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Abstract In this work, the decays of By meson to a char-
monium state and a K+ K~ pair are carefully investigated
in the perturbative QCD approach. Following the latest fit
from the LHCb experiment, we restrict ourselves to the case
where the produced K+ K ~ pair interact in isospin zero S, P,
and D wave resonances in the kinematically allowed mass
window. Besides the dominant contributions of the ¢ (1020)
resonance in the P-wave and f2’(1525) in the D-wave, other
resonant structures in the high mass region as well as the
S-wave components are also included. The invariant mass
spectra for most of the resonances in the By — J/Yw KK~
decay are well reproduced. The obtained three-body decay
branching ratios can reach the order of 10~4, which seem
to be accessible in the near future experiments. The associ-
ated polarization fractions of those vector-vector and vector-
tensor modes are also predicted, which are compared with
the existing data from the LHCb Collaboration.

1 Introduction

The three-body mode By — J/¥ K™K~ is of particular
interest in searches for intermediate states in the By decay
chain. Since the LHCb Collaboration [1] found no obvi-
ous structures in the J/¥ K™ invariant mass distribution,
the B; — J/¥ K™K~ decay proceeds predominantly via
By — J/¢¥ R with the quasi-two-body intermediate state
R subsequently decaying into K+ K ~. For the concerned By
decay, the K+ K~ system arise from pure 55 source, and thus
these resonances are isoscalar. Taking into account the con-
servation of P-parity and C-parity, the produced resonances
are limited to quantum numbers JF¢ = 0++ 17— 2++ .
with isospin / = 0. Among them, the largest component
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comes from the ¢ (1020) in a P-wave configuration [2]. Sev-
eral Collaborations [1,3,4] have presented a measurement
of the By — J/¢¥¢(1020) mode with ¢(1020) decays to
KT K~. The current world averages of the absolute branch-
ingratio B(Bs; — J /v ¢(1020)) can reach the order of 1073.
Another P-wave resonance ¢ (1680), whose contribution has
more than 2 statistical standard deviation (o) significance,
is also included by the LHCb Collaboration [1] in its best
fit model. Two well known scalar resonances, the f,(980)
and fo(1370), are observed in the K K~ mass spectrum by
LHCb [1], which is the only data set available so far for the
S-wave resonant structures.

Contributions from D-wave resonances are known to be
non-negligible in this decay. The first observation of the
decay sequence By — J /¥ f5(1525), f5(1525) - KtK ™,
was recently reported by the LHCb Collaboration [5], and
later confirmed by the DO Collaboration [6]. Subsequently,
the LHCb Collaboration [1] have determined the final state
composition of the decay channel using a modified Dalitz plot
analysis where the decay angular distributions are included.
The best fit model includes a nonresonant component and
eight resonance states, whose absolute branching ratios are
measured relative to that of the normalization decay mode
BT — J/¥K™T. In contrast to hadron collider experi-
ments, the Belle Collaboration [4] normalize to the abso-
lute number of B?B’? pairs produced and also present a
measurement of the entire By — J/¥ K+ K™ components
including resonant and nonresonant decays. More recently,
the LHCb Collaboration [7] improved their measurements,
in which the fit fractions of six resonances including
$(1020), ¢(1680), f2(1270), f;(1525), f(1750), f>(1950)
together with a S-wave structure in By — J/Ww KK~ are
determined.

Above measurements have caught theoretical attention
recently. The three-body decay By — J/y KT K™ includ-
ing its dominant contributions of the resonances ¢ (1020) and
f>(1525) have been studied [8,9] and the associated branch-
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ing ratios have been obtained based on the framework of the
factorization approach. Some recent analyses [10—12] had
been carried out for B/ By decays into J/v and the scalar,
vector, and tensor resonances using chiral unitary theory, for
which these states are shown to be generated from the meson-
meson interaction. In Refs. [13—15], the KT K ~ S-wave con-
tribution in the ¢ (1020) resonance region is estimated to be
of the order 1 — 10%, in agreement with previous measure-
ments from LHCb [1,16], CDF [17], and ATLAS [18]. The
significant S-wave effects may affect measurements of the
C P violating phase S [13,14,19].

In this paper, we will consider the three-body B decays
involving charmonia and kaon pair in the final state under
the quasi-two-body approximation in the framework of per-
turbative QCD approach (PQCD) [20,21]. The factorization
formalism for the three-body decays can be simplified to
that for the two-body cases with the introduction of two-
kaon distribution amplitudes (DAs), which absorb the strong
interaction related to the production of the two kaon sys-
tem. For the detailed description of the three-body nonlep-
tonic B decays in this approach, one can refer to [22,23].
The PQCD approach so far, has been successfully applied to
the studies of the resonance contributions to the three-body
B/ By decays in several recent papers [24-34]. As advanced
before, the decays under study are dominated by a series of
resonances in S, P and D waves, while contributions from
resonances with spin greater than two are not expected since
they are well beyond the available phase space. Each par-
tial wave contribution is parametrized into the correspond-
ing timelike form factors involved in the two-kaon DAs. For
each partial wave form factor, we adopt the form as a lin-
ear combination of those resonances with the same spin. In
the present paper, we take into account the following reso-
nances.': f0(980), fo(1370), $(1020), ¢ (1680), f>(1270),
f2’(1525), f2(1750), f2(1950), two scalar, two vector, and
four tensor resonances in the context of the data presented
in Refs. [1,7] All resonances are commonly described by
Breit Wigner (BW) distributions, except for the f;(980) state,
which is modelled by a Flatté function [35].

Our presentation is divided as follows. In Sect. 2, we
present our model kinematics and describe the two-kaon DAs
in different partial waves. The calculated branching ratios and
polarizations for each resonance in the considered three-body
decays as well as the numerical discussions are presented in
Sect. 3, and finally, conclusions are drawn in Sect. 4. The
factorization formulas for the decay amplitudes are collected
in the Appendix.

I In the following, we also use the abbreviation fj, ¢, and f> to denote
the S, P, and D-wave resonances for simplicity.
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2 Kinematics and the two-kaon distribution amplitudes

Let us begin with the definition of the kinematic variables.
It is convenient to work in the light-cone coordinates for the
four-momenta of the initial and final states. The momentum
of the decaying B; meson in its rest frame is chosen as pp =
%(1, 1, 07) with the By meson mass M. The momenta of
the decay products will be denoted as pj, p» for the two
kaons, and p3 for the charmonia, with the specific charge
assignment according to

Bs(pg) — X(p3)KT(p1)K ™ (p2). )]

The momenta of three final states are defined as

pi=pT.n1=¢)pT, P,
p2=((1=0)pT,n¢pt, —Pp),

M
p3 = ﬁ(ﬂ, 1—1,07), 2)

where ¢ = p/p™ with p™ = M(1 — r?)/+/2 is the kaon
momentum fraction. The mass ratio r = m /M with the char-
monium mass m. The kaon transverse momenta is expressed
as Pr = (w/Z(I = ), 0). The factor n = p?/(M? — m?)
is defined in terms of the invariant mass squared of the kaon
pair p2 = ?, which satisfies the momentum conservation
p = p1+p2 = pp— p3. The valence quark momenta labeled
by kp, k3, and k, as indicated in Fig. 1a, are parametrized as

M
kp = (0, EXB, kBT) s

ks = (ﬁrzxg, LA kgT) ,
V2 V2

- (ﬁz(l ~),0, kT), 3)
NG

in which x g, x3, z denote the longitudinal momentum frac-
tions, and k;7 represent the transverse momenta. Since the
light spectator quark momentum k moves with the kaon pair
in the plus direction, the minus component of its parton
momentum should be very small, thus it can be neglected
in the hard kernel, and then integrated out in the definition of
the two-kaon distribution amplitudes. We also dropped k;
because it vanishes in the hard amplitudes.

