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Abstract The quark propagator at finite temperature is
investigated using quenched gauge configurations. The pro-
pagator form factors are investigated for temperatures above
and below the gluon deconfinement temperature Tc and for
the various Matsubara frequencies. Significant differences
between the functional behaviour below and above Tc are
observed both for the quark wave function and the running
quark mass. The results for the running quark mass indicate
a link between gluon dynamics, the mechanism for chiral
symmetry breaking and the deconfinement mechanism. For
temperatures above Tc and for low momenta, our results sup-
port also a description of quarks as free quasiparticles.

1 Introduction and motivation

The study of strong interactions including temperature and
density effects has been driven both by the tentative to under-
stand the QCD dynamics and a strong experimental program
that involves various facilities. From the theory side, this
research includes the computation of two-point correlation
functions that provide information on spectra, transport prop-
erties and other fundamental properties such as the confine-
ment mechanism. Herein, we will not consider the depen-
dence on the density of the hadronic matter.

At low temperatures, quarks and gluons are confined par-
ticles and appear only as constituents of mesons and baryons.
At sufficiently high temperatures or densities, quark and glu-
ons are expected to become deconfined and behave as free
quasiparticles in a new state of matter, the strong coupled
quark gluon plasma. At extreme temperatures, due to asymp-
totic freedom, quarks and gluons can be considered as free
particles.

This view of the quark and gluon dynamics for temper-
atures above the critical temperature Tc, where the decon-

a e-mail: orlando@uc.pt
b e-mail: psilva@uc.pt

fined phase transition takes place, is motivated by asymptotic
freedom and lies at the heart of the quasiparticle descrip-
tion used to investigate the thermodynamical properties of
hadronic matter for T > Tc. For temperatures above Tc the
perturbative approach of the hard thermal loop (HTL) expan-
sion, see e.g. [1,2] and [3,4] for recent reviews, seems to be
the framework to understand the dynamics of QCD. Fur-
thermore, some of the HTL predictions have been confirmed
by first principles non-perturbative lattice QCD simulations;
an example being the behaviour of thermal masses with the
temperature of the heat bath.

The standard approach to identify the confined and the
deconfined phases relies on the Polyakov loop L which is
related to the free energy of quarks FT . At T < Tc, the
renormalised L is small, FT is large, and quarks are con-
fined particles. For temperatures above Tc, L approaches
unit, FT ≈ 0, and quarks become free quasiparticles. The
curve L(T ) shows that the nature of the confined-deconfined
transition is a cross-over for full QCD and first order for the
pure Yang–Mills (quenched QCD) [5,6]. If for full QCD the
critical temperature is Tc ∼ 150–160 MeV, for its quenched
version one get Tc ∼ 270 MeV. In what concerns gluon
dynamics, for the quenched version of the theory, the consid-
eration of quantities other than the Polyakov loop reproduce
both the nature of the transition and the quoted value for the
critical temperature, see e.g. [7].

One of the interests to study the quark and gluon two-point
correlation functions with temperature comes from the con-
nection between the propagators and confinement that can be
linked, for example, by computing the corresponding spec-
tral functions. If above Tc quarks and gluons can be viewed
as quasiparticles, their propagators should behave differently
from the corresponding functions at temperatures below Tc.

The Landau gauge gluon propagator has been studied
using non-perturbative methods for a wide range of tem-
peratures both for full QCD and for the pure gauge theory
[7–12]. These studies show that in the quenched theory the
gluon propagator is sensitive to the breaking of center sym-
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metry, that electric and magnetic mass scales are generated
dynamically and the gluon thermal mass associated with the
electric propagator scales with the temperature according to
the prediction of hard thermal loop approach to QCD, namely
mD ∝ T above the critical temperature. Furthermore, the
calculations performed using the continuum formulation of
QCD or lattice QCD simulations for the pure gauge sector
are in good agreement; see [13] and references therein. More-
over, the non-perturbative approaches suggest that HTL QCD
is a good framework to describe the dynamics of QCD for
T ∼ Tc and above. From these studies one can claim to have
now a good picture for the gluon dynamics.

The Landau gauge quark propagator at finite tempera-
ture was also studied within the continuum non-perturbative
approaches to QCD and using first principles lattice simula-
tions.

