
Eur. Phys. J. C (2019) 79:835
https://doi.org/10.1140/epjc/s10052-019-7355-6

Regular Article - Theoretical Physics

The contribution of effective quantum gravity to the high energy
scattering in the framework of modified perturbation theory and
one loop approximation

Nguyen Suan Han1,2,a, Do Thu Ha2,4,b, Nguyen Nhu Xuan3,c

1 Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna 141980, Russia
2 Hanoi University of Science, Ha Noi, Vietnam
3 Department of Physics, Le Qui Don University, Hanoi, Vietnam
4 Hanoi University of Natural Resources and Environment, Ha Noi, Vietnam

Received: 4 April 2019 / Accepted: 29 September 2019 / Published online: 10 October 2019
© The Author(s) 2019

Abstract The asymptotic behavior of the scattering ampli-
tude for two scalar particles at high energies with fixed
momentum transfers is studied. The study is done within the
effective theory of quantum gravity based on quasi-potential
equation. By using the modified perturbation theory, a sys-
tematic method is developed to find the leading eikonal
scattering amplitudes together with corrections to them in
the one-loop gravitational approximation. The relation is
established and discussed between the solutions obtained by
means of the operator and functional approaches applied to
quasi-potential equation. The first non-leading corrections to
the leading eikonal amplitude are found.

1 Introduction

The asymptotical behavior of the scattering amplitude at high
energy for all types of interactions including gravitational
interaction is one of the central problems of elementary par-
ticle physics. From the standard method of quantum field
theory it follows that calculations based on perturbation the-
ory are suitable when the energy of individual particles is not
very high and the effective coupling constant is not very large.
When the energy is increased the effective coupling constant
also increases so that the corrections calculated by perturba-
tion theory play a crucial role. The gravitational scattering
occurs at energies

√
s = 2E << MPL− and is described

by “effective field theory”, where s is the squared energy of
the center of mass, MPL is the Planck mass, G is the uni-
versal gravitational constant, which is characterized by the
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effective coupling constant αG = Gs/h̄ ≥ 1 and makes any
simple perturbation expansion unwarranted. Comparison of
the results of different approaches tackling this problem has
shown to coincide in the leading order of approximation that
has a semi-classical effective metric interpretation, while the
most of them fail in providing the non-leading terms [1–
17]. The determination of these corrections to gravitational
scattering is currently an open problem. These corrections
play a crucial role in such problems as strong gravitational
forces near the black hole, string modification of the grav-
itational theory and some other effects of quantum gravity
[3–9,12,13].

In the framework of standard field theory and the high-
energy scattering, the different methods have been developed
to investigate the asymptotic behavior of individual Feynman
diagrams and their subsequent summation. The calculations
of the eikonal diagrams in the case of gravity run similarly
to the analogous calculations in QED. The calculations of
eikonal capture the leading behavior of each order in pertur-
bation theory, but the sum of leading terms is subdominant
to the neglected term by this approximation. The reliability
of eikonal amplitude for gravity is uncertain. An approach
that has probed the first of these features with some success
is the one that based on the reggeized string exchange ampli-
tudes with subsequent reduction to the gravitational eikonal
limit including the leading order corrections [18]. In articles
[19–21] the high energy scattering amplitude of two “nucle-
ons” in the quantum gravity is constructed by extending the
functional integration method [22–28] which has been used
effectively in quantum electrodynamics [29–38]. A straight-
line path approximation was used to calculate the functional
integrals which occur. It is shown that in the limit of asymp-
totically high energy s → ∞ and at fixed t-momentum trans-
fer, the elastic scattering amplitude of two “nucleons” has
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the form of a Glauber representation with an eikonal func-
tion depending on the energy. A similar result is obtained
by the “shock-wave method” proposed by ’t Hooft [1,2],
by the method of effective topological theory in the Planck
limit proposed by Verlinde and Verlinde [14] and by sum-
mation of Feynman diagrams in the eikonal approximation
[15]. The main advantage of the proposed approach over the
other approaches known is the possibility to perform calcu-
lations in a compact form. In doing so, the correct structure
of the Green’s function and amplitudes etc. is not destroyed
by approximations in the process of the calculations.

It should be emphasized that in the framework of func-
tional integrals the modified perturbation theory proposed
by Fradkin in [23–25] leads to results that go well beyond
those of ordinary perturbation theory. This method is espe-
cially fruitful in quantum electrodynamics since even in the
first approximation of the modified perturbation theory the
contribution of both the virtual and the real soft photons can
be completely summed. In particular, it was shown that the
first approximation of the modified perturbation theory is
already sufficient to obtain the correct asymptotic behavior
for the Green’s functions and the cross sections of processes
in quantum electrodynamics [23–26] in the so-called log-
log approximation. These general results allow to solve the
problem of finding the quantum Green’s functions and cross
sections of processes with allowance for the radiative cor-
rections in electrodynamics in the presence of a real external
field without resorting to perturbation theory.

The purpose of the present paper is to develop a systematic
scheme based on modified perturbation theory to find the cor-
rection terms to the leading eikonal amplitude by solving the
Logunov–Tavkhelidze quasi-potential equation [39–50]. In
spite of the lack of a clear relativistic covariance, the quasi-
potential method keeps all information about properties of
scattering amplitude which could be received from the gen-
eral principle of quantum field theory [39]. Therefore, at high
energies one can investigate analytical properties of the scat-
tering, its asymptotic behavior and some regularities of a
potential scattering etc., exactly, as it has been done in the
usual S-matrix theory. The choice of this approach is dictated
also by the following reasons: (i) in the framework of the
quasi-potential approach, the eikonal amplitude has a rigor-
ous justification in quantum field theory [43]; (ii) in the case
of smooth potentials, it was shown that a relativistic quasi-
potential and the Schrodinger equations lead to qualitatively
identical results [42,46].

