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Abstract We study dS4 vacua within matter-coupled N =
4 gauged supergravity in the embedding tensor formalism.
We derive a set of conditions for the existence of dS4 solu-
tions by using a simple ansatz for solving the extremization
and positivity of the scalar potential. We find two classes
of gauge groups that lead to dS4 vacua. One of them con-
sists of gauge groups of the form Ge × Gm × H with H
being a compact group and Ge × Gm a non-compact group
with SO(3)×SO(3) subgroup and dyonically gauged. These
gauge groups are the same as those giving rise to max-
imally supersymmetric AdS4 vacua. The dS4 and AdS4

vacua arise from different coupling ratios between Ge and
Gm factors. Another class of gauge groups is given by
SO(2, 1)e × SO(2, 1)m × Gnc × G ′

nc × H with SO(2, 1),
Gnc and G ′

nc dyonically gauged. We explicitly check that
all known dS4 vacua in N = 4 gauged supergravity sat-
isfy the aforementioned conditions, hence the two classes of
gauge groups can accommodate all the previous results on
dS4 vacua in a simple framework. Accordingly, the results
provide a new approach for finding dS4 vacua. In addition,
relations between the embedding tensors for gauge groups
admitting dS4 and dS5 vacua are studied, and a new gauge
group, SO(2, 1) × SO(4, 1), with a dS4 vacuum is found
by applying these relations to SO(1, 1) × SO(4, 1) gauge
group in five dimensions.
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1 Introduction

De Sitter (dS) vacua are solutions of general relativity
and gauged supergravity with positively constant curva-
ture. Although these solutions are originally of mathemat-
ical interest, cosmological observations, see for example [1–
3], suggest that the universe has a very small positive value
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of cosmological constant. Furthermore, these solutions have
attracted much attention during the past twenty years due
to the proposed dS/CFT correspondence [4], a holographic
duality between a theory of gravity on dS background and
a Euclidean conformal field theory along the line of the
AdS/CFT correspondence [5].

Unlike the AdS counterpart found naturally in many
gauged supergravities, dS vacua are very rare and (if they
exist) the embedding in string/M-theory is highly non-trivial.
Various approaches have been devoted to search for these
vacua with only a small number of solutions found, see [6–
23] for an incomplete list. All these results even suggest
that string/M-theory does not admit de Sitter solutions, for
a recent review see [24] and references therein. In addition,
there are a number of previous works considering de Sitter
solutions of gauged supergravities. In four dimensions, de
Sitter vacua are extensively studied, see for example [25–
29]. On the other hand, de Sitter vacua in higher dimensions
are less known [30–36].

In this paper, we study dS4 vacua in four-dimensional
N = 4 gauged supergravity coupled to vector multiplets
constructed in [37] using the embedding tensor formalism,
see [38,39] for an earlier construction. We do not attempt to
find new dS4 solutions but to introduce a new approach for
finding dS4 vacua. We will extend a recent result initiated in
the study of dS5 vacua in five-dimensional N = 4 gauged
supergravity given in [36]. Unlike the previous results on
dS4 solutions mostly obtained from using the old construc-
tion of [39], working in the embedding tensor formalism has
the advantage that different deformations, gaugings and non-
trivial SL(2) phases, are encoded in a single framework. Fur-
thermore, an explicit form of the gauge group under consid-
eration needs not be specified at the beginning. This allows to
formulate a general setup and subsequently apply the results
to a particular gauge group.

We now describe the procedure used in our analysis. In
general, the scalar potential of a gauged supergravity can be
written as a quadratic function of fermion-shift matrices. In
[36], the extremization and positivity of the scalar potential
are solved by using a particular form of an ansatz such that the
gravitino-shift matrix (usually denoted by the A1 tensor) van-
ishes. This guarantees the positivity of the potential and, with
a suitable condition, the potential can be extremized. With
the help of the embedding tensor formalism, a general form
of gauge groups that lead to dS4 vacua can be determined
from the conditions imposed on the fermion-shift matrices.

It should be noted that the procedure and the resulting con-
ditions are very similar to those arising from the existence of
supersymmetric AdS4 vacua given in [40]. However, there is
a crucial difference in the sense that the conditions for dS4

are derived from a particular ansatz, but those for AdS4 are
obtained by requiring unbroken supersymmetry. While the
latter guarantee that the results are vacuum solutions of the

N = 4 gauged supergravity and, in particular, extremize the
scalar potential, we need to explicitly impose the extremiza-
tion of the potential in the former case. We will see that some
of these extra conditions are already implied by the quadratic
constraint. The remaining ones imply that the gauge groups
must be dyonically embedded in the global symmetry group
similar to the AdS4 case.

The paper is organized as follows. In Sect. 2, we review
relevant formulae for computing the scalar potential of N =
4 gauged supergravity coupled to vector multiplets in the
embedding tensor formalism. In Sect. 3, we derive the con-
ditions for the scalar potential to admit dS4 vacua by solving
the extremization and positivity of the potential. A general
form of gauge groups is also determined by solving these
conditions subject to the quadratic constraint. In Sect. 4, we
explicitly verify that all the previously known dS4 vacua in
N = 4 gauged supergravity are encoded in our results. Some
relations between four- and five-dimensional embedding ten-
sors for gauge groups that admit de Sitter vacua are given in
Sect. 5. Conclusions and comments on the results are given
in Sect. 6. We also include an appendix collecting useful
identities for SO(6) gamma matrices.

2 Four-dimensional N = 4 gauged supergravity
coupled to vector multiplets

In this section, we breifly review N = 4 gauged supergravity
coupled to an arbitrary number n of vector multiplets. We will
mainly give relevant formulae for finding the scalar potential
which is the most important part in our analysis. For more
detail, interested readers are referred to [37].

For N = 4 supersymmetry, there are two types of super-
multiplets, gravity and vector multiplets. The former contains

the graviton eμ̂
μ, four gravitini ψμi , i = 1, . . . , 4, six vectors

Am
μ , m = 1, . . . , 6, four spin- 1

2 fermions λi , and a complex
scalar τ . The field content of the latter is given by a vector field
Aμ, four gaugini λi and six scalars φm . We use the following
conventions on various types of indices. Spacetime and tan-
gent space indices will be denoted by μ, ν, . . . = 0, 1, 2, 3
and μ̂, ν̂, . . . = 0, 1, 2, 3, respectively. Indices m, n, . . . =
1, 2, . . . , 6 label vector representation of SO(6) ∼ SU (4)

R-symmetry while i, j, . . . denote chiral spinor of SO(6) or
fundamental representation of SU (4). The n vector multi-
plets are labeled by indices a, b, . . . = 1, . . . , n. Accord-
ingly, the field content of the vector multiplets can be collec-
tively written as (Aa

μ, λai , φam).
The (6n + 2) scalars from both the gravity and vector

multiplets are described by the coset manifold

M = SL(2)

SO(2)
× SO(6, n)

SO(6) × SO(n)
. (1)
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The first factor is parametrized by a complex scalar τ consist-
ing of the dilatonφ and the axionχ from the gravity multiplet.
The second factor incorporates the 6n scalars from the vec-
tor multiplets. A useful parametrization for these two coset
manifolds is given in term of the coset representatives. For
SL(2)/SO(2), we will use the following form of the coset
representative

Vα = 1√
Imτ

(
τ

1

)
(2)

with an index α = (+,−) denoting the SL(2) fundamental
representation. Vα satisfies the relation

Mαβ = Re(VαV∗
β) and εαβ = Im(VαV∗

β) (3)

in which Mαβ is a symmetric matrix with unit determinant.
εαβ is anti-symmetric with ε+− = ε+− = 1.

For SO(6, n)/SO(6)×SO(n), we use the coset represen-
tativeVM

A transforming under the global SO(6, n) and local
SO(6) × SO(n) symmetry by left and right multiplications,
respectively. The local index A can be split as A = (m, a)

with m = 1, 2, . . . , 6 and a = 1, 2, . . . , n denoting vector
representations of SO(6)× SO(n). The coset representative
can then be written as

VM
A = (VM

m,VM
a). (4)

Since VM
A is an SO(6, n) matrix, it satisfies the following

relation

ηMN = −VM
mVN

m + VM
aVN

a (5)

where ηMN = diag (−1,−1,−1,−1,−1,−1, 1, . . . , 1) is
the SO(6, n) invariant tensor. ηMN and its inverse ηMN can
be used to lower and raise SO(6, n) indices, M, N , . . .. The
SO(6, n)/SO(6) × SO(n) coset can also be described by a
symmetric matrix

MMN = VM
mVN

m + VM
aVN

a (6)

which is manifestly SO(6) × SO(n) invariant.
Gaugings of the matter-coupled N = 4 supergravity can

be efficiently implemented by using the embedding tensor
formalism [37]. This constant tensor describes the embed-
ding of a gauge group G0 in the global symmetry group
SL(2) × SO(6, n). It turns out that N = 4 supersymmetry
allows only the following components of the embedding ten-
sor ξαM and fαMN P = fα[MN P]. To describe a closed sub-
algebra of SL(2) × SO(6, n), the embedding tensor needs
to satisfy the quadratic constraints

ξα
MξβM = 0, εαβ

(
ξα

P fβMNP + ξαMξβN

)
= 0,

ξ(α
P fβ)MN P = 0, 3 fαR[MN fβPQ]R + 2ξ(α[M fβ)N PQ] = 0,

εαβ
(
fαMNR fβPQ

R − ξα
R fβR[M[PηQ]N

−ξα[M fβN ]PQ + ξα[P fβQ]MN
) = 0. (7)

In this paper, we are only interested in maximally symmetric
solutions of N = 4 gauged supergravity with only the met-
ric and scalars non-vanishing. Therefore, we will set all the
other fields to zero from now on. In this case, the bosonic
Lagrangian takes the form of

e−1L = 1

2
R + 1

16
∂μMMN ∂μMMN

− 1

4(Imτ)2 ∂μτ∂μτ ∗ − V . (8)