The quark gap equation in the Landau gauge was solved
relying on gluon propagators obtained from lattice simula-
tions. The lattice data was fitted to a functional form that
reproduces the perturbative tail at sufficiently high momenta
[14–17]. In order to solve the Dyson–Schwinger equation for
the quarks, the quark-gluon vertex was parameterised keep-
ing only its tree level tensor structure, i.e. assuming Γμ ∝ γμ

for the vertex, and, once more, ensuring the right perturba-
tive tail at high momenta. The continuum studies have been
focused on dynamical mass generation, through the compu-
tation of either the quark condensate [18], the running quark
mass, the spectral function [19] at the chiral limit and order
parameters for the deconfined phase transition. The form fac-
tors appearing in the quark propagator as function of the Mat-
subara frequencies, momentum and temperature have been
only briefly reported but they show quite different behaviours
above and below the critical temperature. How the various
functions that appear in the quark propagator depend on the
parameterisations introduced to solve the quark gap equation
is not known and, therefore, these results care for further
study or confirmation from independent calculations. The
interest in the spectral functions at the chiral limit comes
from knowing that at high temperature the quark propagator
has two sets of poles, corresponding to an usual mass term
and a collective plasmino mode, i.e. two different types of
dispersion relations can be associated with this propagator
[20]. Some authors also speculate on the presence of a third
ultrasoft fermion mode that should appear in the quark prop-
agator [19,21,22]. Evidence for a third mode for T > Tc
was also observed in Yukawa like models [23], on QED like
models where it becomes an ultrasoft mode [24,25] and in
low energy effective models of QCD [26–29] where, again,
the third mode is ultrasoft.

In what concerns continuum methods, the quark spectral
function together with the quark self energy was computed
within the framework of functional renormalization group
[30]. The outcome reveals a spectral function with multiple

peaks, whose details and number of maxima depend on the
truncation used in the calculation.

The lattice quark propagator at finite temperature, in the
Landau gauge, was computed for O(a)-improved Wilson
fermions using quenched gauge configurations by a num-
ber of authors [31–38]. The lattice studies have been focused
either on the mass function and on the same spectral function
as investigated by the continuum methods. For the quantities
studied, at the qualitative level, lattice and continuum results
are in good agreement. On the lattice the curve M/T as a
function of the temperature, where M is the quark mass, has
a discontinuity at Tc but its behaviour for T > Tc has not
been resolved [37]. For Wilson fermions, the authors [31]
found a linear grow of M/T above the transition tempera-
ture. However, given that there is some ambiguity in the defi-
nition of the quark mass and the poor agreement between the
values of the Wilson fermion mass and the O(a)-improved
Wilson fermion mass, this result demands for confirmation.
Furthermore, in what concerns the computation of the quark
mass, a plateau associated to an effective quark mass was not
always identified [31,34] suggesting that instead one should
consider a running quark mass. The lattice spectral func-
tion was computed and investigated assuming a multiple pole
ansatz [32,33,35,36,38] that favours a pole structure associ-
ated with a thermal and a plasmino mode as predicted in [20].
The lattice calculations for the propagator used typically spa-
tial physical volumes under (∼ 2 fm)3 with two simulations
performed using physical volumes (∼ 3.5 fm)3 [35,38] for
T/Tc = 0.55 and 1.5 at the chiral limit.1

In the current work we compute the lattice Landau gauge
quark propagator at finite temperature with non-perturbati-
vely O(a)-improved Wilson fermions with gauge configu-
rations generated with the Wilson action for the pure gauge
theory. These configurations were used to investigate the lat-
tice Landau gauge gluon propagator in [9]. As in this work,
we take Tc = 270 MeV and consider temperatures above
and below the critical temperature to study how different
the propagator is in the confined and deconfined phase. Our
main focus is in the calculation of the three form factors that
determine the quark propagator at finite temperature and the
running quark mass as a function of momentum and for the
various Matsubara frequencies. By providing the form fac-
tors as a function of T , we aim to understand the differences
between the two phases and provide information than can
also be useful for the continuum approaches to QCD. No
attempt is made to investigate any of the spectral functions
that can be associated with the quark propagator.

