0 —cisep O 0
0 0 ¢33 —crec33 O 0
Iy 0 0 0 1 0 0
0 0 0 0 L0
c13 (2)2 1
0 0 0 —a o
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F(t, %3)
—1 0 0 0

2 r2c15 Ccl6—X3

r4+cfst2+(cl(,ff3)2 t4+c%;t2+(¢‘15723)2 r4+cfst2+(cmff3)2
- 2 ‘ ~ \2 - ~
= _ t7cys 4+ (c16—53)> L;IS(X3—5‘16)

el +Hc16—5)2 el 6= el ci—)?

2 - 2,2

=i c15(¥3—ci6) ! +<is
r4+c15t2+(c167}3)2 t4+('%5t2+(c167,€3)2 r4+c15t2+(('1675'3)2

(39)

whose curvature and torsion do not vanish. We can get rid of
the parameter c¢ by shift in x3, but ¢15 remains. As earlier,
backgrounds calculated using D4 = Dg - 14 = Dg - 14 - Ip
or Dg = Do - I3 = Dg - 14 - Ip differ from F only by a
transformation of coordinates. For nonzero c5 the tensor F
is not the same as non-Abelian dual of (34) that can be found
using Dy. Nevertheless, if we understand the duality with
respectto Dp = Dy - Ip as full duality applied to background
changed by Ip, the correct dilaton can be found from (20) as
d(t, i3) = —% In (t4 + c3t? + (c16 — x3)2) ) (40)
Such @ satisfies the Generalized Supergravity Equations for
Killing vector J = (0, —1,0,0) whose components are
given by trace of structure constants of by;; as suggested
in [13].

4.2.2 Factorized dualities

Poisson—Lie identities (36) and (37) can be interpreted as
Buscher dualities with respect to one-dimensional Abelian
subgroups generated by left-invariant fields V3 = 0,, resp.
Vo = 0y,.

Dualization with respect to V, does not change F atall due
to the form of the metric (34). The background is invariant
with respect to If,. Its dual given by Dg, = Dy - I, needs
to be understood as dual with respect to non-Abelian group
generated by Vi, V3 that is not semisimple. The background
and dilaton are the same as for the full duality Dy. We can read
them from (39), (40) setting c15 = c16 = 0. The same results,
up to a coordinate or gauge transformation, are obtained for
the full solutions I3, I, see Table 1, and their duals D3, Dy

since
I3 =1p, 1Ip, - Ip - 14, I =1Ia, - I, - Ip.

Dualization with respect to V3, i.e. Poisson—Lie identity
IF,, produces metric

-1 0 0 0

~ 2 0 0

f(ts X)) = 0 0 1 0 (41)
0 0 0 <

whose scalar curvature vanishes. In coordinates

X2 = 24,

t=,/z% —2u(v —1),

1 (& -2u@-1
xp=—>n|2—"—F 2,
2 u?

it acquires the Brinkmann form of a plane parallel wave with

X3 = UZ3

2
ds* = Z%du2 + 2dudv + dz3 + dz3.

As expected, dilaton calculated via formula (20)

_ 1 1 0
O(t, x1) = ElndetM = Elndet 0 o251
t2
1
=——1In ¢ — X1
2

satisfies beta function equations, or Generalized Supergravity
Equations with 7 = 0, since we have dualized with respect
to Abelian subgroup of %; ;. Poisson—Lie identities I, I,
I5 and I decompose as

Iy =14, - I, - IR, - 14, Iy =1p,-1Ip -Ip- 14,

Is=1a,-IF, - I, - 14, Ie =14, - IFp, - Ip - 14,.
Resulting backgrounds differ from (41) only by a change of
coordinates and torsionless B-field of the form (38) and can
be found in Table 3 in the Appendix.

Dual background produced by Dr, = Dy - I, reads

—1 0 0 0

0 1 _ X3
~ 2(&2+1) g+l
F,x)=1 0 1 0

b 2
X3 =
0 H+1 B+l

Together with the dilaton

~ 1

(1. %) = 3 1n (tz (;232 + 1))

found from (20) this background satisfies beta function equa-
tions. Factorized duality given by D, can be once again
interpreted as Buscher duality with respect to symmetry gen-
erated by V1, V2. The same rgsult is obtained for Ds = Dg-Is.
For D1, D>, D¢ the tensor F and dilaton & contain a param-
eter that cannot be eliminated by coordinate or gauge trans-

formation. Interested reader may find its full form in Table 3
in the Appendix.
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5 Bianchi V I, cosmology

