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Abstract The future space-borne detectors will provide
the possibility to detect gravitational waves emitted from
extreme mass ratio inspirals of stellar-mass compact objects
into supermassive black holes. It is natural to expect that
the spin of the compact object and cosmological constant
will affect the orbit of the inspiral process and hence lead
to the considerable phase shift of the corresponding gravi-
tational waves. In this paper, we investigate the motion of a
spinning test particle in the spinning black hole background
with a cosmological constant and give the order of motion
deviation induced by the particle’s spin and the cosmological
constant by considering the corresponding innermost stable
circular orbit. By taking the neutron star or kerr black hole as
the small body, the deviations of the innermost stable circular
orbit parameters induced by the particle’s spin and cosmo-
logical constant are given. Our results show that the deviation
induced by particle’s spin is much larger than that induced
by cosmological constant when the test particle locates not
very far away from the black hole, the accumulation of phase
shift during the inspiral from the cosmological constant can
be ignored when compared to the one induced by the par-
ticle’s spin. However when the test particle locates very far
away from the black hole, the impact from the cosmological
constant will increase dramatically. Therefore the accumula-
tion of phase shift for the whole process of inspiral induced
by the cosmological constant and the particle’s spin should
be handled with caution.
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1 Introduction

Gravitational waves have been directly detected by the Laser
Interferometer Gravitational-Wave Observatory (LIGO) and
Virgo from merging black holes and inspiraling neutron star
binaries[1–5]. These systems have been detected with a mass
ratio of the order of 1 (as predicted by [6], who also predicted
that these binaries should predominately have low spin values
and essentially be circular). Since intermediate-mass ratio
inspirals are already detectable by ground-based detectors,
see [7], we will have to wait for space-borne detectors such
as the Laser Interferometer Space Antenna (LISA) [8,9],
DECIGO[10,11], Taiji [12,13], and Tianqin [14] to detect
extreme-mass ratio inspirals, i.e. the progressive inspiral of a
stellar-mass compact object on to a supermassive black hole,
see [15].

For an extreme-mass ratio inspiral system (EMRI), a
test particle with the motion along geodesic is the simplest
description for the small body. While a small body always
possesses spin angular momentum in such system, in order
to describe the EMRI system more accurately, the motion of
the small body can be envisaged as a spinning test body inspi-
raling into a supermassive black hole. A test particle without
spin can be treated as a point-like particle and its motion in a
curved spacetime is described by geodesics. However, when
the reaction of the test particle is considered, the motion does
not comply with a geodesic [16–18]. Likewise, the motion of
a spinning test particle does not follow a geodesic because of
the additional spin-curvature force [19,20]. As the descrip-
tions for the spinning test particle, the spin of the test particle
indeed make contributions to its motion and the correspond-
ing spin should be considered.
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Like the spin of a test particle, a non-zero cosmolog-
ical constant also affects the motion of the test particle.
The observations [22,23] have shown that the cosmologi-
cal constant is positive and non-zero with a confidence of
P(Λ > 0) = 99%. Therefore contributions to the motion of
the particle in the black hole background from the non-zero
cosmological constant should be considered. The cosmolog-
ical constant was firstly proposed by Einstein in order to
obtain a static universe. A black hole with a negative cosmo-
logical constant will have a thermodynamic behavior, and
there exists a phase transition between the stable large black
hole and the thermal gas phase [24]. The AdS/CFT corre-
spondence and Holography has been addressed by the works
of [25,26], and the small-large black hole phase transition
in the charged or rotating AdS black hole backgrounds was
also investigated in Refs. [27–29].

We should note that the magnitudes of the particle’s spin
and current observed cosmological constant are very tiny and
the corresponding motion deviations caused by them can be
ignored. That’s why most of the works about the EMRI are
always described by a test particle with the motion along the
geodesic trajectories in a black hole background. While the
key thing should be noted here is that the deviation of the
orbital angular frequency induced by the particle’s spin and
cosmological constant will accumulate and lead to consider-
able phase shift during the long time inspiraling process of
the small body in the EMRI system, this phenomena was also
reported in Ref. [30]. Therefore, if we want to investigate the
motion of a test particle more accurately in the EMRI system,
the relationship between particle motion and both particle’s
spin and cosmological constant should be clarified.