This paper is organized as follows: In the second sec-
tion we briefly introduce the Logunov–Tavkhelidze quasi-
potential equation, and rewrite this equation on a mass shell
in the operator form, after defining an appropriate pseudo-
differential operator. The solution of this equation is pre-
sented in an exponent form which is favorable to modify
the perturbation method in the framework of functional inte-

grals in the third section. The asymptotic behavior of scatter-
ing amplitude at high energies and fixed momentum transfer
is also considered and a systematic scheme of finding the
leading eikonal scattering amplitudes and its corrections are
constructed in the fourth section. The lowest-order approx-
imation of the modified perturbation theory is the leading
eikonal scattering amplitude in the linearized quantum grav-
ity. The first correction to leading eikonal amplitude is also
found. The quasi-potential used here corresponds to vir-
tual particles between two “nucleons”. The fifth section is
devoted to calculating the one-loop leading eikonal scatter-
ing amplitude and its first correction to leading amplitude
in the effective theory of quantum gravity. The new results
here for the non-analytic and non-local contributions were
discussed and included in the calculation of the behavior
scattering amplitude by using the Newtonian potential with
low-energy. The leading one loop gravitational corrections
was obtained from S-matrix in quantum gravity. Finally, we
discuss the obtained results and possible generalization of
this approach.

2 Two-particle quasi-potential equation in an operator
form

For simplicity, we shall first consider the elastic scattering of
two scalar “nucleons” with the interaction Lagrangian Lint =
gϕ2(x)φ(x). The results will be generalized to the case of a
scalar nucleon interacting with a neutral vector and a graviton
fields later. For two scalar particle scattering amplitude the
quasi-potential equation with local quasi-potential has the
form [47]:

T (p,p′; s) = gV (p − p′; s)
+ g

∫
dqV (p − q; s)K (q2, s)T (q,p′; s),

(1)

where K (q2, s) = 1√
q2+m2

1
q2+m2− s

4 −iε
is the kernel, s =

4E2 = 4(p2 +m2) = 4(p′ +m2) is the energy and p,p′ are
the relativistic momentums of two particles in the center of
the mass reference frame in the initial and final states respec-
tively. Equation (1) is one of the possible generalizations of
the Lippman–Schwinger equation for the case of relativis-
tic quantum field theory. The quasi-potential in Eq. (1) is a
complex function of the energy and relativistic momenta. The
quasi-potential equation simplifies considerably if V (r, s) is
a function that depends only of the relative momenta and the
total energy i.e. if the quasi-potential is local.1 The existence

1 Since the total energy as an external parameter of this equation, the
“local” here has direct meaning and it can appear in a three-dimensional
δ function in the quasi-potential in the coordinate representation.
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of the local quasi-potential has been well proven rigorously
in the weak coupling case [45] and a method has been spec-
ified for constructing it. The local potential constructed in
this manner gives a solution of Eq. (1) that is equal to the
physical amplitude on the mass shell [39,40,42,45].

Performing the Fourier transformations

V (p − p′; s) = 1

(2π)3

∫
drei(p−p′)rV (r; s),

T (p,p′; s) =
∫

drdr′ei(pr−p′r′)T (r, r′; s),
(2)

and substituting Eqs. (2) into (1), we obtain

T (r, r′; s) = g

(2π)3 V (r; s)δ(3)(r − r′)

+ g

(2π)3

∫
dqK (q2; s)V (r; s)e−iqr

×
∫

dr′′eiqr′′
T (r′′, r′; s)

(3)

Introducing the representation

T (r, r′; s) = g

(2π)3 V (r; s)F(r, r′; s), (4)

we find

F(r, r′; s) = δ(3)(r − r′) + g

(2π)3

∫
dqK (q2; s)e−iqr

×
∫

dr′′eiqr′′
V (r′′; s)F(r′′, r′; s). (5)

Defining the pseudo-differential operator L̂r = K (−∇r
2; s),

then

K (r; s) =
∫

dqK (q2; s)e−iqr

= K (−∇r ; s)
∫

dqe−iqr = L̂r (2π)3δ(3)(r). (6)

After some simple transformations, Eq. (3) is rewritten in an
operator form as:

F(r, r′; s) = δ(3)(r − r′) + gL̂r
[
V (r, s)F(r, r′, s)

]
. (7)

Equation (7) is the operator form of the Logunov–
Tavkhelizde equation [47].

Within the framework of the quasi-potential approach, the
potential is defined by expanding it into infinite series in order
of the interaction constant g. It corresponds to the expansion
of perturbation amplitudes on the mass shell. The approxi-
mate solution of Eq. (5) is found in the lowest order of the
quasi-potential. Using this method, the relativistic eikonal
expression of the scattering amplitude was found in quantum

field theory with large energy and small momentum transfer
[43].

3 Modified perturbation theory

In quantum field theory, scattering problems are mostly
solved by perturbation expansion. However, in some cases,
in order to solve the problem smoothly, one can improve
this method in an expansion that is called the modified
perturbation method proposed by Fradkin2 in the framework
of functional integrals [23–25], which goes well beyond the
ordinary perturbation theory. Apply it to Eq. (7), we can
write the solution of this equation in the symbolic form

F(r, r′; s) = 1

(2π)3

∫
dk exp

[
W (r;k; s)

]
e−ik(r−r′) (8)

Substituting Eqs. (8) into (7), we obtain an equation for the
function W (r,k; s)

exp W (r;k; s)
= 1 + gL̂r {V (r, s) exp [W (r,k; s) − ikr]} eikr. (9)

Using the idea of the modified perturbation theory in expo-
nent function, we can write the function W (r,k; s) as an
expansion in series in the coupling constant g

W (r;k; s) =
∞∑
n=1

gnWn(r;k; s). (10)

Substituting Eqs. (10) into (9) and using Taylor expansion,
the l.h.s of Eq. (9) is rewritten as

1+
∞∑
n=1

gnWn+ 1

2!

( ∞∑
n=1

gnWn

)2

+ 1

3!

( ∞∑
n=1

gnWn

)3

+· · · ,

(11)

2 The interpretation of the perturbation theory from the view-point
of the diagrammatic technique is as follows. The typical Feynman
denominator of the standard perturbation theory is of the form (A):
(p+∑

q)2 +m2 − iε = p2 +m2 + 2p
∑

q + (
∑

q)2, where p is the
external momentum of the scalar (spinor) particle, and the q ′s are virtual
momenta of radiation quanta. The lowest order approximation (A) of
modified theory is equivalent to summing all Feynman diagrams with
the replacement: (

∑
q)2 = ∑

(q)2 in each denominator (A). The mod-
ified perturbation theory thus corresponds to a small correlation of the
radiation quanta:qiqj = 0 and is often called theqiqj-approximation. In
the framework of functional integration this approximation is called the
straight-line path approximation i.e high-energy particles move along
Feynman paths, which are practically rectilinear.
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and the r.h.s of Eq. (9) has the form

1 + g

⎧⎨
⎩L̂r

⎡
⎣V (r; s)

×
⎛
⎝1 +

∞∑
n=1

gnWn + 1

2!