Since the By meson wave function and the charmonium
distribution amplitudes have successfully described various
hadronic two-body and three-body charmonium B decays
[27-30,36], we use the same ansatz as them. For the sake
of brevity, their explicit expressions are not shown here and
can be found in Refs. [36-38]. Below, we briefly describe
the two-kaon DAs in three partial waves and the associated
form factors.
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Fig. 1 Feynman diagrams for the B — XR(— K7TK~) decays
with X = J /¥, ne, ¥(25), n:(2S) at the leading-order approximation.
a and b Contributed to the factorizable diagrams, while ¢ and d

2.1 S-wave two-kaon DAs

The S-wave two-kaon DAs are introduced in analogy with
the case of two-pion ones [22,24], which are organized into

1=0 1

o= = mwg(z, ¢, o) + 0d§(z, ¢, 0¥
+w(hb — Dk(z, £, 0], 4)

with the null vectors n = (1,0, 01) and v = (0, 1, 07). In
what follows the subscripts S, P, and D always associate
with the corresponding partial waves. Above various twists
DAs have similar forms as the corresponding twists for a
scalar meson by replacing the scalar decay constant with the
scalar form factor [39], we adopt their asymptotic models as
shown below [24,30]:

9
P2z, ¢, %) = ﬂ_MFs(wz)alz(l —2)(1—22),
1
¢5(z, ¢, %) = 2¢2—NCFS(‘”2)’
1
P5(z, ¢, %) = 2\/2_Nch<aﬂ><1 —22), Q)

with the isoscalar scalar form factor Fg(w?) and the Gegen-
bauer moment a;. Bearing in mind that only odd moments
contribute in case of neutral scalar resonances owing to
charge conjugation invariance or conservation of vector cur-
rent [40]. Therefore the first term in leading twist DAs come
from a;. Since the coefficients in the Gegenbauer expansion
of the dimeson DAs are poorly known, we limit ourselves to
leading term in the expansion.

For the scalar resonances, we include here only the com-
ponents fp(980) and f(1370), which are well established
in the best fit model by the LHCb Collaboration [1]. For the
former, we use a Flatté description, while the latter is mod-
elled by BW functions. The scalar form factor Fg(w?) can
be written as

2
M 5,(980)

et

contributed to the nonfactorizable ones. The intermediate R denotes
a scalar, vector, or tensor resonance

Hereafter, cp refers to the weight coefficient of the reso-
nance R, to be determined by data. Their values are given
in the next section. In what follows, all resonances R with
different quantum numbers will be labeled by the single let-
ter R, without pointing to its quantum numbers. The two
phase-space factors are pr, = 2¢qp/w, pxkx = 29K /o,
where gr(k) is the pion (kaon) momentum in the dipion

(dikaon) rest frame. The exponential factor Fxgx = eaak
with @ = 2.0 £ 0.25 GeV~2 [41,42] is introduced above
the K K threshold and serves to reduce the pgx factor as
the invariant mass increases. The constants g, and gk x are
the fo(980) couplings to 7 and KK final states respec-
tively. We use g, = 167 MeV and gxx/grn = 3.47 as
determined by LHCb [43]. The BW amplitude in generic
form is
2

BWg(a?) = it

(N

mp — w? — imgl(0?)’

where m g is the resonance pole mass and I' (w?) is its energy-
dependent width which may be parametrized in a form that
ensures the correct behavior near threshold,

2Lp+1

qK mg

F?) =T (—) —F3. ®)
qKo w

Here 'y and gk are F(a)z) and gk, evaluated at the res-
onance pole mass, respectively. Lg is the orbital angular
momentum in the K™K~ decay and is equal to the spin of
resonance R because kaons have spin(0. The Lg =0, 1, 2, ...
correspond to the S, P, D, ... partial wave resonances. The
Blatt-Weisskopf barrier factors Fg [44] for scalar, vector and
tensor states are

Fs(@”) = [ 3

M f980) ~ @? — im f,980)(8n Prr + 8K K PKK FR )

+ ¢ £,1370) BW f,(1370) (wz)] (14 cpaz0) " (6)
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1 Lr =0,
V14 v1+zo L 1
R - 9
Fr=q V1+z ©))
1/ ZO + 320 +9
Lg =2,
V2 + 3z +9
with 7z = r2qlz< and zo represents the value of z when
® = mpg. The meson radius parameters r are dependent

on the momentum of the decay particles in the parent rest
frame. Modifying the r changes slightly our results, as dis-
cussed in the next section. Hence, we set this parameter to be
1.5 GeV~! (corresponding to 0.3 fm) for all the considered
resonances, as is obtained in [1].

2.2 P-wave two-kaon DAs

In Ref. [29] we have constructed the P-wave DAs including
both longitudinal and transverse polarizations for the pion
pair. Naively, the P-wave two-kaon ones can be obtained by
replacing the pion vector form factors by the corresponding
kaon ones. The explicit expressions read

1
o = e [p¢P(z £ 0) + 0 (2, ¢, )
1
(Dg = m |:V54Ti7¢£(za §7 (,()) + 6()]/54T¢%(Z, é" (,())

eMPoy €Ty poi—g
p-n_

+iw ¢p(z, ¢, w)} ; (10)
where the superscripts L and T on the left-hand side denote
the longitudinal polarization and transverse polarization,
respectively. Here €#"P? is the totally antisymmetric unit
Levi-Civita tensor with the convention €23 = 1. The trans-
verse polarization vector €7 for the dikaon system has the
same form as that of dipion [29]. The various twists DAs in
Eq. (10) can be expanded in terms of the Gegenbauer poly-
nomials:

e 2
PP (2.0, w) = ”PZ—\/(T‘”)z(l —2)
x[1+a3Cy*(1 —22)12¢ — 1),
s Fp(0?)
¢p(z, ¢, w) = 2—«/2_1%(1 —22)
x[14a5(1 — 10z 4+ 10z9)]1(2¢ — 1),
Lo, 2
Pp (2, ¢, @) = TJ%(I —22)°
x[1+a5Cy" (1 —22)12¢ — 1),
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L( 2)
T z2(1 —2)
[ +al 31 =201/ (1= ¢).
3F) (o)
4«/_2NC
X[1+af (102> =10z + D]V¢ (1 = ¢),
H 2
Fp(w)
2«/_21\/
+a§[3(2z—1)2—1]} c1-1¢), (A

¢h(z, ¢ ) =

¢p(z. ¢, @) = (1-2z)

% (z, ¢, 0) = {[1+(1 22)%]

where the two P-wave form factors F ,”, and F f; serve as the
normalization of the two-kaon DAs. They play a similar role
with the vector and tensor decay constants in the definition
of the vector meson DAs [45]. The Gegenbauer moments aé
will be regarded as free parameters and determined in this
work.

As mentioned in the Introduction, the form factor F 1‘1 is
given by the coherence summation of the two vector reso-
nances ¢ (1020) and ¢ (1680),

F}L (@?) = [B Wy (1020 (@%)

+cp1680) B W (1680) (wz)] (14 cp(1680) "
(12)

According to the argument in [25] [see Eq. (12)], motivated
by the pole model, each form factor is proportional to the
decay constant associated with each resonance state. There-
fore, for the F IJ; , we assume it have the same phase as F Ill

and employ the approximate relation f; /F )l, ~ f‘; /fv with
f‘; (fv) being the tensor (vector) decay constant for the
corresponding vector meson in the following calculations.
It is worth stressing that the current data are still not suffi-
cient to determine the two form factors separately. In prin-
ciple, the longitudinal decay constant fy could be extracted
from the measurements, while the transverse one fg has to
be calculated in the QCD sum rule or Lattice QCD tech-
nique. It should be noted that the latter one is renormaliza-
tion scheme dependent and renormalization scale dependent,
respectively. Then the approximate relation F f; /F 1! could
vary with the choices of decay constants at different energy
scales. In the numerical analysis, their values are chosen at
the typical scale u = 1 GeV, which enters the perturbative
calculation in PQCD.