Circular orbits below the innermost stable circular orbit
(ISCO) are unstable, and it is always regarded as the begin-
ning of the merger of the binary. The motion behavior of
particles in ISCO is closely related to the nature of black
holes and we will use it to investigate the motion deviation
induced by the spin of test particle and the non-zero cos-
mological constant. The ISCO of a spinning test particle in
the Schwarzschild, Kerr, and Kerr–Newman (KN) black hole
backgrounds have been investigated in Refs. [31–33]. Equa-
torial circular orbits and ISCOs in different black hole back-
grounds have been investigated systematically in the related
literature (see Refs. [16,21,31,32,34–64]). The motion of
the spinning test particle in the Horndeski theory was also
investigated in Ref. [65]. Some works have addressed the
motion of a spinning test particle with non-zero cosmologi-
cal constant in Schwarzschild and Kerr-de Sitter spacetimes
[66–69], for which the equilibrium conditions and nonequa-
torial circular orbits were investigated.

In this paper, we will investigate the motion deviation
induced by the spin of a test particle and the non-zero cos-
mological constant by considering the motion of a spinning
test particle in a rotating black hole with non-zero cosmo-

logical constant. Firstly, we review the equations of motion
for a spinning test particle in curved spacetime and derive
the corresponding four-momentum and tangent vector along
the trajectory in a Kerr-dS/AdS black hole background in
Sect. 2. By setting the particle’s spin and cosmological con-
stant to zero, we can get the original no-deviation geodesic
motion of the test particle in Kerr black hole background, the
motion deviation can be obtained by comparing the results
that for the original case and non-zero particle’s spin and
cosmological constant case. In Sect. 3, we derive the ISCO
for the spinning test particle in Kerr-dS/AdS black hole, with
these results in hand, the motion of small body with non-zero
spin and cosmological constant can be obtained. Thanks to
the real magnitudes of the particle’s spin and cosmological
constant are very tiny and we can simplify our results in
the linear order approach of particle’s spin and cosmological
constant. Then we have the analytic angular frequency with
the linear order approach, which is used to naively estimate
the corresponding magnitude of the phase shift induced by
them. Finally, a brief summary and conclusion are given in
Sect. 4.

2 Motion of a small body in black hole background

In this section, we solve the equations of motion of a spin-
ning test particle in a Kerr-dS/AdS black hole background,
where a unified treatment between the cases of geodesics in a
Kerr-dS/AdS black hole and spinning test particle in a Kerr-
dS/AdS black hole is presented. We will use the “pole-dipole”
approximation to describe the motion of the spinning test
particle. The corresponding equations of motion for the spin-
ning test particle, also known as the Mathisson–Papapetrou–
Dixon (MPD) equations, can be found in Refs. [70–78]. The
four-velocity uμ and the four-momentum Pμ in this scenario
are not parallel [74,79,80]. The four-momentum keeps time-
like along the trajectory and satisfies PμPμ = −m2 with m
the mass of the test particle, while the four-velocity might be
superluminal [74,79,80] if the spin of the test particle is too
large. When the multi-pole effects are considered, the super-
luminal problem can be avoided [81–85]. The gravitational
radiation of a spinning test particle has been calculated by
using the perturbation method, see Refs. [30,57,86,87]. The
collisional Penrose process with spinning particles were also
investigated in Refs. [88,89].

The MPD equations can be derived with several methods,
such as the multi-pole expansion [70–73,90], the lagrangian
method [74,80], and the hamiltonian method [91–93]. The
corresponding forms with the pole–dipole approximations
read

DPμ

Dλ
= −1

2
Rμ

ναβu
νSαβ, (1)
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DSμν

Dλ
= Pμuν − uμPν, (2)

where Pμ, Sμν , and uμ are the four-momentum, spin ten-
sor, and tangent vector of the spinning test particle along
the trajectory, respectively. Note that, the D

Dλ
is a covariant

derivative along the trajectory of the particle, and λ is the
affine parameter of the test particle. Obviously, the motion
of the particle does not follow the geodesic due to the spin-
curvature force − 1

2 R
μ
ναβu

νSαβ .
We should use a “spin-supplementary condition” to deter-

mine the motion of a spinning test particle since the motion
described by the MPD equations is not uniquely specified.
The choice of this condition is not unique because it is related
to the center of mass of the spinning test particle with dif-
ferent observers [20,57,93,94]. In this paper we adopt the
Tulczyjew spin-supplementary condition [95]:

PμS
μν = 0, (3)

for which the four-momentum Pμ satisfies

PμPμ = −m2, (4)

and it keeps timelike along the trajectory, while the tangent
vector velocity uμ may transform from timelike to spacelike
as it is not parallel to Pμ [74,79,80].