( ∞∑
n=1

gnWn

)2

+ · · ·
⎞
⎠

⎤
⎦

+ V (r; s)
⎡
⎣1 +

∞∑
n=1

gnWn + 1

2!

( ∞∑
n=1

gnWn

)2

+ · · ·
⎤
⎦

×K (k; s)
⎫⎬
⎭ .

(12)

Using Eqs. (11) and (12) and comparing with the both sides of
Eq. (9) in order of the coupling constant g, we derive the first,
second, and third order approximation terms, respectively

W1(r;k; s) =
∫

dqV (q; s)K [(k + q)2; s]e−iqr, (13)

W2(r;k; s) = −W 2
1 (r;k; s)

2!
+1

2

∫
dq1dq2V (q1; s)V (q2; s)K [(k + q1 + q2)

2; s]
×[K (k + q1; s) + K [k + q2; s]]e−iq1r−iq2r, (14)

W3(r;k; s) = −W 2
1 (r; k; s)

3!
+

∫
dq1dq2dq3V (q1; s)V (q2; s)V (q3; s)K [(k + q1)

2; s]
×K [(k + q1 + q2)

2; s]K [(k + q1 + q2 + q3)
2; s]

× exp
(−iq1r − iq2r − iq3r

)
. (15)

etc.
Restricting the treatment to only W1(r,k; s) instead of

W (r,k; s) in Eq. (8) we obtain from Eqs. (2), (4) and (8)
approximate expression for the scattering amplitude

T1(p,p′; s) = g

(2π)3

∫
drei(p−p′)rV (r, s)egW1(r,p,s). (16)

To establish the meaning of this approximation, we expand
T1(r,k; s) in series in the coupling constant g:

T (n+1)
1 (p,p′; s) = gn+1

n!
∫

dq1 · · · dqnV (q1; s) · · · V (qn; s)

×V (p − p′ −
n∑

i=1

qi ; s)
n∏

i=0

K [(qi + p′)2; s]. (17)

and compare it with the (n + 1) − th iteration term of exact
Eq. (1)

T (n+1)(p,p′; s) =
∫

dq1 · · · dqnV (q1; s) · · · V (qn; s)

× V (p − p′ −
n∑

i=1

qi ; s)

×
∑
p

K [(q1 + p′)2; s]K
[
(q1 + q2 + p′)2; s

]
· · ·

× K

⎡
⎣

(∑
i=1

qi + p′
)2

; s
⎤
⎦ , (18)

where
∑

p is the sum over the permutations of the momenta
p1 ,p2 · · · pn .

It is readily seen from Eqs. (17) and (18) that our approx-
imation in the case of the Lippmann–Schwinger equation is
identical with the qiq j = 0 approximation, in accordance
with which terms of the type qiq j = 0, i �= j are ignored in
the “nucleon propagators”.

4 Asymptotic behavior of the scattering amplitude at
high energy

In this section the solution of the Logunov–Tavkhelidze
quasi-potential equation obtained in the previous section for
the scattering amplitude can be used to find the asymptotic
behavior amplitude in the high energy s → ∞ and fixed
t-momentum transfer. In asymptotic expansions, we shall
retain both the principal term and the next order term, using
the formula

eW (r,p′;s) = eW1(r,p′;s) [
1 + g2W2(r,p′; s) + · · ·

]
, (19)

where W1(r,k; s) and W2(r,k; s) were determined by Eqs.
(13) and (14), respectively.

Take the z axis along the (p+ p′) momentum of the inci-
dent particles and use Mandelstam variables, we have

�⊥.nz = 0, t = −�2⊥, p − p′ = �⊥. (20)

Noting

K (p + p′; s)
= 1√

(p + p′)2 + m2

1

(p + p′)2 − s
4 + m2 − iε

∣∣∣∣
s→∞,t− f i xed

= 2

s(q2
z − iε)

[
1 − 3q2

z + q⊥2 + q⊥
⊥√
s(qz − iε)

]
+ O

(
1

s2

)
, (21)

Substitute Eqs. (16) into (12) and (13), we get

W1 =
(
W10

s

)
+

(
W11

s
√
s

)
+O

(
1

s2

)
, (22)

W2 =
(

W20

s2
√
s

)
+O

(
1

s3

)
, (23)
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where the W10,W11 and W20 terms are calculated in detail
in Ref. [21]

W10 = 2
∫

dqV (q; s) eiqr

(q2
z − iε)2

= 2i
∫ z

−∞
dz′V (

√
q⊥2 + z′2; s), (24)

W11 = −2
∫

dqV (q; s)e−iqr 3q2
z + q⊥2 + q⊥
⊥

(qz − iε)2

= −6V (

√
q⊥2 + z′2; s)+

+ 2(−∇⊥2 − iq⊥∇⊥)

∫ z

−∞
dz′V (

√
q⊥2 + z′2; s);

(25)

W20 = − 4
∫

dq1dq2e
−i(q1+q2)rV (q1; s)V (q2; s)×

× 3q1zq2z + q1⊥q2⊥
(q1z − iε)(q2z − iε)(q1z + q2z − iε)

= −4i

⎧⎨
⎩3

∫ z

−∞
dz′V 2(

√
q⊥2 + z′2; s)

+
[
∇⊥

∫ z′

−∞
dz′′V 2(

√
q⊥2 + z′′2; s)

]2
⎫⎬
⎭ . (26)

In the limit s → ∞ and (t/s) → 0, W10 makes the main con-
tribution, and the remaining terms are corrections. Therefore,
the function W can be represented by means of the expan-
sion (19) where W10,W11 and W20 are determined by Eqs.
(24)–(26), respectively. The asymptotic behavior scattering
amplitude can be written in the following form

T (s; t)
∣∣∣ s → ∞
t − f i xed

= g

(2π)3

∫
d2r⊥dzei	⊥r⊥

× V (
√
r2 + z2; s)

× exp

(
g
W10

s

) (
1 + g

W11

s
√
s

+ g2 W20

s2
√
s

+ · · ·
)

.