Semi-Abelian Drinfel’d double ¥ = (%y; |</) has Lie
algebra © = by, < a spanned by basis (77, 1>,
T3, T, T2, T3) and the nontrivial comutation relations of

by, are!*

[Tlv T2] =K T29 [Tlv T3] = T31 K 7& -1 (42)

Trace of structure constants does not vanish and group Ay,
is not semisimple. In the parametrization used in [ 13] Bianchi
V I, cosmology is given by metric

F(t,x1)
—e™ 40 q (1)2ay (1) a3 (1)? 0 0 0
_ 0 a)(1)? 0 0
- 0 0 2% g5 (1)2 0
0 0 0 e*as(t)?
(43)
where the functions a; (¢) are
L+12 (k—1) 241
(k+1) k=1)pot . _ K
K
KLH pot K
a(t) = e®® <%> s sinh™ &+ (p11),
K
)
K+ —pot 1
as(1) = e®® <%> e~ 7 sinh~# (py1). (44)
K

The background is invariant with respect to symmetry gen-
erated by left-invariant vector fields

Vl = axl —KX2 8x2 - .X38x3, V2 = ax21 V3 = 8x3

satisfying (42). For dilaton ®(¢#) = ct the beta function
equations reduce to condition
(K2 + Kk + 1) p% p%

(k+1)2 4

The background is torsionless and for ¢; = 0 also Ricci flat.

o=

5.1 Poisson-Lie identities and dualities

Poisson-Lie identities of Drinfel’d double (Ay |</) are
given by matrices

14 Note that for k = 0, or x = 1, these are comutation relations of
by, or by, respectively. The case k = —1 will be treated separately
in Sect. 6.

@ Springer

I cip c13 —cracis —ci3cie €15 Cl6
0 ¢»n O —C15¢22 0 0
0 0 €33 —C16€33 0 0
h=10 0o o 1 0 0
_‘2 1
0 0 0 2 = (1)
0 0 0 — o 0 o3
=1 c1p 13 cpeisteee €15 Cl6
0 0 0 €12€25 cs 0
0 0 0 c13¢36 0 36
L=10 0o o -1 0 0
1 €15
0 o3 0 o 0 0
o o L e 0 0

€3

=N

€36

The algebra by admits automorphisms (35) and matrices
14 of the form (13) are among the special cases of /1. Clearly,
Iy is a product I} = I4 - Ip of automorphisms and B-shifts
(26). Matrix I can be written as Io = Ia, - If - 14, Where
IF is the factorized duality (27) and I4,, /4, are given by
automorphisms (28). Poisson—Lie dualities are obtained by
multiplication by Dy.

5.2 Transformed backgrounds
5.2.1 B-shifts

Using [; directly in formulas (9)—(12) we get rather compli-
cated background tensor. However, since /; splits as I =
I4 - Ip, the dependence of F on the parameters appearing
in I4 can be eliminated by transformation (16). The back-
ground obtained using I is equivalent to that obtained by
B-shift (26) and reads

F(t,x1)
—e D1 (1) 2ay (1) a3 ()2 0 0 0
_ 0 a()?  —eicys —e'lcip
0 Nlers e Nay(1)? 0
0 e*leig 0 eX1a3(1)?

Beside the original metric (43) we have obtained a torsionless
B-field. Together with the original dilaton ®(#;) = ¢t the
background satisfies beta function equations.

Dual background F calculated using Dy = Do - I} =
Dy - 14 - Ip is again too complicated to display. Nevertheless,
linear transformation of coordinates (16) followed by shift
in y2, y3 simplifies the background to
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—e 42O (1)%ar(1)%asz(1)? 0 0 0
0 a0 a3 1) ka3 (075> @)
j:‘-(t 5. ) = A A A
, V2, V3) = 0 _kaz(0)%5 a1 az()+73 _ k53 ’
A A A
0 a )25 K253 a1()%ar(t)*+xk%52
- A A A
where

A = ai(t)?ax (1)’ a3 (1)* + k2 53a3 (1) + az(1)* 3.

These results are the same as results obtained by full duality
Dg. Dual dilaton

~ 1
(D(ts 5)27 5]‘3) =cit — E In A

found from formula (20) satisfies the generalized supergrav-
ity equations (17)—(19) where components of Killing vector
J = (0,« + 1,0, 0) correspond to trace of structure con-
stants of by, . Dualization with respect to D can be treated
as canonical duality in spite of the fact that it contains also
B-shifts and automorphisms.

