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Abstract We conjecture explicit evolution formulas for
Khovanov polynomials, which for any particular knot are
Laurent polynomials of complex variables q and T , for pret-
zel knots of genus g in some regions in the space of winding
parameters n0, . . . , ng . Our description is exhaustive for gen-
era 1 and 2. As previously observed Anokhina and Morozov
(2018), Dunin-Barkowski et al. (2019), evolution at T �= −1
is not fully smooth: it switches abruptly at the boundaries
between different regions. We reveal that this happens also
at the boundary between thin and thick knots, moreover, the
thick-knot domain is further stratified. For thin knots the two
eigenvalues 1 and λ = q2T , governing the evolution, are the
standard T -deformation of the eigenvalues of the R-matrix
1 and −q2. However, in thick knots’ regions extra eigenval-
ues emerge, and they are powers of the “naive” λ, namely,
they are equal to λ2, . . . , λg . From point of view of frequen-
cies, i.e. logarithms of eigenvalues, this is frequency doubling
(more precisely, frequency multiplication) – a phenomenon
typical for non-linear dynamics. Hence, our observation can
signal a hidden non-linearity of superpolynomial evolution.
To give this newly observed evolution a short name, note that
when λ is pure phase the contributions of λ2, . . . , λg oscil-
late “faster” than the one of λ. Hence, we call this type of
evolution “nimble”.

1 Introduction

It is well-known that HOMFLY-PT polynomials [1–8] pos-
sess evolution structure [9–17,20,21]. This has a sim-
ple explanation within the modernized Reshetikhin-Turaev
(MRT) formalism [22–27], and the evolution eigenvalues are
actually those of theR-matrix in the relevant representations.

a e-mail: anokhina@itep.ru
b e-mail: morozov@itep.ru
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There is no known a priori reason to expect such structure
in superpolynomials, defined in a very different way [28–
30,32–37] (see, however, [38,41–44] and [45–47]). Still, in
attempts to find a refined version of MRT, one can try to
observe a similar structure for Khovanov polynomials empir-
ically – and is immediately gratified: evolution was already
proved to persist for the series of torus and twist knots [48–
51]. For example, the n-dependence of reduced Khovanov
invariant is of the form

X Torus[2,n] = C1λ
n
1 + C2λ

n
2 (1.1)

and for positive odd n it is actually

X Torus[2,n] ∼ 1 − q2T + q4T 2

1 − q2T
− (q2T )n+1

1 − q2T

= 1 + q4T 2 · 1 − (q2T )n−1

1 − q2T
(1.2)

i.e. an explicitly positive polynomial.
Switching to negative n makes this expression explic-

itly negative, and positivity is restored by insertion of addi-
tional overall factor (−T ). Additional simple modifications
are needed for even n and for unreduced invariants, which
might look like a minor issue and, indeed, in this particu-
lar example can be explained away by a simple requirement
that invariants remain positive and minimal for all n. How-
ever, as one considers more and more general knot/link fam-
ilies it becomes increasingly clear that there is more to the
story.

In this paper we look at a rather representative family of
pretzel knots (see Sect. 2 for a definition), which includes
the entire twist and double-twist series, but only 2-strand
sub-family of torus knots. Their evolution at HOMFLY-PT
and, partly, superpolynomial levels was described in detail in
[9–17,20,21] and [52–55,57]. Here we study the evolution of
Khovanov polynomials for this family. We immediately see
that parameter space has rich, even puzzling, chamber struc-
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ture: transitions between the chambers (an analog of chang-
ing the sign or parity of evolution parameter in 2-strand torus
case) cannot be fully explained by the positivity requirement
(this line of thought, however, does not break completely, see
Remarks 3.3 and 3.7). Before going into details we briefly
outline what happens.

1.1 The problem

In the region where all winding parameters are positive,
reduced Khovanov polynomials for pretzel knots (not links!
– see Sect. 6) of genus g are given by the general formula

X knots
ni>0 = q

sg[2]qt
1

[2]g+1
qt

( g∏
i=0

(
1 + [3]qt

(
q2T

)ni)

+[3]qt
g∏

i=0

(
1 −

(
q2T

)ni)) (1.3)

Here s = √−T and qt-numbers are [n]qt = (sq)n−(sq)−n

sq−(sq)−1 ∼
1−(−q2T )n

1+q2T
(note that they are themselves not positive, but

combine in an intricate way inside (1.3) to give a posi-
tive result – see Remarks 3.3 and 3.7). This formula, how-
ever, is too simple: modulo trivial normalization coefficient
it can be obtained just by the change of variables q2 →
(−T ) · q2, A2 → (−T ) · q4 from the arborescent formula
[52–55,57–61] for the corresponding HOMFLY-PT polyno-
mial – reflecting the fact that all knots in this region are homo-
logically thin [62]. That is, the arborescent formula [58–61]
survives in this case not only the generalization to superpoly-
nomial, but also the reduction to Khovanov (N = 2) poly-
nomials, which are defined and calculated in an absolutely
different way.

However, as one goes out of the positive octant, one imme-
diately encounters discrepancies. The simplest example is
provided by the pair of 3-strand torus knots, Torus[3, 4] and
Torus[3, 5], which are still pretzels (there are no more torus
pretzels except these two and the 2-strand series). Indeed, of
the five terms in the reduced Khovanov polynomial

X (Torus[3, 4]) ≡ X (Pretzel[3, 3,−2])
= q13T 6 + q9T 4 + q7T 3 + q7T 2 + q3T (1.4)

only three are reproduced by the formula (1.3), provided one
multiplies it by an extra (−T ):

(1.3) �⇒ q13T 6 + q9T 4 + q3T (1.5)

And, as a rule, the discrepancy gets worse and worse as one
moves away from the positive octant – the presented example
is by no means unique.