The scalar potential V reads

V = g2

16

[
fαMN P fβQRSM

αβ

[
1

3
MMQMNRMPS

+
(

2

3
ηMQ − MMQ

)
ηN RηPS

]

− 4

9
fαMN P fβQRSε

αβMMNPQRS

+3ξα
Mξβ

N MαβMMN

]
(9)

where MMN and Mαβ are the inverse matrices of MMN and
Mαβ , respectively. MMNPQRS is obtained by raising indices
of MMNPQRS defined by

MMNPQRS = εmnpqrsV m
M V n

N V p
P V q

Q V r
R V s

S . (10)

In subsequent analysis, it is useful to rewrite the potential in
terms of the fermion-shift matrices Ai j

1 , Ai j
2 and A2ai

j that
appear in the fermion mass-like terms and supersymmetry
transformations of fermions. In general, the scalar potential
can be determined by the supersymmetric Ward identity

1

4
δij V = 1

2
A2aj

k A∗
2ak

i + 1

9
Aik

2 A∗
2 jk − 1

3
Aik

1 A∗
1 jk (11)

which, after a contraction of indices, gives

V = 1

2
A2ai

j A∗
2aj

i + 1

9
Ai j

2 A∗
2i j − 1

3
Ai j

1 A∗
1i j . (12)

In terms of the scalar coset representatives, the fermion shift-
matrices are given by
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Ai j
1 = εαβ(Vα)∗Vkl

MVN
ikVP

jl fβM
N P ,

Ai j
2 = εαβVαVkl

MVN
ikVP

jl fβM
N P + 3

2
εαβVαVM

i jξβ
M ,

A2ai
j = εαβVαVa

MVik
NVP

jk fβMN
P − 1

4
δ
j
i ε

αβVαVa
MξβM .

(13)

VM
i j is obtained from VM

m by converting the SO(6) vec-
tor index to an anti-symmetric pair of SU (4) fundamental
indices using the chiral SO(6) gamma matrices.

3 de Sitter vacua of N = 4 four-dimensional gauged
supergravity

In this section, we will look for gauge groups that lead to de
Sitter vacua. The analysis is similar to that given in [36] for
dS5 vacua. Furthermore, the procedure is closely parallel to
the case of maximally supersymmetric AdS4 vacua given in
[40].

Denoting the chiral SO(6) gamma matrices by �
i j
m , we

can write VM
i j in term of the coset representative VM

m as

VM
i j = VM

m�
i j
m . (14)

Similarly, the inverse element Vi j
M is given by

Vi j
M = Vm

M (�
i j
m )∗. (15)

In order to have dS4 vacua, we require that

〈δV 〉 = 0 and 〈V 〉 > 0 (16)

where, as in [40], the bracket 〈 〉 indicates that the quantity
inside is evaluated at the vacuum. In terms of the fermion-
shift matrices, these conditions read

〈δV 〉 = −1

3
〈δAi j

1 A∗
1i j 〉 − 1

3
〈δA∗

1i j A
1i j 〉 + 1

9
〈δAi j

2 A∗
2i j 〉

+ 1

9
〈δA∗

2i j A
i j
2 〉 + 1

2
〈δA2ai

j A∗
2aj

i 〉

+ 1

2
〈A2ai

jδA∗
2aj

i 〉 = 0, (17)

and
1

9
〈Ai j

2 A∗
2i j 〉 + 1

2
〈A2ai

j A∗
2aj

i 〉 >
1

3
〈Ai j

1 A∗
1i j 〉. (18)

In general, there are various solutions to these conditions.
However, as in five dimensions, we will consider only the
following two possibilities:

1. 〈Ai j
1 〉 = 〈A2ai

j 〉 = 0 and 〈Aik
2 A∗

2 jk〉 = 9
4 |μ|2δij with

A∗
2i jδA

i j
2 + δA∗

2i j A
i j
2 = 0.

2. 〈Ai j
1 〉 = 〈Ai j

2 〉 = 0 and 〈A2ai
k A∗

2ak
j 〉 = 1

2 |μ|2δ j
i with

δA2ai
j A∗

2aj
i + A2ai

jδA∗
2aj

i = 0.

|μ|2 = V0 denotes the cosmological constant. We now con-
sider these two sets of conditions separately.

3.1 〈Ai j
1 〉 = 〈A2ai

j 〉 = 0 and 〈Aik
2 A∗

2 jk〉 = 9
4 |μ|2δij

We begin with the 〈A2ai
j 〉 = 0 condition. From equation

(13), we see that the first term in 〈A2ai
j 〉 = 0 is traceless

in i and j indices while the second term is the trace part.
They must then vanish separately and lead to the following
condition

ξαa = 0 (19)

where ξα
a = 〈VM

a〉ξα
M . Using the first condition in the

quadratic constraint (7) and ξα
m = 〈VM

m〉ξα
M , we find

ξα
MξβM = −ξα

mξβ
m + ξα

aξβ
a = −ξα

mξβ
m = 0 (20)

for any values of α and β. This implies that ξαm = 0. Together
with (19), we then have

ξαM = 0. (21)

This condition implies that the gauge group is entirely
embedded in SO(6, n).

With ξαM = 0, the 〈A2ai
j 〉 = 0 condition gives

εαβ〈VαVa
MVik

NVP
jk〉 fβMN

P = 0 . (22)

In subsequent analysis, as in [40], it is useful to introduce
“dressed” complex components of the embedding tensor

fABC = f1 ABC + if2 ABC = 〈VA
MVB

NVC
PVα〉εαβ fβNMP .

(23)

The real and imaginary parts are given explicitly by

f1 ABC = 1√〈Imτ 〉 〈VA
MVB

NVC
P 〉

× [〈Reτ 〉 f−NMP − f+NMP ], (24)

f2 ABC = 〈√ImτVA
MVB

NVC
P 〉 f−NMP . (25)

It should also be noted that by working at the origin of the
scalar manifold SL(2)/SO(2) with Imτ = 1 and Reτ =
0, we see that f1 ABC and f2 ABC correspond to electric and
magnetic components of fαMN P , respectively. In particular,
we have for ξαM = 0,
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Ai j
1 = −f∗mnp(�

m�∗n� p)i j , (26)

Ai j
2 = −fmnp(�

m�∗n� p)i j , (27)

A2ai
j = famn(�

mn)i
j
. (28)

With all these ingredients, we can rewrite equation (22)
as

famn(�
mn)i

j = 0 (29)

which gives

famn = 0. (30)

This also implies that both real and imaginary parts of famn

vanish or equivalently

fαamn = 0. (31)

The conditions 〈Ai j
1 〉 = 0 and 〈Aik

2 A∗
2 jk〉 = 9

4 |μ|2δij give

fmnp(�
n�∗m� p)i j = −√

3μPi j and

f∗mnp(�
n�∗m� p)i j = 0 (32)

where we have introduced a constant matrix Pi j with the
property Pik P∗

jk = δij .
It can be seen that all of these conditions are very similar to

those for the existence of supersymmetric AdS4 vacua with
fmnp and f∗mnp interchanged and μ replaced by

√
3μ. Using

the identity given in (174), we obtain

f∗mnpf
mnp = 6|μ|2 and f∗mnp + iεmnpqrsf

∗
qrs = 0. (33)

In terms of real and imaginary parts, these can be written as

f1mnpf1
mnp + f2mnpf2

mnp = 6|μ|2, (34)

f1mnp = εmnpqrsf2 qrs and f2mnp = −εmnpqrsf1 qrs

(35)

which imply that both f1 and f2 cannot be zero, hence the
gauge groups are essentially dyonic.

All these conditions must be solved subject to the
quadratic constraint which for ξαM = 0 simplifies consid-
erably

fαR[MN fβPQ]R = 0 and εαβ fαMNR fβPQ
R = 0.

(36)

In terms of fABC , these constraints read

f[AB E fCD]E = 0, Re(f[AB E f∗CD]E ) = 0,

Im(fAB
E f∗CDE ) = 0. (37)

It has been shown in [40] that the conditions (33) and the
(mnpq)-components of the quadratic constraint (37) has a
unique solution of the form

f123 = 1√
2
μ and f456 = i√

2
μ (38)

or, equivalently,

f1 123 = 1√
2
μ and f2 456 = 1√

2
μ. (39)

Note some numerical changes especially the different relative
sign between f1 123 and f2 456 which is opposite to that of the
AdS4 case.

At this point, all the remaining parts of the whole analysis
are essentially the same as in [40]. In particular, the result-
ing gauge groups that can give rise to dS4 vacua must take
the same form as in the AdS4 case. We will not repeat all
the details here but simply summarize the structure of pos-
sible gauge groups. First of all, it should be noted that other
components of the embedding tensors, fmab and fabc, are not
constrained by the existence of dS4 vacua.

For fmab = fabc = 0, the gauge group is only generated
by fmnp. With the solution (38), we find the gauge group of
the form

SO(3)e × SO(3)m (40)

which can be embedded entirely in the SO(6) R-symmetry.
The full gauge group is dyonically gauged by the six
graviphotons with the two SO(3) factors being electrically
and magnetically gauged, respectively.