2.3 D-wave two-kaon DAs

Recalling that the tensor meson DAs are constructed in anal-
ogy with the vector ones by introducing a new polariza-
tion vector €, which is related to the polarization tensor
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€,,0 (1) with helicity A [46]. Following a similar procedure,
we decompose the D-wave two-kaon DAs associated with
longitudinal and transverse polarizations into

2 1
ok = \/;ﬁ |:p¢%(z,{,w)+w¢sD(Z, ¢, w)

P12 —pobi
+ (,()(2{ — 1) ¢D(Z’ ng)} 5

1 1
Pf, = \/;ﬁ [Vse’TM’IT)(Z, ¢ w) +oydrdh (2, ¢, w)

e Yu€TvPpn—o
p-n_

+iw ¢p(z, ¢, w)} ; (13)

respectively, where the prefactor \/g (\/g) comes from the

different definitions of the polarization vector between the
vector and tensor mesons for the longitudinal (transverse)
polarization. The leading twist DAs Y, and &%) have simi-
lar asymptotic forms as the corresponding ones for a tensor
meson. More precisely,

F“ 2
0z, ¢, w) = Dz—(sz)“l — a2z = L),
9Fp (w?
oL (2.0 ) = %za —9aT Q- DT@). (14

Here, we solely employ the first nonvanishing leading term
in the expansion for previously mentioned reasons. The
moments a? and alT are regarded as free parameters and
determined in the next section. Note that the ¢ dependent
terms £(¢) and 7 (¢) are different from those in Eq. (11).
We will derive their expressions later. The kaon tensor form
factor F/ g (w?) can be represented by

Fp@®) =) ciBW;(@), (15)

where the summation is performed over the intermediate
tensor mesons: f2’(1525), f2(1270), f>(1750), f2(1950). c;
are the corresponding weight coefficients. The expressions
for the twist-3 DAs can be derived through the Wandzura-
Wilczek relations as [47,48]

IFE(w?
_#(]“\;)ag)(l — 62+ 62) L),
9F 5 (0?)
42N,
3F! (02
#(:)a{(zz ~ 1T @),
3F (0?
2—D/z(%) af (1 -6z +62)7(¢).  (16)

Next we derive the ¢ dependent terms for both the lon-
gitudinal and transverse polarization DAs. The two decay

Pz, ¢ w) =
P (2, ¢, w) = 2z — 1)a¥(1 — 6z + 62%)L(¢),
o5z, ¢, w) =

¢E(Z, Cv Ll)) = -

constants fr and fTT of a tensor meson are defined by sand-
wiching the corresponding local current operators between
the vacuum and a tensor meson [46,47]

(F2(p. Wi (0)[0) = frmFels, (L),

(2P W jupO10) = —ifE my [€, (W py — €6, (I pu] .
(17)

where p and m7 are momentum and mass of the tensor
meson, respectively. The two interpolating currents j,, (0)
and j,,,, (0) are defined in [46,47]. Let us begin with the local
matrix element (K (p1) K~ (p2)| ), (0)/juvp(0)]0) associ-
ated with the D-wave form factors. Under the tensor-meson-
dominant hypothesis [47], inserting the tensor intermediate
in above matrix element, we get

(KT (p0K ™ (p2)] v (0)/funp (0)10)
1
~ UK UK (L2 20) 5= 2P 2 s a0
A 2

(18)

with Dy, the resonance propagator [49]. The coupling con-
stant gp kg is defined by the matrix element (K T(p1)
K= (p)l fa(p. 1)) = 2255, (Mgt q" with g = p1 — pa
[47]. When applying the formula Eq. (17) and the complete-
nessrelation ) ; €, (A)es, (1) = %MMpMUJ +%M;w M,,—
%MWMW with M, = glw—pupv/m%-, Eq. (18) thenleads
to the following equations explicitly

(KT (p)K ™ (p2)juv]0)
__ 8pKK frmr

1 1
> [qﬂqv — ~pupv + —m%g,w] . (19)
f:

3 3

(KT (p)K ™ (p2)]juwp|0)

N 8hHKKIE
~ _ID— qduPvdp — 4vPudp
f2

+%m%(g,mpv - guppm} : (20)
Note that the last terms above are power suppressed and can
be omitted, because in our power counting, a light hadron
mass is counted as a low scale relative to the heavy quark
mass. Utilizing the approximation relation ¢, = (p; —
P2)u ~ (28 — 1)py [29], one get for Eq. (19)

1 2
Gudy = Pppv=3(1 =6 + 6¢2) pupv, 1)

in which the coefficient 1 —6¢ 4-6¢ 2 is absorbed into the lon-
gitudinal polarization DAs, giving rise to its ¢ dependence.
The matrix element in Eq. (20) for the choice u, v, p =
+, —, x is proportional to

(@upy — @vPp)ap = 22¢ — DY = O, (22)

@ Springer
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where the kinematic variables in Eq. (2) are used. Note that
the contributions from other possible combination of the
three Lorentz indexes are either zero or power suppressed.
Then the ¢ dependent factors of the longitudinal and trans-
verse polarization DAs can be written as

L&) =1-60+6¢% T)=Q¢—Dyed -0,
(23)

respectively. Above expressions can also be checked from
the partial wave expansions of the helicity amplitudes. As is
well known, the helicity O component is expanded in terms
of Legendre polynomials P;(cosf), while the helicity 1
ones proceeding in derivatives of the Legendre polynomials
P/(cosf) [15]. For I = 2 D-wave amplitudes, the helicity
angle 6 is encoded into the Wigner-d functions, schematically

[2]:
=2 1 2

dpy “(0) = Pr(cost) = 5(3005 60—1),

sinf
NG

Following a similar prescription in the dipion system [50,51],
the polar angle 6 of the KT in the rest frame of the dikaon is
related to ¢ through the relation

3
d!55(6) = F—= P;(cost) = ¢\/;sin6cose. (24)

1 —2¢ = Beos, B=./1—4m%/p?, (25)

with mg the kaon mass. Neglecting the kaon mass and
employing Eq. (24), we also arrive at Eq. (23).