5.2.2 Factorized dualities

Poisson—Lie identity /7 in (27) can be interpreted as Buscher
duality with respect to two-dimensional Abelian subgroup
generated by left-invariant fields Vo = 9y,, V3 = 0.
Resulting curved background

Fa, x))
—e 42y () 2as(1)2az(1)> 0 0 0
0 a®? o0 0
— 0 82/(x1 0
ap(1)?
0 0 0o <
a3 (1)?
(45)
and dilaton
> 1 62(K+1)x|
d(r, =cit+-In| ———— 46
(t, x1) =cy +2 B Ra )2 (46)

calculated by formula (20) satisfy beta function equations
with vanishing Killing vector [J since we have dualized with
respect to Abelian group.

Poisson-Lie identity Ip = 4, - I - I4, gives a back-
ground whose metric can be brought to the form (45) by
coordinate transformation (16). There is also a torsionless
B-field depending on constants coming from /4, that trans-
forms E(s) to E'(s) = A E(s).AT. Dilaton found by (20)
from E’(s) differs from (46) only by a constant shift and we

may conclude that results of duality with respect to /> devi-
ate from those obtained by /r only by coordinate and gauge
transformation.

After a suitable coordinate transformation we find that
both matrices D = Do - Ir and Dy = Dq - 14, - IF - 14,
produce background

F(t, ¥2,53)
—6744)([)11%&%&% 0 0
0 1 K33 a5y
A 228 00
= 0 ka3j, 9 (“1 +“3Y3> xala3$ri3
e A ; 2.5 00
0 a3 kala3friy; 93 (“1+K ”2y2)
A N A
where

A = a1 (1) + 2ay(1)*53 + a3(1)%53.

This background is the same as the one that would be obtained
by performing Buscher duality with respect to symmetry gen-
erated by V. Dilaton

~ 1
oz, yz, y3) =cit — 5 In A

satisfies ordinary beta function equations.

Let us note that results of this section hold also for
k =0, 1, i.e. for Bianchi 7/ and Bianchi V. Dualities with
respect to these groups were treated in Sects.3 and 4 with
different initial backgrounds.

6 Bianchi VI_; cosmology

For Bianchi V I_; cosmology we shall consider Manin triple
(0, by _,, @) whose algebraic structure is given by comuta-
tion relations (42) with k = —1. Structure coefficients of
Lie algebra by;_, are traceless and the group Ay, is not
semisimple. Metric has the form (43) with functions

2pat
a(t) = /prexp ((%ﬂnt) n ¢'(t)> ,

t
ar(t) = a3(t) = /pae 3 TP

and dilaton is again ®(¢) = c;¢. The beta function equations
are satisfied if

(47)

1
= FCrip+ P3).
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6.1 Poisson—Lie identities and dualities

Poisson-Lie identities of Drinfel’d double (Ay;_,|<) are
given by matrices

-1 cn c13 c12€15 + €13¢16 cis Cl6
0 0 €32 €16€32—C12C36 €36 0
€32€56—C36C52 €32€56 —C36C52 €36C52—C32056
I = 0 cn 0 c15C32 + €13C36 0 36
0 0 0 —1 0 0
0 ¢ 0 c15¢52 + €13C56 0 56
0 €52 €16€52—C12€C56 €56 O
€36C€52—C32C56 €36C52—C32C56 €32€56—C36C52
and
1 c12 c13  —C12€15 — C13€16 €15 16
€33 €15€33 —C13C€35 €35
0 €33€55—C35C53 0 €35C€53—C33C55 O €35C53—C33C55
L= 0 €33 —C16C33 — C12€35 €35
0 0 0 1 0 0
0 0 €53 —Cl6C53 — C12€55 €55 0
0 €53 €15€53—C13C55 O (&5

€35C53—C33C55 €33€55—C€35C53 €33C55—C35C53

As special cases we find two types of automorphisms 74 and
I given by

I ap ap3 -1 ap ap
A=10 apn 0 |, A = 0 0 ax|,
0 0 ass 0 asn 0

B-shifts generated by matrix

1 00 0 bia b3
01 0 —bp O by
10 0 1 —biz —by3 O
=10 0 0 1 0 o |’ “48)
000 0 1 0
000 0 0 1
B-shifts
1 0 0 0 0 0
0 1 0 0 0 0
P 1 0 0 0
F=1o0 o 0 1 0 0]
0 0 Bz 0 1 O
0 —B3 0 0 0 1

and factorized dualities (27). To analyze results following
from application of Poisson-Lie identities /1 and I, it is
helpful to find their decomposition into products of special
elements of NATD group. Depending on the values of param-
eters the matrices can be written as