The Kerr-dS/AdS black hole background can be described
by the following metric in the Boyer–Lindquist coordinates

ds2= − Δ

ρ2

(
dt − a sin2 θ

1 + Λ
3 a

2
dφ

)2

+ ρ2dθ2

1 + Λ
3 a

2 cos2 θ

+ (1 + Λ
3 a

2 cos2 θ) sin2 θ

ρ2

(
r2 + a2

1 + Λ
3 a

2
dφ − adt

)2

+ ρ2

Δ
dr2, (5)

where the metric functions Δ and ρ2 are

Δ = (r2 + a2)

(
1 − Λ

3
r2

)
− 2Mr, (6)

ρ2 = r2 + a2 cos2 θ. (7)

Here Λ, M , and a = J
M are the cosmological constant, mass,

and spin of the black hole, respectively. We set the gravita-
tional constant G = 1 and the speed of light c = 1.

In this paper, we only consider the equatorial motion of
the spinning test particle with the spin-aligned or anti-aligned
orbits, the four-momentum and spin tensor satisfy Pθ = 0
and Sθμ = 0. The non-vanishing independent variables for
the equatorial orbits are Pt , Pr , Pφ , and Srφ . By using the
spin-supplementary condition (3), the remaining components

of spin tensor are [75]

Srt = −Srφ
Pφ

Pt
, Sφt = Srφ

Pr
Pt

. (8)

Substituting Eq. (8) into following equation

s2 = 1

2
SμνSμν = Sφr Sφr + Str Str + StφStφ, (9)

and by using Eq. (4), the r − φ component of the spin tensor
reads

Srφ = − s

r

Pt
m

∣∣∣∣a2Λ̄ + 3M2

3M2

∣∣∣∣ = − s

r

Pt
m

|h| ,

where the parameter h =
∣∣∣ a2Λ̄+3M2

3M2

∣∣∣ and the dimensionless

parameter Λ̄ = Λ M2. Finally we obtain the non-vanishing
components of the spin tensor Sμν in the Kerr-dS/AdS black
hole background:

Srφ = −Sφr = − s

r

Pt
m
h,

Srt = −Str = −Srφ
Pφ

Pt
= s

r

Pφ

m
h,

Sφt = −Stφ = Srφ
Pr
Pt

= − s

r

Pr
m

h, (10)

where the parameter s is the spin angular momentum of the
test particle and the spin perpendicular to the equatorial plane.
With the non-vanishing spin tensor, the non-zero spatial com-
ponent of the spin angular momentum is [74]

Sz = r Srφ = −s
Pt
m

, (11)

where the index z stands for the direction of the spin for the
test particle.

Compared to the case of a particle without spin, the con-
served quantities have changed due to the spin of the test
particle. For a killing vector fieldKμ, the corresponding con-
served quantity is [74,75]

C = KμPμ − 1

2
SμνKμ;ν, (12)

where the semicolon denotes the covariant derivative. Since
there are a timelike Killing vector ξμ = (∂t )

μ and a spacelike
Killing vector ημ = (∂φ)μ in the spacetime (5), we have two
conserved quantities [75]

e = −Ct = −ξμPμ + 1

2
Sμνξμ;ν

= −Pt + 1

2

s

r

Pt
m
h∂r gtφ − 1

2

s

r

Pφ

m
h∂r gtt , (13)

j = Cφ = ημPμ − 1

2
Sμνημ;ν
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= Pφ + 1

2

s

r

Pφ

m
h∂r gφt − 1

2

s

r

Pt
m
h∂r gφφ, (14)

where e and j are the energy and total angular momentum
of the spinning test particle. One can verify the relations
Sμνξμ;ν = Sμνξβ∂νgβμ and Sμνημ;ν = Sμνηβ∂νgβμ for
the two Killing vectors.

By solving Eqs. (4), (13), and (14), the non-vanishing
components of the four-momentum are

Pt = −2mr
(
ēs̄Mh∂r gφt + 2ēr + hs̄ j̄ M2∂r gtt

)
4r2 + h2s̄2M2

(
∂r gφφ∂r gtt − (∂r gφt )2

)
= m

3�

{
j̄ M2s̄

(
3 + a2 Λ̄

M2

) (
3M − r3 Λ̄

M2

)

+3ēr3
(
aMs̄

Λ̄

M2 − 3

)
− 9aēM2s̄

}
, (15)

Pφ = 2mr
(
2 j̄ Mr − ēs̄Mh∂r gφφ − h j̄ s̄M2∂r gφt

)
h2s̄2M2

(
∂r gφφ∂r gtt − (∂r gφt )2

) + 4r2

= mM

�
(

3 + a2 Λ̄
M2

){
9a2ēMs̄ +

(
3 + a2 Λ̄

M2

)
(
j̄r3

(
3 + aMs̄

Λ̄

M2

)
− 3a j̄M2s̄ − 3ēr3s̄

)}
, (16)

and

(Pr )2 = −m2 + gφφP2
φ + 2gφt PφPt + gtt P2

t

grr
, (17)

where the function � is

� = r3(3 + Λ̄s̄2) − 3M3s̄2, (18)

and the dimensionless parameters are defined as ē = e
m ,

j̄ = j
mM , and s̄ = s

mM , respectively.
Because the trajectories of the test particle are independent

of the affine parameter λ [73,96], in this paper we take the
affine parameter λ as coordinate time and set ut = 1. With
this choice, the orbital frequency reads

