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Abstract In this article, we perform a deep analysis of the
Bianchi identities in the two known formulations developed
for the four-dimensional effective type IIA supergravity the-
ory with (non-)geometric fluxes. In what we call the ‘first
formulation’, fluxes are expressed in the real six-dimensional
indices while in the ‘second formulation’, fluxes are written
in the cohomology form. We find that the set of flux con-
straints arising from these two known formulations are not
equivalent, and there are missing identities in the cohomol-
ogy version which need to be supplemented to match with
the first formulation. By analyzing two explicit examples, we
conjecture a model independent form for (the most of) the
missing identities. These identities have been mostly over-
looked in the previous attempts of studying moduli stabi-
lization, particularly for the models developed in the beyond
toroidal frameworks, where they could play some important
role.
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1 Introduction

In the context of Type II supergravity theories, a successive
application of the T-duality on the NS-NS three-form flux
H3 results in a chain of geometric and non-geometric fluxes,
which can be given as under [1–7],

Hi jk −→ ωi j
k −→ Qi

jk −→ Ri jk . (1.1)

A consistent incorporation of the various possible fluxes
makes the compactification background richer and more flex-
ible for model building. In this regard, a continuous progress
has been made since more than a decade towards moduli
stabilization [8–11], in constructing de-Sitter vacua [12–16]
and also in realizing the minimal aspects of inflationary cos-
mology [17–20].

One of the important aspects of model building in non-
geometric flux compactification is to consistently satisfy
all the quadratic flux constraints coming from the various
Bianchi identities and the tadpole cancellation conditions.
This can be very crucial as sometimes it can simplify the
scalar potential to a great length by canceling many terms. In
this regard, it is worth to mention that the 4D non-geometric
scalar potentials arising from a concrete construction, very
often consist of quite huge number of terms. For example, in
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the two concrete setups which we will consider in this article,
we find that there are thousands of terms in the scalar poten-
tial. Subsequently, it is anticipated that it can get even hard to
analytically solve the extremization conditions because the
same would demand to solve very high degree polynomials.
Unfortunately there is nothing like LARGE volume scenarios
[21] in these non-geometric constructions, and therefore all
the terms being at tree level are equally important and cannot
be naturally hierarchical. The difficulty in dealing with the
extremization conditions is so much involved that one has to
look either for simplified ansatz by switching-off certain flux
components at a time, or else one has to opt for an involved
numerical analysis [13,15,17,22–24].

Moreover, it is still not fully known how many and which
type of fluxes can be simultaneously turned-on on a given
background. In this regard, there are two main formulations
of Bianchi identities which one utilizes for simplifying the
type II effective potentials. One formulation involves fluxes
denoted by the real six dimensional indices (e.g. Hi jk etc.)
[6,10] while in the latter one, all flux components are writ-
ten out using cohomology indices of the complex threefold
X3; e.g. HK , ωaK etc., where K ∈ {0, 1, .., h2,1(X3)} and
a ∈ {1, 2, .., h1,1

− (X3)} [10,25–28]. The first formulation has
been always utilized for simplifying the scalar potential of the
toroidal examples [13,15,17,22–24] while the recent inter-
ests beyond the toroidal setups have used the second formu-
lation [11,16,20,29,30]. However, it turns out that the known
versions of these two formulations of Bianchi identities do
not produce an equivalent set of constraints. To the best of our
knowledge, this mismatch has been observed/emphasized
only in [10,31,32], which might play some important role in
moduli stabilization and any subsequent phenomenological
applications, e.g. such missing identities might be relevant
in the recent interesting studies made in [11,16,20,29,30].
Therefore, it is worth as well as timely to bring the attention
of the model builders on this aspect. On these lines we have
the following plans.

• We carefully investigate the two formulations of the
Bianchi identities in two concrete setups. This analysis
is motivated by some observations made in [10,31,32],
in which it has been found that the two formulations in
their currently known version do not result in an equiv-
alent set of flux constraints. The first formulation has all
the second formulation identities along with some addi-
tional ones, which we call as ‘missing’ identities. In this
article, we plan to investigate the (1, 1)- and the (2, 1)-
cohomology structure in the missing identities in some
detail.

• Unlike the type IIB studies made in [31,32] along these
motivations, we show that in type IIA orientifold setup it
is easier to observe this mismatch for some simpler class
of models. In particular, the ones in which orientifold

involution results in a trivial even (1,1)-cohomology. As
we will explain later, this leads to the fact that we have
just a single identity in the ‘second formulation’ while
the ‘first formulation’ consists of five distinct classes of
identities.

• Recently in [33], we have presented a symplectic for-
mulation of the 4D type IIA scalar potential with non-
geometric fluxes. Being very compact, this formulation
creates the possibility of studying the model indepen-
dent moduli stabilization, i.e. for an arbitrary number of
Kähler- and complex structure- moduli. In this regard,
knowing the generic form of the missing Bianchi identi-
ties is a crucial step to take.

The main strategy which we follow in our approach is such
that first we extract the second formulation identities from
the set of constraints which arise from translating the iden-
tities of the first formulation into cohomological form. We
take this step in great detail for both of the explicit models.
Subsequently we separate out one version of the ‘missing’
identities which are not the part of the second formulation.
This is a tricky step because there are non-unique ways of
reshuffling the set of missing Bianchi identities such that
one could create more than one equivalent sets of constraints
which apparently possess distinct cohomological structure,
and therefore it is hard to club them into a particular form for
claiming their generality. For that purpose one would need
as many explicit examples as possible to check the mutual
consistency for any generic guess.

However, it is not impossible to invoke some structure
among the missing identities from the two concrete mod-
els. For example we show how the (1, 1)-cohomology struc-
ture in the missing Bianchi identities can be encoded in the
triple intersection numbers of the complex threefold while
the (2, 1)-cohomology structure has some insights from the
complex structure moduli dependent prepotential. We com-
pare these cohomology sectors for both the explicit examples
to look for a model independent generalization which could
produce them as particular cases, and this is what we mainly
aim to achieve in this work.

The article is organized as follows: Firstly, in Sect. 2 we
provide the relevant details on the two formulation of the
Bianchi identities, and subsequently in Sect. 3 we perform a
deep investigation of the Bianchi identities for the two con-
crete examples to illustrate that the two known formulations
of Bianchi identities do not result in an equivalent set of flux
constraints. In Sect. 4, we study the possibility of rewrit-
ing the missing identities in a model independent manner by
investigating the (1, 1)- and the (2, 1)-cohomology sectors in
the two explicit examples. Finally the important conclusions
are presented in the Sect. 5 followed by three appendices.
The first Appendix A provides a derivation of Bianchi iden-
tities in the second formulation. The Appendix B presents
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Table 1 Representation of various forms and their counting

Cohomology group H (1,1)
+ H (1,1)

− H (2,2)
+ H (2,2)

− H (3)
+ H (3)

−

Dimension h1,1
+ h1,1

− h1,1
− h1,1

+ h2,1 + 1 h2,1 + 1

Basis μα νa ν̃a μ̃α αI β J

the relevant details about the two concrete setups while the
Appendix C consists of the Bianchi identities which are too
lengthy to be part of the main sections.

2 Two formulations of the Bianchi identities

In this work, we consider type IIA superstring theory com-
pactified on an orientifold of a Calabi Yau (CY) threefold
X3 with the presence of O6-planes. In this regard, the orien-
tifold is constructed via modding out the CY with a discrete
symmetry O which includes the world-sheet parity �p com-
bined with the space-time fermion number in the left-moving
sector (−1)FL . In addition O can act non-trivially on the CY
manifold so that one has altogether,

O = �p (−1)FL σ (2.1)

where σ is an involutive symmetry (i.e. σ 2 = 1) of the
internal CY and acts trivially on the four flat dimensions.
The massless states in the four dimensional effective the-
ory are in one-to-one correspondence with various involu-
tively even/odd harmonic forms, and hence do generate the
equivariant cohomology groups H (p,q)

± (X3). Subsequently,
the various field ingredients can be expanded in appropriate
bases of the equivariant cohomologies. To begin with, let us
fix our conventions by considering the following represen-
tations for the various involutively even and odd harmonic
forms [34] (Table 1).

Here μα and νa denote the bases of even and odd real
harmonic two-forms respectively, while μ̃α and ν̃a denote
the bases of odd and even four-forms. Further, αI and β J

form the bases of even and odd real three-forms. In addition,
the zero form 1 is even while there is an involutively odd
six-form �6. Moreover, the triple intersection numbers and
the normalization of the various forms are fixed as under,
∫
X3

�6 ≡ f = 1,

∫
X3

νa ∧ νb ∧ νc = κabc,

∫
X3

νa ∧ μα ∧ μβ = κ̂aαβ,

∫
X3

νa ∧ ν̃b ≡ da
b = δa

b,

∫
X3

μα ∧ μ̃β ≡ d̂α
β = δα

β,

∫
X3

αI ∧ β J = δI
J . (2.2)

Our above convention slightly differs from the normaliza-
tions considered in [10,31]. The effective four-dimensional
supergravity theory is governed by the dynamics of the com-
plexified chiral variables T a and NK which are defined as
under,

Jc ≡ B2 + i J = ba νa + i ta νa = T a νa

�c ≡ C3 + 2 i e−D Re(�3) = ξ K

αK+2 i e−D X K αK = 2 NK αK , (2.3)

where the Kähler form J is expanded as J = ta νa where
ta’s are volume of the two-cycles, and the holomorphic three-
form �3 is expanded in terms of the period vectors

(X K ,FK
)

as �3 = X KαK − FK βK . Further, B2 = ba νa and C3 =
ξ K αK respectively denote the NS-NS two-form potential
and the RR three-form potential expanded in their respective
odd/even bases, and D denotes the four-dimensional dilaton
which is related to the ten-dimensional dilaton φ via e−D =
e−φ

√V where V is the volume of the complex threefold.
For studying moduli stabilization and any subsequent

phenomenology, a very crucial step to follow is to impose
the constraints from various NS-NS Bianchi identities as
well as RR tadpoles to get the true non-vanishing contri-
bution to the effective four dimensional scalar potential. We
have two formulations for representing the (NS-NS) Bianchi
identities, and we emphasize here that both sets of Bianchi
identities have their own advantages and limitations. The
‘first formulation’ is in which all fluxes, moduli and fields
are expressed using the real six-dimensional indices. e.g.
Blm, Hlmn , ωlm

n, Ql
mn and Rlmn where l,m, n are indices

corresponding to the real coordinates of the real sixfold. In
the ‘second formulation’, all the fluxes, moduli and fields are
counted by cohomology indices.