2.4 The differential branching ratio

The double differential branching ratio reads [2]

d’B _ tolpi||ps|
dtdw 3273 M3

LAI%, (26)

where the differential variable dcosf is replaced by d¢ via
Eq. (25) in the limit of massless. The three-momenta of the
kaon and charmonium in the rest reference frame of the K K
system are given by
kl/z(wz,mi,m%) B M2(M2, m?, 0?)
o . Ip3l= o ,
(27)

p1l =

respectively, with the standard Kdallen function A(a, b, ¢) =
a’® + b> + ¢* — 2(ab + ac + bc). The complete amplitude
A through resonance intermediate for the concerned decay
is decomposed into

A=As+ Ap + Ap, (28)
where Ag, Ap, and Ap denote the corresponding three par-

tial wave decay amplitudes. Since the ¢-dependent terms

@ Springer

appear as an overall factor in each partial wave decay ampli-
tudes, integrating the double differential distribution of Eq.
(26) over ¢ gives for the differential invariant mass branching
ratio

dB Tolp1]ps3l s 100 1 g0
— = |14 =|A —|A
do ~ a2y | I3RS
+ Y (AR + P (29)
4 6- " 377 ’
i=l,L
where the factors 1/3, 1/5, ... are extracted from the indi-

vidual helicity amplitudes for the integral of {. The terms
A% Al and A+ represent the longitudinal, parallel, and per-
pendicular polarization amplitudes in the transversity basis,
respectively.” Note that interference between different partial
wave vanishes because the ¢ functions in Egs. (5), (11), and
(23), corresponding to S, P, and D partial waves, are orthog-
onal. In the J /¢ and v (25) cases, the decay amplitudes Ag
and A p here can be straightforwardly obtained from the pre-
vious publications [24,29] by replacing the two-pion form
factors and all pion masses and momenta with the respec-
tive kaon quantities. For A p, its factorization formula can be
related to Ap by making the following replacement,

2 1
0o _ /240 L _ oL, -
A = 3AP|¢%M_)¢%“, ‘AD = 2AP |¢IIJ.v<a_)¢lI),v,a.

(30)
For the involved 5. and 1. (2S) modes, the partial wave decay
amplitudes are provided in Appendix.

3 Numerical results
We first summarize all parameter values required for numer-

ical applications. For the masses appearing in By decays, we
shall use the following values (in units of GeV) [2]:

Mp, =5367, mp =48, m.=1275,
my+ = 0.494,
myy =3.097, my@s) =3.686, my =2.984,

my.28) = 3.638. (31)

The information on the decay constants (in units of GeV),
the Wolfenstein parameters, together with the lifetime of By
mesons are adopted as [29,36-38,47]

fo = 02272: f‘]/w = 0405, fv,(zs) = 0296,
fre =042, fr.os) = 0243, f] 00, = 0.186,
fpa020) = 0215, fra270) = 0.102,  ff, 1270) = 0.117,

2 The last two terms do not appear for those modes involving spinless
Ne/Ne(28) in the final state.
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Table 1 The relevant resonance parameters in the By — XK+ K~ decays

Resonance Jre Resonance formalism Mass (MeV) Width (MeV) Source
f0(980) 0+ Flatté 990 e PDG [2]
fo(1370) o+t BW 1475 113 LHCb [52]
¢ (1020) - BW 1019 4.25 PDG [2]
¢ (1680) 1= BW 1689 211 Belle [53]
12(1270) 2++ BW 1276 187 PDG [2]
f2(1525) 2++ BW 1525 73 PDG [2]
f2(1750) 2++ BW 1737 151 Belle [54]
12(1950) 2++ BW 1980 297 Belle [54]
10 T T T T T T T T T 10 T T T T T T T T T T T T
a
(@) e [(b)
8- e f0(1370) —
Total

~ 6 - —~

s s

m m

Fig. 2 The branching ratios (10~°) for the By — J /¥ fo(— KtK™)
decays as a function of a the Gegenbauer moment a; and b the phase
¢ of coefficient c s, (1370) with all other input fixed at the default values
in Eq. (34). The dashed green, dotted red, and solid blue curves show

frass) = 0126, £ 155 = 0.065,
A =022537, A=0814, 5=0.117,
i =0.355, 75 =15Ips. (32)

The masses and widths of the BW resonances are listed in
Table 1, while the Flatté parameters for the fn(980) have
been given in the previous section.

As mentioned before, the form factor ratio rT(R) =
F1/Fll'is approximately equal to the ratio of two decay con-
stants 7 /f. From the numbers in Eq. (32), we have

rT(¢(1020)) = 0.865, r!(f»(1270)) = 1.15,
rT(f5(1525)) = 0.52. (33)

Whereas for other high states, since their decay constants are
not known yet, we treat them as free parameters.

Now, we collect all the phenomenologically motivated
parameters, such as weight coefficients ¢;, Gegenbauer
moments a;, and form factor ratios 7 (R), in each partial

¢ (rad)

the fo(980), fo(1370), and their combinatorial contributions, respec-
tively. The gray and cyan shaded bands are corresponding to the current
experimental constraint of the f(980) and fp(1370) modes from the
LHCb [1], respectively

wave. Their central values are fixed to be

S-wave : cpa370) = 0.12¢717, a; = 0.8,

P-wave : cy1es0) = 0.6, 77 (¢(1680)) = 0.6,
& =al =05 a=-07, a=-03,
a§ =04, a) =-0.6,

D-wave : C/E(1525) = 12, C £ (1270) = 0.16”[,

cp750) = 0.4€™, ¢ (1950 = 0.3,
rT(£(1750) = 0.3, ! (£(1950)) = 1.5,
) =04, al =09. (34)

When fitting to the experimental data, we assume that
the concerned resonances with the same spin share the same
set of the Gegenbauer moments. For the S-wave sector, the
two experimental results of the f(980) and f(1370) com-
ponents in Ref. [1] are used to fit out a; and c g (1370). In
Fig. 2a, b, we show the dependence of the branching ratios
of the fp(980) and fp(1370) components as well as their
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combination in the By — J/¥ K+ K™~ decay on the Gegen-
bauer moment a; and the phase of ¢, (1370), respectively.
The module |c £ 1370)| is chosen as 0.12 to maximize the
overlap between the predicted curves and the experimental
range. Apparently, both the f(980) and f(1370) modes can
meet the data as setting a; ~ 0.8 in Fig. 2a. This value is
much larger than the corresponding a; = 0.2 that obtained in
Ref. [24]. The discrepancy is understandable with respect to
the different nonperturbative dynamics of f;(980) decaying
to the KK and wm pairs. In Fig. 2b, it is reflected that the
constructive or destructive interference pattern between the
two resonances vary with the phase. Here its value is taken
to be —m /2 since the LHCb’s data [1] favor the destructive
interference. Of course, considering the sizeable experimen-
tal uncertainties, these parameters are difficult to be restricted
precisely at this moment. As a case study with rough esti-
mation, the related treatment about these parameters in this
work is just atry. A convincible research should be performed
through a global fit to more rich measurements in the future.

For the P-wave ones, we first use the experimental branch-
ing ratios of three decay channels By — J/v¥ ¢ (1020)(—
KTK™) (longitudinal) [7], By — ¥ (25)¢(1020)
(— KTK7) (longitudinal) [2], and By — n.¢(1020)(—
KTK™) [55] to fit the three longitudinal Gegenbauer
moments ag, ai, and aé, then the three transverse ones can
be constrained by the transverse polarization fractions of
the former two modes. Finally, according to the fit frac-
tion and polarizations of the ¢(1680) component in the
By — J/¥ KT K~ decay from the LHCb [7], one can deter-
mine the values of 77 (¢ (1680)) and cy(1680)-

Since the f;(1525) component in the J/v¥ mode is well
measured with a relatively high accuracy comparing with
other D-wave resonances by the LHCb Collaboration [7],
we can exactly determine its weight coefficient ¢ £(1525) and

two Gegenbauer moments a(l) and alT based on its fit frac-
tion and three polarizations. Following a similar procedure
as above, we can determine 7 (R) and the module of cg
for other tensor resonances. As pointed out in [56], the form
factor F(s) with the time-like momentum transfer squared
s > 4m%( could be analytically continued to the space-like
region s < 0. It has been known that a form factor is nor-
malized to unity at s = 0, because a soft probe cannot reveal
the structure of a bound state. Therefore, we postulate that
the kaon form factors should be constrained by such normal-
ization condition. According to our fitted modules of the D-
wave weight coefficients in Eq. (34), the phases of ¢ ,(1270)
and ¢, (1750) are set to 7 to ensure the normalization of the
form factor F g (0) = 1. Strictly speaking, the phases of the
various coefficient ¢; in Eq. (34) should be determined from
the interference fit fractions. However, the current available
data are not yet sufficiently precise to extract them. Further-
more, the fz/ (1525) dominates over the D-wave contributions
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as shown below, the relative phases among these ¢ parame-
ters have little effect on the total D-wave decay branching
ratios, and our choice of these phases does not affect the
magnitude estimation of either the individual resonance or
the total contribution.