Taken in isolation, this is not so big a problem and not
even a surprise. Indeed, Poincare polynomials of differential
complexes, of which Khovanov polynomial is an example,
usually behave much worse than corresponding Euler char-
acteristics. But if one remembers the context, which exists
on T = −1 level, then discrepancy (1.5) is very important.
Indeed, at T = −1, the analog of (1.3) has deep repre-
sentation theory connections; it is made of so-called Racah
matrix [73–79]. This immediately allows one to generalize
(1.3T=−1) to the colored case, simultaneously revealing its
connection to Chern-Simons [87,88] theory.

If one ever hopes to have similarly rich context at T �=
−1 level, then understanding, or at least taming, this naive
breakdown of (1.3) is crucial, and this is precisely what we
do in the present paper.

Another point of interest is that proper description of the
T �= −1 structure may shed some light on the use of the
topological string formalism to calculate refined knot poly-
nomials. So far, this was understood only in the example of
double Hopf link [89].

1.2 The main results

In this paper we look at Khovanov polynomials for low genus
pretzel knots1 and find the following loosely related struc-
tures:

1.2.1 Nimble evolution in exceptional regions

The abovementioned Pretzel[3, 3,−2] is near the tip of a
special region in the parameter space

ng ≤ 0, ni > −ng, i = 0 .. g − 1 (1.6)

where reduced Khovanov polynomials receiveunsymmetric
correction term

q

sg
(1 + T )

[2]gqt

g−1∏
j=0

(
1 + [3]qt (q2T )n j+ng

)
(1.7)

in which ng is distinguished and plays a special role. This
term, of course, vanishes at T = −1. There are a few regions,
shaped similarly to (1.6), with more-or-less analogous kind
of correction terms.

The most prominent feature of (1.7) is that the dependence
on ng is very different from dependence on other windings
ni . (q2T )ng occurs in each and every bracket. Cumulative

1 We do concrete calculations with the help of wonderful programs
by Dror Bar-Natan and his collaborators [63–65], with our own set of
wrappers [66]. We also changed q → 1/q, T → 1/T and chose a very
specific framing (see Sect. 5) in which the symmetry between different
winding parameters ni in (1.3) is manifest.
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effect of these extra eigenvalues in all the brackets is that in
the preferred direction evolution occurs faster than would be
naively expected. We call this phenomenon “nimble evolu-
tion”.

For arbitrary genus this is definitely not the whole story,
but in Sect. 3 we present the details of what we understand
so far.

For genera g = 1 and g = 2, however, this descrip-
tion of reduced Khovanov polynomials for knots is exhaus-
tive and complete – the only deviation from (1.3) are
correction terms (3.14) and (3.18), analogous to (1.7),
appearing in “exceptional” regions, shaped by inequalities
(3.15) and (3.17). Only in these exceptional regions does
one encounter thick knots, i.e. such knots (as opposed to
thin knots) whose Khovanov polynomial contains (q, T )-
monomials that do not lie on the cricical diagonals of
the Newton plane (see Sect. 1.1 in [70] and referenced
therein). While for thin knots Khovanov polynomial can
be obtained from the respective Jones polynomial by sim-
ple change of variables, for thick knots one cannot do it,
and this is what makes thin-thick knot distinction so impor-
tant.

1.2.2 Unreduced polynomials can be restored from reduced
ones

For genus 2 the unreduced Khovanov polynomials can be
recovered from reduced ones by adding simple corrections
(see Sect. 4). They also change abruptly between strata, but
inside each stratum they depend only on the planar diagram’s
unorientability (see Sects. 4 and 5).

1.2.3 Link polynomials have similar structure

Unreduced Khovanov polynomials for links are not very
much different from unreduced Khovanov polynomials for
knots: they have simple extra correction terms that depend
on the mutual linking numbers of the components and unori-
entability (see Sect. 5) of the planar diagram. Still, the struc-
ture of these terms is so different from arborescent structure
(1.3) that joining links with different number of connected
components into one evolution series (as was done in [51])
is more confusing than illuminating (see Sect. 6).

We completely leave the question of structures present in
reduced Khovanov polynomials for links out of this paper.
This is mainly because reduced Khovanov polynomials for
links require a different point of view: to any given link one
associates not just one, but the whole bunch of polynomials,
one for each choice of marked connected component.

In this paper we present an interpretation of the exten-
sive experimental data on Khovanov polynomials. Of course,
what we really want in the future, is to do prediction: to write
down formulas similar to (1.7) beforehand from some kind
of guiding principle and then check that they indeed give
Khovanov polynomials, calculated with help of their explicit
definition.

We conclude by discussing the meaning and limitations
of our results and pointing further directions in Sect. 8.

2 Pretzel knots

Recall that pretzel knot of genus g is a certain kind of knot that
can be drawn on a genus g surface. It consists of g+1 2-strand
braids, with winding numbers n0 through ng , respectively,
which are joined, as shown on the picture.

n0 n1 . . . ng ni

� �

� �

=

� �

� �

. . .

}
ni

times

(2.1)
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In order to define framing (see Sect. 5), it is important to
choose a particular planar projection, and for pretzel knots
we always have in mind this one.