In the generic case, some naive counting suggests that
there is an upper bound on the maximum number of flux
components which can be non-trivial in a given setting, and
they have to further satisfy several constraints arising from
the orientifold action and the non-trivial Bianchi identities,
and subsequently it is hard to present a model independent
counting for the number of independent flux components.
However, for the fluxes in both the formulations, we have
presented the counting for the upper bound on the number of
fluxes as mentioned in Table 2, where we have only assumed
the anti-symmetry of the various flux components in the so-
called ‘first formulation’. It is well anticipated that in a given
orientifold construction, many of the flux components would
be non-trivially coupled, and so would significantly reduce
the number of ‘independent’ flux components. Also note that
in our current conventions, the flux components HK , RK ,
ωa

K , QaK , ω̂αK and Q̂α
K are projected out, and so they do

not appear in the flux counting presented in Table 2. As said
before, let us reiterate that this simple counting corresponds
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Table 2 Maximum number of flux components in the two formulations

Flux type Max. number
of flux
components

Flux type Max. number
of flux
components

Hi jk 20 HK h2,1 + 1

ωi j
k 90 ωaK h1,1

− (h2,1 + 1)

ω̂α
K h1,1

+ (h2,1 + 1)

Qi
jk 90 Qa

K h1,1
− (h2,1 + 1)

Q̂αK h1,1
+ (h2,1 + 1)

Ri jk 20 RK h2,1 + 1

Total 220 Total 2 (h1,1 + 1) (h2,1 + 1)

Table 3 Bianchi identities of the first formulation and their counting

Class Bianchi Identities of the First formulation Maximum no.
of identities

(I) Hm[i j ωkl]m = 0 15

(II) ω[i j m ωk]ml = Q[i lm Hjk]m 120

(III) Hi jm Rmkl + ωi j
m Qm

kl = 4 Q[i m[k ω j]ml] 225

(IV) Qm
[i j Ql

k]m = ωlm
[i R jk]m 120

(V) Rm[i j Qm
kl] = 0 15

Extra
constraint

1
6 Hi jk Ri jk + 1

2 ωi j
k Qk

i j = 0 1

Total 496

to an upper bound for the maximum number of the flux com-
ponents which can be further significantly constrained by
the Bianchi identities, and hence can influence the moduli
stabilization and any subsequent phenomenology.

Further, let us note that it is not necessary to have a bijec-
tion among the two sets of fluxes mentioned in Table 2,
especially among the respective set of ω-flux and the non-
geometric Q-flux. Nevertheless in several examples, the
bijection between the respective set of fluxes in the two for-
mulation does hold; e.g. the orientifold setups built from the
orbifoldsT6/, where  corresponds to the crystallographic
actionsZ2 ×Z2,Z3,Z3×Z3,Z4 andZ6-I [10,35–38]. How-
ever, there is always a bijection between the respective H -
flux and R-flux components for which the ‘actual’ counting
follows from the cohomology formulation.

2.1 First formulation

This formulation has five classes of Bianchi identities sup-
plemented by an extra constraint as presented in Table 3.
For our current interest, we consider the fluxes to be con-
stant parameters, however for the non-constant fluxes and in
the presence of sources, these Bianchi identities are mod-
ified [38–41]. In addition, let us also note that the “Extra

constraint” is automatically satisfied in the orientifold set-
ting since there are no scalars which are invariant under the
orbifolding and odd under the involution.

There have been several ways of deriving these sets of con-
straints; for example see [6,8,10,38–42]. We do not intend to
provide the detailed derivation, however let us sketch a cou-
ple of routes to arrive at these constraints. One way to derive
these identities is via the Jacobi identities of the following
Lie brackets for the NS-NS fluxes [6,8,10],
[
Zi , Z j

] = ωi j
k Zk − Hi jk X

k,[
Zi , X

j
]

= Qi
jk Zk − ωik

j Xk ,[
Xi , X j

]
= Qk

i j Xk − Ri jk Zk, (2.4)

where Zi and Xi ’s are generators of the gauge transforma-
tions corresponding to the two gauge groups consisting of
two sets of d-dimensional vectors obtained, from the met-
ric and the B-field respectively, via the reduction of type II
superstring theory on a d-dimensional torus.

Another route to derive these identities is via considering
the nilpotency of a twisted differential operator D defined as
under [43],

D = d + H ∧ . − ω � . + Q � . − R • . , (2.5)

where the action of various (non-)geometric fluxes via �,
� and • on a p-from changes them into a (p + 1)-form, a
(p − 1)-form and a (p − 3)-form respectively. To be more
specific, if we consider a generic p-form to be given as X p =
1
p! Xi1....i p dx

1 ∧ dx2.... ∧ dx p, then the various flux-actions
can be defined as under [31,43],

(ω � X)i1i2...i p+1 =
(
p + 1

2

)
ω[i1i2 j X j |i3.....i p+1]

+1

2

(
p + 1

1

)
ω[i1 j

j Xi2i3.....i p+1] ,

(Q � X)i1i2...i p−1 = 1

2

(
p − 1

1

)
Q[i1 jk X jk|i2.....i p−1]

+1

2

(
p − 1

0

)
Q j

k j Xk|i1i2.....i p−1 ,

(R • X)i1i2...i p−3 = 1

3!
(
p − 3

0

)
R jkl X jkl i1.....i p−3 ,

(2.6)

where the underlined indices inside the brackets [..] are anti-
symmetrized. The set of Bianchi identities and the ‘extra con-
straint’ given in Table 3 can be derived from the nilpotency
of twisted differential operator D via D2Ap = 0.

As a side remark, let us note from the Table 3 that the
maximum number of flux-constraints in the first formula-
tion is bounded by 496 which is quite a peculiar number in
string theory, and it would be interesting to know if there is
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any fundamental reason behind this, or its just a matter of
counting.

A weaker set of identities

Let us mention that demanding the vanishing of D2 on a
generic p-form X p apparently also results in the following
additional set of constraints [10],

Hkl[i Q j]kl − 1
2 Qk

kl Hli j − 1
2 ωkl

k ωi j
l = 0,

Hkli Rkl j − Qi
kl ωkl

j − ωkl
k Qi

l j − Qk
kl ωli

j = 0,

ωkl
[i Rkl j] + 1

2 ωkl
k Rli j + 1

2 Qk
kl Ql

i j = 0,

2 Hklm Rklm + 3 ωkl
k Qm

ml = 0. (2.7)

However, a closer look ensures that all these identities in
Eq. (2.7) can be obtained by contracting more indices from
their respective main identities given in Table 3. It is worth to
note that the last constraint in Eq. (2.7) generically holds by
the orientifold construction itself as there are generically no
zero-forms (scalars) which are odd under involution. Thus,
these apparently additional identities are effectively not the
new ones to worry about. Nevertheless, we will explain their
relevance in a different sense while we compare the two for-
mulations in explicit examples later on.

Tracelessness condition

In order for the ω-flux and Q-flux to be individually T -dual
to the H -flux, they must satisfy the following so-called trace-
lessness condition [7,43],

ωi j
i = 0, Qi

i j = 0 , (2.8)

It might be worth to mention that imposing this condition
(2.8) has been quite common in the literature [7,43]. Also, a
Calabi Yau threefold does not have any homologically non-
trivial one- as well as five-cycles, and hence for the Calabi
Yau orientifold cases it would be well justified to demand
that all flux components having effectively one (real six-
dimensional) free-index are trivial.

2.2 Second formulation

Considering the relevant flux actions for the type IIA orien-
tifold setup as given in Eq. (A.1), and ensuring the nilpo-
tency of the twisted differential D on the harmonic forms
via D2 = 0 results in 10 Bianchi identities [31] which can
be further classified into the five classes as mentioned in the
first formulation. These identities are collected in Table 4,
and a proof of the same has also been presented in the
Appendix A.

Before coming to the specific models, let us mention that
if one uses an orientifold involution such that the even (1,1)-
cohomology and its dual odd (2,2)-cohomology are trivial,

Table 4 Bianchi identities of the second formulation and their counting

Class Bianchi Iden-
tities of the
Second for-
mulation

Maximum no.
of identities

(I) HK ω̂α
K = 0 h1,1

+
(II) HK Q̂αK = 0 h1,1

+
ωaK ω̂α

K = 0 h1,1
+ h1,1

−
(III) ωaK Q̂αK = 0 h1,1

+ h1,1
−

ω̂α
K Qa

K = 0 h1,1
+ h1,1

−
ω̂α

[K Q̂α J ] = 0 1
2 h

2,1(h2,1 + 1)

H[K RJ ] = ωa[K Qa
J ] 1

2 h
2,1(h2,1 + 1)

(IV) RK ω̂α
K = 0 h1,1

+
Qa

K Q̂αK = 0 h1,1
+ h1,1

−
(V) RK Q̂αK = 0 h1,1

+
If h1,1

+ 	= 0, Total = 4 h1,1
+ (1 + h1,1

− ) + h2,1(1 + h2,1)

If h1,1
+ = 0, Total = 1

2 h
2,1(h2,1 + 1)

i.e. h1,1
+ (X3/σ) = 0, then all the ‘hatted’ fluxes which are

counted via α ∈ h1,1
+ are projected out. The choice of such

involutions are quite common in Type IIA Calabi Yau orien-
tifold compactification as these are simpler setups to study,
and subsequently the second formulation tells us that the only
Bianchi identities which could be non-trivial turns out to be
the following one,

H[K RJ ] = ωa[K Qa
J ]. (2.9)

This happens because all the other identities involve ‘hatted’
fluxes which are projected out. Such a situation provides a
strong constraint on the set of second formulation identities
as it suggests that all the Bianchi identities of the class (I),
(II), (IV) and (V) are identically trivial ! Moreover, even only
one of the four Identities within the class (III) is non-trivial.
However, as we will see in the two explicit models, the iden-
tities in class (I), (II), (IV) and (V) indeed provide non-trivial
flux constraints while being computed from the first formula-
tion. This has been possible to check in the concrete toroidal
models in which both formulations can be explicitly com-
puted. We will exemplify these arguments in two concrete
models:

• Model A: In this setup we will consider the orientifold
of a T

6/(Z2 × Z2) orbifold, with an anti-holomorphic
involution which results in h1,1

+ (X3/σ) = 0, and hence
no ‘hatted’ fluxes being present in this construction.

• Model B: In this setup we will consider the orientifold
of a T

6/Z4 orbifold, with an anti-holomorphic involu-
tion which results in h1,1

+ (X3/σ) 	= 0, and hence there
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would be non-trivial ‘hatted’ fluxes being present in this
construction.

