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Abstract Models of inflation with antisymmetric tensor
studied in the past are plagued with ghost instability even
in an unperturbed FRW background. We show that it is pos-
sible to avoid ghosts in an unperturbed FRW background by
considering the most general kinetic term for antisymmetric
tensor field. The kinetic part acquires a new gauge symmetry
violating term whose effect on perturbed modes is to pre-
vent the appearance of nondynamical modes, and thus avoid
ghosts. For completeness, we perform a check for gradient
instability and derive the conditions for perturbations to be
free of gradient instability.

1 Introduction

Inflation as a paradigm to explain horizon and flatness prob-
lem of early universe was first introduced by Guth [1], and
since has led to more than three decades of effort to build
models of inflation that fit well with the observed CMB data
(see Ref. [2] for a review). With the advent of high-precision
observational data (like the recent Planck 2018 results [3]),
majority of scalar field driven inflation models have been
ruled out while the ones in agreement are tightly constrained.
More recently, new set of theoretical conditions called the
Swampland criteria arise from the requirements for any effec-
tive field theory to admit string theory UV completion [4–8],
and further constrain scalar field potentials. There is thus a
genuine interest to explore inflationary scenario with alter-
native driving fields. Some major programs include multi-
ple fields, vector and/or gauge fields. For a comprehensive
review, see Ref. [9].

Among the theories not involving scalar fields, in par-
ticular those with vector fields [10–14], constructing suc-
cessful models is often marred by ghost and gradient insta-
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bilities [15,16] that lead to unstable vacua. Inflation with
non-Abelian gauge fields have been shown to be free from
these instabilities [17–20], but are in tension with Planck data
and hence ruled out [21]. Our endeavour is to explore infla-
tion models with rank-2 antisymmetric tensor fields. Also
referred to as the Kalb–Ramond fields, they appear naturally
in the low energy limit of superstring models [22,23]. There
are no observational signatures of antisymmetric fields in the
present universe [24], but it is interesting to study them in the
early universe when their presence may become significant
[25].

Past attempts at studying inflation with antisymmetric
tensor have not been successful because of the possibility
of ghosts as a generic feature of the theory [26,27]. Even
with an unperturbed Friedmann Lematre Robertson Walker
(FLRW) metric background, the perturbations to field com-
ponents admit ghosts and this result remains unaffected for
different choices of couplings and potential. The cause of
this instability can be traced to the presence of nondynami-
cal modes for some components of the field, which in turn
is due to the structure of the gauge invariant kinetic term in
these models. It turns out that the choice of kinetic term is
indeed not general [28], and one can in principle consider a
model with modifications to the kinetic part of action.

In this work, we show that by working with a general
kinetic term, it is possible to avoid ghost and gradient insta-
bilities in antisymmetric tensor driven inflation in an unper-
turbed FLRW metric. The most general kinetic term for an
even-parity antisymmetric tensor Bμν upto quadratic order
in field components and derivatives, is

c1∇λB
μν∇λBμν + c2∇λB

μν∇μBνλ + c3∇λB
λν∇μB

μ
ν,

(1)

which is equivalent to,

c4HλμνH
λμν + c5∇λB

λν∇μB
μ
ν (2)
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upto some constant coefficients ci . The first term in Eq. (2)
is the standard gauge invariant kinetic term, while the sec-
ond term is a new non-gauge-invariant term and is taken
into account in the present analysis. In fact, consideration of
gauge-violating kinetic terms is not new in literature. Several
vector and antisymmetric tensor field models with gauge-
violating kinetic terms have been studied in the past exten-
sively in the context of spontaneous Lorentz violation [29–
31].

The organization of this letter is as follows. In Sect. 2, we
study the effect of modifying the kinetic part on the back-
ground cosmology for a particular choice of background
structure of Bμν . We then study perturbations to Bμν and
subsequently the ghost and gradient instability in an unper-
turbed FRW spacetime, in Sect. 3. We conclude with a few
remarks on future directions in Sect. 4.

2 Background cosmology

We begin by briefly reviewing the results of Ref. [27], where
the authors first considered the possibility of inflation driven
by a rank-2 antisymmetric tensor. A typical action for anti-
symmetric inflation model has the form,

SI =
∫

d4x
√−g

(
− 1

12
HλμνH

λμν − V (B) + LNM

)
.