Ω = φ̇. (19)

By substituting ut = 1 and the non-zero components of Sμν

(10) into the equations of motion (1) and (2), we have [80,97]

DStr

Dt
= Pt ṙ − Pr

= h

2m

s

r
gφμR

μ
ναβu

νSαβ + h
s

r

Pφ

rm
ṙ , (20)

DStφ

Dt
= Pt φ̇ − Pφ

= − h

2m

s

r
grμR

μ
ναβu

νSαβ − h
s

r

Pr
rm

ṙ . (21)

Then we derive the tangent vector uμ as follows

ṙ = b2c1 − b1c2

a2b1 − a1b2
, (22)

φ̇ = a2c1 − a1c2

a1b2 − a2b1
. (23)

Here the parameters a1, b1, c1, a2, b2, and c2 are

a1 = Pt − h
s

r

Pφ

mr
+ h

2m

s

r
RφrμνS

νμ, (24)

b1 = 1

2m

s

r
RφφμνS

νμ, (25)

c1 = −Pr + h

2m

s

r
RφtμνS

νμ, (26)

a2 = h
sPr
r2 − h

2m

s

r
RrrμνS

νμ, (27)

b2 = Pt − h

2m

s

r
RrφμνS

νμ, (28)

c2 = −Pφ − h

2m

s

r
RrtμνS

νμ, (29)

where

RφtμνS
νμ ∝ Pr , (c1 ∝ Pr ), (30)

RφφμνS
νμ ∝ Pr , (b1 ∝ Pr ). (31)

So the radial momentum Pr and radial component of the
tangent vector ur are parallel [32,97], and we can use the
radial component of the four-momentum Pr to define the
effective potential of the spinning test particle. Note that,
the tangent vector along the trajectory of the spinning test
particle actually corresponds to the relativistic center-mass
four-velocity when the λ is the proper time τ . Moreover,
there is an explicit relation giving the tangent vector as a
function of the four-momentum Pμ and the spin tensor Sμν ,
see details in Refs. [96,98].

3 ISCO of a spinning particle in Kerr-dS/AdS black
hole background and estimation of phase shift

We know that the motion of a test particle in a central field
can be solved in terms of the radial coordinate in the Newto-
nian dynamics [34,35]. And the motion of a test particle in
the black hole background can also be solved by using the
effective potential method in general relativity.

Due to the radial velocity ur is parallel to the radial compo-
nent Pr , we can obtain the effective potential of the spinning
test particle in the Kerr-dS/AdS black hole background by
using the form of Pr (17) [33]. We then have [32,33,99]

(Pr )2

m2 =
(
αē2 + β ē + γ

)
=

(
ē − −β + √

β2 − 4αγ

2α

)

×
(
ē − −β − √

β2 − 4αγ

2α

)
, (32)
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where the functions α, β, and γ are

α = 1

�2

{
a2M2r6s̄2

(
Λ̄

M2

)2

+ 9r6 + 9a2r3(2M + r)

+18M2r(a3 + 3ar)s̄ + 9M2
[
(2M − r)r3

+a2M(M + 2r)

]
s̄2 + 3r3 Λ̄

M2

[
a2r(a2 + r2)

+M2(r3 − a2(2M + r))s̄2
]}

, (33)

β = − 2M

3�2 (a2 Λ̄

M2 + 3) j̄

{
9M

[
2ar3 + (3M − r)r3s̄

+2a2Mrs̄ + aM2(M + r)s̄2
]

+3ar3
[
a2r − aMrs̄ + r3 − M2(2M + r)s̄2

]
Λ̄

M2

+aM2r6s̄2
(

Λ̄

M2

)2 }
, (34)

and

γ = 1

9r2�2

{
3

[
a2

(
r2 Λ̄

M2 − 3

)
+ r

(
6M − 3r + r3 Λ̄

M2

)]

×
[
r3

(
3 + M2 s̄2 Λ̄

M2

)
− 3M3 s̄2

]2

+
[

9M4 s̄2

−6M3r3 s̄2 Λ̄

M2 + 3r4
(
a2 Λ̄

M2 + r2 Λ̄

M2 − 3

) ]

× j̄2M2r2
(

3 + a2 Λ̄

M2

)2

− 6Mr3
(
ar s̄

Λ̄

M2 − 3

)

+ M2r s̄

(
18a + r5 s̄

(
Λ̄

M2

)2
)}

. (35)

The effective potential of the spinning test particle in the
Kerr-dS/AdS black hole background is given by

V spin
eff = −β + √

β2 − 4αγ

2α
, (36)

where the effective potential of the test particle is defined
by the positive square root of Eq. (32), because the posi-
tive square root corresponds to the four-momentum pointing
toward future, while the negative corresponds to the past-
pointing four-momentum [99].