From the Table 4 we see that given the topological data about
the orientifold, the maximum number of the (non-trivial)
Bianchi identities in the second formulation can be read-off
in terms of some Hodge numbers. To summarize this part,
we have five classes of Bianchi identities in the first formu-
lation while the second formulation has in total 10 distinct
types of constraints. However, all the identities are coupled
in a complex manner and generically it is hard to find the
set of inequivalent flux constraints. The maximum number
of such constraints is bounded by 496 in the first formulation
while in the second formulation this number is bounded by
4 h1,1

+ (1+h1,1
− )+h2,1(1+h2,1). However, there is generically

no bijection between the set of constraints because there is
no bijection at first place between the respective ω-flux and
the Q flux representations in the two formulations.

It has been observed in [10,31,32] that these two formu-
lations of Bianchi identities do not lead to equivalent set of
constraints. In fact, the first formulation has some additional
constraints which cannot be derived from the identities of
the second formulation. As most of the non-geometric scalar
potential studies are motivated from toroidal examples, such
an observation is worth to explore more insights of this mis-
match. To be specific in this regard, let us mention that the
mismatch in the two formulations of Bianchi identities have
been observed for type IIA case in [10], however without
having much attention on the insights of the mismatch, for
example so that one could promote the same to the case of
beyond toroidal setups such as those using CY orientifold.
Moreover, motivated by the interesting type IIB model build-
ing efforts as made in [11,16,20,29,30] which have used the
second formulation identities only, if one attempts to make
similar efforts for type IIA model building, then it is very
much anticipated that such models and any subsequently real-
ized vacua should be heavily under-constarined as most of the
Bianchi identities would not be captured in the second formu-
lation. Such a clear manifestation of the mismatch between
the Bianchi identities of the two formulations, which we see
from the type IIA setup, cannot be observed from type IIB
setups, and our aim in this article is to investigate more on
this and invoke the possible structure which could be gener-
alised in a model independent manner to some more generic
(beyond-toroidal) setups.

3 Bianchi identities in the cohomology formulation

In this section we will compute the Bianchi identities for
two toroidal models using the two formulations we have
described, and subsequently we will compare if the set of
Bianchi identities are equivalent or not. The main idea is

to translate the first formulation identities into cohomology
version using some flux conversion relations for the two for-
mulations, and subsequently to perform some reshuffling in
the first formulation constraints to recover the second for-
mulation, and then the rest is what we term as the ‘missing
identities’ which cannot be obtained from the known version
of the second formulation, i.e. from the Table 4. However,
let us mention at the outset that we will provide more than
one equivalent set of the ‘missing’ constraints as there are
non-unique ways of rewriting or clubbing the identities for
invoking some model independent insights out of a compli-
cated collection of flux-squared relations.

3.1 Missing identities in Model A

In this section we will compute the Bianchi identities using
the two formulations for our Model A, which corresponds to a
type IIA setup with a T6/(Z2 × Z2)-orientifold. The various
explicit details about this model can be found in [33], and the
relevant ingredients have been also briefly collected in the
Appendix B. For this setup, focussing only on the untwisted
sector, we have h1,1

+ = 0, h1,1
− = 3 and h2,1 = 3, and

therefore there are six second-formulation identities which
are to be imposed on 32 flux components. For translating
the first formulation identities into the cohomology form, we
will need the following flux conversion relations,

HK = [− H135 , H146 , H236 , H245
]
,

ωaK =
⎡
⎣−ω35

2 , ω46
2 , −ω36

1 , −ω45
1

−ω51
4 , −ω61

3 , ω62
4 , −ω52

3

−ω13
6 , −ω14

5 , −ω23
5 , ω24

6

⎤
⎦ ,

Qa
K =

⎡
⎣− Q1

46, Q1
35, − Q2

45, − Q2
36

− Q3
62, − Q4

52, Q3
51, − Q4

61

− Q5
24, − Q6

23, − Q6
14, Q5

13

⎤
⎦ ,

RK = [− R246 , R235 , R145 , R136
]
. (3.1)

Let us restate that the fluxes appearing with three indices
always correspond to the first formulation, i.e. the non-
cohomology case. Moreover, as all the indices are denoted by
numbers, in order to avoid any possible confusion let us also
mention that the flux components in the second formulation
are given with the ‘ordering’ as per denoted in {ωaK , Qa

K }
where the first index “a” is counted by h1,1

− while the sec-
ond index “K ” is counted by (1 + h2,1). In this example, we
have a = {1, 2, 3} and K = {0, 1, 2, 3}. As we see from the
Eq. (3.1), there are no flux components present which are of
the type ωi j

i and Qi
i j , and so the tracelessness conditions

given in Eq. (2.8) are automatically satisfied after imposing
the full orientifold requirements. In addition, the normaliza-
tion of the various forms is appropriately fixed as mentioned
in Eq. (2.2).
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Second formulation

In this setup we have h1,1
+ (X3/σ) = 0, and so no ‘hatted’

fluxes counted by α indices are present, and subsequently the
ten identities mentioned in Table 4 produce only one class of
non-trivial constraints given as under,

H[K RJ ] = ωa[K Qa
J ]. (3.2)

This subsequently results in six identities as a ∈ {1, 2, 3}
and J, K ∈ {0, 1, 2, 3}. It is clear that the (HQ + ω2)-type
and (Rω+Q2)-type identities, which would be obtained via
translating the first formulation later on, cannot be obtained
from the second formulation. This is one of the main message
we want to convey and so it is worth emphasising.

Cohomology version of the first formulation

Now the plan is to compute the five classes of Bianchi iden-
tities of the first formulation using Table 3 and subsequently
to translate the same into cohomology form via using the
conversion relations in Eq. (3.1). First we note that we have
Hi jk Ri jk = 0 = ω jk

i Qi
jk , and therefore the ‘extra con-

straint’ of Table 3 is trivially satisfied. This is well antic-
ipated by the choice of the orientifold action itself which
in the present setup also guarantees the so-called traceless-
ness conditions for the fluxes denotes as ωi j

i = 0 = Qi
i j .

Further, it turns out that the Bianchi identities in the class
(I) and class (V) of the first formulation as presented in
Table 3, are trivially satisfied. Moreover, the remaining three
classes of identities result in a total of 48 flux constraints in
which (HQ + ω2)-type and (Rω + Q2)-type have 12 con-
straints each while the remaining 24 constraints correspond
to (HR + ωQ)-type. Using the conversion relations, these
identities can be classified as we discuss below.
(II). (HQ + ωω) -type : This identity results in 12 flux
constraints which are explicitly given in the Eq. (C.1) of
the Appendix C. All these 12 identities can be equivalently
expressed in terms of two simple relations given as under

H(i Q
a

0) = ωb (i ωc 0), a 	= b 	= c & i 	= a ,

H(i Q
a
j) = ωb (i ωc j), a 	= b 	= c & i 	= a = j,

(3.3)

where the bracket (..) denotes the symmetrization of the
underlined indices, and we have {a, b, c} ∈ {1, 2, 3} and
{i, j} ∈ {1, 2, 3}. Now let us take a note on the presence
of a 	= b 	= c in the above identity along with the exis-
tence of the only non-trivial triple-intersection number being
κ123 = 1 for this setup. This can be considered as indicative
of some insight in the (1, 1)-cohomology sector. The same

leads to the observation that the above identities can be also
expressed by using the intersection number as under,

H(i Q
a

0) = 1

2
κ−1
abc ωb (i ωc 0), i 	= a ,

H(i Q
a
j) = 1

2
κ−1
abc ωb (i ωc j), i 	= j = a , (3.4)

where we have defined κ−1
abc = 1/κabc for the all the fixed

values of a, b and c, whenever κabc is non-zero.
(III). (HR + ωQ)-type : This identity results in a total of
24 flux constraints which are explicitly given the Eq. (C.2)
of the Appendix C. However after some reshuffling, we real-
ize that this number can be effectively reduced to 18 con-
straints, and the same can be collected in the following com-
pact form,

(i). H[K RJ ] = ωa[K Qa
J ],∀ I, J ∈ {0, 1, 2, 3},

(i i). H(i R0) = ωa′ (i Q
a′

0), i = a′, a′ is not summed,

(i i i). H(i R j) = ωa′ (i Q
a′

j),

i 	= j 	= a′, a′ is not summed,

(iv). ωa′(i Q
a′

0) = ωb′ (i Q
b′

0),

a′ 	= b′ 	= i, a′, b′ are not summed,

(v). ωa′(i Q
a′

j)=ωb′ (i Q
b′

j), a′=i, j = b′, i 	= j,

a′, b′ are not summed, (3.5)

where the bracket (..) is used to present the symmetrization of
the underlined indices while the bracket [..] is used for anti-
symmetrization of two indices, and the primed indices a′ and
b′ are not summed over. In this collection (3.5), the first iden-
tity precisely corresponds to the six identities of the second
formulation given in Eq. (3.2) while the remaining 12 identi-
ties cannot be derived from the known version of the second
formulation. Also there are non-unique ways of reshuffling
the set of missing identities, and it is hard to guess any (1, 1)-
cohomology sector insights in terms of intersection number
κabc as we have seen in the previous case. However after
making some back and forth checks on the compatibility of
this model with the model B (to be discussed later on), we
propose the following version of the 12 missing identities in
Eq. (3.5),

H(0 Rk) − ωa (0 Q
a
k) δak = 0, ∀ k ; H(0 Rk)

−ωa (0 Q
a
k) + 2 ωa (0 Q

a
j) δaj = 0, j 	= k ;

H( j Rk) − ωa ( j Q
a
k) + 2 ωa ( j Q

a
k) δaj = 0, j 	= k ;

H( j Rk) − ωa ( j Q
a
k) δai = 0, i 	= j 	= k. (3.6)

(IV). (Rω + QQ)-type : This identity results in 12 flux
constraints which are explicitly given the Eq. (C.5) of the
Appendix C. All these 12 identities can be equivalently
expressed in terms of two simple relations given as under
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R(i ωa0) = Qc
(i Q

b
0), a 	= b 	= c & i 	= a ;

R(i ωa j) = Qc
(i Q

b
j), a 	= b 	= c & i 	= a = j,

(3.7)

where the bracket (..) denotes the symmetrization of the
underlined indices, and we have {a, b, c} ∈ {1, 2, 3} and
{i, j} ∈ {1, 2, 3}. Now let us again note that the presence of
a 	= b 	= c in the above identity and existence of the only
non-trivial triple-intersection numbers being κabc = 1 for
this setup can be considered as indicative of some insight as
one can rewrite the same as under,

R(i ωa0) = 1

2
κabc Q

b
(i Q

c
0), i 	= a ;

R(i ωa j) = 1

2
κabc Q

b
(i Q

c
j), i 	= j = a. (3.8)

This analysis and the subsequent observations in Model A
suggest that it might be possible that the missing identities
could be generically determined from the topological num-
bers such as Hodge number and the intersection numbers of
the complex threefold background. This has been our central
aim to achieve.