1 The authors call the reader’s attention that in these simulations they
used Tc = 300 MeV for the transition temperature (quenched theory)
and the current used value is Tc = 270 MeV. A rescaling of the ratios
just quoted results in T/Tc = 0.61 and 1.72.
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The computations of the quark propagator reported below
use lattices whose spatial physical volume is (∼ 6.5 fm)3

and various lattice spacings around a ∼ 0.1 fm. The lattice
investigations of the Landau gauge gluon and ghost propa-
gators at zero temperature [39–41], suggest that finite vol-
ume effects are under control in the sense that they are small
and below the statistical precision of the simulations. We
take as definition of the temperature the inverse length in the
time direction and typically consider ratios of the spatial and
time direction Ls/Lt = 8. Due to the anti-periodic bound-
ary conditions along the time direction p4 = π T (2 nt + 1)

where nt = 0, 1, . . . and the spatial momenta are pi =
2 π T (Lt/Ls) ni ≈ 0.785 T ni for ni = 0, 1, . . . Further-
more, in order to experience the quark propagator at the chi-
ral limit, we report on simulations using two values of the
bare quark mass, namely m0 ≈ 10 MeV and 50 MeV.

Our results clearly show that the nature of the quark
propagator form factors changes for temperature above Tc,
compared with temperatures in the confined phase. This is
reported with detail for both the quark wave function and the
running quark mass. In particular, for the running quark mass
we find that it is highly suppressed above Tc, with typical
infrared values being about half of the corresponding values
for the temperatures below Tc. Our computation is performed
with quenched configurations and this results indicates that
the gluon dynamics plays an important role in the mechanism
of chiral symmetry breaking. A similar change in the func-
tional form of the finite temperature gluon propagator form
factors for temperatures above and below Tc was observed
also in lattice simulations [8,9]. Indeed, these simulations
show that the relative importance of its electric and magnetic
components are inverted for T � Tc, relative to confined
phase, i.e. for small temperatures the electric form factor is
larger than the magnetic one, while above Tc the dominant
form factor is associated with the gluon magnetic component.

The paper is organised as follows. In Sect. 2 we set the
notation and definitions used throughout the current work
and how the various form factors are measured. Furthermore,
we detail the setup of the simulations analysed herein. In
Sect. 3 we report our results for the various form factors
prior to the estimation of the lattice artefacts for the two
quark masses considered in the simulations. The study of the
lattice artefacts and the definition of the running quark mass
are detailed in Sect. 4.

2 The quark propagator and lattice setup

In the continuum, the quark propagator is diagonal in color
space. At finite temperature, the presence of a thermal bath
breaks rotational invariance, and the inverse of the space-spin
quark propagator in momentum space reads

S−1(p4,p)

= iγ4 p4 ω(p4,p) + iγ · p Z(p4,p) + σ(p4,p) (1)

or, equivalently,

S(p4,p)

= −iγ4 p4 ω(p4,p) − iγ · p Z(p4,p) + σ(p4,p)

p2
4 ω2(p4,p) + (p · p) Z2(p4,p) + σ 2(p4,p)

.

(2)

Our analysis of the lattice propagator will assume that we
are close to the continuum and, therefore, expressions (1)
and (2) can be applied. The form factors ω, Z and σ can be
accessed by computing traces of the propagator times gamma
matrices.

Our calculation of the lattice quark propagator relies on
the use of the non-perturbative O(a) improved clover action
[42,43] with tree-level O(a)-improved sources [44–46]. The
lattice quark propagator in real space reads

S(x, y) =
(

1 + 2 bq a m

) 〈
L(x) M−1

SW (x, y) R(y)
〉
, (3)

where M−1
SW stands for the inverse of the improved fermionic

matrix, the rotated sources are given by

L(x) =
[
1 − cq a

−→
/D (x)

]
, (4)

R(x) =
[
1 + cq a

←−
/D (x)

]
, (5)

the left and right derivatives are
−→
/D (x) ψ(x)

=
∑
μ

γμ

2a

[
Uμ(x)ψ(x + μ̂) −U †

μ(x − μ̂)ψ(x − μ̂)
]
,

(6)

ψ(x)
←−
/D (x)

=
∑
μ

[
ψ(x + μ̂)U †

μ(x) − ψ(x − μ̂)Uμ(x − μ̂)
] γμ

2a
.

(7)

Uμ(x) stands for the gauge configuration, μ̂ is the unit vector
associated with directionμ anda is the lattice spacing. For the
coefficients associated with the improvement coming from
the rotated sources we use their tree level values bq = cq =
1/4.