IA/~IB~I/3 f0r056750
Iy =3 1a-1g-1p forcsg =0,c30 #0

Ip-Ip - I forcsg =c30 =0
and

Ig-1p-1Ip forcss #0
12= IA-Iﬁ~IB f0r055=0,033750

Iy - Ip - Ip forcss =c33 =0

@ Springer

for some 14, I/, I, Ig and Ir. The parameters rising from
14 and I 4/ can be again eliminated by coordinate transforma-
tion (16). Itis thus sufficient to discuss backgrounds obtained
from I, Ig, Ir and their products. Multiplying these matri-
ces by Do we get Poisson—Lie dualities.

6.2 Transformed backgrounds
6.2.1 B-shifts

Transformed background

Ft,x1)
—e4®Oq (1) 2ay ()* 0 0 0
_ 0 al(t)z —bype "1 —by3e*l
- 0 bipe™1 e Hlay(r)? —bo3
0 bi3e™! b3 eX1ay(1)?
(49)

given by B-shift differs from original F by a torsionless B-
field and together with the dilaton ® = c1 satisfies beta
function equations.

Coordinate shifts eliminate b3, b3 in the dual obtained
from Dy - Ip so it reads

F(t, ¥2,53)
—e_4¢(l>a%u‘2‘ 402 i 20 i . 0 i
0 ay+bys _ hay szs V3 a3y *Abzs »
= 0 a252-bx333 ala3+52 by3ai+3:73
T A, 2 B
0 y3a3+ba3 ¥z V2y3—bazaj ajay+y;

- A A A
where

A= (az(t)4 + b§3) a1(0? + ax(1)* (yg + y%) .
The constant b3 remains. For dilaton

~ 1

D(t, yp,¥3) = ¢t — 3 In A

beta function equations are satisfied. Vanishing of vector J
corresponds to the fact that structure constants of by , are
traceless.

6.2.2 B-shifts

Background given by g-shift is

Ft,x1)
—e **Og (12ar () 0 0 0
0 a(t)? 0 0
— 0 0 ey (1)? Bray()*
Bhar(*+1 ﬂ%az(t)“-%—l
0 0 T ON eHay(1)?
Brax®*+1  pRar () +1

(50)

and together with the dilaton calculated by formula (22)

A 1
(1) =cir —In (,3223a2(t)4 + 1)
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satisfy beta function equations. Although matrices /g and F(t, %2, 73)
I do not commute, backgrounds obtained from /g - Ig and —e®Walad 0 0 0
Ig - Ip are the same and differ from F in (50) only by a 0 1 J@A’b “i’b
torsionless B-field. = 0 (A RC (alzJAra%X?.) aﬁfAzis
The dual obtained from Dy - Ig is 0 _ a%ziw a3 2%y a3 (af +a353)
A A A
—ef4®(’)a%a§ 0 0 0
0 a3 Br3a3iz—i; Br3Fral+is
~ alal+i5+573 a?a3+i3+5i3 ala3+i3+53
.7:([, X2, X3) = 0 Brizas+is alza%+(/3%3a§+l)5c§ (ﬁ%3a§+l)i2i3fﬁz3alzag
FEGIY B@asied)  a@ddedea)
0 Praitr—%y  Pnajar+(Brar+1)Eis atay+(B3a,+1)%
alar+ii+i3 a3 (alal+i3+32) a3 (atal+i3+52)
and with dilaton
where

60, X2, X3) = ¢yt
1
51 (0202 (a0 a2 + 3 + 32))

they satisfy beta function equations. Tensors F arising from
Dy -1p-1g and Dg - I - I are too extensive to be displayed
here. Nevertheless, it is straightforward to calculate them and
verify that together with corresponding dilatons they satisfy
beta function equations.