3.2 Missing identities in Model B

In this section we will compute the Bianchi identities using
the two formulations for our Model B, which corresponds to
a type IIA setup with a T

6/Z4-orientifold. Considering the
untwisted sector, in this model we have h1,1

+ = 1, h1,1
− = 4

and h2,1 = 1 which results in 22 second formulation identi-
ties for a total number of 24 flux components.

Using the orbifold of T
6/Z4 sixfold we consider two

explicit constructions which differ in the choice of complex-
ified coordinate of the T

6 torus and their three-form bases.
Despite these differences, as the global topological quantities
in the untwisted sector such as the Hodge numbers and the
triple intersection numbers are the same in these two con-
structions, so we naively expected some correlation of their
respective sets of Bianchi identities in the cohomology for-
mulations, and hence also among the missing Bianchi identi-
ties. This indeed turns out to be the case as we will elaborate
in this section. We call these two constructions as Model B1
and Model B2 with the following details,

• Model B1: This construction was used for studying
moduli stabilization using standard fluxes and without
including any non-geometric fluxes [9]. We have explic-
itly computed all the (non-)geometric flux components
allowed in this setup, and the relevant details about
the setup is presented in the Appendix B. However, let
us present here the following flux conversion relations
which we use for translating the first formulation identi-
ties to capture the missing identities,

HK =
[
H136 , − H135

]
,

ωaK =

⎡
⎢⎢⎢⎢⎢⎢⎣

ω46
1 , −ω35

1

ω62
3 , −ω51

3

−ω13
5 , −ω13

6

1
2

(
ω26

1 + ω36
3
)

, − 1
2

(
ω15

1 − ω45
3
)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

ω̂α
K =

[ 1
2

(
ω15

1 + ω45
3
)

, − 1
2

(
ω26

1 − ω36
3
)]

,

Qa
K =

⎡
⎢⎢⎢⎢⎢⎣

Q1
35 , − Q1

36

Q3
51 , − Q3

61

− Q6
13 , Q5

13

1
2

(
Q2

51 − Q3
35

)
, − 1

2

(
Q1

16 − Q3
46

)

⎤
⎥⎥⎥⎥⎥⎦

,

Q̂αK =
[ 1

2

(
Q1

16 + Q3
46

)
, − 1

2

(
Q2

51 + Q3
35

)]
,

RK =
[
R135 , R136

]
. (3.9)

• Model B2: The second construction uses a different set
of complexified coordinates zi on the T6 torus and also a
different set of even/odd three-form bases. This construc-
tion was previously used for studying the supersymmetric
moduli stabilization in [10] and for a symplectic version
of the scalar potential in [33]. The relevant details about
the setup is briefly presented in the Appendix B. How-
ever, here we present the following flux conversion rela-
tions which we use for translating the first formulation
identities to capture the missing identities,
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HK = [
H135 − H136 , − H136

]
,

ωaK =

⎡
⎢⎢⎣

ω36
1 , −ω46

1

ω61
3 , −ω62

3

ω13
5 + ω13

6 , ω13
5

1
2

(
ω16

1 − ω26
1 − ω36

3 − ω46
3
)

, 1
2

(−ω16
1 − ω26

1 − ω36
3 + ω46

3
)

⎤
⎥⎥⎦ ,

ω̂α
K = [ 1

2

(
ω16

1 − ω26
1 + ω36

3 + ω46
3
)

, 1
2

(
ω16

1 + ω26
1 − ω36

3 + ω46
3
)]

,

Qa
K =

⎡
⎢⎢⎣

−Q1
35 , −Q1

35 − Q1
36

−Q3
51 , −Q3

51 − Q3
61

−Q5
13 + Q6

13 , Q6
13

− 1
2

(
Q1

15 + Q2
51 − Q3

35 + Q4
53

)
, 1

2

(
Q1

15 − Q2
51 + Q3

35 + Q4
53

)

⎤
⎥⎥⎦ ,

Q̂αK = [ 1
2

(−Q1
15 − Q2

51 − Q3
35 + Q4

53
)
, 1

2

(−Q1
15 + Q2

51 + Q3
35 + Q4

53
)]

,

RK = [− R135 − R136, −R135
]

. (3.10)

Unlike the conventions used in [33], here we fix our six-
form to be integrated to unity over the Calabi Yau, and the
four-forms being dual to the respective two-forms as men-
tioned in Eq. (2.2). This helps in avoiding many normal-
izaton factors which otherwise would appear in the Bianchi
identities and make them look more complicated, and hence
more difficult to reshuffle and capture the missing identities.
The main motivation for considering the two models B1 and
B2 which qualitatively look similar has been the fact that
as they have different three-form bases, there are different
intersection numbers on the mirror threefold, which facili-
tates some more freedom to make an educated guess for the
(2, 1)-cohomology sector of the Bianchi identities.

Considering all the non-zero flux components (for Model
B1 and Model B2) as given in Eqs. (B.19) and (B.27), it is
evident that the generic tracelessness conditions (involving
the summing over indices) as given in Eq. (2.8) are automat-
ically satisfied. However, from the flux conversion relations
given in Eqs. (3.9) and (3.10), one can observe a couple of
non-zero flux components of the form ωi ′ j ′ i

′
or Qi ′ i

′ j ′ , where
i ′ is not summed over, being still allowed by the orientifold
projection. This may create a curiosity/suspicion that may be
after imposing the condition to make such flux components
vanish, the mismatch goes away. To prove that it is not the
case, one may consider our Model A itself in which the trace-
lessness condition (2.8) is automatically satisfied along with
having no flux components with a single free-index being
allowed. For Model B also, we will show that even after
imposing such a condition, the ‘mismatch’ between the two
formulations does not go away. After imposing that each of
the flux components with single free index vanish, we find
the following identifications that hold for both of the models
B1 and B2,

ω40 = − ω̂1
1 , ω41 = ω̂1

0,

Q4
0 = − Q̂11, Q4

1 = Q̂10. (3.11)

Thus we find that by imposing this conditions in Eq. (3.11),
the effective flux components for ω-flux as well as for the Q-
flux get reduced from 10 to 8 in both the (cohomology and
the non-cohomology) formulations, and hence the bijection
between the respective flux counting in the two formulation
remains intact.

Second formulation

Unlike the previous model A, this setup has h1,1
+ (X3/σ) = 1,

and so the ‘hatted’ fluxes counted by α indices are non-trivial.
Subsequently, none of the second formulation identities men-
tioned in Table 4 are identically trivial. Therefore, one might
expect that this model would help us getting more insights
of the Bianchi identities and the mismatch. The ten identities
mentioned in Table 4 produce 22 non-trivial constraints for
the second formulation. All these constraints and their num-
ber can be explicitly read-off from the Table 4 by considering
α = 1, a ∈ {1, 2, 3, 4}, K ∈ {0, 1} and the topological data
given in Eq. (B.13). The explicit form of all these 22 second
formulation constraints are listed in Eqs. (3.12) and in Eq.
(C.7), (C.10) and (C.13) of the Appendix C.

Cohomology version of the first formulation

Now we will compute the first formulation Bianchi identities
given in Table 3 and subsequently we will translate them into
the cohomology formulation using the conversion relations
given in Eq. (3.9) for Model B1, and in Eq. (3.10) for Model
B2. Performing a similar analysis to what has been done
for the Model A, we find that Hi jk Ri jk = 0 = ω jk

i Qi
jk ,

and therefore the ‘extra constraint’ of Table 3 is trivially
satisfied. As argued before, this should always be so due to the
orientifold projection. Further, the first and the last Bianchi
identities of the first formulation which corresponds to the
class (I) and class (V) do not have any mismatch, although
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unlike the previous case in Model A, now these identities are
generically non-trivial, and are explicitly given as,

H0 ω̂1
0 + H1 ω̂1

1 = 0 , R0 Q̂
10 + R1 Q̂

11 = 0. (3.12)

These are precisely the second formulation identities HK ω̂α
K

= 0 = RK Q̂αK where α = 1 and K = {0, 1}. The mismatch
in the two formulation lies only in the class (II), (III) and
(IV). The explicit forms of all the identities belonging to
these three classes are collected in the Appendix C. Let us
also mention that in each of the class (II), (III) and (IV) we
do recover all the Bianchi identities of the second formula-
tion, which are explicitly presented in Eqs. (C.7), (C.10) and
(C.13).

(II). (HQ + ωω)-type:

A simple conversion of all the identities of this type using the
expressions in Table 3 results in 16 identities after making
some tedious reshuffling of the constraints. Subsequently we
find that 5 of the 16 constraints are exactly the ones which
belong to the second formulation and their explicit form is
given in Eq. (C.7). In addition, there are 11 constraints col-
lected in Eqs. (C.8) and (C.9) in the Appendix C which cannot
be derived from the second formulation. Moreover, impos-
ing the condition in Eq. (3.11) further reduces the number
of missing identities to 10, which can be expressed in the
following manner,

Model B1 & B2 : H(I Q
a
J ) = 1

2
κ−1
abc ωb (I ωc J ),

for a ∈ {1, 2, 4} and ∀ I, J ;
Model B1 : H(1 Q

a
0) − 1

2
κ−1
abc ωb (1 ωc 0)

−1

2
κ̂−1
aαβ ω̂α

(1 ω̂β
0) = 0, for a = 3;

Model B2 : H(0 Qa
0) − 1

2
κ−1
abc ωb (0 ωc 0)

−1

2
κ̂−1
aαβ ω̂α

(0 ω̂β
0)

= H(1 Q
a

1)

−1

2
κ−1
abc ωb (1 ωc 1) − 1

2
κ̂−1
aαβ ω̂α

(1 ω̂β
1), for a = 3.

(3.13)

Here as before, the underlined indices within (..) are sym-
metrized, and we have considered κ−1

abc = 1/κabc and κ̂−1
aαβ =

1/κ̂aαβ for fixed values of {a, b, c} and {α, β}, and whenever
these intersections are non-zero. These topological numbers
are given in Eq. (B.13).