(3)

where V (B) is the potential, which in our case is quadratic,
m2BμνBμν/4, and LNM is a nonminimal coupling term. the
metric signature (−+++). Hλμν(B) = ∇λBμν +∇μBνλ +
∇νBλμ (∇μ is the covariant derivative) constitutes the kinetic
term and admits gauge invariance under the transformation

Bμν −→ Bξ
μν = Bμν + ∇μξν − ∇νξμ. (4)

A peculiar characteristic of antisymmetric tensor models
is that while minimally coupled models generically fail to
support inflation, those with nonminimal coupling can give
rise to stable de-Sitter solutions and support slow-roll infla-
tion. The choice of nonminimal coupling term does not affect
the extent of support for inflation and is only restricted by the-
oretical constraints like stability near a Schwarzschild met-
ric [32]. Specifically, upto quadratic order in Bμν and sec-
ond order metric derivative, allowed choices for LNM are
BμνBμνR and BλνBμ

νRλμ. However, for any choice ofLNM

in action (3) the perturbations to Bμν in FLRW background
admit ghosts [26,27] induced by the presence of nondynam-
ical modes of perturbation. This rather generic problem has
hindered the progress towards building inflation models with
antisymmetric tensor, and remains to be addressed before
any serious effort for analysing the full perturbation theory,
including metric perturbations.

Although all possible couplings upto quadratic order have
been exhausted, and it might be tempting to explore higher
order couplings of Bμν and R for a resolution to ghosts,
modifications to the kinetic term of action (3) as yet remain
unexplored. Therefore, we start with constructing the most
general kinetic term upto quadratic order in Bμν , which yields
a new gauge-symmetry breaking kinetic term in addition to
the gauge invariant kinetic term already present in action (3)
[28],

∇λB
λν∇μB

μ
ν. (5)

The action that we work with is then given by,

S =
∫

d4x
√−g

[
− 1

12
HλμνH

λμν + τ

2

(∇λB
λν

) (∇μB
μ
ν

)

+
(

ξ

2κ
R − m2

4

)
BμνBμν

ζ

2κ
BλνBμ

νRλμ

]
. (6)

Of course, a whole new class of terms arise if one also takes
into account the parity-odd dual tensor Bμν , defined by [28]

Bμν ≡ 1

2
εμνρσ B

ρσ . (7)

But we restrict ourselves to only parity-even terms for the
sake of simplicity and because our goal is to show that it is
indeed possible to avoid instabilities in models with antisym-
metric tensor.

Apart from ghost instability, inflationary solutions are
prone to gradient instability, which occurs when the speed
of sound becomes imaginary. Gradient (in)stability has not
been checked explicitly for the model(s) (3) before. For com-
pleteness, the gradient instability check has been performed
for action (6) in later part of this work, albeit in a relevant
limit suited to check the effect of τ term.

The background metric gμν is FLRW, with its components
given by,

g00 = −1, gi j = a(t)2δi j . (8)

Our choice of the background structure of Bμν is motivated
by the spacetime symmetries as well as calculational conve-
nience, and is given by

Bμν =

⎡
⎢⎢⎣

0 0 0 0
0 0 B(t) −B(t)
0 −B(t) 0 B(t)
0 B(t) −B(t) 0

⎤
⎥⎥⎦ , (9)

along with a rescaling B(t) = a(t)2φ(t), where a(t) is the
scale factor.

The contribution of τ term [second in Eq. (6)] to the back-
ground cosmology is through the modifications in Einstein
equation viz. the corresponding energy-momentum tensor,
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T τ
μν , given by

T τ
μν = − 2√−g

δSτ

δgμν

= τ

2

[
gμν

((∇λB
σλ

) (∇ρB
ρ
σ

)

+ 2Bσλ∇λ∇ρB
ρ
σ

) + 2
(∇λB

λ
μ

) (∇ρB
ρ
ν

)
+ 2

(
B λ

μ ∇λ∇ρB
ρ

ν + B λ
ν ∇λ∇ρB

ρ
μ

)]
. (10)

Remarkably, upon substituting the background value of the
metric and Bμν in Eq. (10), one finds that

T τ
μν(B) = 0. (11)

This implies, there is no additional contribution to the back-
ground cosmology of action (3) and all results for theory (3)
follow from Ref. [27], leading to the following conclusions:

(i) de-Sitter solutions exist, and
(ii) Slow roll inflation is supported.

As a side note, we point out that the vanishing T τ
μν is specific

to the choice of background Eq. (9). It is certainly of academic
interest to check for other choices of background, and we
leave it as a future project.