A = a1 (t)? + ar(r)? (x22 + i%) .
This background and dilaton

~ 1

(1, X2, X3) = 1t — 3 In A

satisfy beta function equations. Background

—e_4®(’)afag 0 0
0 b3ya3+1 _ a2 (ha3§3a3+52) a3§3—br3ay 5
e ey A A
F(t, 32, 33) = 0 a352—bxay 3 a3 (a2 +a353) ag(bzsa?+)7293)
A A A
0 _ay(bnhaitys)  _aj(bnai—5a3s)  aj(af+a3y;)
A A A
where

6.2.3 Factorized dualities

Poisson—Lie identity (27), interpreted as Buscher duality
with respect to symmetry generated by V> and V3, pro-
duces metric (45) with k = —1 and functions a>(t) =
az(t) given by (47). Dilaton calculated by the formula
(20)

~ 1
D) =1t — E1naz(t)4 = —(c1 + p2)t + const.

satisfies beta function equations. Background obtained from
I - Ir differs from this F only by a torsionless B-field that is
the same as in (49). Let us note that for c; = — p» the metric
is Ricci flat.

Dual background produced by Dy - Ir reads

A= (b§3a2(z)4 + 1) ar(t)? + ax(1)? (i% + i%)
is obtained from Dy - Ip - Ir and with dilaton

~ 1

(D(ts 5}27 ;’93) = Clt - E ln A

it satisfies beta function equations.

7 Bianchi 11 cosmology

Lie algebra 0 = b;; >a a of the Drinfel’d double ¥ =
(#1117 is spanned by basis (T, T», T3, T', T?, T?) where
nontrivial comutation relations of b;; are

[T2, T3] =T. (51)
Trace of structure constants is zero and group % is not

semisimple.

@ Springer
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Cosmology invariant with respect to symmetry generated 1 0 0 0 0 O
by left-invariant vector fields 0 1 0 0 0 O
0 0 1 0 0 0
Vi =0y, Vo = —x3 0x; + 0y, V3 = 0y, Ig = 0 Bz Bz 1 0 O (33)
Sfvi 1 is eiven by th . B2 0 0 0 1 0
satisfying (51) is given by the metric —Bis 0 0 0 0 1
—e 4O, (1)2ar (1) %a3z(1)? 0 0 0
0 ai®® 0 ai(t)’x2
= 2
F(t, x2) 0 0 a(t)? 0 (52)
0 a2 0 @)’ +a3)’
where the functions a; () are There are no factorized dualities satisfying (6) and (7).
Poisson—Lie dualities can be obtained from identities by left-
o) D1 multiplication by the matrix (8) representing full duality.
1) = [———,
a(t) = e cosh(pit)
pot 7.2 Transformed backgrounds
a (1) = 0T Jeosh(pin),
as(t) = ed)(t)+”T3’ /cosh( o) (53) We already know that if Poisson-Lie identity decomposes as

asin[13]. For dilaton ®(¢) = c ¢ the beta function equations
reduce to

4c} = p3pr — pi.

The background is torsionless and for ¢; = 0 also Ricci flat.

in (54), coordinate transformations can eliminate parameters
of I, in the resulting backgrounds. Thus it is sufficient to
investigate the effects of I, Ig and their products.

7.2.1 B-shifts

Structure coefficients of Manin triple (9, bj;, @) remain
invariant under B-shift (48) that transforms the background
(52) to

—e_4¢(’)a%a22a32 0 0 0
j':(t, xz) _ 0 a% —béz a%XQ — b13
0 bia az biaxy — b3
0 x2a? +b13 by —bioxa  a3z® +a1’x3

7.1 Poisson—Lie identities and dualities

Unfortunately, we are not able to display general forms of
matrices generating Poisson—Lie identities of Manin triple
(0, b7, a) because the expressions are too extensive. How-
ever, we were able to decompose them into products of auto-
morphisms, B-shifts and B-shifts. To be more specific, all the
solutions can be written in one of the two forms

L =1x-1p- I, I=1x-15-1p (54)
where automorphisms have the form (13) with
A 0 0 B B
A=|ay ax axy|, A=det< 2 23),
azy ass
aszy aszz  dass

B-shifts are generated by matrix (48), and S-shifts are
given by

@ Springer

Up to gauge transformation of the antisymmetric part it
is equivalent to (52). Together with dilaton 5(t) = cit the
background satisfies beta function equations.

Dependence on b3 can be eliminated in background
obtained from D = Dy - Ig and we have

F(t, y1)
—e‘w(’)alza%a% 0 0 0
0 aal+i} bipa3—bi3i biza3+bi2 3
= Ds 2 By, 2 B
- 0 _ bunag+bizy biytajaz apy1—=bbiz
B, L B 2 By
0 biayi—bizay _ J1aj+biabis bi,tajay
A A A
where

A=a ) (ag(t)2a3(t)2 + y%) + bar (1) + bhas ().
With dilaton

~ 1
O, y1) =1t — EIHA
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given by (20) the beta function equations are satisfied. Results
for the dual B-shift differ from the canonical dual obtained by
Dy not only by a shift in y; but also by other terms depending
on b]z, b13.