The momentum space propagator is obtained from Eq.
(3) after a Fourier transformation. Recall that on the lattice
the fermionic boundary conditions are periodic in the spatial
directions and anti-periodic in time and the available space
p and temporal p4 momenta assume the following discrete
values

p4 = π

Lt
(2 n + 1) and pi = 2 π

Ls
n, (8)

where n = 0, 1, 2, . . .
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Table 1 Lattice setup for the computation of the quark propagator in
the quenched approximation. The coefficient csw associated with the
non-perturbative improvement of the simulations and κc are taken from

[43]. The bare quark massmbare is computed using Eq. (9). T andmbare
are given in MeV, the lattice spacing a is given in fm and the inverse of
the lattice spacing 1/a in GeV

T β L3
s × Lt κ κc a 1/a mbare csw

243 6.0000 643 × 8 0.1350 0.13520 0.1016 1.9426 10 1.769

0.1342 53

260 6.0347 683 × 8 0.1351 0.13530 0.09502 2.0767 11 1.734

0.1344 51

275 6.0684 723 × 8 0.1352 0.13540 0.08974 2.1989 12 1.704

0.1345 54

290 6.1009 763 × 8 0.1347 0.13550 0.08502 2.3211 51 1.678

305 6.1326 803 × 8 0.1354 0.13559 0.08077 2.4432 13 1.655

0.1348 53

324 6.0000 643 × 6 0.1342 0.13520 0.1016 1.9426 53 1.769

On the lattice the bare quark mass is given by

a m = 1

2

(
1

κ
− 1

κc

)
, (9)

where the critical hopping parameter κc depends on β, i.e.
on the lattice spacing, and is defined as the value of κ corre-
sponding to a vanishing mass for the lightest pseudo-scalar
meson. In the following we will use m as an indicator of how
close the simulation is to the chiral limit. The κc are taken
from [47], interpolating their reported values when neces-
sary.

The traces of propagator give us the form factors

ω(p4,p)

p2
4 ω2(p4,p) + (p · p) Z2(p4,p) + σ 2(p4,p)

, (10)

Z(p4,p)

p2
4 ω2(p4,p) + (p · p) Z2(p4,p) + σ 2(p4,p)

, (11)

σ(p4,p)

p2
4 ω2(p4,p) + (p · p) Z2(p4,p) + σ 2(p4,p)

, (12)

and by taking ratios of these functions one gets a continuum-
like quark wave function and running quark mass defined
by

Zc(p4,p) = Z(p4,p)

ω(p4,p)
, and M(p4,p) = σ(p4,p)

ω(p4,p)
,

(13)

respectively. Note that we use ω and not Z to define the
ratios Zc and M because the simulation does not allow the
computation of Z(p4,p = 0).

For the computation of the Landau gauge quark propagator
we use a subset of the quenched gauge configurations, rotated
to the Landau gauge, generated for the work [9]. We refer
the read to this paper for the details on the generation of the
Wilson action pure gauge configurations, the rotation to the
Landau gauge and on the scale setting for the conversion into

physical units.2 Furthermore, in order to minimise effects due
to the breaking of the rotational invariance, we only report
functions for momenta that verifies the cuts considered in
[9] and introduced in [8]; see also [48]. In order to improve
the signal to noise ratio we perform always a Z3 average of
the various lattice quantities; for example when reporting a
quantity associated F with momenta (p4, p, 0, 0) it refers to
(F(p4, p, 0, 0) + (p4, 0, p, 0) + (p4, 0, 0, p))/3.

The statistical errors reported for the various quantities
were computed using the bootstrap method with a confidence
level of 67.5%. When reporting the ‘continuum” functions
Zc and M , that are defined as ratios of traces of quark prop-
agator multiplied by gamma matrices, an additional cut in
the data surviving the momenta cuts is introduced to have a
clear picture of the various functions and only the data whose
relative error is below 50% is kept.

The lattice setup of the simulations reported below are
given in Table 1. In all simulations, the results reported are for
computations considering 100 gauge configurations rotated
to the Landau gauge. Moreover, to increase the signal to noise
ratio for all temperatures, with the exception of the highest,
the quark propagator was computed for two point sources
located at (0, 0, 0, 0) and (Lt/2, 0, 0, 0) and the results aver-
aged before performing any analysis. For the highest temper-
ature the quark propagator was computed for a single source
located at the origin of the lattice.