3 Perturbations

The interesting part however is when Bμν is perturbed.
Surely, the perturbed modes have nontrivial contributions
from the τ term, as we shall see. A full perturbation anal-
ysis, where perturbations to both metric and field are con-
sidered, is ideally required to investigate the viability of an
inflation theory. However, as a starting point and because of
the complexity of full perturbation theory (involving a total
of 10(metric) +6(field) = 16 perturbed modes), it is use-
ful to check the stability of just the field perturbations while
keeping the metric unperturbed. In several past studies, insta-
bilities have been found at this stage [26,27].

Adding a perturbation δBμν to Bμν , the perturbed action
has the form,

S[B + δB] = S[δB0] + S[δB1] + S[δB2]
≡ S0 + S1 + S2, (12)

where, terms have been segregated according to the order
of perturbations. We are interested in the part of action that
is quadratic in perturbations, S2, since it leads to evolution
equations of perturbed modes. Another trick that we use for
our convenience is to Fourier transform the spatial part of all
modes δBμν ,

δBμν(t, �x) =
∫

d3k

(2π)3 e
−i �k·�xδ B̃μν(t, �k), (13)

so that all spatial derivatives in the action get replaced by
algebraic factors of k. In our calculations, we also utilize

the freedom to choose the coordinate axis (z−axis) along
momentum vector �k so that all spatial derivatives along x−
and y−axes vanish. As a notation, throughout this paper,
the coordinate (�x), time (t) and momenta (�k) dependence of
all perturbed modes and their Fourier transforms are under-
stood but not explicitly displayed, to save space. The resulting
quadratic part of action, S̃2, in general has a form,

S̃2 =
∫

dtd3k
√−gL̃2, (14)

where L̃2 is the corresponding Lagrangian density expressed
in terms of Fourier transformed modes δ B̃μν .

There are a total of six modes of perturbation to the field
Bμν , which we represent as,

δBμν =

⎡
⎢⎢⎣

0 −E1 −E2 −E3

E1 0 M3 −M2

E2 −M3 0 M1

E3 M2 −M1 0

⎤
⎥⎥⎦ . (15)

Each of the perturbations Ei and Mi (i = 1, 2, 3) form the
componenents of two vectors �E and �M respectively, which
are obtained after the time-space decomposition of δBμν

[28].
With the substitution of the Eq. (15) in the action (6), the

quadratic (in perturbation) part of the action, S2, is given by,

S2[ �E, �M] =
∫

d4x

[
1

2a
�̇M · �̇M + τa

2
�̇E · �̇E + �̇M · ( �∇ × �E)

a

+ τ

(
aH �̇E · �E − �̇E · ( �∇ × �M)

a

)

+ τ

2a

(
( �∇ × �M) · ( �∇ × �M)

a2

− 2H �E · ( �∇ × �M) − ( �∇ · �E)2
)

+ 1

2a

(
( �∇ × �E) · ( �∇ × �E) − 1

a2 ( �∇ · �M)2
)

−α1a( �E · �E) + α2
( �M · �M)

a

]
, (16)

where α1 and α2 are the short hand notations for the coeffi-
cients of the non derivative terms in the action,

α1 = (6ξ + 2ζ )

κ
Ḣ + (12ξ + 3ζ )

κ
H2 − τ

2
H2 − m2

2
,

α2 = (6ξ − ζ )

κ
Ḣ + (12ξ − 3ζ )

κ
H2 − m2

2
. (17)

The vectors �E and �M can be further decomposed into a curl
free and a divergence free part in the following way:

�E = �∇u + �U , �M = �∇v + �V ; (18)

where, �U and �V are two divergence-free vector fields i.e
(∇iUi = ∇i Vi = 0), whereas u and v are scalar fields. It
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can be shown that using Eq. (18) in Eq. (16), the scalar and
vector parts of decomposition (18) get decoupled, and S2 can
be written as,

S2[ �E, �M] = Sscalar [u, v] + Svec[ �U , �V ], (19)

where,

Sscalar [u, v] =
∫

d4x

[
− 1

2a

(
v̇∇2v̇ + τa2u̇∇2u̇

)
− τaHu̇∇2u

−
(
1 + τa2

)
2a3

(
∇2u

)2

+
(

α1au∇2u − α2
v∇2v

a

)]
; (20)

Svec[ �U , �V ] =
∫

d4x

[
1

2a

( �̇V · �̇V + τa2 �̇U · �̇U
)

+ τaH
( �̇U · �U

)

+ 1

a

( �̇V ·
( �∇ × �U

)
− τ �̇U ·

( �∇ × �V
))

− τH

a
�U ·

( �∇ × �V
)

− α1a �U · �U + 2α2

�V · �V
a

]
.