(27)

Substituting Eqs. (24)–(26) into (27) and making calcula-
tions, at the s → ∞ and t-fixed momentum transfer, we
finally obtain

T (s; t)
∣∣∣
s → ∞t − f i xed

= − is

2(2π)3

∫
d2r⊥ei�⊥r⊥

×
{
e
[

2ig
s

∫ ∞
−∞ dzV (

√
r2+z2;s)

]
− 1

}

− 6g2

(2π)3s
√
s

∫
d2r⊥ei�⊥r⊥

× exp

[
2ig

s

∫ ∞

−∞
dzV (

√
r2⊥ + z2; s)

]

×
∫ ∞

−∞
dzV 2(

√
r2⊥ + z2; s)

− ig

(2π)3
√
s

∫
d2r⊥ei�⊥r⊥

×
∫ ∞

−∞
dz

{
exp

[
2ig

s

∫ ∞

z
dz′V (

√
r2⊥ + z′2; s)

]

− exp

[
2ig

s

∫ ∞

−∞
dz′V (

√
r2⊥ + z′2; s)

]}

×
{∫ ∞

z
dz′∇⊥2V (

√
r2⊥ + z′2; s)

− 2ig

s

[∫ ∞

z
dz′∇⊥V (

√
r2⊥ + z2; s)

]2}

− 2ig

(2π)3s
�⊥2

∫
d2r⊥V (

√
r2⊥ + z′2; s)]ei�⊥r⊥

×
∫ ∞

−∞
zdzV (

√
r2⊥ + z2; s)

× exp

[
2ig

s

∫ ∞

z
dz′V (

√
r2⊥ + z′2; s)

]
+ · · ·

= T (0)
Scalar (s; t)

∣∣∣ s → ∞
t − f i xed

+ T (1)
Scalar (s; t)

∣∣∣ s → ∞
t − f i xed

T (2)
Scalar (s; t)

∣∣∣ s → ∞
t − f i xed

+ T (3)
Scalar (s; t)

∣∣∣ s → ∞
t − f i xed

(28)

In Eq. (28) the first term describes the leading eikonal behav-
ior of the scattering amplitude, while the remaining terms
determine the corrections of relative magnitude 1/

√
s. Due

to the smoothness of the potential V at high energy s → ∞
the change of the particle momentum �⊥, is relatively small.
Therefore, the terms proportional to �⊥V and �2⊥V in Eq.
(28) can be neglected, now we have

T (0)
Scalar (s; t)

∣∣∣ s → ∞
t − f i xed

= − is

2(2π)3

∫
d2r⊥ei�⊥r⊥

×
{

exp

[
2ig

s

∫ ∞

−∞
dzV

(√
r2⊥ + z2; s

)]
− 1

}
(29)

T (1)
Scalar (s; t)| s → ∞

t − f i xed

= − 6g2

(2π)3s
√
s

∫
d2r⊥ei�⊥r⊥

× exp

[
2ig

s

∫ ∞

−∞
dzV

(√
r2⊥ + z2; s

)]

×
∫ ∞

−∞
dzV 2

(√
r2⊥ + z2; s

)
(30)

As it is well known from the investigation of the scattering
amplitude in the Feynman diagrammatic technique, the high
energy asymptotic behavior can contain only logarithms and
integral powers of s. A similar behavior is observed here,
since the integration of Eq. (28) leads to vanishing coeffi-
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cients for half-integral powers s. Nevertheless, allowance for
the terms that contain the half-integral powers s is needed
for the calculations of the next corrections in the scattering
amplitude, and leads to the appearance of the so-called retar-
dation effects, which are absent within the approximation
used in the principal asymptotic terms.

For the first term from Eq. (28) in the limit of high ener-
gies s → ∞ and for t-fixed momentum transfers, with the
assumption of smooth behavior the smooth behavior of the
quasi-potential as a function of the relative coordinate of two
“nucleons”, in the framework of quantum field theory we find
the leading eikonal of the high energy scattering amplitude3

T (0)
Scalar (s; t)

∣∣∣ s → ∞
t − f i xed

= − is

2(2π)3

∫
d2r⊥ei�⊥r⊥ ×

×
{

exp
[
iχ0(|r2⊥|; s)

]
− 1

}

χ0 (|r⊥|; s) = − g2

(2π)2s
K0 (μ|r⊥|) (31)

where |r⊥| is a two-dimensional vector perpendicular to the
nucleon-collision direction (the impact parameter), K0(μ|r⊥|)
is Mac Donald function of zeroth order, μ is a graviton mass
which serves as an infrared cut-off and χ0(|r⊥|; s) is the
eikonal phase function.

The similar leading eikonal Eq. (31) for the Lagrangian
interaction Lint = gϕ2(x)φ(x) is also found by means of the
functional integration[21], where eikonal phase function for
exchange scalar virtual meson corresponding to a Yukawa
interaction potential between two “nucleons” V (|r⊥|; s) =
−

(
g2

4πs

) (
e−μ|r⊥|

r⊥

)
[21]. Use this exact form of the Yukawa

as a quasi-potential and replace into Eqs. (29) and (30), for
the leading eikonal amplitude and its first correction, we get
(see Appendix C)

T (0)
Scalar (s; t)

= g2

2(2π)4s
.

[
1

μ2 − t
− g4

4(2π)2s2
F1(t) + g7

12(2π)5s4
F2(t)

]

(32)

T (1)
Scalar (s; t) = 3i g6

4(2π)6s3
√
s

[
F1(t) − g3

(2π)3s2
F2(t)

]
(33)

where

F1(t) = 1

t
√

1 − 4μ2/t
ln

∣∣∣∣∣
1 − √

1 − 4μ2/t

1 + √
1 − 4μ2/t

∣∣∣∣∣ , (34)

3 The amplitude T is normalized in the c.m.s by the relation dσ
d�

=
|T (s,t)|2

64π2s
, σt = 1

2p
√
s
ImT (s, t = 0).

and

F2(t) =
∫ 1

0
dy

1

(t y + μ2)(y − 1)
ln

∣∣∣∣ μ2

y(t y + μ2 − t)

∣∣∣∣ (35)

The similar calculations can be applied for other exchanges
with different spins. In the case of the vector model Lint =
−gϕi∂σ ϕAσ + g2Aσσ Aσ ϕϕϕ the quasi-potential is inde-
pendent of energy V (|r⊥|) = −(g2/4π)(e−μ|r⊥|/|r⊥|), we
get

T (0)
Vector (s, t)

= g2

2(2π)4 .