For pure gauge theory the deconfinement temperature hap-
pens at Tc = 270 MeV, see e.g. [7] and references therein.
Our quark propagator simulations consider two temperatures
below Tc, a temperature just above the critical temperature
and three temperatures clearly above Tc. In all cases, with the

2 As discussed in [51–53] there is a small uncertainty in the definition of
the lattice spacing that can have a small impact in the outcome specially
for large statistical ensembles of configurations. In the current work, we
do not take into account this uncertainty.
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Fig. 1 The bare lattice form
factors (10), (11), (12), in lattice
units, as a function of

p =
√
p2

4 + p2 for the various
Matsubara frequencies. The
mbare = 11 MeV data for the
smaller momenta has large
fluctuations and some of the
data points fall outside the range
of the axis values. In the legend
of the y axis, when reading ω it
refers to definition given in Eq.
(10), Z to Eq. (11) and σ to Eq.
(12)
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Fig. 2 The same as in Fig. 1
but for T = 260 MeV
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exception of two temperatures, the quark propagator is com-
puted for two bare quark masses mbare ≈ 10 and 50 MeV. In
this way, one expects to reveal the fundamental properties of
quark properties at finite temperature close to the chiral limit.

3 The lattice propagator

The lattice form factors (10), (11) and (12) are measured by
taking traces of the lattice propagator times gamma matrices.

Their behaviour as a function of p =
√
p2

4 + p2 is illustrated
in Figs. 1, 2, 3 and 4 for temperatures below and above the
critical temperature Tc = 270 MeV and for all the Matsubara
frequencies.

For the smallest bare quark mass and for the smallest tem-
perature, the data shows large fluctuations but seems to fol-
low the same pattern as the data for the heaviest bare quark
mass. For the smallest mbare and T , due to the large fluc-
tuations observed in particular at the lower momenta, some
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Fig. 3 The same as in Fig. 1
but for T = 275 MeV
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Fig. 4 The same as in Fig. 1
but for T = 305 MeV
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of data does not appear in the Fig. due our choice for the y
scale. Around and above Tc the behaviour of the form fac-
tors for the two mbare is quite similar. The Figs. also show
a clear violation of the rotational symmetry, that translates
into large differences in the various lattice form factors for

the same value of four-momentum p =
√
p2

4 + p2 computed
with different Matsubara frequencies, that occurs at all tem-
peratures and that is particularly dramatic for (12).

The bare lattice quark wave function Zc(p4, |p|) for
the full range of momenta, and the running quark mass

M(p4, |p|) for momenta up to 1.5 GeV can be seen in Figs. 5
and 6 for the first Matsubara frequency. Note that the data in
the figures is not corrected for lattice spacing artefacts and
that is the reason why for M(p4, |p|) we only report data for

small p =
√
p2

4 + p2. Indeed, the bare running quark mass
at finite temperature looks like that observed at zero temper-
ature as seen, for example, in Fig. 10 in [49]. This same Fig.
also shows that up to momenta ap ∼ 0.5 the lattice artefacts
corrections are negligible or quite small. For the simulations
reported here ap ∼ 0.5 corresponds to a p ∼ 1 GeV, see
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Fig. 5 Bare lattice quark wave
function Zc(p4,p) for the first
Matsubara frequency as a

function of p =
√
p2

4 + p2
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Fig. 6 Running quark mass, in
GeV, for the first Matsubara
frequency as a function of

p =
√
p2

4 + p2. Recall that for
Zc and M , besides the
momentum cuts defined to
reduce the lattice artefacts, all
data points whose relative error
is greater than 50% are ignored.
This explains why some of the
running mass plots are empty. It
seems that M has larger
fluctuations when compared to
the quark wave function
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Table 1, and that is the reason why we plotted the running
mass only up to p = 1.5 GeV. In this section, our analysis
of the running quark mass refers only to its low momen-

tum behaviour. The function M(p4, |p|) for the full range of
momenta is discussed in Sect. 4.
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Fig. 7 The lattice and HTL quark wave function at T = 305 MeV.
The lattice data was rescaled to reproduce the HTL wave function at
3 GeV for mq = 200 MeV (full symbols) and for mq = 400 MeV
(open symbols). Note that the data for mq = 50 MeV and 100 MeV are
indistinguishable in the plot