Depending on parities of windings ni , pretzel planar dia-
gram (2.1) can be either a knot or a link. A diagram is a knot,
when either:

• one of the windings is even, and all the rest are odd
• genus g is even and all the windings are odd

In the former case the “even” braid has to be antiparallel,
while all “odd” braids are parallel. In the latter case all the
braids are antiparallel

n0

� �

� �

n1

� �

� 	

n2


 �

� 


n0

� �

� �

n1


 �

� �

n2


 �

� �

(2.2)

For the purposes of this paper we will call the former pret-
zel knots (that have exactly one antiparallel braid) charged
and the latter pretzel knots neutral, since the former ones
have non-zero unorientability (see Sect. 5), while the latter
ones do not.

It is crucial to distinguish charged and neutral pretzel
knots, since, as we shall see in Sect. 3, starting from genus
g = 2 in some regions evolution formulas for these two types
of pretzel knots do differ.

3 Reduced Khovanov polynomials

In this section we present the evolution formulas for reduced
Khovanov polynomials. We go incrementally, from the sim-
pler formulas valid in some regions of the parameter space,
to more and more complicated formulas.

Here, unless otherwise specified, index i runs from 0 to g,
index J is some distinguised index (and in this case the region
considered is the union of regions for all possible choices of
J ). Here, and in the following sections as well, λ is equal to
q2T :

λ := q2T (3.1)

The simplest possible formula is

X knots
bulkg = q(−T )

(q−1 − qT )

1

(q−1 − qT )g+1

×
( g∏
i=0

(
1 + [3]qt

(
q2T

)ni)+[3]qt
g∏

i=0

(
1−

(
q2T

)ni ))
,

(3.2)

which is valid in the region

bulkg : (ni > 0) or (nJ = 0 and ni �=J > 0)

or (nJ = −1 and ni �=J > 1) (3.3)

The motivation behind the region’s name will become clear
in a second. The formula (3.2) is straightforwardly obtained
from the HOMFLY polynomial with help of change of vari-
ables q2 → (−T ) · q2, A2 → (−T ) · q4. This is to be
expected, since all the knots in this region are alternating
and, hence, homologically thin (which precisely means they
can be restored from respective HOMFLY with the substitu-
tion).

The formula (3.2) for sure cannot be true on the entire
windings space, since, as one tries to apply it outside the
bulkg region, it stops giving positive answer (see Remarks 3.3
and 3.7).

The failure of positivity of (3.2) is, in fact, cured in a very
easy way in a number of regions, which we denote bulka ,
a = −g,−g + 2, . . . , g − 2, g. The shape of these regions
is, in general, complicated (at least so far we were unable
to find a generic description of their shape by some inequal-
ities), but one of the regions – bulk−g – is the antipode of
bulkg:

bulk−g : (ni < 0) or (nJ = 0 and ni �=J < 0)

or (nJ = 1 and ni �=J < −1) (3.4)

The correct formula in bulk-regions is

X knots
bulka = (−T )

a−g
2 X knots

bulkg (3.5)

Remark 3.1 In g = 1 case, there are just two regions bulk1

and bulk−1, which are larger than in general case, namely

bulk1 : n0 + n1 > 0

bulk−1 : n0 + n1 < 0 (3.6)

i.e. they span the whole parameter space (the diagonal
n0 = n1 contains only links). Note that there is no sepa-
rate restriction on n0 and n1 – just on their sum, because for
g = 1 it is easy to rewrite (3.2) to depend manifestly only on
n0 + n1.
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Remark 3.2 Note that the mirror symmetry, which is a fun-
damental property of the Khovanov polynomials, presents
here in the form

X (Pretzel[n0, . . . , ng])(q, T )

= q2X (Pretzel[−n0, . . . ,−ng])(q−1, T−1), (3.7)

where an extra factor of q2 is a due to the peculiarity of the
definition of the reduced polynomials [63]. One can explic-
itly verify that (3.7) indeed relates the p and m versions of
all our evolution formulas.

Remark 3.3 One can observe that all our evolution formulas
are in fact assembled from the elementary factors of the three
kinds,

fn(λ) = λ−n 1 − λn

1 − λ
= λ−n − 1

1 − λ
,

gn(λ) = (λ−1 − 1 + λ)λn fn(λ) = λ−1 − λn−1

+ λ
(1 − λn−2

1 − λ
+ λn−2 + λn−1

)
= λ−1 + λn−1 fn−2(λ) + λn,

Fn(λ) = λ−n 1 + [3]qTλn

1 − λ
= λ−n − λ−1 + 1 − λ

1 − λ

= λ + λ−n+1 − 1

1 − λ
. (3.8)

These factors are (Laurent) polynomials in λ for any integer
n. Moreover, Fn(λ) and fn(λ) are positive (negative) poly-
nomials for n > 0 (n < 0), and gn(λ) is a positive (negative)
polynomials for n > 1 (n < −1). All these polynomials are
almost proportional to ordinary quantum numbers [n]q with
λ on the place of q (see the explicit examples in App. B).
In addition, (3.8) satisfy certain relations (see App. A) that
allow one to rewrite the evolution formulas as explicitly pos-
itive polynomials.

In particular, one can rewrite g = 1 answer (3.2) in the
form

X n0,n1 = q4T
λn0+n1

λ − 1

(
Fn0 Fn1 − λ−n1 fn0gn1

)
= q2λn0+n1 Fn0+n1(λ), (3.9)

so that it depends only on n0 + n1 (as it should) and literally
coincides with the standard Khovanov polynomial (under the
considerations from the beginning of Sect. 1.2) of the knot
Torus[2, n1 + n0] ∼ Pretzel(n0, n1) [50].