For fmab = 0 but fabc �= 0, fmmp and fabc lead to gauge
groups of the form

SO(3)e × SO(3)m × Gv
0 ⊂ SO(6, n). (41)

with Gv
0 being a compact group gauged by vector fields from

the vector multiplets.
For fmab �= 0 and fabc �= 0, there can be two subsets

of fabc in which one has common indices with fmab, but the
other one does not. The latter again forms a separate compact
group. The (mnpq)-components of the quadratic constraint
implies that f1mab and f2mab are non-vanishing only for m =
1, 2, 3 and m = 4, 5, 6, respectively. Therefore, fmab extend
SO(3)e × SO(3)m to a product of non-compact groups Ge ×
Gm containing SO(3)e×SO(3)m as a subgroup. The general
form of gauge groups is then given by

Ge × Gm × Gv
0 ⊂ SO(6, n). (42)

Finally, we will explicitly check that solutions to all of
the above conditions indeed extremize the scalar potential.
This is crucial because our conditions do not arise from the
requirement of supersymmetric vacua as in the AdS4 case.
To proceed, we first note a number of useful relations
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δVM
m = VM

aδφma, δVM
a = VM

mδφma,

δVα = i

2Imτ

(V∗
αδτ − VαδReτ

)
(43)

from which it follows that

δfnpq = −3δm[nfpq]aδφma + 1

Imτ
ImfnpqδReτ

−1

2
Imτ f∗npqδImτ, (44)

δfnpb = (2δm[nfp]ab − δabfmnp)δφ
ma + 1

Imτ
ImfnpbδReτ

−1

2
Imτ f∗npbδImτ. (45)

Using (27), it is straightforward to compute

δV = 1

9

(
Ai j

2 δA∗
2i j + δAi j

2 A∗
2i j

)

= 1

9
fmnpδfqrs(�

m�∗n� p)i j (�q�∗r�s)∗i j + c.c. (46)

Using the identity (178), we can reduce this to

δV = −8

3
fmnpδf

∗mnp + c.c.. (47)

Since famn = 0 (from 〈A2ai
j 〉 = 0), we immediately see

from (44) that 〈δφV 〉 = 0.
Furthermore using (26) and (27), we can derive the fol-

lowing results

δImτ A
i j
1 = − 1

2Imτ
Ai j

2 δImτ and

δImτ A
i j
2 = − 1

2Imτ
Ai j

1 δImτ. (48)

Using 〈Ai j
1 〉 = 0, we obtain 〈δImτ A

i j
2 〉 = 0, hence 〈δImτV 〉 =

0. Finally, we consider the variation with respect to Reτ
which reads

δReτV = − 2

3Imτ
Imfmnp(f

∗mnp + fmnp)δReτ

= − 4

3Imτ
f1
mnpf2mnpδReτ. (49)

This vanishes due to the condition (35) which implies that
f1mnp and f2mnp have no common indices. We then conclude

that the conditions 〈Ai j
1 〉 = 〈A2ai

j 〉 = 0 and 〈Aik
2 A∗

2 jk〉 =
9
4 |μ|2δij extremize the scalar potential and give dS4 vacua of
the matter-coupled N = 4 gauged supergravity.

As a final comment, we note that although the gauge
groups giving rise to dS4 vacua are exactly the same as those
leading to supersymmetric AdS4 solutions, the two types of
vacua occur at different values of the ratio between the cou-
pling constants of SO(3)e (Ge) and SO(3)m (Gm). More
precisely, the two cases have the coupling ratios with oppo-
site sign, recall the sign change in (39) as compared to the

results of [40]. We will see this in explicit examples in the
next section.

3.2 〈Ai j
1 〉 = 〈Ai j

2 〉 = 0 and 〈A2ai
k A∗

2ak
j 〉 = 1

2 |μ|2δ j
i

We now look at another possibility for dS4 vacua to exist. In
this case, we require that

〈Ai j
1 〉 = 〈Ai j

2 〉 = 0 and 〈A2ai
k A∗

2ak
j 〉 = 1

2
|μ|2δ j

i .

(50)

Since Ai j
2 consists of two parts, one symmetric and the other

anti-symmetric in i and j indices, these two parts must vanish
separately. Setting the anti-symmetric part to zero gives

ξαm = 0. (51)

We again use the quadratic constraint ξα
MξβM = 0 and find

that

ξα
aξβ

a = 0 (52)

which gives ξαa = 0. Therefore, we have ξαM = 0 as in the
previous case.

With this result, the first two conditions in (50) give

fmnp(�
n�∗m� p)i j = 0 and f∗mnp(�

n�∗m� p)i j = 0

(53)

which imply that

f = f∗ = 0 or fαmnp = 0, (54)

so, in this case, compact non-abelian subgroups of the SO(6)

R-symmetry are not gauged.
For the last condition in (50), a straightforward computa-

tion gives

1

2
|μ|2δij = 〈A2aj

k A∗
2ak

i 〉 = −1

2
famnf

∗
apq{�mn, � pq}i j .

(55)

Using the identity (177), we arrive at

|μ|2δij = −2famnf∗apq(�mnpq)
i
j + 4famnf

∗amnδij (56)

which gives

famnf
∗amn = 1

4
|μ|2 and fa[mnf∗pq]a = 0. (57)
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From the first condition, we see that famn must be non-
vanishing for the dS4 vacua to exist (μ �= 0). Therefore,
the gauge groups must be necessarily non-compact.

We then consider the extremization of the scalar potential

δV = 1

2

(
δA2ai

j A∗
2aj

i + A2ai
jδA∗

2aj
i
)

= −1

2
f∗apqδfamnTr{�mn, � pq} + c.c.. (58)

Using δfamn from (45) and the result in (54), we obtain, upon
setting δV = 0,

δφV = 0: f∗amnfabm = 0, (59)

δReτV = 0: ImfamnRefamn = 0

or f1 amnf2
amn = 0, (60)

δImτV = 0: famnf
amn = 0

or f1 amnf1
amn = f2 amnf2

amn and

f1 amnf2
amn = 0. (61)

Note that the second condition in (61) is the same as (60) and
implies that f1 amn and f2 amn have no common indices.

To determine the form of possible gauge groups, we need
to solve all the above conditions subject to the quadratic con-
straint (37). By substituting the results from (60) and (61) in
the first condition of (57), we find

f1 amnf1
amn = f2 amnf2

amn = 1

8
|μ|2. (62)

This result and the condition (60) imply that, apart from
being non-compact, the gauge group must be a product of
at least two non-compact groups and dyonically embedded
in SO(6, n) since both f1 amn and f2 amn or f±amn are non-
vanishing.

Finally, using the result from (54), we find that the sec-
ond condition in (57) is already implied by the (mnpq)-
component of the quadratic constraint. Therefore, we have a
set of consistent conditions to be imposed on the embedding
tensor. In the following, we will look for explicit solutions
and possible forms of the corresponding gauge groups. The
analysis will be closely parallel to that in the previous case.

We first note that components fmab and fabc are not con-
strained by the existence of dS4 vacua. These components
can be anything without affecting the dS4 vacua. However,
the structure of gauge groups will be different for different
values of fmab and fabc. We now look at various possibilities.

For the simplest case of fmab = fabc = 0, the only non-
vanishing components of the embedding tensor are given by
famn . Since fabc = 0, the compact part of the gauge group
must be an abelian SO(2) group. famn then leads to SO(2, 1)

gauge group. The full gauge group generated by both real and
imaginary parts of famn , or f±amn , is given by a product of

two SO(2, 1) factors, electrically and magnetically gauged,

SO(2, 1)e × SO(2, 1)m. (63)

In this gauge group, the two compact generators are embed-
ded in the matter directions, a, b = 1, 2, . . . , n. In notation
of [28], this gauge group can be written as

SO(2, 1)+ × SO(2, 1)+. (64)

It should be noted that the plus sign indicates that the SO(2)×
SO(2) compact subgroup is embedded in the positive part of
the SO(6, n) invariant tensor ηMN .

We then move to the case of fmab = 0 but fabc �= 0. The
(mnpa)- and (mabc)-components of the quadratic constraint
are trivially satisfied while the (abcd)-component reduces
to the standard Jacobi’s identity for fabc corresponding to a
compact group Hc. The (mnab)-component of the quadratic
constraint implies that famn together with fabc generate a non-
compact group Gnc. The full gauge group with both electric
and magnetic factors taken into account is then given by

Gnc,e(m) × G ′
nc,m(e). (65)

It is useful to note that since f1 amn and f2 amn cannot have
common indices, the number of non-compact generators nnc

for Gnc and G ′
nc must satisfy 2 ≤ nnc ≤ 4. An example for

the gauge groups with n = 6 vector multiplets is given by

SO(2, 1)e(m) × SU (2, 1)m(e) or SO(2, 1)+ × SU (2, 1)+.

(66)

It should be noted that, for n = 6, there are in total 12 vector
fields, so the full gauge group also contains an additional
abelian SO(2) factor corresponding to the gauge symmetry
of the remaining gauge field. However, matter fields are not
charged under this SO(2) factor as in the ungauged N =
4 supergravity. We have accordingly omitted this factor in
Eq. (66).

We now consider the case fabc = 0 but fmab �= 0. For
fabc = 0, we again find that famn lead to SO(2, 1) gauge
group. Furthermore, since the existence ofdS4 vacua requires
fmnp = 0, the gauge group generated by fmab must also
be SO(2, 1). Note also that the compact parts of these two
SO(2, 1) factors are embedded in the matter and R-symmetry
direction, respectively. After taking into account both elec-
tric and magnetic components, we find that the gauge group
takes the form of

SO(2, 1)2
e(m) × SO(2, 1)2

m(e) or SO(2, 2)+ × SO(2, 2)−.

(67)
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In this equation, we have used the isomorphism SO(2, 2)± ∼
SO(2, 1)± × SO(2, 1)±. We also note here that in this case,
there can be three electric (magnetic) and one magnetic (elec-
tric) SO(2, 1) factors. The number of electric and magnetic
factors needs not be equal, but both types of gaugings are
required.

We finally consider the most general case of fabc �= 0 and
fmab �= 0. In general, there can be a subspace in which a
subset of fabc forms a separate compact group Hc. We will
split fabc into two parts fa′b′c′ and fa′′b′′c′′ with fa′′mn = 0. The
components fa′b′c′ together with fa′mn form a non-compact
group Gnc as discussed above while fa′′b′′c′′ form a sepa-
rate compact factor Hc. In addition, the quadratic constraint
implies that famn and fmab cannot have common indices, so
fmab again generate an SO(2, 1) factor as in the previous
case. The gauge group is then given by

SO(2, 1)e(m) × SO(2, 1)m(e) × Gnc, e(m) × G ′
nc, m(e) × Hc.