If a test particle satisfies the following two conditions [33],
it does not move in the radial direction:

ṙ = 0 (Veff = 0) , (37)

the acceleration in the radial direction is zero:

r̈ = 0

(
dVeff

dr
= 0

)
, (38)

then its motion is a circular orbit.
The outer circular orbit locates at the minimum position of

the effective potential is stable, and the inner one locates at the
maximum position ofVeff is unstable. The ISCO locates at the
position where the maximum and minimum of the effective
potential merge. Thus, for the ISCO of a test particle, the
effective potential should also satisfy

d2Veff

dr2 = 0. (39)

Then, we can use Eqs. (37), (38), and (39) to derive the
ISCO of a test particle. Note that, since the equation of motion
of the spinning test particle is obtained by using the “pole–
dipole” approximation, its tangent vector velocity will trans-
form from timelike to spacelike if the particle’s spin is too
large. For simplicity, in this paper we neglect the higher-
order “multi-pole” and only use Eqs. (1) and (2) to describe
the motion of the spinning test particle with the following
superluminal constraint [32]

−1

( dt
dτ

)2
= gtt

c2 + grr
( ṙ
c

)2 + gφφ

( φ̇

c

)2 + 2gφt
φ̇

c2 < 0. (40)

Actually, the spin of the test particle is so tiny and the corre-
sponding motion will not exceed the speed of light.

Next, we will see that the relativistic values of the particle’s
spin s̄ and cosmological constant Λ̄ are very small and they
are not of the same order. We define the following variables to
describe the order of the correction induced by the particle’s
spin and cosmological constant as follows

δrISCO,s̄(Λ̄)|Λ̄=0(s̄=0) = rISCO,s̄(Λ̄) − rISCO

rISCO
, (41)

δΩISCO,s̄(Λ̄)|Λ̄=0(s̄=0) = ΩISCO,s̄(Λ̄) − ΩISCO

ΩISCO
. (42)

The corresponding deviations for the motion of the test parti-
cle are shown in Fig. 1 and listed in Tables 1, 2, 3, 4, 5, and 6.
One thing should be noted here is that the same order of s̄ and
Λ̄ can make different order of corrections to the motion of the
particle. The impact of the linear order parameter Λ̄ is about
two magnitudes greater than the one of the spin parameter s̄
at the ISCO, we will discuss it lately.

Next, we will take the examples of kerr black hole and
neutron star as the small body to estimate the magnitudes of
the motion deviation induced by their spin. The spin angular
momentum of a compact object is always referred by the
so-called “spin-parameter”

b = cs

Gm2 = s

m2 , (43)

where the parameters s andm are the angular momentum and
mass of the compact object. The mass of the central super-
massive black hole in this system is assumed to be 106M�,

123
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Plots of the derivation of the ISCO parameters with different order of particle’s spin and cosmological constant. The orders of the particle’s
spin and cosmological constant are set as 10−9, 10−8, 10−7, 10−6, 10−5, and 10−4

Table 1 The ISCO parameters
of the spinning test particle in
the black hole background with
a = 0 and Λ̄ = 0

s̄ rISCO
M j̄1ISCO ēISCO

1 × 10−9 6.0000000019 3.4641016146 0.9428090416

1 × 10−8 6.0000000168 3.4641016104 0.9428090417

1 × 10−7 6.0000001636 3.4641015679 0.9428090432

1 × 10−6 6.0000016334 3.4641011437 0.9428090576

1 × 10−5 6.0000163303 3.4640969010 0.9428092020

1 × 10−4 6.0001633001 3.4640544744 0.9428106453

Table 2 The ISCO parameters
of the spinning test particle in
the black hole background with
a = 0 and s̄ = 0