[
1

μ2 − t
− g4

4(2π)2s
F1(t) + g7

12(2π)5s2
F2(t)

]

(36)

T (1)
Vector (s, t) = 3i g6

4(2π)6s
√
s

[
F1(t) − g3

(2π)3s
F2(t)

]
(37)

In the case of tensor model4, the quasi- potential increases
with energy

V (|r⊥|; s) = (κ2s/4π)
(
e−μ|r⊥|/|r⊥|

)
,

we have

T (0)
T ensor (s, t)

= κ2s

(2π)4 .

[
1

μ2 − t
− κ4

2(2π)2 F1(t) + κ7

3(2π)5
F2(t)

]

(38)

T (1)
T ensor (s, t) = 3iκ6√s

(2π)6

[
F1(t) − 2κ3

(2π)3 F2(t)

]
(39)

Comparison of these above potentials has made it possible
to draw the following conclusions: in the model with the
scalar exchange, the total cross section σt decreases as 1

s ,
and only the Born term predominates in the entire eikonal
equation; the vector model leads to a total cross section σt
approaching a constant value as s → ∞, t

s → 0. In both
cases, the eikonal phases are purely real and consequently
the influence of inelastic scattering is disregarded in this

4 The model of interaction of a scalar “nucleons” with a gravita-
tional field in the linear approximation to hμν(x)L(x) = L0,ϕ(x) +
L0,grav.(x) + Lint (x), where

L0(x) = 1

2
[∂μϕ(x)∂μϕ(x) − m2ϕ2(x)],

Lint (x) = −κ

2
hμν(x)Tμν(x),

Tμν(x) = ∂μϕ(x)∂νϕ(x) − 1

2
ημν [∂σ ϕ(x)∂σ ϕ(x) − m2ϕ2(x)],

Tμν(x) is the energy momentum tensor of the scalar field. The coupling
constant κ is related to Newton’s constant of gravitation G by κ2 =
32πG = 32πl2PL , lPL = 1, 6.10−33cm is the Planck length.
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approximation, σ in = 0. In the case of graviton exchange the
Froissart limit is violated. A similar result is also obtained
in Ref. [18] with the eikonal series for reggeized graviton
exchange.

In the framework of the quasi-potential approach and the
modified perturbation theory a systematic scheme of find-
ing the leading eikonal scattering amplitudes and its correc-
tions are developed and constructed in quantum field theory
including the linearized gravity. The first correction to lead-
ing eikonal amplitude is found.

5 The one loop approximation contribution to high
energy scattering

The low energy effective theory of quantized gravity is
currently our most successful attempt at unifying general
relativity and quantum mechanics [51–70]. Therefore, we
attempt to extend the above approach to calculating the high
energy scattering amplitude of two “nucleons” for the gravi-
ton exchange based on the Newtonian potential with low-
energy leading one loop gravitational corrections of two large
non-relativistic masses [53]

VNewton(r)

= −G
m1m2

r

[
1 + 3

G (m1 + m2)

c2r
+ 41

10π

Gh̄

c3r2

]
(40)

It is important to note that classical post-Newtonian term in
expression (40) corresponds to the lowest-order scattering
potential and agrees with Eq. (2.5) of Iwasaki [55]. The cor-
rect result for the quantum corrections first published [53]
and later confirmed in [62].

When substituting the Newtonian potential (40) into Eqs.
(29) and (30), the vertex factor for graviton exchange between
“nucleons” should be added by VNewton with sVNewton[21,
62], the definition of the non-relativistic potential (see Eq.
(D.7) in Appendix D) and graviton still has a mass μ and
perform some calculations for the leading eikonal behavior
and the first correction of the scattering amplitude (see Eqs.
(E.3) and (E.7) in Appendix E) we find the following expres-
sions

T (0)
gravi ton(s, t)

= κ2s

(4π)4

(
1

μ2 − t
− κ3

2.(32π)2 F1(t) + 2κ6

3.(16π)5
F2(t)

)

− 6(m1 + m2)

(32π)3c2

κ5s√
μ2 − t

+ 41κ5sh̄

80.(4π)5c3
F2(t)

(41)

and

T (1)
gravi ton(s, t) = 3iκ6√s

(8π)6

[
F1(t) − 2κ4

(8π)3 F2(t)

]

+ 9(m1 + m2)

4(8π)3c2

κ6√s√
μ2 − t

+ 123κ6h̄
√
s

10(4π)5c3
F2(t)

(42)

From the Eqs. (41) and (42) above, we see that the leading
eikonal term and the first correction term of scattering ampli-
tude have the same structure including three small terms:
(i) The first term is the scattering amplitude by exchang-
ing gravitons, which in its non-relativistic limit will be the
Newton potential; (ii) The second term is the relativistic
correction for the scattering amplitude [the term containing
(m1+m2)]. This term corresponds to the non-analytic contri-
bution because of exchanging gravitons. The relativistic cor-
rection term is explained as the “zitterbewegung” fluctuation
when the distance between two interacting particles is shifted
by one Compton wavelength [51–53]; (iii) The last term (the
term proportional to h̄) is quantum correction, obtained from
the contribution of the one loop diagram in the high energy
scattering process.

The quantum correction term found in the linear gravita-
tional field corresponds to the local interaction that is related
to the analytical properties of the scattering amplitude. The
Newtonian potential and its quantum corrections are related
to the non-locality of the quasi-potential; non-analytic terms
are also related to the non-locality of the Newtonian potential.

The lowest order approximation of the modified perturba-
tion theory is the leading eikonal scattering amplitude with
phase function defined by the smooth local Yukawa quasi-
potential in linearized quantum gravity. Using the Yukawa
quasi-potential corresponding to virtual graviton between
two “nucleons” we obtain the first correction to leading
eikonal amplitude.

In the effective quantum gravity, the Newtonian quasi-
potential, which contains the relativistic, and quantum cor-
rections, we found the one-loop leading eikonal scattering
amplitude and its first correction to the leading amplitude
[the last terms in Eqs. (41) and (42)]. The difference here of
the non-analytic and nonlocal contributions, connected with
nonlocal quasi-potential were discussed and included in the
calculation of the behavior scattering amplitude.