The calculated branching ratios of S, P, and D-wave reso-
nance contributions to the By — (J /v, ¥ (25), n¢, nc(25))
KTK~ decays are collected in Tables 2, 3, and 4, respec-
tively. The last column of each Table are the correspond-
ing total partial wave branching ratios. The theoretical errors
stem from the uncertainties for fitted values of Gegenbauer
moments ¢;, the form factor ratios 7 (R), and the hard scales
t, respectively. For Gegenbauer moments in the twist-2 DAs,
we vary their values within a 20% range for the error estima-
tion. The uncertainty of the ratio r” (R) in Egs. (33) and (34)
are general assigned to be §r = +0.2. The hard scales vary
from 0.75¢ to 1.25¢ to characterize the energy release in decay
process. It is necessary to stress that the second uncertainty
from 7 (R) is absent for the S-wave resonance contributions
in Table 2. The uncertainties stemming from the weight coef-
ficients cg are not shown explicitly in these Tables, whose
effect on the branching ratios via the relation of B o |cg|>.
For the S and D-waves resonance contributions, the twist-3 in
the two-kaon DAs are taken as the asymptotic forms for lack
of better results from nonperturbative methods, which may
give significant uncertainties. We have checked the sensitiv-
ity of our results to the choice of the meson radius parameter
r [ see Eq. (9)] in the BW parametrization. The variation of
its value from 0 to 3.0 GeV~! results in the change of the
branching ratios and polarizations by only a few percents.
In general, our results are more sensitive to those hadronic
parameters.

Before discussing the results of our calculations in detail,
we wish to explain the quoted experimental values that appear
in these Tables. The measured branching ratio for each res-
onant component in the concerned decays are calculated by
multiplying its fit fraction and the total three-body decay
branching ratio.> The fit fractions of P and D-wave reso-
nances are taken from the most recent LHCb experiment
[7], which superseded the earlier one from [1]. However, in
Ref. [7], the S-wave component is described in a model-
independent pattern, making no assumptions of any fo res-
onant structures. Therefore, we use the S-wave f(980) and
fo(1370) fractions from [1]. Note that the f;(980) frac-
tion is strongly parametrization dependent. For instance,
the parameter set by BABAR gives a smaller fit fraction
(4.8£1.0)%, while the parameter set by LHCD gives a larger
value (12.0+1.8)% [see Table VI of Ref. [1]]. Therefore, we

3 So far, only the By — J/Y¥K+tK~ mode is well measured. Its
weighted average branching ratio, given by the Particle Data Group
(PDG), is B(B; — J/YK+tK™) = (7.940.7) x 10~* [2], where the
statistical and systematic uncertainties are combined in quadrature.
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Table 2 Branching ratios of S-wave resonance contributions to the By — (J /v, ¥ (2S), n¢, 1-(28)) K+ K~ decays. Theoretical errors correspond

to the uncertainties of Gegenbauer moments and hard scales, respectively

Modes B(R = f0(980)) B(R = fo(1370)) S-wave“
J/WKTK~ @331 7 x 1073 (943118 x 107° (347000 x 1073
Data [1] (3.7~92) x 1073 (9.2733) x 1076¢ =

nektK~ @.679308) x 1073 (L1F3H0D x 1073 (3.57080%) x 1073
YQRSHKTK™ (8.0722F18) x 10-° (8373919 x 1077 (6.2717H 04y x 1070
ne2S)KTK~ O35 x 1070 (14753104 x 107° (7.2713%09) x 107°

¢ We are not including contributions from the nonresonant S-wave.

b We quote the range of measurement since the fit fraction of fo(980) is strongly parametrization dependent.

¢ The fit fraction statistical and systematic are added in quadrature

Table 3 Branching ratios of P-wave resonance contributions to the
By — (J/¥, ¥ (2S), ¢, 1e(28)) K+ K~ decays. Theoretical errors are
attributed to the Gegenbauer moments, form factor ratios, and hard

scales, respectively. The statistical and systematic uncertainties from
data [2,7,55] are combined in quadrature

Modes B(R = ¢(1020)) B(R = ¢(1680)) P-wave
JIKTK" 575310560 x 107 36551703703 x 1073 595017057060 x 107
Data [7] (5.6 £0.5) x 10744 (3.2+0.4) x 10734

— +0.240.5+0.2 —4 +0.140.2+40.0 -5 +0.240.6+0.4 —4
ncK*K 24705 a0 x 10 L1251 505 00 x 10 24757 03200 x 10
Data [55] (2.5+£0.4) x 1074?
VESKTK" 2455103 00 x 107 32151704500 x 107¢ 23551563 00 x 107
Data [2] (2.6+£0.3) x 1074¢

— +0.6+2.240.9 -5 +0.140.2+40.2 —6 +0.6+2.0+1.0 -5

nc2S)KTK 8.0 06 15305 % 10 L1751 505 00 x 10 8.0507 15 0.5 x 10

@ The fit fractions determined from the Dalitz plot analysis have been converted into the branching ratio measurements.
b The experimental data is obtained by the product of B(B; — 1.¢(1020)) and B(¢(1020) — KTK ™).
¢ The experimental data is obtained by the product of B(B; — 1 (25)¢(1020)) and B(¢(1020) — KT K )

Table 4 Branching ratios of D-wave resonant contributions to the By — (J /v, ¥ (2S), n¢, nc(28)) K+ K~ decays. For theoretical errors, see
Table 3. The statistical and systematic uncertainties from [7] are combined in quadrature

Modes B(R = f3(1525)) B(R = f2(1270)) B(R = f>(1750)) B(R = f>(1950)) D-wave
JIWKTKT  8OTTHAEY x 1070 237G x 1077 50T 3G x 1070 41T 5EG0 g x 1070 9.2735 T SHGE x 1070
Data [7] (85+12)x107° (13£0.3) x 1073 47731 % 107° 35T x 1070
2.1 1.4

- +2.141.6+0.5 -5 +0.640.340.1 -7 +1.040.840.3 —6 +1.140.4+0.1 —6 +2.241.6+0.4 -5

KK 49775213202 % 10 1.5%05203-0.1 X 10 2.3205-05-0.1 X 10 2.6209-0.4-0.0 X 10 49277512500 X 10
— +0.440.240.0 -5 +1.84+1.440.3 -8 +0.34-0.24-0.0 -5

Y(2S)KTK 13704 02 0.1 % 10 59716 12503 x 10 13702 02 0.1 % 10
ne@S)KTK™ 07550510 x 1070 3.2 10555 x 1078 0715346550 x 1072

quote the central values in a wide range according to the two
models rather than a central value plus or minus its statisti-
cal and systematic uncertainties for the f,(980) resonance
in Table 2. For other charmonium channels, the detailed par-
tial wave analysis for determining various resonance frac-
tions are still missing due to a limited number of events.
The quasi-two-body branching ratios can be built from prod-
uct of two two-body branching ratios when available in the
narrow-width limit, namely, B(B; — XR(— KTK7)) ~
B(B; — XR) x B(R — KTK™). For example, we have
used the experimental numbers B(By; — n.¢(1020)) =
(5.0 £0.9) x 107 [2,55] and B(¢(1020) — KTK~) =

(49.2 £0.5)% [2] to obtain the experimental branching ratio
for B(B; — 1.¢(1020)(— KTK™)) = (2.54£0.4) x 1074,
which is shown in Table 3.