(III). (HR + ωQ)-type:

This constitutes the most complicated part of the Bianchi
identities, and a simple conversion of all the identities of

this type using the expressions in Table 3 results in many
complicated constraints heavily mixing all the four NS-NS
fluxes, and a priori it does not reflect that one would precisely
recover all the identities of the second formulation. How-
ever some rigorous reshuffling of various flux constraints
results in 26 identities which indeed includes all the 10 iden-
tities of the second formulation as collected in Eq. (C.10) of
the Appendix C. Further, the remaining 16 missing Bianchi
identities are collected in Eqs. (C.11) and (C.12) of the
Appendix C. These are the ones which cannot be derived
from the second formulation. Moreover, imposing the con-
dition in Eq. (3.11) further reduces the number of missing
identities into 13, which can be expressed in the following
manner,

Model B1 & B2 :H(I RJ ) = ω3 (I Q
3
J ), ∀ {I, J };

κ3ac Q
c
(I ωb J ) = κ3bc Q

c
(I ωa J ),

∀ a, b ∈ {1, 2, 4}, ∀ {I, J } ;
Model B1 :3 H(0 R1) − ωa(0 Q

a
1) − ω̂α

(0 Q̂α1) = 0 ;
Model B2 :3 H0 R0 − ωa0 Qa

0 − ω̂α
0 Q̂α0

−H1 R1 + ωa1 Q
a

1 + ω̂α
1 Q̂α1 = 0. (3.14)

(IV). (Rω + QQ)-type:

A simple conversion of all the identities of this type using
the expressions in Table 3 results in 16 constraints after mak-
ing some tedious reshuffling of pieces. Subsequently we find
that 5 of the 16 constraints are exactly the ones which belong
to the second formulation and their explicit form is given
in Eq. (C.13). In addition, there are 11 constraints collected
in Eqs. (C.14) and (C.15) in the Appendix C which cannot
be derived from the second formulation. Moreover, impos-
ing the condition in Eq. (3.11) further reduces the number
of missing identities to 10, which can be expressed in the
following manner,

Model B1 & B2 : R(I ωa J ) = 1

2
κabc Q

b
(I Q

c
J ),

for a ∈ {1, 2, 4} and ∀ I, J ,

Model B1 : R(1 ωa 0) − 1

2
κabc Q

b
(1 Q

c
0)

−1

2
κ̂aαβ Q̂α (1 Q̂β 0) = 0, for a = 3,

Model B2 : R(0 ωa 0) − 1

2
κabc Q

b
(0 Q

c
0)

−1

2
κ̂aαβ Q̂α (0 Q̂β 0)

= R(1 ωb 1) − 1

2
κabc Q

b
(1 Q

c
1)

−1

2
κ̂aαβ Q̂α (1 Q̂β 1), for a = 3. (3.15)
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4 On generic structure of the missing identities

In the previous section we have presented some educated
guess for the cohomology structure in the Kähler moduli
space, i.e. in the (1, 1)-cohomology sector via intersection
numbers κabc and κ̂aαβ . Now we plan to investigate the (2, 1)-
cohomology structure on the side of the complex structure
moduli space, via looking at the intersection numbers on the
mirror threefold.

4.1 Insights for the (1, 1)-cohomology sector

First we collect the results regarding the (1, 1)-cohomology
sector by presenting all the missing identities at one place
which are given as under,

Model A

(II) : H(i Q
a

0) = 1

2
κ−1
abc ωb (i ωc 0), i 	= a ;

H(i Q
a
j) = 1

2
κ−1
abc ωb (i ωc j), i 	= j = a ;

(III) : H(0 Rk) − ωa (0 Q
a
k) δak = 0, ∀ k ;

H(0 Rk) − ωa (0 Q
a
k) + 2 ωa (0 Q

a
j) δaj = 0,

j 	= k ;
H( j Rk) − ωa ( j Q

a
k) + 2 ωa ( j Q

a
k) δaj = 0,

j 	= k ;
H( j Rk) − ωa ( j Q

a
k) δai = 0, i 	= j 	= k ;

(IV) : R(i ωa0) = 1

2
κabc Q

b
(i Q

c
0), i 	= a ;

R(i ωa j) = 1

2
κabc Q

b
(i Q

c
j), i 	= j = a. (4.1)

Model B

(II) : H(I Q
a
J ) = 1

2
κ−1
abc ωb (I ωc J ),

for a ∈ {1, 2, 4} and ∀ I, J ,

Model B1 : H(1 Q
a

0) − 1

2
κ−1
abc ωb (1 ωc 0)

−1

2
κ̂−1
aαβ ω̂α

(1 ω̂β
0) = 0, for a = 3,

Model B2 : H(0 Q
a

0)

−1

2
κ−1
abc ωb (0 ωc 0) − 1

2
κ̂−1
aαβ ω̂α

(0 ω̂β
0)

= H(1 Q
a

1)

−1

2
κ−1
abc ωb (1 ωc 1)

−1

2
κ̂−1
aαβ ω̂α

(1 ω̂β
1), for a = 3.

(III) : H(I RJ ) = ω3 (I Q
3
J ),

∀ {I, J } ,

κ3ac Q
c
(I ωb J ) = κ3bc Q

c
(I ωa J ),

∀ a, b ∈ {1, 2, 4}, ∀ {I, J },
Model B1 : 3 H(0 R1) − ωa(0 Q

a
1) − ω̂α

(0 Q̂α1) = 0,

Model B2 : 3 H0 R0 − ωa0 Q
a

0 − ω̂α
0 Q̂α0 − H1 R1

+ωa1 Q
a

1 + ω̂α
1 Q̂α1 = 0,

(IV) : R(I ωa J ) = 1

2
κabc Q

b
(I Q

c
J ),

for a ∈ {1, 2, 4} and ∀ I, J ,

Model B1 : R(1 ωa 0)

−1

2
κabc Q

b
(1 Q

c
0)

−1

2
κ̂aαβ Q̂α (1 Q̂β 0) = 0, for a = 3,

Model B2 : R(0 ωa 0)

−1

2
κabc Q

b
(0 Q

c
0) − 1

2
κ̂aαβ Q̂α (0 Q̂β 0)

= R(1 ωb 1) − 1

2
κabc Q

b
(1 Q

c
1)

−1

2
κ̂aαβ Q̂α (1 Q̂β 1), for a = 3. (4.2)

Let us also mention that using the collection of missing iden-
tities given in Eq. (4.2), one can check that the following
relations also hold,

Model B1 : H(1 Q
a

0)

−1

2
κ−1
abc ωb (1 ωc 0) − 1

2
κ̂−1
aαβ ω̂α

(1 ω̂β
0) = 0, ∀ a,

Model B2 : H(0 Qa
0)

−1

2
κ−1
abc ωb (0 ωc 0) − 1

2
κ̂−1
aαβ ω̂α

(0 ω̂β
0)

= H(1 Q
a

1)

−1

2
κ−1
abc ωb (1 ωc 1) − 1

2
κ̂−1
aαβ ω̂α

(1 ω̂β
1), ∀ a. (4.3)

and

Model B1 : R(1 ωa 0)

−1

2
κabc Q

b
(1 Q

c
0) − 1

2
κ̂aαβ Q̂α (1 Q̂β 0) = 0, ∀ a,

Model B2 : R(0 ωa 0)

−1

2
κabc Q

b
(0 Q

c
0) − 1

2
κ̂aαβ Q̂α (0 Q̂β 0)

= R(1 ωb 1) − 1

2
κabc Q

b
(1 Q

c
1)

−1

2
κ̂aαβ Q̂α (1 Q̂β 1), ∀ a. (4.4)

These two sets of relations hold for all the values of a, i.e.
∀a ∈ {1, 2, 3, 4}, and hence they appear to represent some
better insights for the (1, 1)-cohomology sector, and their
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completions for the (2, 1)-cohomology sector can be invoked
by looking at the prepotential as we discuss in the next step.

4.2 Insights for the (2, 1)-cohomology sector

The Kähler potential descending from the N = 2 quaternion
sector is determined by a prepotential F via the following
relation [34,44],

KQ = −2 ln
(

4 i F(n′I )
)

, (4.5)

where we have defined n′I as the imaginary part of the com-
plexified chiral variable N I which is defined in Eq. (2.3), i.e.
n′I ≡ e−D X I following the notations of [45,46]. Moreover,
splitting the index I as {0, i} where i is counted via the Hodge
number h2,1 of the threefold, the prepotential F(n′I ) which
is a homogeneous function of degree two in variables n′I can
also be written as,

F(n′I ) = − i (n′0)2 f
(
ui

)
, (4.6)

where f
(
ui

)
is now a new function of the inhomogeneous

variables qi (ui ) = n′i
n′0 = X i

X 0 which implicitly depends on

the complex structure moduli ui as we will illustrate in our
concrete examples. Such a function can be given as a cubic
polynomial which can take the following form,

f
(
ui

)
= 1

6
li jk u

i u j uk + 1

2
l0i j u

i u j + l00i u
i

+1

2
l000 + non pert. , (4.7)

Here the quantities li jk are the triple intersection numbers
on the mirror threefold while l0i j , l00i and l000 can be deter-
mined from the other topological quantities [47]. Also we
would be neglecting the non-perturbaive effects in the pre-
potential assuming the large complex structure limit.

Model A

The prepotential for Model A has been computed in the
Appendix B in detail, and it is given by the Eq. (B.10), using
which we find that

F(n′K ) = − i
√
n′0 n′1 n′2 n′3 = − i (n′0)2 u1 u2 u3,

(4.8)

where in the second equality we have used

q1 = n′1

n′0 = X 1

X 0 = u2 u3, q2 = n′2

n′0 = X 2

X 0 = u1 u3,

q3 = n′3

n′0 = X 3

X 0 = u1 u2, (4.9)

which follows from the definition of the complex structure
moduli as given in Eq. (B.4) and the period vectors given in

Eq. (B.7). Therefore, for Model A, we have the following
intersection numbers,

l123 = 1, l0i j = 0, l00i = 0, l000 = 0. (4.10)

With these ingredients, the missing identities for Model A
can be written as,

H(i Q
a

0) − 1

2
κ−1
abc ωb(i ωc 0) = 0, i 	= a;

H(0 Rk) − ωa (0 Q
a
k) δak = 0, ∀ k;

H(0 Rk) − ωa (0 Q
a
k) + 2 ωa (0 Qa

j)

δaj = 0, j 	= k ;
R(i ωa0) − 1

2
κabc Q

b
(i Q

c
0) = 0, i 	= a; (4.11)

and

1

2
l−1
i jk

[
H( j Q

a
k) − 1

2
κ−1
abc ωb ( j ωc k)

]
= 0, i 	= a ;

1

2
l−1
i jk

[
H( j Rk) − ωa ( j Q

a
k) + 2 ωa ( j Q

a
k) δaj

]
= 0, ∀ i ;

1

2
l−1
i jk

[
H( j Rk) − ωa ( j Q

a
k) δai

]
= 0, ∀ i ;

1

2
l−1
i jk

[
R( j ωak) − 1

2
κabc Q

b
( j Q

c
k)

]
= 0, i 	= a. (4.12)

Model B1

The prepotential for Model B1 has been computed in the
Appendix B in detail, and it is given by the Eq. (B.18), using
which we find that

F(n′K ) = − i n′0 n′1 = − i (n′0)2 u, (4.13)

where we have used q(u) =
(
n′1
n′0

)
= X 1

X 0 = U = u from

Eq. (B.15), and therefore we have the following intersection
numbers,

li jk = 0, l0i j = 0, l001 = 1, l000 = 0. (4.14)

With these ingredients, (most of) the missing identities for
Model B1 can be written as,

l−1
00i

[
H(i Q

a
0) − 1

2
κ−1
abc ωb (i ωc 0)

]

= l00i

[
1

2
κ̂−1
aαβ ω̂α

(i ω̂β
0)

]
, ∀ a ;

l−1
00i

[
H(0 Ri) − ωa (0 Q

a
i) + 2 ωa (0 Qa

i) δai

]

= l00i ω̂α
(0 Q̂α i),

l−1
00i

[
R(i ωa0) − 1

2
κabc Q

b
(i Q

c
0)

]

= l00i

[
1

2
κ̂aαβ Q̂α (i Q̂β 0)

]
, ∀ a ; (4.15)
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and

l−1
00i

[
H(0 Qa

0) − 1

2
κ−1
abc ωb (0 ωc 0)

]
= 0, ∀ i, ∀ a : κ̂aαβ = 0 ;

l−1
00i

[
H(0 R0) − ωa (0 Qa

0) + 2 ωa (0 Qa
0) δai

]
= 0, ∀ i ;

l−1
00i

[
R(0 ωa0) − 1

2
κabc Q

b
(0 Qc

0)

]
= 0, ∀ i, ∀ a : κ̂aαβ = 0.