6 Conclusion

In the framework of the modified perturbation theory and the
quasi-potential equation, a systematic scheme of finding the
leading eikonal scattering amplitudes and its corrections in
the one-loop gravitational approximation in quantum gravity
are developed and constructed. The first non-leading correc-
tions to leading eikonal amplitude are found.
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In the linearized gravitational theory, the interaction
between of scattered “nucleons” by exchanging graviton,
which corresponds to the smooth quasi-potential of the
Yukawa type. The leading eikonal scattering amplitude and
its first correction also found.

In the framework of effective field theory, we obtained the
expression for the scattering amplitude in Newtonian poten-
tial taking into account the contribution of relativistic and
quantum corrections from the one-loop diagram. The dif-
ference with the above case includes: (i) relativistic correc-
tion terms calculated from non-analytical contributions and
explained as a result of “zitterbewegung” fluctuations when
the distance between particles is shifted one Compton wave-
length; (ii) quantum correction terms related to Planck’s con-
stant h̄ was also found.

The contributions to the high energy scattering amplitude
are divided into analytic contributions related to the local-
ity and non-analytic contributions associated with the non-
locality. This division is associated with two ways of describ-
ing particles in quantum mechanics and relativistic quantum
mechanics in that the particle has mass m. If the particle has
mass, it is not possible to the localization of the particle in a
volume with linear dimensions less than the Compton wave-
length of the corresponding particle. For ultra-relativistic par-
ticles such as light quanta for which (m = 0, v = c)-the
concept of the coordinates of the particle in the usual sense
of the word is completely meaningless [70].

The new results in this paper are that we have incorpo-
rated relativistic effects and quantum effects in gravitational
scattering to clarify part of the connection between the effec-
tive quantum field theory of general relativity and relativistic
quantum mechanics.
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Appendix A: The smoothness of the local quasi-potential

Here we demonstrate that the eikonal representation is a con-
sequence of the assumption of the non-singular character of
hadron interactions at high energies. We shall use a quasi-
potential equation for the wave function of two particles in
the coordinate representation which has the form of a nonlo-
cal differential equation

(
E2 − m2 + ∇2

)
ψ (r) = 1√

m2 − ∇2
V (r, s) ψ (r) (A.1)

where r is the vector of the relative coordinate of two “nucle-
ons”. Under the condition of non-singular or smooth behavior
quasi-potential V (r, s), the non-localized differential equa-
tion Eq. (A.1) takes an effectively local form in the high-
energy limit. Actually, let us look for a solution of Eq. (A.1)
of the form

ψ (r) = eipzϕ (r) (A.2)

where ϕ (r) is expected to be a slowly varying functions com-
pared to exp(i pz) and E = √

p2 + m2.
It can easily be shown that on a space of slowly varying

functions in the high-energy limit p → ∞

e−i pz 1√
m2 − ∇2

eipz → p − i∇z + O

(
1

p

)
(A.3)

or

e−i pz
(√

m2 − ∇2
)
eipz → 1

p
+ O

(
1

p2

)
(A.4)

Thus the function ϕ (r) obeys the equation

−2i p
∂ϕ (r)

∂z
= 1

p
V (s, r) ϕ (r) (A.5)

which coincides with the one which follows from the local
Klein–Gordon equation with effective potential 1

p V (r, s). As
a result we have the eikonal representation of elastic scatter-
ing amplitude with eikonal phase function χ0(|r⊥|, s) in Eq.
(31). It is important note that the nonlocal potential differs

from the local by terms of order O
(

1
p

)
in the high energy

limit p → ∞. It should be noted, shifting from describing
non-relativistic quantum theory to relativistic descriptions
requires changing the concept of the coordinates of individ-
ual particles according to mass values. If the particle has
mass, it is not possible to locate a particle in space with
a length smaller than the Compton wavelength of the cor-
responding particle. For limited relativistic particles – light
quanta – the concept of the particle’s coordinates in the usual
sense is completely absent [70].

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2019) 79 :835 Page 9 of 13 835

Appendix B: Relationship between the operator and
Feynman path methods

What actual physical picture may correspond to our result
given by Eq. (28)? To answer this question, we establish the
relationship between the operator and Feynman path meth-
ods, which treats the quasi-potential equation Eq. (10) in the
language of functional integrals. The solution of this equation
can be written in the symbolic form

exp(W ) = 1

1 − gK
[
(−i∇ − k)2] V (r)

× 1

= −i

∞∫

0

dτ eiτ(1+iε) exp
{
−iτgK

[
(−i∇ − k)2

]
V (r)

}
× 1

(B.1)

In accordance with the Feynman parametrization, we intro-
duce an ordering index η and write Eq. (B.1) in the form

exp(W ) = −i

∞∫

0

dτ eiτ(1+iε)

× exp

⎧⎨
⎩−ig

∞∫

0

dηK
[(−i∇η+ε − k

)2
]
V

(
rη

)
⎫⎬
⎭ × 1

(B.2)

Using Feynman transformation

F [P (η)] =
∫

Dp
∫

x(0)=0

Dx

(2π)3

× exp

⎧⎨
⎩i

τ∫

0

dη
−→̇
r

[
p (η) − P (η)

]
⎫⎬
⎭ F

[
p (η)

]

(B.3)

We write the solution of Eq. (6) in the form of the functional
integral

exp(W ) = −i

∞∫

o

dτeiτ(1+iε)
∫

Dp
∫

x(0)=0

Dx

(2π)3

× exp

⎧⎨
⎩i

τ∫

0

dη
−→̇
x (η)

[
p (η) − P (η)

]
⎫⎬
⎭G (x, p; τ) × 1

(B.4)

In Eq. (B.4) we enter the function G

G (x,p; τ) exp

⎧⎨
⎩−i

τ∫

0

dη
−→̇
x (η)∇η+ε

⎫⎬
⎭

× exp

⎧⎨
⎩−ig

τ∫

0

dηK
[
(p (η) − k)2

]
V

(
rη

)
⎫⎬
⎭

(B.5)

Which satisfies the equation

dG

dτ
=

{
−igK

[
(p (τ ) − k)2

]
V

(
r − −→̇

x (τ − ε)
)

∇
}
G;

G (τ = 0) = 1 (B.6)

Finding from Eq. (B.6) the operator function G and substi-
tuting it into Eq. (B.4) for W we obtained the following final
expression

exp(W ) = −i

∞∫

o

dτeiτ(1+iε)
∫

Dp
∫

x(0)=0

Dx

(2π)3

× exp

⎧⎨
⎩i

τ∫

0

dη
−→̇
x (η)p (η)