Similarly, algebraic manipulations with (3.2) allow one to
rewrite it as

X knots
bulk2

= q5T
λn0+n1

1 − λ

(
Fn0(λ)Fn1(λ)Fn2(λ)

− fn0(λ) fn1(λ)λ−n2gn2(λ)
)

= q3λn0+n1
(
Fn0(λ)Fn1(λ) + Fn0(λ)gn2(λ)

+ fn1(λ)gn2(λ)
)
. (3.10)

The last expression is an explicitly positive polynomial for
n0 > 1, n1 > 0, and n2 > 1. Moreover, one can find several
equivalent forms of (3.2) with their own domains of explicit
positivity (or negativity), so that the union of these domains
is exactly the union of all the bulka regions.

Analogues of (3.10) for other (not bulk-region) evolution
formulas for g = 2 are presented below. The higher gen-
era evolution formulas reveal very similar structures, but we
postpone this for the upcoming work on systematic analysis
of these cases.

For g > 1 bulk-regions do not span the whole space, but
they still do take a significant (say, greater than 1/2) fraction
of its volume.

Remark 3.4 In the bulk-regions it doesn’t matter, whether
knot is charged or neutral – formula (3.5) interpolates
between both possibilities.

Formula (3.5) also does not provide correct answers on
the whole parameter space. Already for g = 2 one has torus
knots Torus[3, 4] and Torus[3, 5] for which there is a dis-
crepancy (typeset in bold)

X (Torus[3, 4]) ≡ X (Pretzel[3, 3,−2])
= q13T 6 + q9T 4 + q3T + q7T3 + q7T2

X (Torus[3, 5]) ≡ X (Pretzel[5, 3,−2])
= q17T 8 + q13T 6 − q5T 2 + q11T5 + q11T4

+ q7T3 + q7T2 + q5T2 + q5T (3.11)

We see that in case of Torus[3, 5] the mismatch is more
severe: the naive bulk answer does not give sign-definite
polynomial at all!

Nevertheless, extra bold terms in both Torus[3, 4] and
Torus[3, 5] are successfully accounted for by the following
corrected formulas

X Pretzel[3,3,−2]
bulk−2

= −TX Pretzel[3,3,−2]
bulk2

= −q7T3

+Tq3(1 + q4T 2)(1 + q6T 3),
X Pretzel[3,3,−2] = q7T2

+Tq3(1 + q4T 2)(1 + q6T 3), (3.12)

and
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X Pretzel([5,3,−2])
bulk−2

= −TX Pretzel([5,3,−2])
bulk2

= −q5T2(1 + q2T + q6T 3)
+q7T 3(1 + q4T 2)(1 + q6T 3),

X Pretzel([5,3,−2])

= q5T
(
1 + q2T + q6T 3)

+q7T 3(1 + q4T 2)(1 + q6T 3). (3.13)

The bold type indicates above the T powers that are different
in the bulk and actual evolution formulas. These factors are
responsible for the bold terms in (3.11) and for the cancella-
tion of the negative term for Torus[3, 5].

Generally, the evolution formulas

X knots
pExceptCharged = (−T )X knots

bulkg

+ q(1 + T )
1

(q−1 − qT )g

∏
i �=J

(
1 + [3]qtλni+nJ

)
X knots

mExceptCharged = (−T )−1X knots
bulk−g

+ q(1 + T−1)
(−T )g

(q−1 − qT )g

∏
i �=J

(
1 + [3]qtλni+nJ

)
.

(3.14)

are valid, respectively, in positive exceptional charged region
and negative exceptional charged region, whose shape is

{
positive

exceptional
charged

}
: nJ is even and nJ ≤ 0 and ni �=J > −nJ ; 
n /∈ bulkg{

negative
exceptional

charged

}
: nJ is even and nJ ≥ 0 and ni �=J < −nJ ; 
n /∈ bulk−g

(3.15)

That is, each of the exceptional charged regions consists
of g + 1 subregions, corresponding to the choice of special
direction J = 0 . . . g + 1. Moreover, all the knots in the
region are charged, since nJ is even, justifying the name of
these regions.

Remark 3.5 Crucial feature of the evolution formulas (3.14)
(and of the formulas (3.18) below) is that eigenvalue λ cor-
responding to the chosen preferred direction J enters all
the brackets of the correction term, while eigenvalues corre-
sponding to other, non-preferred, directions each enter pre-
cisely one bracket. Hence, if we consider evolution w.r.t just
nJ , with other ni fixed, then it occurs faster (resulting in extra
terms in (3.11)) than would be naively guessed. We call this
nimble evolution and hope to study in the future how it man-
ifests itself in the regions of the parameter space we haven’t
covered so far.

Remark 3.6 The positive polynomial decomposition over
elementary factors (3.8) in the case of g = 2, e.g., for the
first of formulas (3.14) is

X knots
pExceptCharged=q3λn0+n1+n2

(
λn2 Fn0+n2 Fn1+n2+TFn2gn2

)
.

(3.16)

Remarkably, bulk formula (3.2)≡(3.10) is recovered from
(3.16) if one substitutes the bold T with −1, just as we have
seen in explicit Examples (3.12, 3.13).