It is clear that the predicted branching ratios of resonant
components are consistent with the data except for the tensor
resonance f>(1270). From Table 4, one can see that the pre-
dicted branching ratio of By — J /¥ f>(1270)(— KTK™)
is two order of magnitude smaller than the data. We argue
that the fit fraction of the f>(1270) component in By —
J/¥ K+t K~ mode [7] seems to be puzzling since it shows
a tension with the corresponding one in By — J/yntm~
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[57].% For illustration we have explicitly written the relative
ratio of B(B; — J /¥ f>(1270)(— KTK™)) compared to
B(By; — J/¥f>(1270)(— mTm ™)) in the narrow-width
limit as

_ B(Bs = J /Y (1270)(— KTK™))
"~ B(Bs — J/Yf>(1270)(— mtm—))
_ B(£2(1270) - K*K ™)

T B(£(1270) - )

in which the common term B(By; — J /¥ f(1270)) in the
numerator and denominator cancel out. It is well known
that the dominant decay mode of f>(1270) is ww rather
than the K K, we can thus infer that R should typically be
much less than 1. More specifically, by using the numbers
B(f>(1270) — KK) = 4.6% and B(f»(1270) — nw) =
84.2% from PDG [2], we further get R = 0.04. Conversely,
from the Table 5 in Ref. [57], Table 4 in Ref. [42], and
Table 3 in Ref. [7], one can estimate its range from 1.9 to
4.4. It clearly indicates that future improved measurements
should take the discrepancy into account. Assuming that the
f2(1270) fraction in By — J/y w7~ mode [57] is pre-
cise enough, combining with above ratio R = 0.04, we can
infer Bexp(Bs — J /¥ f2(1270)(— K+*K 7)) =2.7x 107",
One can see from Table 4 that the predicted branching ratio
B(B; — J/yf>(1270)(— KTK™)) ~ 2.3 x 1077 is in
agreement with the experiment.

In order to verify the validity of our numerical results, we
perform a set of cross-checks.

R

(35)

(1) Using our values from Table 2, we expect that

B(By — J /¥ f0(980)(— KTK™))
B(Bs — J /¥ fo(980)(— wtmx ™))
_ B(fo(980) > KTK™)
" B(£(980) — 7t

= 037101, (36)

where the value of B(B; — J /v fp(980)(— ntn ™)) =
1.1575-32  10~*is read from the previous PQCD calcula-
tions [24]. On the experimental side, BA B A R measures
the ratio of the partial decay width of f,(980) — K™K~
to fo(980) — 7T~ of 0.69 & 0.32 using B - KKK
and B — Knm decays [58]. While BES performs a
partial wave analysis of x.,o — f0(980)fp(980) —
atn~nTa~ and x.0 — f0(980) fp(980) — wtmw~
KTK~ in ¥(25S) — yxc0 decay and extracts the
ratio as 0.251’8:}1 [59,60]. Their weighted average yields
0.351‘8:{2. It can be seen that our estimate in Eq. (36) is
consistent with this experimental average value.

4 From discussions with Liming Zhang and Xuesong Liu, the f>(1270)
fraction in By — J/YKTK~ [7] could be too high because the
misidentified background from B; — J/¥K+m~ in the f>(1270)
region may give some systematic uncertainties.

@ Springer

(2) Combining Tables 2, 3 and the number in Eq. (36) , we
obtain the ratio:

R B(Bs — J /¥ fo(980)(— ntw ™))
fol = BBy = T/¥¢(1020)(— K+K))
=0.20375.12¢, 37)

comply with the latest average of Heavy Flavor Averag-
ing Group (HFAVG) R ,/¢ = 0.207 &£ 0.016 [61] from
the measurements [62—65]

025210935 (stat) 0 031 (syst) LHCb,
0.275 £ 0.041 (stat) = 0.061(syst) DO,
0.140 £ 0.008 (stat) = 0.023(syst) CMS,
0.257 £ 0.020(stat) = 0.014(syst) CDF.

Rpop =

In comparison to previous theoretical estimation
0.1221'8:82; obtained in [66], our value turns out to be
larger.

(3) Evidence ofthe f3(1370) resonancein By — J/ymTn~
decay is reported by Belle [67] with a significance
of 4.2¢. The corresponding product branching fraction
is measured to B(By — J/¥fo(1370), fo(1370) —
ntrT) = 3473 x 1075 [67].5 Combined with our
prediction on the KK channel in Table 2, one can
estimate the relative branching ratios of fy(1370) —
KTK~/n %~ lie in the range (0.2 ~ 0.5). Since the
situation of the knowledge of the fy(1370) decaying
into K K or m is rather unclear, above expected values
should be investigated further in the future with more
precise data.

(4) From Tables 3 and 4, we get another interesting ratio

R _ B(B; — J /¥ f5(1525))
519 = BBy — J/v$(1020))

=0.17370000. (38)

in which the two known branching ratios B(¢ (1020) —
KTK™) = (49.240.5)% and B(f;(1525) - KTK~) =
%(88.7 + 2.2)% [2] are used. Our central value is
in accordance with the previous theoretical estimation
of 0.15470-0%0 [9]. Experimentally, different Collabo-
rations reported their measurements R 1o = 0.215 +
0.049(stat) = 0.026(syst) (Belle [4]), sz,/¢ = 0.264 =
0.027(stat) & 0.024(syst) (LHCb [5]), and R Ao =

5 The PDG also present a value of B(By; — J/¢¥fo(1370)(—
ntr7)) = 45707 x 1075 measured by the LHCb Collaboration
[52], which is obtained by multiplying the corresponding normal-
ized fit fraction and the branching ratio of the normalization mode
By — J /¥ ¢(1020). Although its central value is consistent with for-
mer measurements from Belle, but suffers from sizeable systematic
uncertainties. We do not use its result for further calculations.
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0.19£0.05(stat) 2=0.04(syst) (DO [6]). It seems that the-
oretical predictions are generally smaller than the experi-
mental measurements. None the less, including the errors,
both the theoretical predictions and experimental data can
still agree with each other.

(5) Finally, we estimate the relative branching ratios between
two tensor modes

o _ BB~ J/y(1270)
PIE T BBy — T/ f}(1525))

= 0.0501000. (39)

The current PDG values of

B(B; — J /¥ f>(1270)(— ntm 7))
= (3.144+0.9) x 107°,
B(Bs — J /¥ f5(1525))

=(2.6+0.6) x 1074, (40)
are dominated by the LHCb measurement [1,52]. Com-

bined with the experiment value B( f>(1270) — w77 7)

= % (84.2:2):3)%, one obtains the measuredratioR 1, 7=
0.02 £ 0.01, which is only half of our prediction in

Eq. (39). However, the datum for f,(1270) mode has

been further reviewed in Ref. [57], the updated branch-

ing ratio is B(By; — J/y(1270)(— ntn™)) =

(6.8 +1.0) x 10~° with statistical uncertainty only, cor-

responding to R ¢, 7= 0.05 £ 0.01. It is clear that our

prediction on this ratio is marginally consistent with the

updated experiment. In addition, based on the chiral uni-

tary approach for mesons, the authors of Ref. [10] present

alarger value R ¢, , 7= 0.084£0.046. Recalling that the

theoretical errors are relatively large, so within a 1o tol-

erance, one still can count them as being consistent.