(68)

An example for this type of gauge groups with n = 6 vector
multiplets and fa′′b′′c′′ = 0 is given by

SO(3, 1)+ × SO(2, 1)+ × SO(2, 1)− (69)

with SO(3, 1)+ × SO(2, 1)+ identified with Gnc × G ′
nc.

4 dS4 vacua from different gauge groups

In this section, we consider gauge groups that lead to dS4

vacua for the case of n = 6 vector multiplets. These gauge
groups have been classified in [28]. There are nine semi-
simple gauge groups that can be embedded in SO(6, 6) given
by

SO(2, 1)2+ × SO(2, 1)2−, (70)

SO(3, 1)+ × SO(2, 1)+ × SO(2, 1)−, (71)

SO(3, 1)+ × SO(3, 1)+, (72)

SO(3)2− × SO(3)2+, (73)

SO(3, 1)− × SO(3)− × SO(3)+, (74)

SO(3, 1)− × SO(3, 1)−, (75)

SO(2, 1)3+ × SO(3)+, (76)

SL(3,R)− × SO(3)−, (77)

SU (2, 1)+ × SO(2, 1)+ (78)

in which the extra SO(2) factor in the last two gauge groups
has been neglected. In the following analysis, we will explic-
itly compute the scalar potentials and fermion-shift matrices
for these gauge groups and verify that the dS4 vacua satisfy
the two sets of conditions given in the previous section.

However, all these gauge groups have been originally con-
structed by using the old formulation of [39]. We need to
recast them in the embedding tensor formalism. The first six
gauge groups have already been done in [29] with the corre-
sponding embedding tensors for various factors given by

SO(4)e(m):
{
f+123 = √

2(g1 − g̃1), f+789 = √
2(g1 + g̃1),

f−456 = √
2(g2 − g̃2), f−10,11,12 = √

2(g2 + g̃2)

(79)

SO(3, 1)e(m):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f+123 = − f+783 = f+729 = f+189

= 1√
2
(g1 − g̃1),

f+789 = − f+129 = f+183 = f+723

= 1√
2
(g1 + g̃1),

f−456 = − f10,11,12 = f−10,5,12

= f−4,11,12 = 1√
2
(g2 − g̃2),

f−10,11,12 = − f−4,5,12 = f−4,11,6

= f−10,5,6 = 1√
2
(g2 + g̃2)

(80)

SO(2, 2)e(m):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f+723 = 1√
2
(g1 + g̃1),

f+189 = 1√
2
(g1 − g̃1),

f−10,5,6 = 1√
2
(g2 + g̃2),

f−4,11,12 = 1√
2
(g2 − g̃2)

(81)

The six gauge groups in (70) to (75) are obtained by com-
binations of these SO(4), SO(3, 1) and SO(2, 2) groups
with suitable choices of the coupling constants as shown in
Table 1.

We also note here that there can be other possible assign-
ments for which simple factor corresponding to electric or
magnetic embedding. For example, in SO(2, 2) × SO(2, 2)

gauge group, we can have only one electric factor of SO(2, 1)

and three magnetic SO(2, 1) factors or vice versa. The
embedding tensor in this case is given by

f+723 = 1√
2
(g1 + g̃1), f−189 = 1√

2
(g1 − g̃1),

f−10,5,6 = 1√
2
(g2 + g̃2), f−4,11,12 = 1√

2
(g2 − g̃2).

(82)

The electric-magnetic dual with one magnetic and three elec-
tric SO(2, 1)’s is simply obtained by interchanging + and
−.

The embedding tensors for the remaining three gauge
groups SO(3) × SO(2, 1)3, SU (2, 1) × SO(2, 1) and
SL(3,R) × SO(3) are obtained as follow.

• For SO(3)+ × SO(2, 1)3+, we rewrite it as SO(3) ×
SO(2, 1) × SO(2, 1)2 with the embedding tensor given
by

123
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Table 1 The six gauge groups
giving rise to dS4 vacua as given
in [28]. The embedding tensors
for these gauge groups are
obtained by imposing some
relations between the coupling
constants as shown in the last
column

Gauge groups in [28] Gauge groups in [29] Conditions

SO(3)2− × SO(3)2+ SO(4)e × SO(4)m g1, g̃1, g2, g̃2 �= 0

SO(3, 1)+ × SO(3, 1)+ SO(3, 1)e × SO(3, 1)m
g̃1 = g1, g̃2 = g2,

g1, g2 �= 0

SO(3, 1)− × SO(3, 1)− SO(3, 1)e × SO(3, 1)m
g̃1 = −g1, g̃2 = −g2,

g1, g2 �= 0

SO(3, 1)− × SO(3)− × SO(3)+
SO(3, 1)m × SO(4)e
SO(3, 1)e × SO(4)m

g̃2 = −g2,

g2, g1, g̃1 �= 0
g̃1 = −g1,

g1, g2, g̃2 �= 0

SO(2, 1)2+ × SO(2, 1)2− SO(2, 2)e × SO(2, 2)m g1, g̃1, g2, g̃2 �= 0

SO(3, 1)+ × SO(2, 1)+ × SO(2, 1)−
SO(3, 1)m × SO(2, 2)e

SO(3, 1)e × SO(2, 2)m

g̃2 = g2,

g2, g1, g̃1 �= 0
g̃1 = g1,

g1, g2, g̃2 �= 0

fα 569 = g1, fα 10,11,12 = g2, fβ 127 = g̃1, fβ 348 = g̃2

(83)

with α = ± and β = ∓ corresponding to the following
electric and magnetic factors SO(3)e(m)×SO(2, 1)e(m)×
SO(2, 1)2

m(e)
• For SU (2, 1)+ × SO(2, 1)+, we choose the follow-

ing gauge generators. The SO(2, 1) factor is generated
by X5, X6 and X11 while the SU (2, 1) is generated
by X1, . . . , X4, X7, . . . X10 with the compact generators
being X7, . . . X10. The associated embedding tensor is
given by

fα 129 = fα 138 = fα 147 = fα 248 = −g1,

fα 237 = fα 349 = g1,

fα 789 = 2g1, fα 1,2,10 = fα 3,4,10 = −√
3g1,

fβ 5,6,11 = g2 (84)

with α = ± and β = ∓ corresponding to SU (2, 1)e(m) ×
SO(2, 1)m(e).

• For SL(3,R)− × SO(3)−, we choose the generators
for SO(3) to be X4, X5 and X6 while SL(3,R) is
generated by the compact X1, X2, X3 and non-compact
X7, . . . , X11 generators. Non-vanishing components of
the embedding tensor are given by

fα 123 = fα 1,9,10 = fα 279 = − fα 2,8,10 = fα 3,7,10

= fα 3,8,9 = −g1,

fα 178 = 2g1, fα 2,10,11 = fα 3,9,11 = √
3g1,

fβ 456 = g2 (85)

with α = ± and β = ∓ corresponding to SL(3,R)e(m) ×
SO(3)m(e).

We now compute the fermion-shift matrices and scalar
potential. To do an explicit computation, we will work with
the coset representative Vα of the form

Vα = eφ/2
(

χ − ie−φ

1

)
. (86)

Since all known dS4 vacua are found only with vanishing
scalars from vector multiplets, we will give the scalar poten-
tial only for non-vanishing dilaton φ and axion χ to simplify
the results.

With all SO(6, 6)/SO(6)× SO(6) scalars set to zero, we
simply have

V = I12 (87)

andVM
i j = 1

2�
i j
mVM

m . Note that an extra factor of 1
2 is added

for consistency with the normalization used in [37] for the
following SO(6, n) identity

ηMN = −1

2
εi jklVM

i jVN
kl + VM

aVN
a . (88)

An explicit form of SO(6) gamma matrices is given in the
appendix. We are now in a position to consider each gauge
group in detail. We emphasize that all of the critical points
considered here are already known. Our main aim is to verify
that they satisfy the conditions introduced in the previous
section. For convenience, we collect the conditions for the
existence of dS4 vacua given in Sects. 3.1 and 3.2 here

〈Ai j
1 〉 = 〈A2ai

j 〉 = 0, 〈Ai j
2 A∗

2k j 〉 = 9

4
V0δ

i
k, (89)

〈Ai j
1 〉 = 〈Ai j

2 〉 = 0, 〈A2ak
j A∗

2aj
i 〉 = 1

2
V0δ

i
k . (90)

We will also refer to dS4 vacua as the first and second type
dS4 if they satisfy (89) and (90), respectively.
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4.1 SO(3)2+ × SO(3)2−

This case corresponds to the gauging of SO(4)e × SO(4)m

group. The embedding tensor for this gauge group is given
in (79). The scalar potential is found to be

V = −eφ
[
g2

1 − 2g1g̃1 + χ2(g2 − g̃2)
2 + g̃2

1

]

+4(g1 − g̃1)(g2 − g̃2) − e−φ(g2 − g̃2)
2 (91)

with the following critical point

χ = 0, φ = ln

[
±g2 − g̃2

g1 − g̃1

]
. (92)

To bring this critical point to the origin χ = φ = 0, we have
two possibilities:

• Setting g̃2 − g2 = g1 − g̃1 leads to an AdS4 critical point
which is the trivial critical point of the same gauge group
reported in [41] with V0 = −6(g1 − g̃1)

2. As expected,
this critical point satisfies the AdS4 conditions given in
[40]

〈Ai j
2 〉 = 〈A2ai

j 〉 = 0, 〈Ai j
1 A∗

1k j 〉 = −4

3
V0δ

i
k . (93)

• Another possibility is to set g̃2 −g2 = −(g1 − g̃1) which
leads to a dS4 critical point with V0 = 2(g1 − g̃1)

2 and
satisfying the conditions in (89)

〈Ai j
1 〉 = 〈A2ai

j 〉 = 0, 〈Ai j
2 A∗

2k j 〉 = V0δ
i
k . (94)

4.2 SO(3, 1)± × SO(3, 1)±

The embedding tensor for this gauge group is given in (80)
with the scalar potential given by

V = 1

2
e−φ

[
e2φ

(
g2

1 + 4g1 g̃1 + χ2 (
g2

2 + 4g2 g̃2 + g̃2
2

) + g̃2
1

)
+ 2eφ(g1 − g̃1)(g2 − g̃2) + g2

2 + 4g2 g̃2 + g̃2
2

]
. (95)

There is a critical point at

χ = 0, φ = ln

[
±g2

2 + 4g2g̃2 + g̃2
2

g2
1 + 4g1g̃1 + g̃2

1

]
. (96)

We now separately consider two types of gauge groups.