The odd, or neutral, counterpart of the exceptional regions

{
positive

exceptional
neutral

}
: nJ is odd and nJ ≤ 1 and ni �=J > −nJ ; 
n /∈ bulkg

(3.17){
negative

exceptional
neutral

}
: nJ is odd and nJ ≥ −1 and ni �=J < −nJ ; 
n /∈ bulk−g

requires for a more complicated description, which we
present here only for g = 2,

X knots
pExceptNeutral = (−T )X knots

bulk2

+ q(1 + T )
[3]qt

(q−1 − qT )2

(
1 + λn2+1

)(
1 + λn2−1

)
X knots

mExceptNeutral = (−T )−1X knots
bulk−2

+ q(1 + T )
[3]qt (−T )2

(q−1 − qT )2

(
1 + λn2+1

)(
1 + λn2−1

)
.

(3.18)

On very shallow level, the structure of (3.18) is still similar
to (3.14). That is, there is still one preferred direction J , and
evolution in this direction is nimble. And the correction terms
still vanish at T = −1. But understanding the structure of
(3.18) on a deeper level, as well as the systematic analysis of
higher genera, is the subject for future research. In particular,
for g > 2 “bulk” and “exceptional” regions from above do
not span the whole parameter space – there are additional
regions, where the dependence of the Khovanov polynomial
is still to be described.

Remark 3.7 Decomposition over positive polynomial (3.8),
e.g., in the first case, is

X knots
pExceptNeutral = q3λn0+n1+n2

(
λn2(Fn0+n2 Fn1+n2−1

+ λ−1Fn0+n2) + T fn2−1gn2+1

)
. (3.19)

Again, the substitution of −1 for the bold T turns (3.19) into
bulk formula (3.2)≡(3.10).

Remark 3.8 For g = 2 the regions bulk±2, bulk0 and positive
and negative exceptional charged and neutral regions span the
entire space (the bulk0 is the complement of all other regions).
Hence, for g = 2 formulas (3.5), (3.14) and (3.18) provide
complete description for reduced Khovanov polynomials’
evolution.
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Remark 3.9 The double-braid knots, instrumental in finding
a relation between inclusive and exclusive Racah matrices
[58–61,72], are embedded into bulk2 region for g = 2 as
Pretzel[n0,−1, n2]. This is a weak hint that evolution for-
mula (3.2) should be at the core of the (hypothetical) homo-
logical analog of the arborescent calculus.

Remark 3.10 While charged exceptional regions, indeed,
contain only charged knots, the neutral exceptional regions
contain both charged and neutral knots. Namely, they con-
tain those charged knots for which the preferred direction J
does not coincide with the direction, which has even wind-
ing. For instance, a charged pretzel knot Pretzel[5,−3, 4]
belongs to positive exceptional neutral region with J = 1
(the distinguished direction), while its only antiparallel braid
corresponds to winding n2 = 4.

Remark 3.11 One may wonder whether choosing the pre-
ferred direction in exceptional regions is consistent with
topological invariance. Note that topological invariance
implies only invariance of the answers w.r.t cyclic permu-
tation of the winding numbers, for example

Pretzel[5,−3, 4] = Pretzel[4, 5,−3] = Pretzel[−3, 4, 5]
(3.20)

That is, to reproduce these answers one needs to use formula
(3.18) with different J = 1, 2 and 0, respectively.

4 Relation between reduced and unreduced Khovanov
polynomials

It turns out that in each stratum of the parameter space unre-
duced polynomials can be recovered from the reduced ones.
For genus 2 the description below is exhaustive, while for
higher genera we don’t yet know what happens in some of
the regions.

The relation betwen reduced (X ) and unreduced (X ) poly-
nomials is particularly simple in bulk-regions

Xknots
bulka = (1 + q4T )

q2(1 + q2T )
X knots

bulka + qa(1 + T )

(1 + q2T )
λunorientability,

(4.1)

where unorientability is a simple combinatorial quantity
associated to a planar diagram and is defined in Sect. 5.

In exceptional charged regions it is slightly more compli-
cated, for instance,

Xknots
pExceptCharged = (1 + q4T )

q2(1 + q2T )
X knots

pExceptCharged

+ qg−1(1 + T )

(1 + q2T )
λunorientability

+ q1−g(1 + T )(1 + q4T )

(1 + q2T )T
λ2nJ λunorientability

(4.2)

Though each individual correction term is very simple, their
generic structure is not clear at the moment: more research
is needed to clarify the issue.

Since we, in any case, don’t have a generic description, this
section is very sketchy, but from what we observe so far, the
jumps in unreduced and reduced Khovanov homology occur
together – chambers for reduced and unreduced polynomials
are the same.

5 Unorientability and framing

Unorientability is defined as follows. Consider checkerboard
coloring of the planar diagram (where we’ve denoted colored
regions with black circles):

��

��

��

� �

Out of the two possible choices we choose the one that doesn’t
contain an infinite region. Now, contributions of different
types of crossings to the unorientability are

��� � = 0 ��� � = 0 ���

�
= +1 ���

�
= −1

(5.1)

Throughout the paper, we use a very particular choice
of framing (with respect to Bar-Natan’s conventions). This
is needed in order to restore the symmetry between different
windingsni , even though some of them correspond to parallel
braids and others correspond to antiparallel braids. Namely,
the required framing factor is simply (Tq3) to the power of
unorientability, which for pretzel knots is equal to sum of
windings of parallel-oriented braids:

{framing
factor

} =
(
Tq3

)unorientability =
∏

i :parallel
braid

(
Tq3

)ni
(5.2)
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6 Unreduced Khovanov polynomials for pretzel links

If we consider links, not just knots, and try to interpolate
between different answers for unreduced Khovanov polyno-
mials then for the bulkg region we would get

Xbulkg = (1 + q4T )(−T )g/2

(1 + q2T )(1 − q2T )

1

[2]g+1
qt

×
( g∏
i=0

(
1 + [3]qtλni

) + [3]qt
g∏

i=0

(
1 − λni

))

+ (T + 1)

2(1 + q2T )

( g∏
i=0

(q
2

+ q

2
(−1)ni + q(q2T )ni

)

+
g∏

i=0

(q
2

+ q

2
(−1)ni − q(q2T )ni

))

+ (T + 1)

(1 + q2T )

g∏
i=0

(
−q

2
+ q

2
(−1)ni

)
(6.1)

It is clear that the answer changes abruptly when one
changes the number of link components (i.e. the number of
windings ni that are even).