Λ̄ rISCO
M j̄1ISCO ēISCO

1 × 10−9 6.0000006484 3.4641014903 0.9428090246

1 × 10−8 6.0000064802 3.4641003679 0.9428088719

1 × 10−7 6.0000648048 3.4640891442 0.9428073445

1 × 10−6 6.0006484677 3.4639769053 0.9427920710

1 × 10−5 6.0065271010 3.4628543148 0.9426393359

1 × 10−4 6.0692859436 3.4514357844 0.9411003230

where the parameter M� is the solar mass. The spin angu-
lar momentum of the test body satisfies s = bm2, and the
dimensionless spin parameter reads

s̄ = bm2

mM
= b

m

M
� 1. (44)

If we take the neutron star as the small body, and choose
the mass and spin parameter as mNS = 1.4M� and bNS ∼
0.02 [100], then the spin parameter s̄ for the neutron star is
s̄ = b m

M ∼ 10−8. Even for a small extremal Kerr black hole
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Table 3 The ISCO
(counter-rotating orbit)
parameters of the spinning test
particle in the black hole
background with a = 0.25 and
Λ̄ = 0

s̄ rISCO
M j̄1ISCO ēISCO

1 × 10−9 6.7948537709 − 3.6855902359 0.9496770967

1 × 10−8 6.7948537859 − 3.6855902313 0.9496770968

1 × 10−7 6.7948539372 − 3.6855901854 0.9496770980

1 × 10−6 6.7948554486 − 3.6855897260 0.9496771092

1 × 10−5 6.7948705614 − 3.6855851315 0.9496772214

1 × 10−4 6.7950216919 − 3.6855391874 0.9496783434

Table 4 The ISCO
(counter-rotating orbit)
parameters of the spinning test
particle in the black hole
background with a = 0.25 and
s̄ = 0

Λ̄ rISCO
M j̄1ISCO ēISCO

1 × 10−9 6.7948554128 − 3.6855900062 0.9496770728

1 × 10−8 6.7948651402 − 3.6855882896 0.9496768779

1 × 10−7 6.7949626058 − 3.6855713142 0.9496749402

1 × 10−6 6.7959416478 − 3.6854025138 0.9496556180

1 × 10−5 6.8058299155 − 3.6837127936 0.9494623240

1 × 10−4 6.9147050109 − 3.6663300559 0.9475046091

Table 5 The ISCO (co-rotating
orbit) parameters of the spinning
test particle in the black hole
background with a = 0.25 and
Λ̄ = 0

s̄ rISCO
M j̄1ISCO ēISCO

1 × 10−9 5.1559328132 3.2099521130 0.9331177083

1 × 10−8 5.1559328269 3.2099521091 0.9331177084

1 × 10−7 5.1559329658 3.2099520706 0.9331177103

1 × 10−6 5.1559343514 3.2099516854 0.9331177292

1 × 10−5 5.1559482101 3.2099478341 0.9331179181

1 × 10−4 5.1560867956 3.2099093195 0.9331198064

Table 6 The ISCO (co-rotating
orbit) parameters of the spinning
test particle in the black hole
background with a = 0.25 and
s̄ = 0

Λ̄ rISCO
M j̄1ISCO ēISCO

1 × 10−9 5.1559331501 3.2099520350 0.9331176953

1 × 10−8 5.1559361936 3.2099513292 0.9331175786

1 × 10−7 5.1559666327 3.2099442709 0.9331164123

1 × 10−6 5.1562711583 3.2098736874 0.9331047488

1 × 10−5 5.1593301318 3.2091677670 0.9329881144

1 × 10−4 5.1913776247 3.2020998180 0.9318217663

with mass mek ∼ 10M�, the corresponding spin parameter
s̄ = m

M ∼ 10−5 is still very small.
The cosmological constant is given by

Λ = 3

(
H0

c

)2

ΩΛ, (45)

where the parameters H0, c, and ΩΛ are the Hubble constant,
speed of light, and dark energy density parameter today. The
current observational values of these parameters from Planck
collaboration are [101] (see Table A.1)

H0 = 67.66 ± 0.42 km s−1 Mpc−1, (46)

ΩΛ = 0.6897 ± 0.0057. (47)

With these results, the value of cosmological constant is

Λ ∼ 1.10536 × 10−52 m−2. (48)

Then the corresponding dimensionless cosmological con-
stant is

Λ̄ ∼ 1.10536 × 10−34, (49)

which is very tiny. Now, we can have a quick glance at the
dimensionless spin s̄ and cosmological constant Λ̄, which
are so tiny and seemingly can be ignored. On the other hand,
the phase shift might be considerable due to the accumulation
during the inspiral. To check this, we will analyze the order of
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phase shift due to the accumulation during the inspiral. Since
the spin parameter s̄ and cosmological constant Λ̄ are so tiny,
we can decompose the frequency Ω with the linear order of
the particle’s spin and cosmological constant as follows