(4.16)

Model B2

The prepotential for Model B2 has been computed in the
Appendix B in detail, and it is given by the Eq. (B.26), using
which we find that

F(n′K ) = − i

2
(n′0)2

[
1 −

(
n′1

n′0

)2]

= − i

2
(n′0)2

[
1 − u2

]
, (4.17)

where we have used q(u) =
(
n′1
n′0

)
= X 1

X 0 = u, and therefore

we have the following intersection numbers,

li jk = 0, l011 = −1, l00i = 0, l000 = 1. (4.18)

With these ingredients, the missing identities for Model B2
can be written as,

l−1
0I J

[
H(I Q

a
J ) − 1

2
κ−1
abc ωb (I ωc J )

]

= l0I J

[
1

2
κ̂−1
aαβ ω̂α

(I ω̂β
J )

]
, ∀ a ;

l−1
0I J

[
H(I RJ ) − ωa (I Q

a
J ) + 2 ωa (I Q

a
J ) δai

]

= l0I J ω̂α
(I Q̂α J ),

l−1
0I J

[
3 H(I RJ ) − ωa(I Q

a
J )

]
= l0I J ω̂α

(I Q̂α J ),

l−1
0I J

[
R(I ωa J ) − 1

2
κabc Q

b
(I Q

c
J )

]

= l0I J

[
1

2
κ̂aαβ Q̂α (I Q̂β J )

]
, ∀ a ; (4.19)

and

l−1
0I J

[
H(0 Q

a
J ) − 1

2
κ−1
abc ωb (0 ωc J )

]

= 0, ∀ I ∈ {0, i}, ∀ a : κ̂aαβ = 0;
l−1
0I J

[
H(0 RJ ) − ωa (0 Q

a
J ) + 2 ωa (0 Qa

J ) δai

]
= 0;

l−1
0I J

[
R(0 ωa J ) − 1

2
κabc Q

b
(0 Q

c
J )

]

= 0, ∀ I ∈ {0, i}, ∀ a : κ̂aαβ = 0. (4.20)

As a side remark, let us mention that we have also attempted
to look for some identities in the first formulation which could
directly translate into the second formulation. A couple of
such constraints are presented in Table 9.

5 Conclusions and discussions

This article has been focussed on investigating the two for-
mulations of Bianchi identities in type IIA supergravity with
the (non-)geometric fluxes. In what we call the ‘first formu-
lation’, all the fluxes are written using real six-dimensional
indices (Hi jk, ω

k
i j etc.) while in the ‘second formulation’,

the fluxes are expressed using cohomology indices such as
HK , ωaK etc., where a index components are counted to be
h1,1

− (X3/σ) in number while the K index components are
counted to be (1+h2,1(X3)). Assuming the appropriate nor-
malizations of forms, the two formulations of the Bianchi
identities are summarized as in the Table 5. We have per-
formed a deep analysis in search of the missing identities
in the cohomology formulation, and subsequently we have
conjectured a model independent form for (the most of) these
identities which are collected in Table 6.

The main findings and observations from our detailed
analysis can be summarized in the following points,

• All the identities of the second formulations can be
obtained via reshuffling the identities of the first formu-
lation.

• There are certainly several flux constraints in the first
formulation which cannot be obtained from the known
version of the second formulation.

• In our type IIA orientifold construction, it is easier
to generically see the mismatch in the two formula-
tion, in particular for the choice of involution leading
to no ‘hatted’ fluxes, which are counted by the even
(1,1)-cohomology index α. Such fluxes are absent for
h1,1

+ (X3/σ) = 0 and subsequently one can observe that
9 of the 10 second formulation identities as collected in
Table 5 are identically and generically trivial. Our Model
A demonstrates the explicit insights behind these argu-
ments.

• There is no mismatch between the first (Hω-type) and
the last (RQ-type) of the five classes of the constraints
presented in Table 5. In Model A both of these classes,
namely (I) and (V) are trivial while in Model B, they are
non-trivial but identical in the two formulations. So the
mismatch is present only in the (II), (III) and (IV) type
of the constraints of Table 5.

• We have managed to (partially) express the set of miss-
ing Bianchi identities in a model independent manner by
using the topological quantities of the complex threefold
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Table 5 Two formulations of the type IIA Bianchi identities

BIs First formulation Second formulation

(I) Hm[i j ωkl]m = 0 HK ω̂α
K = 0

(II) ω[i j m ωk]ml = Q[i lm Hjk]m HK Q̂αK = 0, ωaK ω̂α
K = 0

(III) Hi jm Rmkl + ωi j
m Qm

kl = 4Q[i m[kω j]ml] ωaK Q̂αK = 0, ω̂α
K Qa

K = 0, ω̂α
[K Q̂α J ] = 0, H[K RJ ] = ωa[K Qa

J ]
(IV) Qm

[i j Ql
k]m = ωlm

[i R jk]m RK ω̂α
K = 0, Qa

K Q̂αK = 0

(V) Rm[i j Qm
kl] = 0 RK Q̂αK = 0

Table 6 A conjectural form for
(some of) the missing identities.
Here we have considered
κ−1
abc = 1/κabc and

κ̂−1
aαβ = 1/κ̂aαβ for fixed values

of {a, b, c} and {α, β}, whenever
these intersections are non-zero,
and similarly for the triple
intersections on the mirror side

BIs Missing identities

(II) l−1
0I J

[
H(I Qa

J ) − 1
2 κ−1

abc ωb (I ωc J )

] = l0I J
[ 1

2 κ̂−1
aαβ ω̂α

(I ω̂β
J )

]
, ∀ a;

l−1
I J0

[
H(J Qa

0) − 1
2 κ−1

abc ωb (J ωc 0)

] = 0, ∀ I ∈ {0, i} & ∀ a : κ̂aαβ = 0 ;
l−1
i jk

[
H( j Qa

k) − 1
2 κ−1

abc ωb ( j ωc k)
] = li jk

[ 1
2 κ̂−1

aαβ ω̂α
( j ω̂β

k)
]
, i 	= a;

(III) l−1
0I J

[
3 H(I RJ ) − ωa(I Qa

J )

] = l0I J ω̂α
(I Q̂α J ) ;

l−1
I J0

[
H(J R0) − ωa (J Qa

0) + 2 ωa (J Qa
0) δai

] = lI J0 ω̂α
(J Q̂α 0);

l−1
i jk

[
H( j Rk) − ωa ( j Qa

k) + 2 ωa ( j Qa
k) δaj

] = 0, ∀ i ;

l−1
i jk

[
H( j Rk) − ωa ( j Qa

k) δai
] = 0, ∀ i ;

(IV) l−1
0I J

[
R(I ωa J ) − 1

2 κabc Qb
(I Qc

J )

] = l0I J
[ 1

2 κ̂aαβ Q̂α (I Q̂β J )
]
, ∀ a;

l−1
I J0

[
R(J ωa 0) − 1

2 κabc Qb
(J Qc

0)

] = 0, ∀ I ∈ {0, i} & ∀ a : κ̂aαβ = 0;

l−1
i jk

[
R( j ωa j) − 1

2 κabc Qb
( j Qc

k)
] = li jk

[ 1
2 κ̂aαβ Q̂α ( j Q̂β k)

]
, i 	= a.

such as the triple-intersection numbers as defined in Eq.
(2.2). These are given in Table 6.

• From Table 3 we observe that in the first formulation the
maximum number of Bianchi identities is 496 while from
the second formulation as listed in Table 4, we find that
the maximum number of identities depend on the hodge
number h1,1

± and h2,1. Therefore there will be certainly
some redundancy in the second formulation, especially
for the orientifold settings having large hodge numbers,
so that to make it consistent with the counting in the
first formulation. However, it is hard to find/claim that
there will be a perfect bijection in terms of the number
of “independent” flux constraints.

From the Table 6, we observe that the index structure for the
h1,1 and h2,1 indices in the missing Bianchi identities are
completely different from those of the second formulation.
For example, after looking at the index structure in the generic
identities of the cohomology formulation as presented in the
Table 4, one can convince that none of the missing identities,
namely the ones given in Eqs. (C.1), (C.4), (C.5) for model A
and those given in Eqs. (C.8), (C.9), (C.11), (C.12), (C.14),
(C.15) for the model B, can be produced from the identities
of Table 4.

As it has been very standard thing to follow, we have
investigated the two toroidal models by considering ingre-
dients (e.g. fluxes and moduli) only in the untwisted sector,

and therefore one might speculate/suspect that may be after
including the twisted sector fluxes, the mismatch between the
two sets of Bianchi identities goes away. However, this cannot
happen because of the simple reason stated regarding the dis-
tinct index structures appearing in the missing Bianchi iden-
tities and the ones presented in the cohomology formulation.
For the later case, the generic expressions are given in Table 4,
and therefore in order to include the twisted sector one has
to simply change the range of the h1,1

± and h2,1
± indices; for

example the T6/(Z2 ×Z2) setup will have 48 twisted moduli
and hence one would need to change a from a = {1, 2, 3}
to a = {1, 2, ..., 51} subject to the appropriate choice of
the involution. This would surely append/modify the set of
identities with additional constraints but those would never
fall in line with the index structure of the missing identities,
e.g. in the sense of contraction of indices, symmetrization of
h2,1 indieces etc. However it would be interesting to investi-
gate on these lines by performing some explicit computations
including the twisted sector.