(21)

As described before, for the present analysis we Fourier
transform S2 in a suitable frame so that the momentum vector
(�k) lies along z-axis, to obtain S̃2. For convenience, we do not
adopt different notations for Fourier transforms of functions
since here onwards we only work in Fourier space. It turns
out that in S̃2, the vector part S̃vec[ �U , �V ] can once again be
written as a sum of two terms, S̃(1)

vec[Ux , Vy] and S̃(2)
vec[Uy, Vx ],

so that

S̃2[ �E, �M] = S̃scalar [u, v] + S̃(1)
vec[Ux , Vy] + S̃(2)

vec[Uy, Vx ],
(22)

where,

S̃scalar [u, v] =
∫

dtd3k k2
[

1

2a

(
v̇†v̇ + τa2u̇†u̇

)

+ τaH

2

(
u̇†u + h.c

) −
(

τ
k2

2a
+ aα1

)
u†u

+ 1

2a

(
2α2 − k2) v†v

]
(23)

S̃(1)
vec[Ux , Vy] =

∫
dtd3k

[
1

2a

(
V̇ †
x V̇x + τa2U̇ †

y U̇y

)

+ τaH

2

(
U̇ †

yUy + h.c
)

+ ik

2a

((
V̇ †
x Uy − h.c

) + τ
(
U̇ †

y Vx − h.c
)

−τH
(
V †
x Uy − h.c

))
− aα1U

†
yUy + α2

a
V †
x Vx

]
(24)

S̃(2)
vec[Uy, Vx ] =

∫
dtd3k

[
1

2a
(V̇ †

y V̇y + τa2U̇ †
x U̇x )

+ τaH

2

(
U̇ †
x Ux + h.c

)

− ik

2a

((
V̇ †
y Ux − h.c

)
+ τ(U̇ †

x Vy − h.c)

− τH
(
V †
y Ux − h.c

))
− aα1U

†
x Ux + α2

a
V †
y Vy

]

(25)

Our objective now is to check for the ghost and gradient
instability in S̃2[ �E, �M]. Ghosts appear in a theory whenever
the kinetic term(s) acquire a negative sign, implying a nega-
tive and thus unbounded kinetic energy. Gradient instability
appears due to wrong sign before the momentum square term
in the action as it leads to an unbounded Hamiltonian, and at
high energies the gradient instability can act as ghost [33].
In what follows, we derive conditions avoiding ghosts and
gradient instability in the present model.

3.1 Ghost instability

The relevant term for analysing ghosts in Eq. (22) is its kinetic
part, which can be cast into the form,

S̃kin2 =
∫

dtd3k�̇†T �̇, (26)

where, � is an array consisting of all perturbed modes, and
is given by,

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

v

Vx

Vy

u
Uy

Ux

⎤
⎥⎥⎥⎥⎥⎥⎦

; �† =
[
v† V †

x V †
y u† U †

y U †
x

]
. (27)

The coefficients of kinetic terms in Eq. (22) are encompassed
in the matrix T which reads,

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k2

2a(t)
0 0 0 0 0

0
1

2a(t)
0 0 0 0

0 0
1

2a(t)
0 0 0

0 0 0
k2a(t)τ

2
0 0

0 0 0 0
a(t)τ

2
0

0 0 0 0 0
a(t)τ

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

Note that there are no off-diagonal terms present and there are
no non-dynamical modes in S̃2, which leads us to conclude
that there are no ghosts provided that the coupling τ satisfies
a simple no-ghost condition:

τ > 0. (29)

Clearly, when τ = 0, modes u, �U , become nondynamical
and would lead to ghosts [27].
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3.2 Gradient instability

Gradient instability can be checked by evaluating the speed
of sound, cs in a given theory. An imaginary value for the
sound speed implies gradient instability. To calculate cs in
the present model, one needs to first derive the equations of
motion from action (22). For this purpose, we introduce three
(2 × 1) matrices �i (i = 1, 2, 3) defined as,

�1 =
(
u
v

)
; �2 =

(
Ux

Vy

)
; �3 =

(
Uy

Vx

)
; (30)

and vary Eq. (22) with respect to �
†
i (i = 1, 2, 3) to obtain,

�̈1 + �1�̇1 + �1�1 = 0;
�̈2 + �2�̇2 + �2�2 = 0;
�̈3 + �3�̇3 + �3�3 = 0; (31)

and �i and �i are the coefficient matrices of order (2 × 2)

given by,

�1 =
(
H 0
0 −H

)