As Figs. 5 and 6 show, the quark propagator looks rather
different below and above Tc. For high momenta, the quark
wave function approaches a constant from above for T < Tc
and from below at T > Tc. Around the critical tempera-
ture the results favour a constant Zc for the full range of
momenta accessed in our simulation. Figure 5 also shows
that, for sufficiently high momenta, ω(p4,p) ∼= Z(p4,p),
up to a constant factor close to unity. At low momenta
ω(p4,p) exceeds Z(p4,p) above the critical temperature,
while Z(p4,p) exceeds ω(p4,p) for temperatures below Tc.
Note also that for temperatures above Tc the quark wave
function approaches a constant value from below, reproduc-
ing the same type of behaviour observed for zero tempera-
ture and in agreement with the predictions of perturbation
theory.

In order to compare our results with the predictions of
the hard thermal loop (HTL) for the quark propagator, in
Fig. 7 we show the lattice data together with the one loop
HTL prediction for Zc(p4,p) and for T = 305 MeV, i.e.
T/Tc = 1.13, for the first Matsubara frequency. We take
the one loop HTL quark propagator from [50], and convert
it to Euclidean space – see their Eqs. (5), (6) and (7). The
exact definition of the quark mass that should appear in the
HTL expressions is difficult to read directly from the lattice
data, see Figs. 6 and 8, and we have included in the plot for
the HTL quark wave function the corresponding numbers
for various quark masses. Furthermore, we also show twice
the same lattice data rescaled to reproduce the HTL function
at p = 3 GeV for mq = 200 MeV and for mq = 400
MeV. As can be observed, at higher momenta, i.e. for p =
( p2

4 + p2)1/2 � 2 GeV, the lattice data is in good agreement
with HTL. In particular for mq = 400 MeV the lattice quark

220 230 240 250 260 270 280 290 300 310 320 330
T (MeV)
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100

200

300

400

500
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700

800

900

M
 [M

eV
]

mbare = 10 MeV
mbare = 50 MeV

Fig. 8 Running quark mass at the smallest momenta for the various
T considered in the current work. Note that the smallest momenta is
temperature dependent and ranges from ∼ 0.8 GeV up to ∼ 1 GeV. The
vertical blue line identifies the gluon deconfinement transition

wave function and the HTL function are in good agreement
for the full range of momenta. Our conclusion being that for
T/Tc = 1.13, the lattice data is in good qualitative agreement
with HTL for the quark wave function.

Similarly as for the quark wave function, the running
quark mass shows the different behaviours above and below
the deconfinement temperature (see Fig. 6). For tempera-
tures below the critical temperature M(p4,p) is a decreas-

ing function of p =
√
p2

4 + p2, while above the deconfine-
ment phase transition it becomes essentially constant. The
observed behaviour of M for T > Tc supports the interpre-
tation of quarks as quasiparticles with a constant mass. Note,
however, that for the largest temperature M(p4,p) seems to
increase with p; see also the results reported in Sect. 4. For
T > Tc the constant quark mass is a function of the temper-
ature and, for the range of T considered here, M decreases
when T increases. This can be better viewed in Fig. 8, where
M(p4,p = 0) for the first Matsubara frequency is shown
for the full range of temperatures considered in the current
simulations. The values of M(p4,p = 0) reported in Fig. 8
were computed using the data from the lowest momentum
that fulfill the cuts mentioned before and taking the data
of the lattice form factors (10), (11), (12) with the errors
computed assuming Gaussian error propagation, i.e. we set
M(p4,p = 0) = σ(p4,p = 0)/ω(p4,p = 0) and take for
the statistical error

ΔM(p4, 0) =
√(

Δσ(p4, 0)

ω(p4, 0)

)2
+

(
σ(p4, 0) Δω(p4, 0)

ω2(p4, 0)

)2

(14)

where Δσ(p4, 0) and Δω(p4, 0) stand for the statistical
errors in σ(p4, 0) and ω(p4, 0), respectively, and p4 should
be understood as the first Matsubara frequency. Note that the
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values reported in Fig. 8 do not refer exactly to the same p4,
that ranges from just above ∼ 0.83 GeV to just below ∼ 1.1
GeV. It follows that for T > Tc typical values for the mass
of the quasiparticle are about ∼ 100 MeV.