7.2.2 B-shifts

Let us now investigate the transformation of metric (52) given
by B-shift (55). This Poisson—Lie identity generates

8 Conclusions

We have identified general forms of Poisson-Lie identities
and Poisson—Lie dualities for six-dimensional semi-Abelian
Manin triples 0 = b o< a where b’s are Bianchi algebras that
generate isometries of Bianchi cosmologies. Subsequently
we have managed decomposing both the Poisson—Lie iden-
tities and Poisson—Lie dualities into simple factors, namely
automorphisms of Manin triples, B-shifts, 8-shifts and “full”
or “factorized” dualities. This supports the conjecture posed

e **Vatasa3 0 0 0
0 af ala3 iz a}(Bizai+xz)
~ A A
Ftx) = 0 ajaipio et 1) ta3Bia(Pi3ai+x2)
A
0 (xZ %/313) atazpio(v2-a3p13) (“ {43 B, +1)ai+aix;
A A A
where in [21] that NATD group is generated by these elements.

A = (2B + a8 ) ar (02 + 1.

Together with corresponding dilaton
—~ 1
O(t) = c1t — ElnA

the background satisfies beta function equations. Poisson—
Lie identity /p acting on this background adds a torsionless
B-field, so we conclude that backgrounds obtained from I -
Ig and Ig can be considered equ1valent Despite the fact that
Ip and Ig do not commute, F obtained from I - 1p is exactly
the same as for I - I.

Finally, we have used these decompositions to transform
Bianchi cosmologies supplemented by dilaton fields [12].
For these transformations we used Poisson-Lie T-plurality
and dilaton formula described in Sect. 2.

In this way we have obtained many new backgrounds
and corresponding dilatons that solve the Generalized Super-
gravity Equations, and confirmed that the Killing vector [J
in Generalized Supergravity Equations is given by trace of
structure constants [13]. One must, however, carefully evalu-
ate what groups, more precisely what subgroups of Drinfel’d
double, truly participate in the transformation since it influ-
ences resulting Killing vector. For factorized dualities these
subgroups often become Abelian and the Generalized Super-
gravity Equations reduce to standard beta function equa-

Dual background resulting from Dg = Do - Ig is tions. New backgrounds, dilatons and corresponding Killing
—e **Walatas 0 0 0
0 (“§+ﬂ1zza12312)a§+(ﬂlzxaza§+1) 612(/31331 ,31261%) _a%(ﬂlzag-&-ﬂlzil)
~ 2af(a§g%+x )~ a%a%;—ilz a3al+i7
F(t,x1) = 0 a3 (Broaz+P13x1) as %1
2 B+ FaliT
0 a3 (B13a3—Pi2ii) 7 a3
a%a%ﬂ?lz a%a%erlz a%a§+212
The dilaton is vectors are summarized in the Tables in the Appendix. The

B, 1) = ert — %m (@@ (220?00 + 32))

and it is interesting that it does not depend on B> and Si3.
Together they satisfy beta function equations.

Dual backgrounds and dilatons found from Dg - I - Ig and
Dy - 15 -1 are too complicated to display and not particularly
illuminating so we omit them here. Nevertheless, one can
check that they satisfy beta function equations.

backgrounds obtained by Poisson-Lie identities are again
invariant with respect to Bianchi groups.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Paper is self-
contained, all results can be reproduced using information contained in
the text.]
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Appendix

For reader’s convenience we recapitulate backgrounds and
dilatons yielded from Poisson-Lie identities and dualities
in the following tables. We add vector 7 as well to indicate

whether the backgrounds satisfy standard beta function equa-
tions (in which case J = 0) or Generalized Supergravity
Equations (17)—(19). In the first column we display which
one of the special transformations was used to get the result.
Automorphisms /4 are not mentioned. Nevertheless, since
we want to include results obtained from general Poisson—
Lie identities and dualities, some parameters appearing in the
tensors may arise from automorphisms. We recommend to
check details in previous sections (Tables 2, 3, 4, 5, 6).