Ω = Ω0 + δΩ1 + δΩ2

= Ω0 + φs s̄ + φΛ Λ̄ + (O(s̄) + O(Λ̄)
)2

, (50)

where δΩ1 = φs s̄, δΩ2 = φΛΛ̄, and Ω0 is the angu-
lar frequency of the spinless test particle in the Kerr black
hole background with zero cosmological constant. The cor-
responding complete expressions are

Ω0 = 2aēM − 2 j̄ M2 + j̄ Mr

2a2ēM + a2ēr − 2a j̄M2 + ēr3
, (51)

φs = a2+r(r−2M)

r

[
2a2ēM+a2ēr−2a j̄M2+ēr3

]−2

×
{

− M
[
M(aē − j̄ M)2 + a2r(ē2 − 1)

− j̄2M2r + 2Mr2 + (2ē2 − 1)r3]}, (52)

φΛ = 1

3M2

[
2a2ēM + a2ēr − 2a j̄M2 + ēr3

]−2

×
{
a3[2ē2r3(M + r) + j̄2M2(4M2 − 2Mr

+r2)
] − 8a4ē j̄ M3 − ē j̄ Mr6

−a2ē j̄ Mr3(4M + r) + a5ē2(4M2

+2Mr + r2) + a( j̄2M2r4 + ē2r6)
}
. (53)

Note that, the linear order shift of the angular frequency (52)
induced by the particle’s spin will vanish when the orbit
locates at the horizon. This behavior is consistent with the
results in Ref. [33].

Now we can use Eqs. (52) and (53) to estimate the fre-
quency shift induced by the cosmological constant and par-
ticle’s spin. Let us take a cycle of the ISCO as an example to
compute the phase shift over a period. We cursorily choose
the period of the ISCO as T = 2π

Ω0
and list the quantities

Ω0, φΛ, φs given in Eqs. (50)–(52) with different values of
the spinning black hole for the ISCO in Table 7. Then the
corresponding accumulations of the phase shift induced by
the particle’s spin and cosmological constant over a whole
period can be calculated as

δΩ
1 period
1 = T δΩ1 ∼

⎧⎨
⎩

5.0 × 10−7π, a = −0.2,

5.1 × 10−7π, a = 0,

5.2 × 10−7π, a = 0.2,

(54)

δΩ
1 period
2 = T δΩ2 ∼

⎧⎨
⎩

−4.6 × 10−33π, a = −0.2,

−3.6 × 10−33π, a = 0,

−2.7 × 10−33π, a = 0.2,

(55)

where the parameters are set as s̄ = 10−6 and Λ̄ = 10−34. As
the results in Ref. [102], for a m = 10M�(small black hole)
test body spiraling into a black hole with mass M = 106M�

Table 7 The quantities Ω0, φΛ, φs in Eqs. (50)–(52) with different
values of the spinning black hole at the ISCO

a Ω0 φΛ φs

− 0.2 0.059144
M − 1.35394

M − 0.01480
M

0 1
6
√

6M
−

√
3
2

1
M − 5

288M

0.2 0.079974
M − 1.08631

M − 0.02077
M

from r = 9.46M to the ISCO at r = 6M with circular orbits,
the motion of the test body will be about 85000 cycles. Then
the corresponding magnitudes of the phase shift δΩ1 and δΩ2

induced by the particle’s spin and cosmological constant in
this region can be roughly computed by setting the same
angular frequency shift for each period. They are about

δΩ1 ∼ 10−2π, (56)

δΩ2 ∼ 10−28π. (57)

For an entire inspiraling process from more further distance
to the ISCO, the phase shift induced by the particle’s spin will
be considerable. While the phase shift induced by the cos-
mological constant is actually tiny compared the one induced
by the particle’s spin.

Before closing this section, we make a brief discussion
about our results. As the results of the motion deviation
induced by particle’s spin and cosmological constant in Fig.
1, the same order of cosmological constant Λ̄ and particle’s
spin s̄ can induce different magnitudes of deviation to the
motion of the test particle. To explain the reason for this phe-
nomenon, we can use the angular frequency (50) with linear
particle’s spin s̄ and cosmological constant Λ̄ to compute the
contributions induced by the particle’s spin and cosmological
constant. Then the the ratio of corrections induced between
cosmological constant and particle at ISCO is

φΛ

φs
∼ 102, (58)

where the results in Table 7 have been used. On the other
hand, the inclination of the plots in Fig. 1 is still related to
the linear order functions φs and φΛ, actually the slope of the
curves can be determined by using φΛ