• For SO(3, 1)+ × SO(3, 1)+, we choose g̃1 = g1 and
g̃2 = g2 which eliminate the following components of
the embedding tensor

f+123 = − f+783 = f+729 = f+189 = 0,

f−456 = − f10,11,12 = f−10,5,12 = f−4,11,12 = 0. (97)

Accordingly, the SO(3) subgroups of both SO(3, 1) fac-
tors are embedded along the matter-multiplet directions
M = 7, 8, 9 and M = 10, 11, 12. Setting g̃1 = g1 and
g̃2 = g2, we can rewrite the critical point (96) as

χ = 0, φ = ln

[
±g2

g1

]
(98)

To bring this critical point to the values χ = φ = 0, we
set g2 = ±g1, and both of these choices lead to the same
dS4 critical point with V0 = 6g2

2 and satisfying (90)

〈Ai j
1 〉 = 〈Ai j

2 〉 = 0, 〈A2ai
k A∗

2ak
j 〉 = 3g2

2δ
j
i . (99)

This dS4 vacuum is then of the second type. There is no
AdS4 vacuum in this case since the existence of AdS4

requires the embedding of SO(3) × SO(3) along the R-
symmetry directions.

• For SO(3, 1)− × SO(3, 1)−, we set g̃1 = −g1 and g̃2 =
−g2 which give

f+789 = − f+129 = f+183 = f+723 = 0,

f−10,11,12 = − f−4,5,12 = f−4,11,6 = f−10,5,6 = 0.

The SO(3) subgroups of both SO(3, 1) factors are now
embedded along the R-symmetry directions M = 1, 2, 3
and M = 4, 5, 6. With this choice of the coupling con-
stants, the critical point (96) becomes

χ = 0, φ = ln

[
±g2

g1

]
. (100)

In this case, however, setting g2 = ±g1 leads to two
different critical points.

– Setting g2 = g1 leads to a dS4 critical point satisfying
(89)

V0 = 2g2
2, 〈Ai j

1 〉 = 〈A2ai
j 〉 = 0,

〈Ai j
2 A∗

2k j 〉 = 9

4
V0δ

i
k . (101)

– The choice g2 = −g1 gives an AdS4 critical point
with V0 = −6g2

2 and satisfying

〈Ai j
2 〉 = 〈A2ai

j 〉 = 0, 〈Ai j
1 A∗

1k j 〉 = −3

4
V0δ

i
k .

(102)

In this case, the dS4 vacuum is of the first type. It should
be noted that, as in the SO(3)2+ × SO(3)2− gauge group,
the SO(3, 1)− ×SO(3, 1)− gauge group gives two types
of vacua with opposite ratios of the coupling constants.
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It is useful to note that, gauge groups of the form SO(3, 1)±×
SO(3, 1)∓, obtained by setting g̃1 = ±g1 and g̃2 = ∓g2,
lead to a Minkowski vacuum.

4.3 SO(2, 1)2 × SO(2, 1)2

In this case, the gauge group is given by SO(2, 2) ×
SO(2, 2) ∼ SO(2, 1)4, and there are two possible gaug-
ings to consider depending on the assignment of electric
or magnetic gaugings to each SO(2, 1) factor. One gaug-
ing is described by SO(2, 2)e × SO(2, 2)m ∼ SO(2, 1)e ×
SO(2, 1)e × SO(2, 1)m × SO(2, 1)m with the embed-
ding tensor given in (81). The other one is SO(2, 1)e ×
SO(2, 1)m × SO(2, 1)m × SO(2, 1)m with the embed-
ding tensor given in (82) and its electric-magnetic dual
SO(2, 1)e × SO(2, 1)e × SO(2, 1)e × SO(2, 1)m.

It turns out that all of these gaugings give rise to the same
scalar potential of the form

V = 1

4
e−φ

[
e2φ

[
(g1 + g̃1)

2 + χ2(g2 + g̃2)
2] + (g2 + g̃2)

2]
(103)

with the following critical point

χ = 0, φ = ln

[
±g2 + g̃2

g1 + g̃1

]
. (104)

The critical point can be shifted to the origin χ = 0 and
φ = 0 by setting g̃2 + g2 = ±(g1 + g̃1). Both choices lead
to the same dS4 critical point with V0 = 1

2 (g1 + g̃1)
2 and

satisfying (90)

〈Ai j
1 〉 = 〈Ai j

2 〉 = 0, 〈A2ai
k A∗

2ak
j 〉 = 1

2
V0δ

j
i . (105)

4.4 SO(3)+ × SO(3)− × SO(3, 1)−

This case corresponds to SO(4) × SO(3, 1) gauge group
with two possible gaugings SO(4)e(m) × SO(3, 1)m(e). The
embedding tensors are given by

I: SO(3)e+ × SO(3)e− × SO(3, 1)m−:
f+123 = g1, f+789 = g̃1

f−456 = − f−10,11,6 = f−10,5,12 = f−4,11,12 = g2,

(106)

II: SO(3, 1)e− × SO(3)m− × SO(3)m+:
f+123 = − f+783 = f+729 = f+189 = g1

f−456 = g2, f10,11,12 = g̃2. (107)

Note that the embedding tensors for SO(3, 1)’s in both cases
are obtained from (80) by setting g̃2 = −g2 and g̃1 = −g1,
respectively. The two gaugings lead to the same scalar poten-
tial given by

V = 2g1g2 − 1

2
e−φg2

2 − 1

2
eφ(g2

1 + g2
2χ2). (108)

This potential admits a critical point at

χ = 0, φ = ln

[
±g2

g1

]
(109)

which can be shifted to the origin χ = φ = 0 by setting
g2 = ±g1. We now look at these two choices.

• The case of g2 = g1 leads to a dS4 solution with V0 = g2
1

and satisfies (89)

〈Ai j
1 〉 = 〈A2ai

j 〉 = 0, 〈Ai j
2 A∗

2k j 〉 = 9

4
V0δ

i
k . (110)

• For g2 = −g1, the critical point is an AdS4 vacuum with
V0 = −3g2

1.

4.5 SO(3, 1)+ × SO(2, 1)+ × SO(2, 1)−

This case corresponds to SO(2, 2) × SO(3, 1) gauge group
with two possible gaugings, SO(2, 2) ∼ SO(2, 1) ×
SO(2, 1) and SO(3, 1) factors being electric and magnetic
or vice versa.

I: SO(2, 2)e × SO(3, 1)m:
f+723 = 1√

2
(g1 + g̃1), f+189 = 1√

2
(g1 − g̃1),

f−456 = − f10,11,12 = f−10,5,12

= f−4,11,12 = 1√
2
(g2 − g̃2),

f−10,11,12 = − f−4,5,12 = f−4,11,6 = f−10,5,6

= 1√
2
(g2 + g̃2). (111)

II: SO(2, 2)m × SO(3, 1)e:
f+123 = − f+783 = f+729 = f+189 = 1√

2
(g1 − g̃1),

f+789 = − f+129 = f+183 = f+723 = 1√
2
(g1 + g̃1),

f−10,5,6 = 1√
2
(g2 + g̃2), f−4,11,12 = 1√

2
(g2 − g̃2).

(112)
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In order to have SO(3, 1)+, we will set g̃2 = g2 and g̃1 = g1,
respectively. These two gaugings lead to the scalar potentials

VI = 1

4
eφ

[
g2

1 + 2g1g̃1 + 2χ2
(
g2

2 + 4g2g̃2 + g̃2
2

)
+ g̃2

1

]

+1

2
e−φ

(
g2

2 + 4g2g̃2 + g̃2
2

)
(113)

VII = 1

4
e−φ

[
e2φ

[
2g2

1 + 8g1g̃1 + χ2(g2 + g̃2)
2 + 2g̃2

1

]

+(g2 + g̃2)
2
]

(114)

We now look at critical points of these potentials.

• The critical point of VI is given by

χ = 0, φ = ln

⎡
⎣±

√
2(g2

2 + 4g2 g̃2 + g̃2
2)

(g1 + g̃1)

⎤
⎦ (115)

which can be brought to the origin by choosing

g̃1 = −g1 ± 2
√

3g2 (116)

after setting g2 = g̃2. Both choices lead to the same dS4

vacuum with V0 = 6g2
2 and satisfying (90).

• For VII, we find the following critical point

χ = 0, φ = ln

⎡
⎣± (g2 + g̃2)√

2(g2
1 + 4g1g̃t + g̃2

1)

⎤
⎦ . (117)

After setting g̃1 = g1, this critical point can be brought
to the origin by choosing

g̃2 = −g2 ± 2
√

3g1. (118)

Both sign choices again give the same dS4 critical point
which satisfies (90) and V0 = 6g2

1.

4.6 SO(3)+ × SO(2, 1)3+

The embedding tensor for this gauge group is given in (83).
The two possible gaugings SO(3)e(m) × SO(2, 1)e(m) ×
SO(2, 1)2

m(e) respectively give the following scalar poten-
tials and critical points

VI = 1

2
e−φ

[
g2

1

(
χ2e2φ + 1

)
+ e2φ

(
g̃2

1 + g̃2
2

)]
,

χ = 0, φ = ln

⎡
⎣± g1√

g̃2
1 + g̃2

2

⎤
⎦ (119)

and

VII = 1

2
e−φ

[
e2φ

(
g2

1 + χ2
(
g̃2

1 + g̃2
2

))
+ g̃2

1 + g̃2
2

]
,

χ = 0, φ = ln

⎡
⎣±

√
g̃2

1 + g̃2
2

g1

⎤
⎦ . (120)

These critical points can be shifted to the origin by setting

g1 = ±
√
g̃2

1 + g̃2
2, leading to the same dS4 solution with

V0 = g2
1 and satisfying (90).