Table 2 Results for Poisson—Lie identities and dualities of Bianchi /1 cosmology. Functions a; () are given by (53) and ®(t) = ¢t

B Transformed backgrounds, dilatons and vectors J
—e*4®(’)a%a§a§ 0 0 0
2 2
f(l X)) = 0 aj —b212 ajxy — bz
Ip ’ 0 b1z a; biaxy — b3
0 x2a12 + b1z b3 —biax2 a% + a%x%
O(t) = cqt, J =0
—e*4q>(’)a12a%a§ 0 0 0
0 a3a?+y} bpal—bi33 bizas+bio
= _ A A
Ft,y) = 0 - b120?+b13)"1 bh+atal a?51—biobi3
A A A
Dp 0 biaj1—biza; _ Jiai+bibi3 b}, +ala;
A A

A
A =a1(D)? (a2()?a3(t)? + 53) + byaz (1) + b2a3(1)?

5(t,5’1)=61t—%1nA, J=0
—e‘4q’(’)a%a§a§ 0 0 0
R 0 % a%aiﬁlz 1112(/-‘313Z§+XZ)
F,x) = 0 _dwpn d@dRe)  dan(pudn)
A A
s 0 Gl-wpn)  Edpnln-apn) (G
A A A
A = (ax(0)?* B, + a3(1)*Bl) a1(1)? + 1
D) =cit—ilmA,  T=0
F.i) =
—e*“)(’)alza%a% 0 0 0
0 (@3l i) a3+ (Bhatai+1)3] @i (Bsfi—pia3) a3 (Brsai+piafr)
2(,2,24 32 2,2, %2 2,24 =2
aj(a3a3+x7) asaz+x asaz+ij
Dg 0 a2 (Braa3+p13%1) a3 71
aZal+i? a2a?+32 a2a+x2
2 1 243 1 243 1
0 a3 (Bi3a3—Bioir) & a3
azzag-%—i]z a%a%-%—)?]z a%a%-%—.ilz
- ' -
Ot F) =c1t — 1 In (a1 ()2 (@2()?a3(D* +72)), T =0
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Table 3 Results for
Poisson-Lie identities and
dualities of Bianchi 177
cosmology and dilaton & =0

Table 4 Results for
Poisson-Lie identities and
dualities of Bianchi V/
cosmology and dilaton ® = 0

Brrr Transformed backgrounds, dilatons and vectors J
—1 0 0 0
2 .
f([ X)) = 0 t —c15  —cige” !
Ip ’ 0 C15 1 0
0 clge ™ 0 2o~ 20
® =0, J=0
-1 0 0 0
12 t2015 _ X3
- et 2+ 77 t4+04%5t~22+,\?% el 2+ 77
F(t,x3) = 0 - t%cis X3 c15%3
Dp el 2432 Aol 2437 e 24382
X3 c15X3 t2+C|25
P el 2437 e 2 +3%2
Ot 53)=—sIn(t*+ 32 +372), T =(0,-1,00)
—1 0 0 0
~ 0 12 —c1p  —cpze !
Iy F(t,x1) = 0 cn 1 0
1 _ —2x
0 cpze ™ 0 € 2
O(t,x1) =—Int — xq, J =0
—1 0 0 0
0 1 cis %
~ cist2(B+1)  cstA(GB1) e (EH)
F(t,x3) = 0 - cis 2(FH+1) c51%%3
Dr, TH2(B1)  A2(B1) (1)
0 233 6‘15!2«{’3 t2(6%5+12)
A+ (33+1) As+2(33+1) A+2(33+1)
X 1 2 2:2 4 2
O, %3) = =g In(cfs + 255 +1%), T =0
By Transformed backgrounds, dilatons and vectors J
-1 0 0 0
~ 0 12 —efleys —efleyg
F(t,x1) = X 2x1 42
Ip 0 e"cs et 0
0 e'lcg 0 e2¥142
o =0, J=0
-1 0 0 0
0 12 X X3
- A +i2+53 37453 A +33+i3
F(t, X2, %3) = 0 __ % 45 _ XoX3
Dp i3 +33 2 4+73+33) zz(t4+i%2+i§)
0 —__%B _ k3 45
A+ +53 22 4+37) (P +E)
D@t %, ¥3) = —5In (1 (3 +x3 +1%), T =1(0,2,0,0)
-1 0 0 0
> 0 2 —etleppy —eleps
F(t,x1) = 2x}
Ir (. x1) 0 e'lepp e,z 0
2x1
€
=R 0 el C13 0 v
O(t,x1) = —2Int + 2xy, J =
—1 0 0 0
0 1 o) X3
- 2 (F+53+1) i§+i32+1 B+i+1
F(t, X2, X3) = 0 __ £ (FH+1) __PHhi
Dr B4+l B4+l P4+l
0 __ i _ 2 (33 +1)
F+EI+1 F+EI+1 F+EI+1
Fooos o~ 1
O(t, 5. 53)=—2In(?(xF+x3+1), T=0
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Table 5 Results for