As seen in Table 2, the sum of resonance contributions
from fp(980) and fp(1370) is somewhat larger than the S-
wave total contribution due to the destructive interference
between the two resonances. In fact, the best fit model from
the LHCb experiment [1] also shows that the destructive
interference between f(980) and f(1370) resonances in
the By — J/¥ KK~ channel. The interference between
the two P-wave resonances ¢ (1020) and ¢ (1680) is rather
small due to the relatively narrow width of the former
(Tg10200 =4.25 MeV). Since the contribution of the lat-
ter is an order of magnitude smaller, the P-wave resonance
contribution is almost equal to the ¢ (1020) one. By the same
token, the D-wave resonance contribution mainly come from
the f,(1525) component, while other tensor resonance con-
tributions are at least one order smaller. The peak of the high-
mass vector resonance ¢ (1680) lie almost on the upper limit
of the allowed phase space for the 2S5 charmonium modes,
their rates suffer a strong suppression and are smaller than

that of ground state charmonium channels by almost a factor
of 10. Higher-mass K+ K~ resonances like f>(1750) and
f2(1950) are beyond the invariant mass spectra for the 2§
charmonium modes, their contributions are absent in the last
two rows of Table 4. As stated above, any interference con-
tribution between different spin-J states integrates to zero.
Therefore, summing over the contributions of the various par-
tial waves, we can obtain the total three-body decay branch-
ing ratios

B(By — J/yKTK™) =7.2%3 x 1074,
B(By — n.KTK™) =320 x 1074,
BB, — y(2)KTK™) = 25104 x 1074,

B(Bs; — 1:2)KTK™) = 09703 x 1074, 41)

in which all the uncertainties have been added in quadrature.
For the channel By — J/¢ K T K, the obtained branch-
ing ratio is slightly smaller than the current PDG average
value of (7.9 £ 0.7) x 10~* [2]. Moreover, keeping in mind
that we are not including the nonresonant S-wave contribu-
tion in our calculations. The small gap might be offset by
the nonresonant term and its interference with the resonant
components. For other modes, their branching ratios can also
reach the order of 10~#, which is large enough to permit a
measurement.

In the literatures, most of the theory studies concentrate
on several dominant resonant components. For example,
the authors of Ref. [9] considered two dominant ¢ (1020)
and f;(1525) resonances in the B, — J/y K TK~ decay.
The predicted resonance contributions as well as the total
three-body decay branching ration are (5.6 £ 0.7) x 1074,
1.81“(]):21; x 10740 and 9.3ﬂ:? x 1074, respectively. Another
earlier paper [8] also discuss the concerned decays in
the QCD factorization approach. The three-body branch-
ing ratio was obtained by applying Dalitz plot analysis to
be B(B; — J/YKTK™) = (103 £0.9) x 107*. In a
recent paper [68], the authors have performed phenomeno-
logical studies on the By — J /v fp(980) decay in the two-
body PQCD formalism. With the mixing angle between the
fo(500) and f(980) in the quark-flavor basis adopting as
25°, the calculated branching ratio for the two-body channel
By — J /¥ f0(980), was converted into quasi-two-body one
as B(By — J/¥fo(980)(— KTK™)) = 4.673% x 107,
Overall, our results are comparable with these theoretical
predictions within the error bars.

The differential branching ratios of the considered decays
are plotted on o in Fig. 3, in which the green, purple,
red, blue, orange, cyan, wine, and black lines show the
f0(980), ¢(1020), f>(1270), fo(1370), f;(1525), ¢(1680),

© From discussion with Néstor Quintero, there is a typo for the f3(1525)
contribution in the Table IV of [9], its value should be 1.8 rather than
0.8, such that the sum in the last column is 9.3.
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Fig. 3 Various resonance contributions to the differential branching
ratios of the modes a By — J/YyKtK~, ¢ By — n.KTK™, e
By — Y(2S)KTK~,and g By — 1.(2S)K* K~ with a linear scale.
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Table 5 Polarization fractions for the decays By — (J /¥, ¥ (25))¢/f>(— KK ™). For theoretical errors, see Table 3. The experimental data
are taken from Ref. [7], where the statistical and systematic uncertainties are combined in quadrature

Modes Jo(%) Ji(%) f1(%)
By — J/¥¢(1020)(— K*K ™) 50.6113 30T 24455651003 2495055
Data [7] 50.9 + 0.4 231405 26.0 +0.6
By — J/¢¢(1680)(— KTK™) 49151336500 201703705103 308531456503
Data [7] 440£39 327436 233436

- 1.3+3.8+0.6 1.2+1.8+1.1 1.1+3.1+0.7
By — 1/}(2S)¢(1020) (_) K+K ) 44'11—2441—5401—1.8 23'21—08t1.3i—0‘4 32'7t045t2.4t0.2
Data [69] 4022414 264 +£2.4
By — Y(28)$(1680)(— KTK™) 45370373303 15150102703 39650173300
By — /Y f;(1525)(~ K*K™) SLITetes 26275657704 2756557708
Data [7] 468419 338423 1944238
B, — J/y/(1270)(— K*K ™) 4290155597 20544308 27618 1M1 603
Data [7] 76.9 +£5.5 6.0+42 17.145.0
By — J/Yf2(1750)(— KK ™) SENARHAET A 25317850503 2107637101
Data [7] 5824139 3.7+ 124 10.17168
By — 1/ f2(1950)(— K+K™) 3027195500 36.915 505G 32948306105
Data [7] 2.2%¢1 383+ 138 59.5+ 14.2
By = y28) f3(1525)(— K*K™) 4197555555 34TRS00 245570303
B —> ¥(25) 2(1270)(— K*K™) 364713 3705708 26555551800

f2(1750), and f>(1950) resonance contributions, respec-
tively. To see more clearly all the resonance peaks, espe-
cially in the region of the f,(1270) resonance, we draw
them in both linear (left panels) and logarithmic (right pan-
els) scales for each decay channel. It is clear that an appre-
ciable peak arising from the ¢ (1020) resonance, accompa-
nied by f;(1525). Another three resonance peaks of fo(980),
f0(1370), and ¢ (1680) have relatively smaller strengths than
the f,(1525) one, but their broader widths compensate the
integrated strengths over the entire phase space. Therefore,
the branching ratios of the four components are predicted to
be of a comparable size. Apart from above obvious signal
peak, there are two visible structures at about 1750 MeV and
1950 MeV in Fig. 3a, c, but not in Fig. 3e, g because the
two higher mass regions are beyond the K K invariant mass
spectra for the 25 charmonium state modes. The contribu-
tions of the tensor f>(1270), however, can hardly be seen
since its strength is found to be compatible with zero and its
peak almost overlap with the tail of those higher mass states
like f>(1750) and f>(1950). The obtained distribution for the
most of resonance contributions to the By — J/WK1TK™
decay agrees fairly well with the LHCb data shown in Fig. 7
of Ref. [7], while other predictions could be tested by future
experimental measurements.

Let us now proceed to the polarization fractions which are
defined as

B |Aq |
Ao A+ A2+ AL

Jo (42)

with o = 0, ||, L being the longitudinal, perpendicular, and
parallel polarizations, respectively.

The PQCD results for the polarization fractions together
with the LHCb data, are listed in Table 5. The sources of the
errors in the numerical estimates have the same origin as in
the discussion of the branching ratios in Table 3. For most
modes, the transverse polarization fraction fr = fj + f1
and the longitudinal one are roughly equal. Nevertheless, for
the f>(1950) mode, the longitudinal polarization fraction is
suppressed to 30% owing to alarger 77 ( £>(1950)) in Eq. (34)
enhances its transverse polarization contribution. Even so,
the longitudinal polarization fraction is still larger than the
experimental value. Of course, taking into account both the
theoretical and experimental errors, the deviation is less than
30.