4.7 SU (2, 1)+ × SO(2, 1)+

The embedding tensor for this gauge group is given in (84).
This gauge group can be embedded either as SU (2, 1)e ×
SO(2, 1)m or SU (2, 1)m × SO(2, 1)e. The scalar potentials
and critical points for these two gaugings are given by

I: VI = 1

2

[
eφ

(
12g2

1 + g2
2χ2

)
+ e−φg2

2

]
,

χ = 0, φ = ln

[
± g2

2
√

3g1

]
, (121)

II: VII = 1

2
eφ

(
12g2

1χ2 + g2
2

)
+ 6g2

1e
−φ,

χ = 0, φ = ln

[
±2

√
3g1

g2

]
. (122)

Choosing g2 = ±2
√

3g1 leads to a dS4 solution satisfying
(90) with V0 = 12g2

1.

4.8 SL(3,R)− × SO(3)−

The embedding tensor for this gauge group is given in (85).
In this gauge group, both AdS4 and dS4 solutions are possi-
ble, and, unlike the previous cases, the choice of which gauge
group factor is electric or magnetic affects the resulting solu-
tions. We will consider each choice separately.

For SL(3,R)e × SO(3)m embedding, the scalar potential
is given by

V = −1

2

[
eφ

(
g2

1 + g2
2χ2

)
+ e−φg2

2 + 4g1g2

]
(123)

with a critical point at

χ = 0, φ = ln

[
±g2

g1

]
. (124)

Choosing g2 = g1 and g2 = −g1 leads to AdS4 and dS4

vacua with V0 = −3g2
1 and V0 = g2

1, respectively. The dS4

vacuum satisfies the relations given in (89).
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For SL(3,R)m × SO(3)e embedding, we find a similar
structure with the scalar potential and critical point given by

V = −1

2

[
eφ

(
g2

1χ2 + g2
2

)
+ g2

1e
−φ − 4g1g2

]
(125)

and

χ = 0, φ = ln

[
±g1

g2

]
. (126)

Choosing g2 = −g1 and g2 = g1 leads to AdS4 and dS4

vacua with V0 = −3g2
1 and V0 = g2

1, respectively.

5 Relations between gaugings with dS4 and dS5 vacua

In this section, we give some relations between gaugings of
N = 4 gauged supergravities in four and five dimensions
with de Sitter vacua. In general, a circle reduction of N = 4
five-dimensional theory gives rise to four-dimensional theory
with the same number of supersymmetries. As pointed out in
[37], the relations between the embedding tensors in four and
five dimensions can be obtained from an analysis of group
structures. We will follow this procedure in relating four- and
five-dimensional gaugings with de Sitter vacua.

A five-dimensional supergravity theory with n̂ vector mul-
tiplets gives, via a reduction on S1, a four-dimensional the-
ory with n = n̂ + 1 vector multiplets. The global or dual-
ity symmetries in these two theories are given by Ĝ =
SO(1, 1) × SO(5, n̂) and G = SL(2) × SO(6, n̂ + 1),
respectively. Accordingly, it is possible that gaugings in five
dimensions can be encoded in those in four dimensions since
Ĝ ⊂ G.

Recall that components of the embedding tensor consis-
tent with N = 4 supersymmetry in five dimensions are given
by ξ̂M , ξ̂MN = ξ̂[MN ] and f̂MN P = f̂[MN P], for more detail
see [37]. To identify these components with those in four
dimensions ξαM and fαMN P , we first consider the decompo-
sition of a representation (2,n+7) of SL(2)× SO(6, n+1)

under its SO(1, 1)B × SO(1, 1)A × SO(5, n) subgroup as
follow

(2, 7 + n) → (2, (n + 5)0) + (2, 1 1
2
) + (2, 1− 1

2
) (127)

for SO(6, n + 1) → SO(1, 1)A × SO(5, n) and

(2, 7 + n) → (7 + n) 1
2

+ (7 + n)− 1
2

(128)

for SL(2) → SO(1, 1)B . The subscript denotes SO(1, 1)

charges. These decompositions suggest the split of indices
M = (M̂,⊕,�) and α = (+,−). Accordingly, the four-
dimensional vector fields AαM

μ are split into

AαM
μ = (AM̂+

μ , AM̂−
μ , A⊕+

μ , A⊕−
μ , A�+

μ , A�−
μ ).

The SO(1, 1) factor in Ĝ is identified with the diag-
onal subgroup of SO(1, 1)A × SO(1, 1)B . Generators of
SO(1, 1) × SO(5, n) are denoted by t̂0̂ and t̂M̂ N̂ and given
in terms of SL(2) × SO(6, n + 1) generators (tαβ, tMN ) as
follow

t̂0̂ = t+− + t�⊕ and t̂M̂ N̂ = tM̂ N̂ . (129)

The five dimensional vector fields ( Â0̂
μ, ÂM̂

μ ) are given by

Â0̂
μ = A�−

μ and ÂM̂
μ = AM̂+

μ . (130)

The vector fields AM̂−
μ and A⊕+

μ are the magnetic dual of

AM̂+
μ and A�−

μ which arise from the two-form fields in five
dimensions. A⊕− and A�+ are uncharged under the SO(1, 1)

duality group and are the Kaluza–Klein vector coming from
the five-dimensional metric and its dual.

By comparing the gauge covariant derivatives in four and
five dimensions, we have the following identification of var-
ious components of the embedding tensors

ξ+M̂ = ξ̂M̂ , f+M̂⊕� = 1

2
ξ̂M̂ , f−�M̂ N̂ = ξ̂M̂ N̂ ,

f+M̂ N̂ P̂ = f̂ M̂ N̂ P̂ (131)

with all the remaining components set to zero in a simple
circle reduction. In our analysis of de Sitter vacua, we have
ξM̂ = 0 and ξαM = 0, so the relevant relations are given by

f−�M̂ N̂ = ξ̂M̂ N̂ and f+M̂ N̂ P̂ = f̂ M̂ N̂ P̂ . (132)

In the following analysis, we will give the connections
between four- and five-dimensional gaugings that lead to de
Sitter vacua. The five-dimensional gaugings have been clas-
sified in [36]. We will mainly work with n̂ = 5 except for the
last example in which n̂ = 7. The latter leads to a new gauge
group with a new dS4 vacuum that has not been considered
before since all the previous works have been done only for
n = n̂+1 = 6. Another point to be noted is that, to apply the
above decomposition and identification, we need to relabel
some indices and coupling constants and interchange gauge
generators while keep track of the R-symmetry and matter
multiplet directions. The modifications do not qualitatively
change the structure of the gauge groups, scalar potentials
and the critical points.

Finally, we will divide the discussion into two parts since
there are two classes of gauge groups in four dimensions that
lead to de Sitter vacua. As we will see, the gauge groups with
dS4 vacua of the first type lead to gauge groups with only
AdS5 vacua in five dimensions in agreement with the absence
of the five-dimensional analogue for dS4 vacua of the first
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type. On the other hand, gauge groups giving rise to dS4

vacua of the second type do lead to five-dimensional gauge
groups with dS5 vacua. This fact could possibly be inferred
from the similar structure of four- and five-dimensional
gauge groups namely a product of non-compact factors.
Before discussing relations between these gauge groups in
detail, we first give a summary of four- and five-dimensional
gauge groups that are related to each other in Table 2.

5.1 Four-dimensional gaugings with AdS4 and dS4 vacua

In this case, the four-dimensional gaugings can give rise to
both AdS4 and dS4 vacua with the dS4 solutions satisfying
the conditions given in (89). The related five-dimensional
gauge groups only admit supersymmetric AdS5 vacua. All
the gauge groups considered here and the associated AdS5

vacua have already been studied in [42,43].

5.1.1 U (1) × SU (2) × SU (2) 5D gauge group

For five-dimensional gauge group U (1) × SU (2) × SU (2),
non-vanishing components of the embedding tensor can be
written as

ξ̂12 = g1, f̂345 = g2, f̂789 = g̃2. (133)

This gauge group arises from the four-dimensional gauge
group SO(3)2+ × SO(3)2− with the non-vanishing compo-
nents of the embedding tensor given by

f+345 = g2, f+789 = g̃2,

f−126 = g1, f−10,11,12 = g̃1. (134)

Therefore, we have the following identification

f̂ M̂ N̂ P̂ = f+M̂ N̂ P̂ , M̂ = 3, 4, 5, 7, 8, 9

ξ̂M̂ N̂ = f−�M̂ N̂ , M̂ = 1, 2, � = 6,⊕ = 12. (135)

5.1.2 U (1) × SO(3, 1) 5D gauge group

In this case, the U (1) × SO(3, 1) gauge group is obtained
from SO(3)− × SO(3)+ × SO(3, 1)− in four dimensions.
The corresponding five- and four-dimensional embedding
tensors are given by

ξ̂12 = g1, f̂345 = f̂378 = − f̂489 = − f̂579 = g2 (136)

and

f−123 = g1, f+456 = f+489 = − f+5,9,10

= − f+6,8,10 = g2, f−7,11,12 = g3. (137)

Comparing these two equations, we immediately find the
following identification

f̂ M̂ N̂ P̂ = f+M̂+1,N̂+1,P̂+1, M̂ = 3, 4, 5, 7, 8, 9,

ξ̂M̂ N̂ = f−�,M̂+1,N̂+1, M̂ = 1, 2, � = 1,⊕ = 12.

(138)

Note that the embedding tensor for SO(3)− has been
obtained from (79) by setting g̃1 = −g1 together with a
scaling by 1

2
√

2
.

5.1.3 U (1) × SL(3,R) 5D gauge group

The U (1) × SL(3,R) gauge group in five dimensions is
gauged by the following embedding tensor

ξ̂12 = g1, f̂367 = 2g2, f̂4,9,10 = f̂5,8,10 = √
3g2,

f̂345 = f̂389 = f̂468 = f̂497 = f̂569 = f̂578 = −g2.