�1 =
(
Ḣ + H2 + k2

a2 + 2α1
τ

0
0 k2 − 2α2

)

�2 =
(

H − ik(τ+1)

a2τ−ik(τ + 1) −H

)

�2 =
(
Ḣ + H2 + 2α1

τ
2ikH
a2

−ikH(τ − 1) −2α2

)

�3 =
(

H ik(τ+1)

a2τ

ik(τ + 1) −H

)

�3 =
(
Ḣ + H2 + 2α1

τ
− 2ikH

a2

ikH(τ − 1) −2α2

)
(32)

A reasonable assumption for solutions to Eq. (31) in the deep
subhorizon is to take �i ∝ exp[−i

∫ t csi k/a(t ′)dt ′]�ei as the
solution to eigenvector Eq. (31), where csi is the sound speed
and is treated as constant (ċsi 	 k) [16], and �ei is a constant
vector. Substituting this ansatz in Eq. (31) and neglecting ċsi
terms, we get quadratic equations in terms of c2

si ,[
c2
s1 − 1 − a2

k2

(
Ḣ + H2 + 2α1

τ

)]

[
c2
s1 − 2ics1

aH

k
− a2 + 2α2a2

k2

]
= 0; (33)

c4
si − 2ic3

si
aH

k
+

[
a2

k2

(
2α2 − 2α1

τ
− Ḣ − H2

)

− (τ + 1)2

τ

]
c2
si

+2icsi
aH

k

[
a2

k2

(
Ḣ + H2 + α1

τ

)
+ (τ + 1)2

2τ

]

−2(τ − 1)
a2H2

k2 = 0, i = 2, 3. (34)

A theory suffers from gradient instability when the speed
of sound, csi (defined in the relativistic fluid approximation,
see Ref. [34]), becomes imaginary. Hence, to avoid gradient
instability one must demand that c2

si > 0. Solving Eqs. (17)
and (18) for c2

si will lead to conditions for avoiding gradient
instability. However, our current interest is limited to deep
subhorizon, where k >> aH . In other words, we restrict
ourselves to high momentum limit. In fact, while instabilities
can arise in the low momentum limit, they have been shown
to be Jeans-like instabilities and may thus be under control
[35]. Solving above equations in the limit k >> aH leads
to,

c2
s1 = 1 − a2m2

k2τ
, a2

(
1 + m2

k2

)
; (35)

and for j = 2, 3:

c2
s j = 0,

(τ + 1)2

τ
+ a2m2

k2

(τ − 1)

τ
. (36)

From Eqs. (35) and (36), and taking into account the positiv-
ity of τ given by Eq. (29), the conditions on τ required for a
positive c2

si (where i = 1, 2, 3) are,

τ >
a2m2

k2 ,

τ > −
(

1 + a2m2

2k2

)
+

√
2a2m2

k2

(
1 + a2m2

8k2

)
. (37)

Conditions (37) along with (29) constrain the parameter τ for
which the theory (6) is free of ghost and gradient instabilities.
In fact, it is straightforward to check that in the limit k → ∞,
these conditions reduce to τ > 0 and are trivially satisfied.

4 Conclusion

We showed that by including a new kinetic (τ ) term in the
action (3) it is possible to avoid ghost instabilities in perturba-
tions. This can be attributed to the absence of nondynamical
modes that otherwise lead to ghosts [26,27]. For our choice
of background Bμν , the τ term does not affect background
cosmology. We performed gradient instability analysis for
perturbations in Bμν and derived conditions on τ to avoid
gradient instability. In the high momentum limit (k → ∞),
the theory is trivially free from ghost and gradient instabili-
ties for all positive τ .

The results of this analysis present a strong case for more
detailed investigations of ghost, gradient and other instabil-
ities for perturbations including the metric part, and should
motivate further directions in inflation model building. The
choice of kinetic term (2) also motivates further analysis
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of the physical degrees of freedom, that can be addressed
through Hamiltonian analysis using 3 + 1 ADM decomposi-
tion. An important aspect of academic interest is to study the
effect of different choices of background structure of Bμν .
Another interesting problem is to explore the cosmology and
viability of parity-odd terms, which the authors plan to pur-
sue in future. Additionally, studies involving the higher order
terms of Bμν and gravity may also be explored.
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