For the P-wave resonant channels, the parallel polariza-
tion fractions are slightly smaller than the corresponding per-
pendicular one in our calculations, while the LHCb’s data
show an opposite behavior for the ¢ (1680) mode. As pointed
out in Ref. [29], the relative importance of the parallel and
perpendicular polarization amplitudes in the p channels are
sensitive to the two Gegenbauer moments af and aj. The
similar situation also exist in this work. Strictly speaking, the
Gegenbauer moments in two-hadron DAs are not constants,
but depend on the dihadron invariant mass w. However, the
explicit behaviors of those Gegenbauer moments with the
o are still unknown and the available data are not yet suf-
ficiently precise to control their dependence. Here, we do
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not consider the w dependence and assume the Gegenbauer
moments for the resonances with same spin are universal.
That is to say it is unlikely to accommodate the measured
By — J/¥¢(1020), J /¢ (1680) parallel and perpendicu-
lar polarization simultaneously with the same set of Gegen-
bauer moments in PQCD. A further theoretical study of the
o dependence of the Gegenbauer moments will clarify this
issue.

For the D-wave mode By — J /vy f2(1270), compared
with the data from the LHCD, our predicted longitudinal
polarization is smaller while the two transverse ones are
larger [see Table 5]. As stressed before, the f>(1270) fit frac-
tion in the K K mode is unexpected, so its polarizations may
have a similar situation. In fact, the best fit model from LHCb
[42,57] onthe By — J/ym T~ decay showing the longitu-
dinal polarization for the f>(1270) component is obviously
smaller than the transverse ones. As it is hard to understand
why the polarization patterns of f>(1270) resonance decay-
ingintorr and K K pairs are so different, a refined measure-
ment of the f>(1270) contribution to the J /v K™K~ mode
is urgently needed in order to clarify such issue.

So far, there are several literatures [9,36,70] on the calcu-
lation of polarization fractions, focusing more on the ¢ (1020)
and f;(1525) channels. We found numerically that

J/U$(1020):  fo = (50.7£3.6)%. fj = (29.8737)%.
f1=(19.4"17)%
V2S)$(1020):  fo = (4879 %,
fi = Q9 H%, fL=04+tH%
T/Wf5(1525):  fo = (53.3 £ 18.0)%,
fi = (30.8 £ 12.0)%,
f1L = (15.8 £0.60)%. (43)

It is clear from Table 5 that our calculations are comparable
with theirs within errors. Since the higher mass intermediate
states in the concerned decays are still received less attention
in both theory and experiment, we wait for future comparison.

4 Conclusion

In this paper we carry out an systematic analysis of the By
meson decaying into charmonia and K+ K ™ pair by using the
PQCD approach. This type of process is expected to receive
dominant contributions from intermediate resonances, such
as the vector ¢ (1020), tensor fz/(1525), and scalar f((980),
thus can be considered as quasi-two-body decays. In addition
to the three prominent components mentioned above, some
significant excitations in the entire KK~ mass spectrum,
which have been well established in the By — J/W K K~
decay, are also included. These resonances fall into three par-
tial waves according to their spin, namely, S, P, and D-wave

@ Springer

states. Each partial wave contribution is parametrized into
the corresponding timelike form factor involved in the two-
kaon DAs, which can be described by the coherent sum over
resonances sharing the same spin. The f,(980) component
is described by a Flatté line shape, while other resonances
are modeled by the Breit-Wigner function.

After determining the hadronic parameters involved in
the two-kaon DAs by fitting our formalism to the available
data, we have calculated each resonance contribution in the
processes under consideration. It is found that the largest
component is the ¢ (1020), followed by f;(1525), with oth-
ers being almost an order of magnitude smaller. The resul-
tant invariant mass distributions for most resonances in the
By — J/¥ KT K~ decay show a similar qualitative behav-
ior as the LHCb experiment. Since the interference contri-
butions between any two different spin resonances are zero,
summing over various partial wave contributions, we can
estimate the total three-body decay branching ratios. The
obtained branching ratio of the By — J/¥ K™K~ decay
is in accordance with available experimental data and num-
bers from other approaches. The modes involving 2S char-
monium have sizable three-body branching ratios, of order
104, which seem to be in the reach of future experiments.
As across-check, we have discussed some interesting relative
branching ratios and compared with available experimental
data and other theoretical predictions.

Three polarization contributions were also investigated in
detail for the vector-vector and vector-tensor modes. For most
of channels, the transverse polarization is found to be of the
same size as the longitudinal one and the parallel and per-
pendicular polarizations are also roughly equal, while for
some higher resonance modes, the polarization patterns can
be different. The obtained results can be confronted to the
experimental data in the future.

Finally, we emphasize that further experimental investiga-
tions on the f>(1270) component in the By — J /W K+TK™
decay based on much larger data samples are urgently nec-
essary.
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Appendix A: the decay Amplitudes for By — n.R(—
K*K™)

The decay amplitude can be conventionally written as

A= %[ SLVCS[(CI + %Cz)}'“ + czMLL]

* 1 1 LL
—VthV,s[(Cg + 3Gt Co+ C0)F

1 1 LR
+(Cs + §C6 +C7+ §C8)f

+(Cy + Cl)MHE + (Cs + CoM¥7 |, (A1)

with the Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments V;; and the Fermi coupling constant Gg. F (M)
describes the contributions from the factorizable (nonfac-
torizable ) diagrams in Fig 1. The superscript LL, LR, and
S P refer to the contributions from (V — A) ® (V — A),
(V-A)®((V+A),and (S— P) ® (S + P) operators, respec-
tively. Performing the standard PQCD calculations, one gets
the following expressions:

1
FLL = Snch,,CM‘*/ dxpdz
0

00
X f bpdbpbdbep(xp,bp)
0

[°r>(=2nz+ D+ 22+ D)+ (1 — Dz + 1)

/(=)@ (i +r*2m — Dz — 1)

—2(n—Dz—1)

+¢'(n+r*Q2m — Dz + 1)

—2(n — Dz — D)]Ec(ta)ha(xp. 2, bp, b)

+[2¢°(\/n(1 = rD)(n + r* (=20 + x5 + 1) — 1))

+¢°(n + n*(r* = 1) — rixp)]
x Eq(tp)hp(xB, 2, bp, b)},

2 1
ML — —16,/ gnCFM4/ dxpdzdx;
0

fo budbybidbis(xz, bp)y" (x3, by)
[’ +7r2 = 1)

+2¢"\/n(1 — r)rP(xp + (i — 1)2)
_772 + Z]En(td)hd(xB’ 7, X3, bB’ b3)7

(A2)

(A3)

]_-LR — _]:LL, MSP — MLL, (A4)

with color factor Cr = 4/3. f;. is the decay constant of
the 1. meson. The expressions for the evolution functions E,
the hard kernels %, and the hard scales #, 5 ¢ 4 are referred to
the Appendix of Ref. [24]. The forms of /¥ are adopted as
our previous works [37,38]. It should be stressed that above
factorization formulas are the same for the scalar and vector
resonances involved modes except for their different two-
kaon DAs. The decay amplitude of the tensor modes should
be multiplied by an extra factor 4/2/3, which derives from
the different definitions of the polarization vector as afore-
mentioned. In addition, we also consider the vertex correc-
tions to the factorizable diagrams in Fig. 1, whose effects are
absorbed into the modified Wilson coefficients as usual [71—
73]. For the calculation of vertex corrections, one refer to
[74,75] for details. The characteristic scale A(SQCD = 0.225
GeV at next-to-leading order was used in this work.
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