Poisson-Lie identities and Vi

Transformed backgrounds, dilatons and vectors [J

dualities of Bianchi V I,
cosmology. Functions a; (t) are
given by (44), k # —1 and
O(t) = cqt

Dp

I

fe*4¢(’)afa%a§ 0 0 0
0 a% —efMlels —efleig
0 eftleys ez“la% 0
0 e*leg 0 o2 a%
dny=ct, JT=0
—e‘“’“h%a%a% 0 0
0 Ka%.?z a%)?3
S~ =y A A
F(t, %, %) = X il i aw
% A 2250
0 a3 ki ajay+K°x;y
A A A
) )
A = a; ()2ar(t)2a3(t)? + K2x2a3 %+ ag(l)z)c3
®(1, %, 3) =it —3nA, T =(0,k+1,0,0)

—e*‘w(’)a%a%a% 0 0 0

0 a12 —eNey —etleps
o2Kx]

F(t,x1) = 0 ey — 0
2

o241

0 elers 0 —
az

Ft,x) =

B, x1) =1t + (k + Dxy —In(@az@)), T =0
—e_4¢(’)a%a%a% 0 0 0

~ 0
F(t, X2, X3) =
0

A
X3 _ K(l%a%izf} a;

0 A A
A =ai(t)? + 2ax ()33 + a3(1)’%3
(1, 5. ¥3) =cit —flnA,  T=0

Table 6 Results for
Poisson-Lie identities and

Bvi_,

Transformed backgrounds, dilatons and vectors 7

dualities of Bianchi VI_;
cosmology. Functions q; (¢) are
given by (47) and ®(t) = ¢t

Ig

—e_4¢(’)a%a§ 0 0 0
0 a? —bppe ™ —bjzeM!
1
0 bipe 1 672’”61% —by3
0 bize! by3 elea%
O = ct, J =0
—e aya
4P (1) % g 0 0 0
0 a3+l _ Da3+bnis ai—bnh
~ A A A
Ft,52,53) = 0 a52—bxi s ala3+53 byzai+5273

A
0 _ §3112?+bz3§2 $233—bazal afa?+9§
A A A

A = (0" +b35) a () + a0 (53 + 53)
a(l,ﬁz,%):cltf%lnA, J=0
—e 10248 0 0 0
0 a? 0 0
T —2x1 2 4
F(t,x1) = 0 0 e ay Basa;
ﬂ223a§+41 522%“3*21
2) X1
0 0 Pray e“lay

Bhai+l  phai+l

) =cit— (B +1), T=0

F,x) =
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Table 6 continued

Byi_, Transformed backgrounds, dilatons and vectors [
F(t, X2, X3) =
—e_“’([)a%ag 0 0 0
al Br3aliz—ip Br3¥ral+is
2.2 =2 =2 2.2, =2, =2 2.2, 2,22
ajay +X+x3 ) ‘121"2‘*'2"2:"‘3 , N flaz‘f'{z‘*')‘zw )
D/3 Br3xzaz+iy ata3+(Byas+1)%3 (BRay+1)%2i3—po3alas
CESE d@aia) e
Bazasir—33 Praaias+(Byas+1)%2is atar+(Brar+1)%
alzu%+)?22+i§ a%(a%a%+i%+£§) a%(ulza§+i§+)?§)
Fir o ow 1 2 2 2,224 2
O(t, %2, ¥3) = cit — 3 In (@2 ()? (a1 ()? ax(1)* + %3 +53)), T =0
—e*m(’)a%ag 0 0 0
0 a@ 0 0
F(t,x)) = e
/ @, x1) 0 0 — 0
F 2 -
e
0 0 0 p
Ot =cit—sha®)?*, JT=0
—e_4¢(’)a%a‘2‘ 0 0 0
0 1 azziz a%.€3
Zooow o= A A A
F(t, x2, X3) = 0 aﬁb a3 (a?+a2i3) a35ri3
A A
Dr 0 25 b @red)
A A A

A =ai(t)? +a()* (¥ + 73)
Ot 5, ¥3) =cit —ilna,  T=0
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