Namely, if we have an M-component link, then the cor-
rection w.r.t the naive arborescent answer is

�Xbulkg = (T + 1)

2(1 + q2T )
qg+1λunorientability

×
⎛
⎝ ∏

Ci<C j

(1 + λ2 lk(Ci ,C j ))

+(−1)g+1−M
∏

Ci<C j

(1 − λ2 lk(Ci ,C j ))

⎞
⎠

+ (T + 1)

(1 + q2T )
(−q)g+1δM,1δunorientability,0,

(6.2)

where we’ve written it in the form that has a chance to gener-
alize beyond the pretzel knots. Here unorientability of a pla-
nar diagram is as in Sect. 5, lk(Ci ,C j ) is the linking number
of the link components Ci and C j , and products

∏
Ci<C j

run
over distinct pairs of link components.

Overall, we see that corrections (6.2) look very differently
from the arborescent piece. Hence, rather than trying to find
a formula that interpolates between knots and links (with
varying number of components), it is much more fruitful
to direct attention to formulas for links with fixed number
of components. The main focus of the present paper was on
knots, but, hopefully, this section shows that answers for links
with other number of components are only a little bit more
complicated.

7 Different approaches to similar problems

Here we briefly review different papers, that are in some way
related to what we do in this paper.

7.1 Khovanov polynomials for genus 2 Prezel knots

An orthogonal research direction to our experimental appr-
oach consists in honest symbolic computation of Khovanov
polynomials “by hands”, i.e. in honestly deriving formulas
like (1.3) and (1.7), rather than getting them via interpolation.

The key point here is that the Khovanov’s complex for
an open two strand braid has a simple and explicit descrip-
tion. Moreover, the complexes for the two strand braids can
be multiplied (via the operation of so-called horizontal com-
position) so that a pretzel knot (or link) is obtained, and its
Khovanov polynomial can be thus explicitly computed. This
plan was gradually implemented for all genus two pretzel
knots. Here are the relevant milestones.

Pioneering takes on the problem relied in an essential way
on the exact skein sequence and the differential expansion
(which substitute the skein relations and the quantum group
structure, respectilely).

For quasi-alternating links, which constitute a large frac-
tion of all links at genus two, this resulted in the general
Theorem 4.5 of [90] for the unreduced polynomials.

The next step was the explicit computation of unreduced
Khovanov polynomials for several infinite series of non-
quasi-alternating genus 2 pretzel links [91–93]. All these
polynomials proved to be homologically thin, and thus sim-
ilar to the polynomials of the alternating links.

The remaining genus two pretzel links were captured
in [69]. The paper contains the general answer for the unre-
duced polynomial of a pretzel link. In particular, this answer
explicitly shows that some families of the genus 2 pretzel
links are homolgically thick, i.e., the corresponding Kho-
vanov polynomials are not fully defined by other invariants.

Hence, this cooperated research provides the complete list
of the explicit formulas for the unreduced Khovanov polyno-
mials for genus 2 pretzel links. Yet, the evolution formulas
were never presented in a condensed and consice form in
these papers, as we do in the present paper. This, we hope, is
one of our main contributions to this development, and hope-
fully will give a clue on how to extend explicit description to
higher genera.

7.2 Evolution formulas for Khovanov(-Rozansky)
polynomials

The focused study of the evolution of Khovanov–Rozansky
polynomials at finite N , to the best of our knowledge, was
started in [50]. There, the authors concentrated their atten-
tion on the case of torus knots, which, on one hand, allowed
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them to study Khovanov–Rozansky polynomials, and not just
Khovanov (N = 2) ones, but on the other hand, concealed
the full generality of the chamber structure – there the cham-
ber structure took the form of the breaking of the mirror
symmetry.

A very interesting aspect of the paper [50] is that the main
role is played not by the KR-polynomials themselves, but
rather by finite difference equations, that these polynomi-
als satisfy. In the present paper we do not comment on this
approach at all, but this dual point of view is a potential source
of many new insights.

7.3 Evolution formulas for double-braid knots

Fourth of all, the present paper is the development of [51].
There, also, evolution for Khovanov polynomials (i.e. N =
2) was studied for a concrete family of knots – the double-
braid knots (which authors called “figure-eight-like”). The
richness of the chamber structure for Khovanov polynomials
was already observed there, moreover, answers were proven,
not just guessed from computer experiments, as in the present
paper. Pretzel knots, considered in the present paper, contain
double braid ones, for example, as Pretzel[a, b, 1]. An inter-
esting feature of [51] is that evolution formulas are written for
knots and links jointly, which results in appearance of extra
eigenvalue. Now, our analysis in Sect. 6 suggests that this
point of view is more confusing that it is fruitful – it is much
more instructive to consider links with different number of
components as different evolution series.