Although our simulations are not at the chiral limit, the
data for the running mass clearly shows a strong mass sup-
pression as the temperature crosses Tc, with the values of
M given in Fig. 8 above Tc being about half of the values
reported when the quarks are in the confined phase.

4 On the correction of the lattice artefacts

As discussed in [45,46] for the zero temperature case, the
lattice form factors computed directly from the inversion of
the fermion matrix are contaminated by lattice artefacts. The
solutions suggested to remove the lattice artefacts rely on the
tree level lattice quark propagator [45,46], on an expansion
in the invariants of the H4 group [54,55] or on a combination
of both methods [49].

In what concerns the quark wave function at finite temper-
ature, i.e. the results reported in Sect. 3 and summarized in
Fig. 5, the function Zc(p4,p) looks rather flat for momenta
above ∼ 2 GeV for the temperatures investigated. This is pre-
cisely the type of functional behaviour predicted by pertur-
bation theory. However, these findings for Zc(p4,p) contrast
with the results of previous simulations at zero temperature,
where for sufficiently high momenta the lattice quark wave
function is a decreasing function of p, even after the partial
removing of the lattice artefacts based on the rotated tree level
quark propagator [45,46,49]. These results follow because
Zc(p4,p) is measured as a ratio of functions that, accord-
ing to the procedure mentioned above, have exactly the same
type of lattice artefacts corrections and, therefore, by taking
ratios of these type of functions the lattice artefacts cancel
exactly or, at least, are strongly suppressed. Given the good
agreement between the lattice Zc(p4,p) reported in Fig. 5
and the results of perturbation theory for p � 2 GeV, we
assume that the computed Zc(p4,p) are essentially free of
lattice artefacts.

On the other hand, the running quark mass at finite tem-
perature is computed as in the zero temperature case. Not
surprisingly, the lattice data for M(p4,p) shows a similar
pattern as observed at zero temperature and this function
increases at higher momenta as observed in Figs. 1 and 10 of
[49] for the uncorrected lattice data. It follows that the com-
putation of the running quark mass requires an estimation
and subtraction of the lattice artefacts.

For the estimation of the lattice artefacts for the running
mass we use the procedure outlined in [45,46]. The space-
spin components of the rotated tree-level quark propagator
are given by
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a p

0.00
0.01
0.02
0.03
0.04
0.05

a 
M

Hyb. Diag.
Hyb. On Axis

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
a p

0.0

0.5

1.0

1.5

a 
M

Pert. Diag.
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Fig. 9 Tree level propagator mass for three momenta p being along
the diagonal of the axis of the lattice. The data reported was computed
for T = 305 MeV in a 803 × 8 lattice, κ = 0.1348 that corresponds
to mbare = 53 MeV, and for the first Matsubara frequency. The data
referred as “Pert.” is the naïve tree level pole mass appearing in the
rotated quark propagator. The data labelled as “Hyb.” is the tree level
corrected result for the so-called hybrid definition of the mass. See
[45,46,49] for details

S(0)(p) = −i a/p A(m, p) + B(m, p)

a2 p2A2(m, p) + B2(m, p)
. (15)

Expressions for A(m, p) and B(m, p) can be found in
[45,46]. There is no unambiguous way to subtract the lattice
artefacts. Typically, two main definitions of the “continuum”
running mass are considered where one naïvely subtracts part
of the lattice artefacts, defining ms(p4,p), and the so-called
hybrid scheme that defines mh(p4,p), where in the subtrac-
tion of the lattice artefacts it is taking into consideration if
the corrections give either positive or negative contributions
to the pole mass. In the definition of mh(p4,p) the negative
contributions are subtracted before rescaling the result to take
into account the remaining corrections. Details of the proce-
dure and definitions can be found in the above cited works.
To illustrate the running quark mass definition, in Fig. 9 we
report results obtained with the rotated tree level quark prop-
agator, where the naïve pole mass grows with momenta and
mh(p4,p) is constant for all ap.