(139)

This gauge group can be embedded in SO(3)− × SL(3,R)−
gauge group in four dimensions with the embedding tensor
given by

f−123 = g1, f+478 = 2g2, f+5,10,11 = f+6,9,11 = √
3g2,

f+456 = f+4,9,10 = f+579 = f+5,10,8 = f+6,7,10

= f+689 = −g2. (140)

We can write the relation between the embedding tensors for
four- and five-dimensional gauge groups as follow

f̂ M̂ N̂ P̂ = f+,M̂+1,N̂+1,P̂+1, M̂ = 3, 4, . . . , 10,

ξ̂M̂ N̂ = f−�,M̂+1,N̂+1, M̂ = 1, 2, � = 1,⊕ = 12.

(141)

5.2 Four-dimensional gaugings with only dS4 vacua

From the results of the previous sections and in [36], we
know that when a non-abelian compact subgroup of the R-
symmetry is not gauged, f̂m̂n̂ p̂ = 0 and fαmnp = 0, the
gauged supergravities admit de Sitter vacua. Both in four
and five dimensions, these gauge groups take the form of a
product of non-compact groups. We will give some relations
between this type of gaugings in four and five dimensions.

5.2.1 SO(1, 1) × SU (2, 1) 5D gauge group

The five-dimensional gauge group SO(1, 1)× SU (2, 1) cor-
responds to the following embedding tensor

ξ̂5,10 = g1,

f̂129 = f̂138 = f̂147 = f̂248 = − f̂349 = − f̂237 = g2,

f̂789 = −2g2, f̂346 = f̂126 = √
3g2. (142)
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Table 2 The identification
between five- and
four-dimensional gaugings.
Gauge groups with #1, 2, 3 in
five dimensions admit only
AdS5 vacua and are identified
with four-dimensional gaugings
with dS4 vacua satisfying the
conditions (89). Gauge groups
with #4, . . . , 11 give dS5 vacua
and are identified with
four-dimensional gaugings that
lead to dS4 vacua satisfying the
conditions (90)

#5D 5D gauge groups 4D gauge groups

1 U (1) × SU (2) × SU (2) SO(3)2+ × SO(3)2−
2 U (1) × SO(3, 1) SO(3)− × SO(3)+ × SO(3, 1)−
3 U (1) × SL(3,R) SO(3)− × SL(3,R)−
4 SO(1, 1) × SU (2, 1) SO(2, 1)+ × SU (2, 1)+
5 SO(1, 1) × SO(2, 1) SO(2, 1)+ × SO(2, 1)+
6 SO(1, 1)

(2)
diag × SO(2, 1) SO(3, 1)+ × SO(2, 1)+ × SO(2, 1)−

7 SO(1, 1)
(3)
diag × SO(2, 1) SU (2, 1)+ × SO(2, 1)+

8 SO(1, 1) × SO(2, 1)2 SO(2, 1)2+ × SO(2, 1)2−
9 SO(1, 1) × SO(3, 1) SO(3, 1)+ × SO(2, 1)+ × SO(2, 1)−
10 SO(1, 1)

(2)
diag × SO(3, 1) SO(3, 1)+ × SO(3, 1)+

11 SO(1, 1) × SO(4, 1) SO(2, 1)+ × SO(4, 1)+

This is identified with SO(2, 1)+ × SU (2, 1)+ gauge group
in four dimensions with the embedding tensor

f+ 129 = f+ 138 = f+ 147 = f+ 248 = − f+ 237

= − f+ 349 = g2,

f+ 789 = −2g2, f+ 126 = f+ 346 = √
3g2,

f− 5,6,11 = g1. (143)

In this case, it is straightforward to see the relation between
the two gauge groups

f̂ M̂ N̂ P̂ = f+M̂ N̂ P̂ , M̂ = 1, 2, 3, 4, 7, 8, 9,

ξ̂M̂ N̂ = f−�,M̂+1,N̂+1, M̂ = 5, 10, � = 5,⊕ = 12.

(144)

5.2.2 SO(1, 1) × SO(2, 1) 5D gauge group

As shown in [36], SO(1, 1) × SO(2, 1) gauge group can
be embedded in SO(5, n) in different forms. These forms
depend on how the SO(1, 1) factor is gauged. In general,
the SO(1, 1) can be embedded as a diagonal subgroup of
d SO(1, 1) factors, SO(1, 1)

(d)
diag ∼ [SO(1, 1)1 × · · · ×

SO(1, 1)d ]diag in the notation of [36]. It has also been shown
in [36] that, due to the presence of a nonabelian non-compact
factor, there are only three possibilities with d = 1, 2, 3. For
a simple embedding as SO(1, 1) × SO(2, 1) gauge group,
with SO(1, 1)(1) simply denoted by SO(1, 1), the embed-
ding tensor is given by

ξ̂56 = g1, f̂237 = g2. (145)

We identify this gauge group as arising from the SO(2, 1)+×
SO(2, 1)+ in four dimensions with the embedding tensor

f+237 = g2, f−5,6,10 = g1. (146)

This embedding tensor has been obtained from (81) by setting
g̃1 = g1 and g̃2 = g2 and renaming

√
2g1,2 → g2,1. We then

see the following relation between the two embedding tensors

f̂ M̂ N̂ P̂ = f+M̂ N̂ P̂ , M̂ = 2, 3, 7,

ξ̂M̂ N̂ = f−�M̂ N̂ , M̂ = 5, 6, � = 10,⊕ = 4. (147)

It should be pointed out that, in both five and four dimen-
sions, there are additional SO(2) factors under which matter
fields are not charged. These abelian factors correspond to
the gauge fields not participating in the above gauge groups.
Furthermore, the four-dimensional gauge group SO(2, 1)+×
SO(2, 1)+ has not been separately listed in [28]. However,
this gauge group can be obtained as a particular subgroup
of either SO(2, 2)+ × SO(2, 2)− or SO(2, 1)3+ × SO(3)+
gauge groups.

5.2.3 SO(1, 1)
(2)
diag × SO(2, 1) 5D gauge group

We then move to SO(1, 1)
(2)
diag × SO(2, 1) gauge group with

the embedding tensor

ξ̂18 = ξ̂27 = g1, f̂4,5,10 = g2. (148)

This gauge group is related to SO(3, 1)+ × SO(2, 1)+ ×
SO(2, 1)− gauge group in four dimensions with the embed-
ding tensor

f− 789 = − f− 129 = − f− 138 = f− 723 = −g1,

f+ 5,6,11 = g2, f+ 4,10,12 = g3 (149)

by the following relation

f̂ M̂ N̂ P̂ = f+M̂+1,N̂+1,P̂+1, M̂ = 4, 5, 10,

ξ̂M̂ N̂ = f−�,M̂+1,N̂+1, M̂ = 1, 2, 7, 8, � = 1,⊕ = 12.

(150)
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5.2.4 SO(1, 1)
(3)
diag × SO(2, 1) 5D gauge group

We now consider the final form of SO(1, 1)×SO(2, 1)gauge
group in five dimensions namely SO(1, 1)

(3)
diag × SO(2, 1)

with the following embedding tensor

ξ̂18 = ξ̂27 = ξ̂36 = g1, f̂4,5,10 = g2. (151)

This gauge group is related to SO(2, 1)+×SU (2, 1)+ gauge
group in four dimensions with the embedding tensor

f− 129 = f− 138 = f− 147 = f− 248 = − f− 237 = − f− 349 = g1,

f− 789 = −2g1, f− 1,2,10 = f− 3,4,10 = √
3g1, f+ 5,6,11 = g2

(152)

by the following relation

f̂ M̂ N̂ P̂ = f+M̂+1,N̂+1,P̂+1, M̂ = 4, 5, 10,

ξ̂M̂ N̂ = f−�,M̂+1,N̂+1,

M̂ = 1, 2, 3, 6, 7, 8, � = 1,⊕ = 12. (153)

It should be noted that the embedding tensor (152) is just the
one in (143) with + → − and g2 → −g1.

5.2.5 SO(1, 1) × SO(2, 2) 5D gauge group

In this case, the five-dimensional gauge group SO(1, 1) ×
SO(2, 2) ∼ SO(1, 1) × SO(2, 1) × SO(2, 1) is gauged by
the embedding tensor

ξ̂5,10 = g1, f̂237 = g2, f̂+189 = g3. (154)

We identify this gauge group as related to SO(2, 1)2+ ×
SO(2, 1)2− gauge group in four dimensions with the embed-
ding tensor

f+237 = g2, f+189 = g3, f−5,6,10 = −g1,

f−4,11,12 = g4 (155)

by the following relation

f̂ M̂ N̂ P̂ = f+M̂ N̂ P̂ , M̂ = 1, 8, 9, 2, 3, 7,

ξ̂M̂ N̂ = f−�M̂ N̂ , M̂ = 5, 10, � = 6,⊕ = 12. (156)

It should be noted that the second SO(2, 1) factor in this
case has the compact SO(2) subgroup along the R-symmetry
direction. This SO(2, 1) is called SO(2, 1)′ in [36] to dis-
tinguish it from the other SO(2, 1) factor with the compact
part along the matter direction.

5.2.6 SO(1, 1) × SO(3, 1) 5D gauge group

In this case, the five-dimensional gauge group is gauged by
the following embedding tensor

ξ̂5,10 = g1, f̂789 = − f̂129 = − f̂138 = f̂237 = g2.

(157)

This gauge group is obtained from SO(3, 1)+×SO(2, 1)+×
SO(2, 1)− gauge group in four dimensions with the embed-
ding tensor

f−4,6,11 = −g1, f+789 = − f+129 = − f+138

= f+237 = g2, f−5,7,12 = g3.