⎫⎬
⎭ exp (g�) (B.7)

where

� = −i

τ∫

0

dηK
[
(p (η) − k)2]

×V

⎡
⎣r −

τ∫

0

dξx (ξ) ϑ (ξ − η + ε)

⎤
⎦ (B.8)

�2 = −i

τ1∫

0

τ2∫

0

dη1dη2K
[
(p (η1) − k)2] K [

(p (η2) − k)2]

×V

⎡
⎣r1 −

τ1∫

0

dξx (ξ) ϑ (ξ − η + ε)

⎤
⎦

×V

⎡
⎣r2 −

τ2∫

0

dξx (ξ) ϑ (ξ − η + ε)

⎤
⎦ (B.9)

Writing out the expansion

exp (g�) = exp
(
g�̄

) ∞∑
n=0

gn

n!
(
� − �̄

)n
(B.10)

in which the sign of averaging denoted integration with
respect to τ, x(η) and p(η) with the corresponding measure
(see, for example Eq. (B.7)), and performing the calculations,
we find

W1 = �̄, W2 = 1

2!
(
�2 − �̄2

)
,

W3 = 1

3!
[
�3 − �̄3 − 3�̄

(
�2 − �̄2

)]
· · · etc (B.11)
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the Eqs. (B.11) and (13), (14), (15) are identical.

W1 (r; k; s) = �̄ = −i

∞∫

0

dηK
[
(p (η) − k)2]

× exp

⎡
⎣−

τ∫

0

dξx (ξ) ϑ (ξ − η + ε)

⎤
⎦ V (r)

=
∫

dqe−iqrK
[
(q + k)2] V (q; s) , (B.12)

�2 = K
[(∇r1 + ∇r2 + k

)2
]
K

[(∇r1 + k
)2

]

×K
[(∇r2 + k

)2
]
V (r1; s) V (r2; s)

=
∫

dq1

∫
dq2e

−i(q1+q2)rK
[(
k + q1 + q2

)2
]

×
{
K

[(
k + q1

)2; s
]

+ K
[(
k + q2

)2; s
]}

V (r1; s) V (r2; s)
(B.13)

W2 (r; k; s) = −W 2
1 (r; k; s)

2!
+1

2

∫
dq1

∫
dq2V

(
q1; s

)
V

(
q2; s

)

×
{
K

[(
q1 + k

)2; s
]

+ K
[(
q2 + k

)2; s
]}

e−i(q1+q2)r

(B.14)

W3 (r; k; s) = −W 2
1 (r; k; s)

3!
+

∫
dq1dq2dq3V

(
q1; s

)
V

(
q2; s

)
V

(
q3; s

)

×K
[(
q1 + k

)2; s
]
K

[(
q2 + k

)2; s
]

×K
[(
q3 + k

)2; s
]
e−i(q1+q2+q3)r (B.15)

Restricting ourselves in the expansion (B.11) to the first term,
we obtain the approximate Eq. (29) for the scattering ampli-
tude, which corresponds to the allowance for the particle
Feynman paths. These paths can be considered as a classi-
cal paths and coincide in the case of the scattering of high
energy particles through small angles to straight-line paths
trajectories.

Appendix C: Some integrals used in this paper

Firstly, we consider the integral

I1 =
∞∫

−∞
dzV

(√
r2⊥ + z2, s

)
= − g2

4πs

∞∫

−∞
dz

e
−μ

√
r2⊥+z2

√
r2⊥ + z2

(C.1)

here V (r; s) = − (
g2Big/4πs

) (
e−μr

/
r
)

is the Yukawa

interaction potential between two “nucleons”.

Perform Fourier transformation

I1 = − g2

4πs

∞∫

−∞
dz

(
1

(2π)3

∫
d3k

e−kr

k2 + μ2

)

= − g2

2(2π)3s

∫
d2k⊥

e−ik⊥r⊥

k2⊥ + μ2
= − g2

2(2π)2s
K0(μ|r⊥|)

(C.2)

with K0(μ|r⊥| = 1
2π

∫
d2k⊥ e−ik⊥r⊥

k2⊥+μ2 is the Mac Donald of

zeroth order.
The integral

I2 =
∫

d2 |r⊥|ei�⊥r⊥K0(μ |r⊥|)

= 2π

∫
d |r⊥| |r⊥|J0 (�⊥r⊥) = 2π

μ2 + 	2⊥
= 2π

μ2 − t
.

(C.3)

The integral

I3 =
∫

d2 |r⊥|ei	⊥|r⊥|K 2
0 (μ |r⊥|)

=
∫

d2q
1

q2 + μ2

1

(q + 	⊥)2 + μ2
(C.4)

here, the result of the integral that obtained from calculating
I2 have been used.

Using method of Feynman parameter integral 1
ab =

1∫
0
dx 1

[ax+b(1−x)]2 , we obtain

I3 = (−iπ)

1∫

0

dx
1[

μ2 − t x(1 − x)
] = (−iπ)F1(t) (C.5)

with the F1(t)-function is determined by the expression

F1(t) = 1

t
√

1 − 4μ2/t
ln

∣∣∣∣∣
1 − √

1 − 4μ2/t

1 + √
1 − 4μ2/t

∣∣∣∣∣ . (C.6)

By the same method, the following integral is also calcu-
lated

I4 =
∫

d2 |r⊥|ei	⊥|r⊥|K 3
0 (μ |r⊥|)

I4 = 1

(2π)2

∫
d2q1

∫
d2q2

× 1

q2
1 + μ2

1

q2
2 + μ2

1

(q1 + q2 + 	⊥)2 + μ2
= −1

2
F2(t)

(C.7)

with the F2(t)-function is determined by the expression

F2(t) =
∫ 1

0
dy

1

(t y + μ2)(y − 1)
ln

∣∣∣∣ μ2

y(t y + μ2 − t)

∣∣∣∣ .(C.8)
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Appendix D: Scattering matrix and potential [53]

In this Appendix we list some of the facts that obtained in
[53].

1. The scattering amplitude for two scalar massive parti-
cles as a function of the momentum transfer q2 = (

p − p′)2

in the mixed gravity-scalar theory can be expanded as

T ∼
[
A + Bq2 + · · ·

+ακ4 1

q2 + β1κ
4 ln

(
−q2

)
+ β2κ

4 m√−q2
+ · · ·

]
(D.1)

where the coefficients A, B · · · and α, β1, β2 depend on the
particle massesm1,m2. The terms with A, B · · · in Eq. (D.1)
are analytical in q2 and correspond to local interactions and
the other terms with α, β1, β2 correspond to the non-local,
long-ranged interactions, described by the nonanalytic poten-
tial.