At least one reason for the mismatch between the Bianchi
identities of the two formulations could be considered to be
the fact that the first formulation is derived by imposing the
nilpotency of the twisted differential D on a generic p-forms
Ap, while the second formulation can be derived by imposing
the nilpotency only on the harmonic forms. By finding some
fundamental derivation of all these missing identities of the
second formulation, it would be interesting to check/verify
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if the conjectured form of (some of) the missing identities
proposed in Table 6 generically holds or not.

From our explicit examples, we have observed that the
second formulation produces only around 15% of the total
number of Bianchi identities in Model A, and that of around
35% in Model B. Therefore, one would expect the scalar
potential to have some strong restrictions imposed from the
missing identities which can further nullify several terms of
the potential making it better or worse for a given model,
depending on the outcome. For example, they can kill many
terms upto the extent that the no-scale structure could win
against some of the terms responsible for the stabilization
of (some of) the moduli, and hence this could be risky for
an already working model. However, these additional iden-
tities could make significant simplifications such that one
could even think of studying moduli stabilization analyti-
cally, and possibly in a model independent manner, which
appears to be extremely challenging task in concrete non-
geometric setups. To conclude, we would like to make a
cautionary remark that these identities might play some cru-
cial role, particularly in the scenarios where one uses only
the second formulation for building the phenomenologically
motivated non-geometric models beyond the toroidal orien-
tifolds.
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A Derivation of the second formulation of Bianchi
identities

The twisted differential operator D is defined as under,

D = d + H ∧ . − ω � . + Q � . − R • .

Here the action of various fluxes appearing in D is such that
for an arbitrary p-form Ap, the pieces H ∧ Ap, ω � Ap,
Q � Ap and R • Ap denote a (p + 3)-form, a (p + 1)-

form, a (p − 1)-form and a (p − 3)-form respectively. More
specifically, there are the following flux actions on various
harmonic-forms [10],

H ∧ 1 = HK βK , H ∧ αK = −HK �6, H ∧ βK = 0,

ω � νa = ωaK βK , ω � μα = ω̂K
α αK ,

ω � αK = ωaK ν̃a, ω � βK = − ω̂K
α μ̃α,

Q � ν̃a = Qa
K βK , Q � μ̃α = Q̂αK αK ,

Q � αK = −Qa
K νa, Q � βK = Q̂αK μα,

R • �6 = RK βK , R • αK = RK 1, R • βK = 0.

(A.1)

Now as can be seen from these flux actions, the operations
�, � and • changes a p-form into a (p + 1)-form, a (p − 1)-
form and a (p − 3)-form respectively, and we have

D Ap = d Ap + H ∧ Ap − ω � Ap

+Q � Ap − R • Ap. (A.2)

Subsequently, we find that (D2 Ap) has seven types of pieces
written as (p+ i)-forms where i ∈ {6, 4, 2, 0,−2,−4,−6}.
These are collected as under,

(i). H ∧ (H ∧ Ap)

(i i). d(H ∧ Ap) + H ∧ (d Ap) − H ∧ (ω � Ap)

−ω � (H ∧ Ap)

(i i i). d2 Ap − d (ω � Ap) − ω � (d Ap) + H ∧ (Q � Ap)

+Q � (H ∧ Ap) + ω � (ω � Ap)

(iv). d (Q � Ap) + Q � (d Ap) − Q � (ω � Ap)

−ω � (Q � Ap) − H ∧ (R • Ap) − R • (H ∧ Ap)

(v). − d (R • Ap) − R • (d Ap) + ω � (R • Ap)

+Q � (Q � Ap) + R • (ω � Ap)

(vi). − Q � (R • Ap) − R • (Q � Ap)

(vi i). R • (R • Ap) (A.3)

For ensuring the identity D2 Ap = 0, each of these seven
pieces has to vanish individually. Now given that the inter-
nal background is a real six-dimensional manifold, one can
observe from collection in Eq. (A.3) that the first (i) and the
last (vi i) expressions are relevant only for Ap being zero-
form 1 and six-form �6 respectively. However, the same
leads to trivial constraints as,

H ∧ (H ∧ 1) = 0, R • (R • �6) = RK (R • βK ) = 0,

(A.4)

where we have used R-flux actions given in Eq. (A.1). Now,
for further simplifying the remaining five type of identities in
Eq. (A.3), we will assume that all fluxes are constant param-
eters which is considered due to the subsequent simpler phe-
nomenological relevance. Moreover, one observation is very
straight that mixing of fluxes in the remaining five constraints
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Table 7 Bases of the various
non-trivial forms for Model A

Basis of Forms Shorthand notation m ∧ n = dxm ∧ dxn etc. is used

νa ν1 = 1 ∧ 2, ν2 = 3 ∧ 4, ν3 = 5 ∧ 6

αK α0 = 2 ∧ 4 ∧ 6, α1 = −2 ∧ 3 ∧ 5, α2 = −1 ∧ 4 ∧ 5, α3 = −1 ∧ 3 ∧ 6

βK β0 = 1 ∧ 3 ∧ 5, β1 = −1 ∧ 4 ∧ 6, β2 = −2 ∧ 3 ∧ 6, β3 = −2 ∧ 4 ∧ 5

ν̃a ν̃1 = ν2 ∧ ν3, ν̃2 = ν3 ∧ ν1, ν̃3 = ν1 ∧ ν2

�6 �6 ≡ ν1 ∧ ν2 ∧ ν3 = 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6

are of Hω, (ω2 + HQ), (HR+ Qω), (Q2 +ωR) and (QR)
types which is in obvious connections with the first formula-
tion of Bianchi identities as given in Table 3. However, for the
second formulation our aim is to compute Bianchi identities
with fluxes written in various cohomology bases and not in
the real six-dimensional indices. Let us take each constraint
one-by-one via considering the flux actions in Eq. (A.1).

• Using the fact that H3 is a three-form constant flux, we
find that d(H∧Ap)+H∧(d Ap) = 0, and so nullification
of terms in the class (i i) simplifies into H ∧ (ω � Ap) +
ω � (H ∧ Ap) = 0. The relevant Ap-forms for expecting
non-trivial relations correspond to p = {0, 2}, and both
of these choices result into a single Bianchi identity as
under,

HK ω̂α
K = 0. (A.5)

• Using d2 = 0 and constancy of fluxes, the nullification
of terms in class (i i i) are reduced into satisfying: H ∧
(Q � Ap) + Q � (H ∧ Ap) + ω � (ω � Ap) = 0. This
results into the following two types of Bianchi identities
via considering Ap = {1, αK , νa},

HK Q̂αK = 0, ωaK ω̂α
K = 0. (A.6)

• Demanding the nullification of terms in collection (iv)

results in the following

ωaK Q̂αK = 0, ω̂α
K Qa

K = 0,

ω̂α
[K Q̂α J ] = 0, H[K RJ ] = ωa[K Qa

J ], (A.7)

where the first two identities follow from the two-forms:
Ap = {νa, μα, ν̃a, μ̃α} while the third and fourth iden-
tities follow from the choice Ap = βK and Ap = αK

respectively. In addition, the bracket [..] denotes anti-
symmetrization of J and K indices.

• Demanding the nullification of collection (v), we get ω�
(R • Ap) + Q � (Q � Ap) + R • (ω � Ap) = 0, which
results in the following two Bianchi identities,

RK ω̂α
K = 0, Qa

K Q̂αK = 0, (A.8)

where the first one follows from Ap = {�6, μα} while
the second one from Ap = ν̃a .

• Finally, the nullification of collection (vi) which is Q �
(R • Ap) + R • (Q � Ap) = 0, gives another Bianchi
identity for the relevant p-forms being Ap = {�6, μ̃

α},

RK Q̂αK = 0. (A.9)

In summary, we have the following set of Bianchi identities
in the second formulation,

HK ω̂α
K = 0, HK Q̂αK = 0, RK Q̂αK = 0,

RK ω̂α
K = 0,

ωaK ω̂α
K = 0, ωaK Q̂αK = 0, Qa

K Q̂αK = 0,

ω̂α
K Qa

K = 0,

ω̂α
[K Q̂α J ] = 0, H[K RJ ] = ωa[K Qa

J ]. (A.10)

B Relevant details on the two orientifold setups

B.1 Type IIA on a T
6/(Z2 × Z2)-orientifold

Let us briefly review the first model which is constructed in
the framework of the type IIA compactification on the ori-
entifold of a T

6/(Z2 × Z2) orbifold. This is the very often
studied type IIA setup, and the orientifold related details can
also be found in [8,35,36,38]. However to establish the con-
sistency with our current notations, we will briefly present
the relevant ingredients about this setup. We consider the
complexified coordinates on the torus T

6 to be defined as
under,

z1 = R1 x1 + i R2 x2, z2 = R3 x3 + i R4 x4,

z3 = R5 x5 + i R6 x6, (B.1)

where 0 ≤ xi ≤ 1 and Ri denote the circumference of the
i-th circle. Further, the two Z2 orbifold actions are defined
as:

θ :
(
z1, z2, z3

)
→

(
− z1, − z2, z3

)
,

θ :
(
z1, z2, z3

)
→

(
z1, − z2, −z3

)
. (B.2)
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In addition an anti-holomorphic involution σ is defined by
the following action:

σ :
(
z1, z2, z3

)
→

(
−z1, −z2, −z3

)
. (B.3)

Note that the six Ri ’s defining the complex coordinates zi ’s
determine the three complex structure moduli ui and three
Kähler moduli t i which can be given as,

t1 = R1R2, t2 = R3R4, t3 = R5R6, u1 = R1

R2 ,

u2 = R3

R4 , u3 = R5

R6 . (B.4)

The bases of various non-trivial forms are summarized as in
Table 7.
As chosen in Eq. (2.2) these basis elements are normalized
accordingly as

∫
X3

αJ ∧βK = δJ
K , and we find that dab =

δab and f = 1, i.e. the six-form is normalized to unity.
Further, there is only one triple intersection number of the
type κabc which is non-zero, namely κ123 = 1 while all the
other intersection numbers including κ̂aαβ are zero. Using the
various even/odd forms in Table 7 and the flux actions given
in Eq. (A.1), one finds the following non-zero components
for the various H, ω, Q and R fluxes,

Hi jk :H135, H146, H236, H245 ,

ωi j
k :ω13

6, ω14
5, ω23

5, ω24
6, ω35

2, ω36
1, ω45

1,

ω46
2, ω51

4, ω52
3, ω61

3, ω62
4,

Qi
jk :Q1

46, Q1
35, Q2

36, Q2
45, Q3

62,

Q3
51, Q4

52, Q4
61, Q5

24, Q5
13, Q6

14, Q6
23,

Ri jk :R246, R235, R145, R136. (B.5)

Note that 16 components out of 20 for each of the Hi jk and
Ri jk flux, while 78 components out of 90 for each of the ωi j

k

and Qi
jk flux, are identically zero under this orientifold con-

struction. In the cohomology version, these flux components
can be rewritten as in Eq. (3.1). Also, from the collection
of the various non-zero flux components in Eq. (B.5) it is
obvious to observe that the tracelessness condition (2.8) is
trivially satisfied.