(158)

The relation between the two embedding tensors is then given
by

f̂ M̂ N̂ P̂ = f+M̂ N̂ P̂ , M̂ = 1, 2, 3, 7, 8, 9,

ξ̂M̂ N̂ = f−�,M̂+1,N̂+1, M̂ = 5, 10, � = 6,⊕ = 12.

(159)

5.2.7 SO(1, 1)
(2)
diag × SO(3, 1) 5D gauge group

As shown in [36], there is another embedding of the five-
dimensional SO(1, 1) × SO(3, 1) gauge group in the form
of SO(1, 1)

(2)
diag × SO(3, 1) with the embedding tensor

ξ̂29 = ξ̂38 = g1, f̂789 = − f̂129 = − f̂138 = f̂237 = g2.

(160)

We identify that this gauge group is related to SO(3, 1)+ ×
SO(3, 1)+ gauge group in four dimensions with the embed-
ding tensor

f−789 = − f−129 = − f−138 = f−723 = −g1,

f+10,11,12 = − f+4,5,12 = − f+4,6,11 = f+10,5,6 = g2

(161)

via the following relation

f̂ M̂ N̂ P̂ = f+M̂+3,N̂+3P̂+3, M̂ = 1, 2, 3, 7, 8, 9,

ξ̂M̂ N̂ = f−�M̂ N̂ , M̂ = 2, 3, 8, 9, � = 1,⊕ = 7.

(162)

5.2.8 SO(1, 1) × SO(4, 1) 5D gauge group

To gauge this group, we need to couple the five-dimensional
N = 4 supergravity to at least n̂ = 7 vector multiplets. The
embedding tensor is given by
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ξ̂5,12 = g1, f̂126 = f̂137 = f̂149 = f̂238

= f̂2,4,10 = f̂3,4,11 = g2,

f̂678 = f̂6,9,10 = f̂7,9,11 = f̂8,10,11 = −g2. (163)

There is no known four-dimensional gauging that can be
identified with this gauge group upon a circle reduction. We
will use the relations given in (132) to construct the following
four-dimensional embedding tensor

f+MN P = f̂M−1,N−1,P−1, M = 2, 3, 4, 5, 7, . . . , 12,

f−�MN = ξ̂M−1,N−1, M = 6, 13, � = 1. (164)

The result is given by

f+237 = f+248 = f+2,5,10 = f+349 = f+3,5,11 = f+4,5,12

= g2,

f+789 = f+7,10,11 = f+8,10,12 = f+9,11,12 = −g2,

f−1,6,13 = g1. (165)

This corresponds to SO(2, 1)+ × SO(4, 1)+ gauge group.
In this case, the four-dimensional gauged supergravity also
needs to couple to at least 7 vector multiplets.

It is now straightforward to compute the scalar potential
and determine the critical points. With only the dilaton and
axion non-vanishing, the result is given by

V = 1

2
e−φ

[
e2φ

(
g2

1χ2 + 6g2
2

)
+ g2

1

]
(166)

with a critical point at

χ = 0, φ = ln

[
± g1√

6g2

]
. (167)

After setting g2 = ± 1√
6
g1, we obtain a dS4 vacuum with

V0 = g2
1 and satisfying (90). We also note that the electric-

magnetic dual of (165), with − and + components inter-
changed, leads to the same potential and critical point.

Finally, scalar masses at this critical point are given by

m2L2 = 6×2,
3

2
(1 + 2

√
2)×4,

3

2
(1 − 2

√
2)×4,

0×6, 3×12,

[
3

2

]
×16

(168)

where we have used the dS4 radius L = 3
V0

. This dS4 vacuum

is unstable due to the negative mass value 3
2 (1 − 2

√
2). The

mass value m2L2 = 6 corresponds to that of the dilaton and
axion. The six massless scalars correspond to the Goldstone
bosons of the symmetry breaking SO(2, 1) × SO(4, 1) →
SO(2) × SO(4).

6 Conclusions

In this paper, we have studied dS4 vacua of four-dimensional
N = 4 gauged supergravity coupled to vector multiplets. By
requiring that the scalar potential is extremized and positive,
we have derived a set of conditions for determining a gen-
eral form of gauge groups admitting dS4 vacua by adopting
a simple ansatz. This extends the previous result in five-
dimensional N = 4 gauged supergravity and provides a
useful approach for finding dS4 vacua in N = 4 gauged
supergravity. We have also given some relations between
the embedding tensors of four- and five-dimensional gauge
groups that could be related by a simple circle reduction.
From this analysis, we have given a new example of four-
dimensional gauge group, SO(2, 1) × SO(4, 1), that gives
a dS4 vacuum. This has not previously been studied since
the gauging requires the coupling to at least seven vector
multiplets.

Unlike in five dimensions, we find two large classes of
gauge groups that give dS4 vacua as maximally symmetric
backgrounds of the matter-coupled N = 4 gauged supergrav-
ity. For the first class, the gauge groups take a general form of
Ge ×Gm ×Gv

0 in which Ge(m) is electrically (magnetically)
gauged and contains an SO(3) subgroup. Gv

0 is a compact
group gauged by vector fields in the vector multiplets. These
gauge groups are precisely the ones that lead to supersym-
metric AdS4 vacua studied in [40]. Two different types of
vacua, AdS4 and dS4, arise from different coupling ratios
between Ge and Gm factors. This result is obtained from
imposing the conditions that 〈Ai j

1 〉 = 〈A2ai
j 〉 = 0. These

conditions take a very similar form to those for the existence
of supersymmetric AdS4 vacua. We have explicitly verified
that the potential is extremized by these conditions.

For the second class, we have imposed another set of con-
ditions, 〈Ai j

1 〉 = 〈Ai j
2 〉 = 0, and found that the gauge groups

generally take the form SO(2, 1)×SO(2, 1)′ ×Gnc ×G ′
nc ×

Hc. Gnc and G ′
nc are non-compact groups with the compact

parts embedded in the matter directions while the compact
SO(2) × SO(2)′ ⊂ SO(2, 1) × SO(2, 1)′ is embedded
along the R-symmetry directions. As in the previous case,
SO(2, 1) × Gnc (SO(2, 1)′ × G ′

nc) is electrically (magneti-
cally) gauged, and Hc is a compact group. It should be empha-
sized that only Gnc and G ′

nc are necessary for the dS4 vacua
to exist.

Given that our ansatz is rather simple, it is remarkable that
the above results encode all semi-simple gauge groups that
are previously known to give dS4 vacua of N = 4 gauged
supergravity. Two different sets of these gauge groups have
also been noted in [28], and these correspond to the two sets
of conditions given in this paper. The results given here are
hopefully useful for finding dS4 vacua and could be interest-
ing in the dS/CFT correspondence and cosmology.
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In this paper, we have looked at only semisimple gauge
groups. It is also interesting to consider non-semisimple
gauge groups listed in [44] and those arising from flux com-
pactification studied in [45] and [46]. In deriving all the con-
ditions for the existence of dS4 vacua, we have not restricted
the gauge groups to be semisimple. Therefore, our condi-
tions are also valid for non-semisimple gauge groups. In
particular, it can be verified that, for the dS4 vacuum from
I SO(3)× I SO(3) gauge group considered in [46], we have
〈Ai j

1 〉 = 〈A2ai
j 〉 = 0. This dS4 solution is accordingly of the

first type described by the criteria given in (89). A system-
atic classification of non-semisimple groups leading to dS4

vacua in N = 4 gauged supergravity is worth considering.
Given the success in N = 4 gauged supergravities in

both four and five dimensions, it is natural to extend this
approach to other gauged supergravities with different num-
bers of supersymmetries in various dimensions. The success
of this approach also suggests that the conditions we have
derived might have deeper meaning although they are origi-
nally obtained from a simple assumption. It would be of par-
ticular interest to have a definite conclusion whether there is
some explanation for these conditions within gauged super-
gravity and string/M-theory or these conditions are just a tool
for finding de Sitter solutions.
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A Useful formulae

In this appendix, we collect some useful identities involv-
ing SO(6) gamma matrices which are useful in the analysis
of the constraints on the embedding tensor. This appendix
closely follows the dicussion in [40] and [47]. The 8 × 8
gamma matrices of SO(6), γmI

I , I, J = 1, 2, . . . , 8, satisfy
the Clifford algebra

γmI
K γnK

J + γnI
K γmK

J = 2δ JI δmn . (169)

γmI
J can be written in terms of the chirally projected 4 × 4

gamma matrices �
i j
m , i, j = 1, 2, 3, 4, and their complex

conjugate �mi j = (�
i j
m )∗ = 1

2εi jkl�
kl
m as follow

γmI
J =

(
0 �

i j
m

�mi j 0

)
. (170)

�m satisfy the Clifford algebra

{�m, �∗
n} = 2δmnI4. (171)

An explicit form of these matrices can be chosen as

�1 = iI2 ⊗ σ2, �2 = iσ2 ⊗ σ3, �3 = iσ2 ⊗ σ1,

�4 = −σ3 ⊗ σ2, �5 = −σ2 ⊗ I2, �6 = −σ1 ⊗ σ2.

(172)

The SO(6) generators in the chiral spinor representation
or SU (4) generators in the fundamental representation are
given by

(�mn)
i
j = 1

2
�ik
m (�∗

n)k j . (173)

The other antisymmetric products satisfy

(�mnp)
i j = �ik[m�nkl�

l j
p] = iεmnpqrs�

ik
q �rkl�

l j
s , (174)

(�mnpq)
i
j = �

ik1[m �nk1k2�
k2k3
p �q]k3 j = iεmnpqrs�

ik
r �sk j ,

(175)

�
ik1[m �nk1k2�

k2k3
p �qk3k4�

k4k5
r �s]k5 j = iδijεmnpqrs . (176)

Some useful identities are given by

{�mn, �pq} = 2�mnpq + 2δnpδmq − 2δmpδnq , (177)

Tr(�mnp�qrs) = −4δmqδnrδps + 4δmqδnsδpr + 4δmrδnqδps

−4δmrδnsδpq − 4δmsδnqδpr + 4δmsδnrδpq .

(178)
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