The space parts of the non-analytical terms are performed
Fourier transformation
∫

d3q

(2π)3 e
−iqr 1

|q|2 = 1

4πr
;
∫

d3q

(2π)3 e
−iqr 1

|q| = 1

2π2r2 ;
∫

d3q

(2π)3 e
−iqr ln

(
|q|2
μ2

)
= − 1

2πr3 . (D.2)

so clearly these terms will contribute to the long range cor-
rections. It should be noted that such nonanalytic pieces of
the scattering amplitude are essential to the unitarity of the
S matrix.

2. In the quantization of General Relativity the defini-
tion of a potential is certainly not obvious. One can choose
between several definitions of the potential depending on,
e.g., the physical situation, how to define the energy of the
fields, the diagrams included etc. The choice of potential
which includes all 1-loop diagrams [60,64,65] seems to be
the simples, gauge invariant definition of the potential.

We will calculate the non-relativistic potential using the
full amplitude. Here we simply relate the expectation value
for the S matrix to the Fourier transformation of the potential
Ṽ (q) in the

< p′
1, p

′
2 |S |p1, p2 >= − i Ṽ (q) (2π) δ

(
E − E ′) (D.3)

where p, p′ is the incoming, outgoing four-momentum,
respectively, and (E − E ′) is the energy difference between
the incoming and outgoing states. Comparing this to the def-
inition of the invariant matrix element M we get from dia-
grams

< p′
1, p′

2 |S |p1, p2 >= (2π)4δ(4)
(
p1 + p2 − p′

1 − p′
2
)
(iM)

(D.4)

We see that we have divided the above equation with
(2m12m2) to obtain the non-relativistic limit (q = (0,q))

Ṽ (q) = − 1

2m1

1

2m2
M (D.5)

so that

V (r) = − 1

2m1

1

2m2

∫
dq3

(2π)3 e
iqrM (q) (D.6)

This will be our definition of the non-relativistic potential
generated by the considered non-analytic parts, where M is
the non-analytical part of the amplitude of the scattering pro-
cess to a given loop order.

3. We evaluate all diagrams which contribute to the one
loop scattering amplitude. Finally, we find the leading cor-
rections to the nonrelativistic gravitational potential.

VNewton(r) =
−G

m1m2

r

[
1 + 3

G (m1 + m2)

c2r
+ 41

10π

Gh̄

c3r2

]
, (D.7)

which includes the lowest-order relativistic correction, and
the lowest-order quantum correction (also relativistic).

Appendix E: The Newtonian potential and scattering
amplitude

The Newtonian potential with low-energy leading one-loop
gravitational corrections Eq. (40) can be rewritten as

VNewton(r, s) = C1
κ2s

r
+ C2

κ4s

r2 + C3
κ4s

r3 , (E.1)

where C1 = 1
4.(32π)

,C2 = 3(m1+m2)

4c2.(32π)2 ,C3 = 41h̄
40πc3.(32π)2 .

Substituting Eq. (E.1) into Eq. (29) in case of graviton
exchange, we obtain

T (0)
gravi ton(s, t) ≈
κ

(2π)3

∫
d2r⊥ei�⊥r⊥

(
C1κ

2s

∞∫

−∞

1√
r2⊥ + z2

dz

+C2κ
4s

∞∫

−∞

1

r2⊥ + z2
dz + C3κ

4s

∞∫

−∞

1(
r2⊥ + z2

)3/2 dz

)

+ iκ2

(2π)3s

∫
d2r⊥ei�⊥r⊥

⎛
⎝C1κ

2s

∞∫

−∞

1√
r2⊥ + z2

dz

⎞
⎠

2

− 2κ3

3(2π)3s2

∫
d2r⊥ei�⊥r⊥

⎛
⎝C1κ

2s

∞∫

−∞

1√
r2⊥ + z2

dz

⎞
⎠

3

.

(E.2)

123
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Using the integrals I2, I3, I4 in the Appendix C and the
explicit coefficientsC1,C2,C3 above to Eq. (E.2), we receive
the leading term of the scattering amplitude

T (0)
gravi ton(s, t)

= κ2s

(4π)4

(
1

μ2 − t
− κ4

2.(32π)2 F1(t) + 2κ7

3.(16π)5
F2(t)

)

−6(m1 + m2)

(32π)3c2

κ5s√
μ2 − t

+ 41κ5sh̄

80.(4π)5c3
F2(t). (E.3)

By the same way, Eq. (30) is now available

T (1)
gravi ton(s, t)

∣∣s→∞;t− f i xed

≈ − 6κ2

(2π)3s
√
s
.

∫
d2r⊥ei�⊥r⊥ ×

⎧⎪⎨
⎪⎩

∞∫

−∞
dz

⎡
⎢⎣

⎛
⎝C1

κ2s√
r2⊥ + z2

⎞
⎠

2

+2C1C2
κ6s2√(
r2⊥ + z2

)3
+ 2C2C3

κ6s2

(
r2⊥ + z2

)2

⎤
⎥⎦

⎫⎪⎬
⎪⎭

−12iκ9√sC3
1

(2π)3

∫
d2r⊥ei�⊥r⊥

⎛
⎝

∞∫

−∞

1√
r2⊥ + z2

dz

⎞
⎠

3

. (E.4)

Perform some necessary calculations for the first term of
Eq. (E.4), we have

J1 = 3iκ6√s

(8π)6 F1(t) + 9(m1 + m2)

4(8π)3c2

κ6√s√
μ2 − t

+123κ6h̄
√
s

10(4π)5c3
F2(t), (E.5)

and the second term of Eq. (E.4) gives the result

J2 = 6iκ10√s

(8π)9 F2(t). (E.6)

The final result for the first correction term of the scattering
amplitude has the form

T (1)
gravi ton (s, t) = J1 + J2

= 3iκ6√s

(8π)6 F1(t) + 9(m1 + m2)

4(8π)3c2

κ6√s√
μ2 − t

+123κ6h̄
√
s

10(4π)5c3
F2(t) + 6iκ10√s

(8π)9 F2(t). (E.7)
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