7.4 Superpolynomials of torus knots

Other but closely related objects are superpolynomials for
torus knots, studied in [38,41–44].

Superpolynomials are, roughly speaking, “stable compo-
nent” of the Khovanov–Rozansky polynomials. Namely, if
one studies Khovanov–Rozansky polynomials for any given
knot for different ranks N of the group, for N > N∗
(where N∗ depends on the knot) the dependence on N
becomes analytic – polynomial stabilizes. In particular, at
the level of superpolynomials evolution method works per-
fectly, what was further confirmed in the case of twist knots
in [10,11]. Chambers with abrupt changes between them
appeared in these considerations, but these changes could be
easily ignored in [10,11] by saying that evolution smoothly
connects pure positive polynomials with pure negative ones
– what is true in the twist and torus cases. For the first time
the seriousness of the chamber problem for superpolynomi-
als was realized in the study of satellite knots in [71]. As
we explain in the present paper, the problem is indeed very
general, just in the case of pretzels it fully manifests itself for
finite N . Thus chamber dependence can be considered as a
kind of pronounced

non-perturbative phenomenon, which is strengthened
beyond the large-N (loop) expansion – and this is what we
study in the present paper.
There are, of course, many more papers that are related to
the present work in one way or another. We do not pretend
to make a comprehensive review here – we only mention
results, which directly affected the motivations and content
of the present paper.

8 Conclusion and further directions

In this paper we analyzed the explicit expressions for Kho-
vanov polynomials for pretzel knots of low genera, obtained
from computer experiments with the help of [65] (with our
custom set of wrappers, which make our life more conve-
nient, but are not necessarily easy to read [66]), and, partly,
from direct computations of [70].

We were mainly interested in the fate of the evolution
formulas. We observed that chamber structure is very rich
for this family of knots. While for some knots (alternating
and quasi-alternating) evolution is very simple and just fol-
lows from evolution for HOMFLY-PT polynomials, for other
knots (the thick pretzel knots) there are non-trivial correc-
tions. But, perhaps, the main surprise and good news is that
our suggested formulas (3.14) and (3.18) are still of the shape
that is comparable to naive answer (3.2). This gives a hope
that some homological generalization of MRT-formalism, or
even arborescent calculus, is, indeed, possible. Before, the
only multiparametric family of knots, for which such gener-
alization was constructed (on the level of superpolynomials
[38,41–44]) were torus knots, i.e. generalized was the cele-
brated Rosso-Jones formula [80–86].

Apart from generalizing our formulas to higher genera,
another obvious research route would be to understand their
quadruply-graded homology analogues [94,95].

Finally, the study of (q,t)-deformed pretzel formulas may
be helpful in developing explicit formulas for the Racah
matrices (quantum 6j-symbols) themselves. So far even at
T = −1 their description is far from being complete (see
[96,97] for current state of art) and it well may be that some
aspects become clearer as one goes to T �= −1.

So far the picture we present is complete only for genera 1
and 2, while already for genus 3 there are regions, where the
form of the evolution is still obscure, hence, we can not insist
that corrections are always as tame as (3.14) or (3.18). Some-
thing more wild is still not excluded. Our work is continuing
in these directions.
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A Elementary constituents of pretzel Khovanov
polynomials

Here we discuss elementary building blocks (3.8) of the Pret-
zel Khovanov polynomials in little more details. We repeat
the definition for the sake of convenience,

fn(z) = z−n − 1

1 − z
, gn(z) = (z−1 − 1 + z)zn fn(z),

(A.1)

Fn = z + z−n+1 − 1

1 − z
= 1 − z−1 + fn(z)

= z−n(1 − z−1 + gn(z)
)
. (A.2)

These factors satisfy there are the sum formulas that extend
similar formulas for the quantum numbers look like

fn1+n2(z) = fn1(z) + z−n1 fn2(z)

= z−n2 fn1(z) + fn2(z), (A.3)

gn1+n2(z) = zn2gn1(z) + gn2(z) = gn1(z) + zn1gn2(z),

(A.4)

Fn1+n2(z) = Fn1(z) + z−n1 fn2(z), zn2 Fn1+n2(z)

= Fn1(z) + gn2(z), (A.5)

Relations between different factors (A.1), together with
sum formulas (A.5), allow one to derive positive polynomi-
als decompositions (3.9,3.10,3.16,3.19), as well as similar
decompositions in other cases, including the higher genera
evolution formulas. In particular, formulas for the Pretzel
subfamilies in App. B are obtained just in this way.

Formulas (3.8,A.5) are valid for any integer n, n1, n2.
Unlike them, the Laurent polynomials in z obtained for par-
ticular values of n look differently depending on the n sign.
Namely,

fn(z) =
n∑

i=1

z−i , Fn = 1 +
n∑

i=2

z−i , n > 0;

gn(z) = z−1 +
n−2∑
i=1

zi + zn, n > 1;

fn(z) = −
−n−1∑
i=0

zi , Fn = −z−1 −
−n−1∑
i=1

zi , n < 0;

gn(z) = −1 −
−n−1∑
i=1

z−i − zn−1, n < −1. (A.6)

I.e., (3.8) are fully positive or negative polynomials for the
most positive or negative values of the integer n, respectively.
One should treat separately the exceptional cases, when the
factors are zero or sign indefinite,

f0(z) = g0(z) = 0, g−1(z) = −1 + z−1 − z−2,

g1(z) = z − 1 + z−1, F0(z) = 1 − z−1. (A.7)

In all cases, fn(z), Fn(z) and g−n(z) contain only negative
powers of z if n ≥ 0, and the z−1 term followed by only
positive powers of z if n ≤ 0.
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B Explicit form of the unreduced Khovanov
polynomials for the particular subfamilies of the
genus 2 pretzel knots

n0 = n1 = 3, n2 = n

n q−3X 3,3,n(z, T ) F3= 1+z−2+z−3 f3=z−1+z−2+z−3

. . . . . . . . . . . .