The hybrid running quark mass for the simulations with a
mbare ≈ 50 MeV and all temperatures are given in Fig. 10
for the first Matsubara frequency. The functional form at
small momenta for mh(p4,p) changes dramatically when
the deconfinement transition is approached. At the infrared
scales mh is a decreasing function of p for T � Tc, is
essentially constant for T above Tc and in the range 290–
305 MeV and for the highest temperature considered here
mh is an increasing function of the momenta. We call the
reader’s attention that in the simulation for T = 324 MeV
the number of lattice points in the time direction, used to
define the temperature, is shorter Lt = 6 compared with all
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Fig. 10 The running quark mass mh(p4,p) for all the T and for the
simulations using mbare ∼ 50 MeV. Only the data corresponding to the
first Matsubara frequency is shown

other cases that use Lt = 8. It is not clear if such a short time
direction is responsible for the different observed behaviour
in the hybrid running quark mass. At sufficiently high p, the
data shows that the running masses seem to collapse into a
single curve. The data reported in Fig. 10 suggests that at
high p and within the range of momenta accessed in our
simulation mh(p4,p) is a decreasing function of p. We have
tried to fit a constant value to the highest momenta and have
verified that for p � 10 GeV the lattice data for mh(p4,p) is
compatible with a constant just above 50 MeV; for example,
for T = 290 MeV, we get mh = 51.984±0.030 MeV with a
χ2/d.o. f = 1.1 for p > 9.8 GeV. This fit value for the mass

is within the same range of values for mbare considered here
– see Table 1.

For completeness, in Fig. 11 we show mh(p4,p) for all
temperatures and all the Matsubara frequencies. The data
shows, once more, a clear violation of rotational symmetry.

The computed quark wave function Zc(p4,p) and run-
ning quark mass mh(p4,p) imply changes in the functional
behaviour of the quark spectral functions below and above
the critical temperature. However, given the small number
of Matsubara frequencies accessed in our study, we do not
attempt to compute any of the components of the quark spec-
tral function.

5 Summary and conclusions

In the current work we report on the computation of the finite
temperature Landau gauge lattice QCD quark propagator in
the quenched approximation at small quark masses ∼ 10
MeV and ∼ 50 MeV for temperatures below and above the
deconfinement phase transition. The various quark form fac-
tors are investigated as a function of the temperature for the
various Matsubara frequencies.

Our results show that both the quark wave function and
the running quark mass have different functional forms for
T < Tc and for T > Tc. Above Tc the quark wave function
seems to reproduce the predictions of HTL expansion for
T/Tc � 1.1 being constant for p � 2 GeV and slightly
suppressed at smaller momenta. The suppression of the quark
wave function at infrared scales is also observed for the zero

Fig. 11 The running quark
mass mh(p4,p) for all the T and
for all Matsubara frequencies
computed for the simulations
using mbare ∼ 50 MeV
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temperature case; see [49] and references therein. On the
other hand, at low momenta and for T < Tc the quark wave
function is enhanced. These results show that Zc has a non-
trivial dependence on the temperature and its suppression or
enhancement at low momenta is not enough to identify if the
quark is in the confined or deconfined phase.

The running quark mass also shows a non-trivial depen-
dence on the temperature of the heat bath. Indeed, the running
quark mass is highly suppressed when T crosses Tc from
below, with typical values just above Tc being about half
of the corresponding values just below Tc. At low momenta
p � 1.5 GeV for the temperatures considered here, the run-
ning quark mass is nearly constant above Tc. This can be
viewed as favouring the description of quarks as free quasi-
particles with a constant mass, as is used e.g. by the HTL
approach. Our simulations also show that at high momenta
the running quark mass reproduces the values of the bare
quark mass reported in Table 1. For temperatures below Tc
the running quark mass increase when one approaches the
zero momentum limit, reproducing the observed behaviour
for the running quark mass at zero temperature.

Our simulations are based on pure gauge configurations,
where the pure gauge sector is solved exactly but without tak-
ing into account the dynamics of quarks. The computed quark
propagators refer to the propagation of the quark fields in a
background of gluons that is solved exactly for the bosonic
sector of the theory. The observed significant suppression
of the running quark mass for temperatures above Tc, the
critical temperature for gluon deconfinement, is an indica-
tion of a major contribution of the gluons for the mecha-
nism of chiral symmetry breaking. Furthermore, our results
suggest an important link between (gluon) confinement and
the restoration of chiral symmetry that needs to be further
investigated.

The continuum limit of the lattice computation for the
quark propagator should be pursued to estimate the finite
size effects in this propagator. The experience gained with
the lattice computation of the gluon and ghost propagators at
zero temperature, in the quenched approximation, suggests
that the finite size effects are not a major problem.
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