Ω0
and φs

Ω0
. We should

note that the impacts of the perturbation parameters depend
on the radius, and the corrections induced by the cosmolog-
ical constant is two magnitudes larger than the one induced
by the same order particle’s spin does not hold everywhere.
Next, we will give the relations of the corrections induced by
between the particle’s spin and the cosmological constant by
considering circular orbits. The angular frequency of the test
particle at circular orbit with vanishing particle’s spin and
cosmological constant reads [103]

Ω0 = M1/2

r3/2 + aM1/2 . (59)
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Fig. 2 Plots of the derivation angular frequency for circular orbit induced by particle’s spin and cosmological constant that how they depend on
the radius. The top channel for the details in small radius range, the bottom channel for the details in large radius range

Then by substituting the energy and angular momentum in
circular orbit into Eqs. (52) and (53), we plot the corrections
for the angular frequency within a linear order approximation
and show how they depend on the radius, see Fig. 2.

Obviously, for the whole process of the inspiral, the accu-
mulated phase shift needs to be handled with caution in terms
of the relations in Fig. 2. Although we have shown that the
current observed value of the dimensionless cosmological
constant is much smaller than the value of dimensionless
particle’s spin, however the impact of the cosmological con-
stant will be much greater than the one of the same order spin
when the particle is located far away from the black hole. It
is easy to see that the ratio φΛ

φS
is no longer sensitive to the

spin of the black hole when the radius becomes bigger and
we will ignore the impacts of the black hole’s spin. By using
Eqs. (52) and (53), the dependence of motion’s deviation,
induced by the spin and the cosmological constant, on the
radius can be cursorily obtained as follows

φΛ|a=0 = −
√
r3

3(r − 2)
, (60)

φs |a=0 = − (r − 1)(r − 3)

(r − 2)r3 , (61)

then the corresponding ratio is

φΛ

φs
|a=0 = r5

3(r − 3)(r − 1)
√
r
. (62)

An interesting phenomenon exists here, the ratio will diverge
when the radius approaches to infinity. The reason for this
behavior is mainly from that the “spin-curvature” coupling

will decraease with the radius r , while the impact that from
the cosmological constant is opposite.

Finally, we can have a look at again for the phase shift
induced by particle’s spin and cosmological constant. The
angular frequency can be estimated by using Eq. (59), if we
naively consider the detectable frequency range for LISA as

Ω0 ∈ (10−4 Hz, 10−1 Hz), (63)

and still set the mass of supermassive black hole as 106M�.
Then the corresponding radius range of the circular orbirt is

r ∈ (100M, 102M), (64)

where M is the mass of the supermassive black hole.
Although we have shown that the contribution induced

by cosmological constant will increase with radius, however
when the test particle locates at the range of Eq. (64), the
contribution from the particle’s spin is still far greater than
the one from the cosmological constant.

4 Summary and conclusion

In this paper, we investigated the motion deviation of the
small body induced by the particle’s spin and the non-zero
cosmological constant. To derive the corrections induced by
the particle’s spin and the cosmological constants with a
unified treatment, we solved the equation of motion for a
spinning test particle by using the MPD equation with Tul-
czyjew spin-supplementary condition in the equatorial plane
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of the Kerr-dS/AdS black hole background, and gave the
four-momentum and four-velocity of the spinning test parti-
cle. Since the radial component of the tangent vector ṙ and
the radial component of the four-momentum Pr are parallel,
we derived the effective potential by decomposing the radial
component of the four-momentum and used it to obtain the
ISCO of the spinning test particle.

By using the ISCO of the test particle, we estimated how
they are changed by the non-vanishing particle’s spin and
cosmological constant. We numerically investigated the cor-
rections for the ISCO that from the particle’s spin and cos-
mological constant with small order values, we found that
the same order particle’s spin and cosmological constant can
make different order of contributions to the motion of the test
particle. By considering a small Kerr black hole or a rotating
neutron star as the small test spinning body and considering
the current observations of the cosmological constant, we got
two different order of magnitudes of parameters s̄ = s/(mM)

and Λ̄ = Λ M2. The linear order analytic corrections to the
angular frequency induced by the particle’s spin and cosmo-
logical constant in the background of Kerr black hole with
arbitrary black hole spin a were given, and it will work well
due to the so tiny true values of the particle’s spin and cos-
mological constant. With our linear order correction (50), we
estimated the magnitudes of phase shift induced by the par-
ticle’s spin and cosmological constant over a period at the
ISCO. We also showed that ratio of the impacts that from
the particle’s spin and cosmological constant does not hold
everywhere and depends on the location of the orbit. The
analytic ratio of the contribution induced by between the
cosmological constant and the particle’s spin was still given.
It will be useful for the more accurate phase shift of the
whole inspiraling process for the dynamical EMRI system
with gravitational emission.
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