6 z12F3F9+z6 f3g6 F9=1+z−2+z−3 +...+z−9 g6=z−1+z+z2+z3+ z4+z6

5 z6
(
F3 f3+(F3+ f3)gn

)= z11F3F8+z6 f3g5 F8=1+z−2+z−3 +...+z−8 g5=z−1+z+z2+z3+z5

4
(
z6+2z4+2z3+z2+2z+1

)
z10F3F7+z6 f3g4 F7=1+z−2+z−3 +...+z−7 g4=z−1+z+z2+z4

3 +(
z6+z5+2z4+2z3

)
gn z9F3F6+z6 f3g3 F6=1+z−2+z−3 +...+z−6 g3=z−1+z+z3

2 =zn+6F3Fn+3+zn+1 f3gn z8F3F5+z6 f3g2 F5=1+z−2+z−3 +...+z−5 g2=z−1+z2

1 z7F3F4 + z3g3 F4=1+z−2+z−3+z−4 g3=z−1+z+z3

0 z6F2
3 F3= 1+z−2+z−3

−1 z3(F2 f1 + F1) F2 =1+z−2, f1 = z−1, F1=1

−2 z2n+6F2
3+n+T zn+6Fngn z−3F2

1 + T zF−2g−2 F1 =1, −F−2= z−1+z −g−2 =1+z−3

−3 T z−1 + z5
(
f2g−3 + g−2

)
f2 = z−1+z−2 −g−3 =1+z−2+z−4

−4 −T
(
zn+6F3Fn+3+zn+1 f3gn

) −T(
z2F3F−1+z6 f3g−4

) −F−1 = z−1 −g−4 =1+z−2+z−3+z−5

−5 −T(
z3F3F−2+z7 f3g−5

) −F−2 = z−1+z −g−5 =1+z−2+. . .+z−4+z−6

−6 −T(
z4F3F−3+z8 f3g−6

) −F−3 = z−1+z+z2 −g−6 =1+z−2+. . .+z−5+z−7

. . . . . . . . . . . .

n0 = n, n2 = 3, n2 = −2

n q−3X n,3,−2(z, T ) −F−2 = z−1+z, −g−2= 1+z−3

. . . . . . . . . . . .

7 z−5Fn−2+T z−1F−2g−2 z−3F5+T z−1F−2g−2 F5=1+z−2+z−3 +z−4+z−5

5 z−3F3+T z−1F−2g−2 F3=1+z−2+z−3

3 z−3F1+T z−1F−2g−2 F1=1

1 −T zn+1
(
Fn+z2 f2g−3

)
f3 = z−1+z−2+z−3

−1 T−1
(
z2 F̄1− f̄2 ḡ−3

)
F̄1=1

−3 T−1z−n
(
z3 F̄−n−z f̄3ḡ−2

)
T−1

(
z5 F̄3−z3 f̄2 ḡ−3

)
F̄5=1+z2+z3

−5 T−1
(
z7 F̄5−z5 f̄2 ḡ−3

)
F̄5=1+z2+z3 + z4 +z5

. . . . . . . . .

q−3X n,3,−2(z, T ) = q−2q3X−n,2,−3(z−1, T−1) f̄2 = z+z2, −ḡ−3= 1+z2+z4
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n0 = n1 = 5, n2 = n

n q−3X 5,5,n(z, T ) F5= 1+z−2+z−3+z−4+z−5 f5=z−1+z−2+z−3+z−4+z−5

. . . . . . . . . . . .

2 zn+1
(
z9F5Fn+5+ f5gn

)
z8F5F10+z6 f5g2 F10=1+z−2+z−3 +...+z−10 g2=z−1+z2

1 z11F5F6 + z5g5 F6=1+z−2+z−3 +...+z−6 g5=z−1+z+z2+z3+z5

0 z10F2
5 F5= 1+z−2+z−3+z−4+z−5

−1 z7
(
F4 f3 + F3

)
F4=1+z−2+z−3+z−4, f3= z−1+z−2+z−3, F3=1+z−2+z−3

−2 z2n+10F2
n+5+T zn+10Fngn z6F2

3 +T z8F−2g−2 −F−2= z−1+z, F1 =1 −g−2 =1+z−3

−3 z2n+9Fn+5(zF4+n+1)
+T zn+10 fn−1gn+1

z4F2F1+z3F2+T z6 f−4g−2 F2=1+z−2, F1=1, −f−4=1+z+z2+z3

−4 z2n+10F2
n+5+T zn+10Fngn z2F2

1 +T z6F−4g−4 −F−4 = z−1+z+z2+z3 −g−4 =1+z−2+z−3+z−5

−5 T z−1 + z9
(
f4g−5 + g−4

)
f4 = z−1+z−2+z−3+z−4 −g−5 =1+z−2+. . .+z−4+z−6

−6−T zn+1
(
z9F5Fn+5+ f5gn

) −T(
z4F5F−1+z6 f5g−6

) −F−1 =−z−1 −g−6 =1+z−2+. . .+z−5+z−7

. . . . . . . . . . . .
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