Now the holomorphic (3, 0) form �3 can be determined
by the choice of the coordinates zi ’s up to an overall constant
factor. The phase is automatically fixed by our choice of anti-
holomorphic involution σ via σ ∗(�3) = �3 which suggests
to consider the following form for the holomorphic three-
form �3,

�3 ≡ X K αK − FK βK = i√
2
dz1 ∧ dz2 ∧ dz3.

(B.6)

Subsequently, the period vectors
(X I ,FJ

)
are given as,

X 0 = γ

√
1

u1 u2 u3 , X 1 = γ

√
u2 u3

u1 ,

X 2 = γ

√
u1 u3

u2 , X 3 = γ

√
u1 u2

u3 , (B.7)

where γ = 1
2 and FI = − i/(8X I ) for each I ∈

{0, 1, 2, 3}. One can observe that X K ’s are real while FK ’s
are pure imaginary functions of the complex structure mod-
uli. Moreover, the overall scale factor has been normalized
via

∫
X3

i �3 ∧ �3 = 1, which is subsequently equivalent to

X I FI = −i/2 as could be easily verified. Now using the
definitions of chiral variable given in Eq. (2.3), we define
n′K ≡ ImNK = e−D X K , and observe that the following
relation holds,

X 0 X 1 X 2 X 3 = 1

16
�⇒ 16 e4 D n′0 n′1 n′2 n′3 = 1,

(B.8)

which implies that the Kähler potential in the quaternion sec-
tor can be written as under,

KQ ≡ 4 D = − ln
(

16 n′0 n′1 n′2 n′3) . (B.9)

This Kähler potential KQ can also be written as KQ =
−2 ln

(
4 i F(n′ I )

)
[34], and therefore it can be determined

by a prepotential of the following form,

F(n′ I ) = −i
√
n′0 n′1 n′2 n′3, (B.10)

which is a homogeneous function of degree 2 in the n′ I vari-
ables.

B.2 Type IIA on a T
6/Z4-orientifold

Now let us consider the type IIA compactification on the ori-
entifold of a T6/Z4 orbifold. This type IIA orientifold setup
has been considered for a couple of times for different pur-
poses, e.g. regarding (supersymmetric) moduli stabilization
in [9,10]. Here we consider two constructions for this sixfold
and will briefly present the relevant necessary ingredients.

Model B1

This model has been considered for the standard moduli sta-
bilization without using the non-geometric flux in [9]. The
complexified coordinates on the torus T6 are defined as

z1 = x1 + i x2, z2 = x3 + i x4, z3 = x5 + i U x6,

(B.11)

where there is a single complex structure modulusU . Further,
theZ4 action � and the anti-holomorphic involution σ acting
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Table 8 Bases of the various
non-trivial forms for Model B

Basis of Forms Shorthand notation m ∧ n = dxm ∧ dxn etc. is used

νa ν1 = 1 ∧ 2, ν2 = 3 ∧ 4, ν3 = 5 ∧ 6

ν4 = 1
2 (1 ∧ 3 − 1 ∧ 4 + 2 ∧ 3 + 2 ∧ 4)

μα μ1 = 1
2 (1 ∧ 3 + 1 ∧ 4 − 2 ∧ 3 + 2 ∧ 4)

αK α0 = 1 ∧ 3 ∧ 5 − 2 ∧ 4 ∧ 5 + 1 ∧ 4 ∧ 5 + 2 ∧ 3 ∧ 5

α1 = 1 ∧ 3 ∧ 6 − 2 ∧ 4 ∧ 6 − 1 ∧ 4 ∧ 6 − 2 ∧ 3 ∧ 6

βK β0 = 1 ∧ 3 ∧ 6 − 2 ∧ 4 ∧ 6 + 1 ∧ 4 ∧ 6 + 2 ∧ 3 ∧ 6

β1 = −1 ∧ 3 ∧ 5 + 2 ∧ 4 ∧ 5 + 1 ∧ 4 ∧ 5 + 2 ∧ 3 ∧ 5

ν̃a ν̃1 = ν2 ∧ ν3, ν̃2 = ν3 ∧ ν1, ν̃3 = ν1 ∧ ν2, ν̃4 = − ν3 ∧ ν4

μ̃α μ̃1 = ν3 ∧ μ1

�6 �6 ≡ ν1 ∧ ν2 ∧ ν3 = − ν3 ∧ ν4 ∧ ν4 = 1 ∧ 2 ∧ 3 ∧ 4 ∧ 5 ∧ 6

on the various coordinates are defined as:

� :
(
z1, z2, z3

)
→

(
i z1, i z2, −z3

)
,

σ :
(
z1, z2, z3

)
→

(
z1, i z2, z3

)
. (B.12)

The bases of various even/odd forms are defined in the
Table 8.
The triple intersection numbers surviving under the orien-
tifold action, and the other normalization factors for the inte-
gral overs forms are fixed as under:

f = 1, da
b = δa

b, d̂α
β = δα

β,{
κabc : κ123 = 1, κ344 = −1

}
,

{
κ̂aαβ : κ̂311 = −1

}
,

(B.13)

which slightly differs from the notations of [9,10]. Now we
consider the holomorphic three-form �3 to be of the follow-
ing form,

�3 ≡ X K αK − FK βK = 1 − i

2
√
U

dz1 ∧ dz2 ∧ dz3

= 1

2
√
U

[
α0 +U α1 + i U β0 + i β1

]
. (B.14)

From this holomorphic three-form �3, one reads the period
vectors to be given as under,

X 0 = 1

2
√
U

= i F1, X 1 =
√
U

2
= i F0. (B.15)

Now using the definitions of chiral variable given as n′K ≡
ImNK = e−D X K , one observes that the following relation
holds,

X 0 X 1 = 1

4
�⇒ 4 e2 D n′0 n′1 = 1, (B.16)

which implies that the Kähler potential in the quaternion sec-
tor can be written as under,

KQ ≡ 4 D = −2 ln
(

4 n′0 n′1) . (B.17)

Comparing this Kähler potential KQ with the relation KQ =
−2 ln

(
4 i F(n′ I )

)
[34], one finds that KQ is determined by

a prepotential of the following form,

F(n′ I ) = −i n′0 n′1, (B.18)

which is a homogeneous function of degree 2 in the n′ I vari-
ables.

Using the various even/odd forms in Table 8 and the flux
actions given in Eq. (A.1), one finds the following non-zero
components for the various H, ω, Q and R fluxes,

H136 = − H246 = H146 = H236 ,

R136 = − R246 = − R146 = − R236 ,

H135 = − H245 = − H145 = − H235,

R135 = − R245 = R145 = R235,

ω13
5 = ω14

5 = ω23
5 = −ω24

5,

Q1
35 = − Q1

45 = − Q2
35 = − Q2

45,

ω13
6 = −ω14

6 = −ω23
6 = −ω24

6,

Q1
36 = Q1

46 = Q2
36 = − Q2

46,

ω15
1 = −ω25

2,

Q6
13 = Q6

14 = Q6
23 = − Q6

24,

ω35
1 = ω35

2 = −ω45
2 = ω45

1,

Q1
16 = − Q2

26,

ω46
1 = −ω36

1 = ω36
2 = ω46

2,

Q3
51 = − Q3

52 = − Q4
52 = − Q4

51,

ω36
3 = −ω46

4,

Q2
51 = − Q1

25,

ω51
3 = ω51

4 = ω52
3 = −ω52

4,

Q3
35 = − Q4

45,

ω45
3 = −ω53

4,

Q3
61 = Q4

61 = Q3
62 = − Q4

62,
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ω26
1 = −ω61

2,

Q3
46 = − Q4

63,

ω62
3 = −ω61

3 = ω61
4 = ω62

4,

Q5
13 = − Q5

14 = − Q5
23 = − Q5

24 . (B.19)

Note that 12 components out of 20 for each of the Hi jk-flux
and the Ri jk-flux, while 58 components out of 90 for each of
the ωi j

k-flux and Qi
jk-flux, are identically zero under this

orientifold construction. Moreover, all the non-zero compo-
nents are not independent, and we find that there are 6 con-
straints among the 8 non-zero components for each of the
Hi jk-flux and the Ri jk-flux while there are 22 constraints
among the 32 non-zero components for each of the ωi j

k-flux
and Qi

jk-flux. Subsequently it turns out that there are only
two independent flux components for each of the Hi jk and
Ri jk flux while there are only 10 independent flux compo-
nents for each of the ωi j

k and Qi
jk fluxes. These details are

collected in Eq. (B.19) while the cohomology version of the
flux components are presented the Eq. (3.9). Also, from the
collection of the various non-zero flux components in Eq.
(B.19) it is obvious to observe that the tracelessness condi-
tion (2.8) is indeed satisfied.

Model B2

Now we consider a different construction for the same orb-
ifold T

6/Z4, which has been used for studying supersym-
metric moduli stabilization with the non-geometric fluxes in
[10]. In this case, the complexified coordinates on the T

6

torus is defined with a shift in the real component of z3 as
compared to the previous case. This is given as under,

z1 = x1 + i x2, z2 = x3 + i x4,

z3 = x5 +
(

1

2
+ i U

)
x6. (B.20)

While the orbifold actionZ4, the anti-holomorphic involution
σ , the two-form bases (μα, νa), the four-form bases (μ̃α, ν̃a)

and the six-form (�6) remain the same as before, the new
three-form basis is taken as under,

α0 = 1 ∧ 3 ∧ 5 + 1 ∧ 3 ∧ 6 + 1 ∧ 4 ∧ 5

+2 ∧ 3 ∧ 5 − 2 ∧ 4 ∧ 5 − 2 ∧ 4 ∧ 6,

α1 = 1 ∧ 3 ∧ 5 + 1 ∧ 4 ∧ 5 + 1 ∧ 4 ∧ 6 + 2 ∧ 3 ∧ 5

+2 ∧ 3 ∧ 6 − 2 ∧ 4 ∧ 5,

β0 = −1 ∧ 3 ∧ 5 + 1 ∧ 4 ∧ 5 + 1 ∧ 4 ∧ 6 + 2 ∧ 3 ∧ 5

+2 ∧ 3 ∧ 6 + 2 ∧ 4 ∧ 5,

β1 = 1 ∧ 3 ∧ 5 + 1 ∧ 3 ∧ 6 − 1 ∧ 4 ∧ 5 − 2 ∧ 3 ∧ 5

−2 ∧ 4 ∧ 5 − 2 ∧ 4 ∧ 6, (B.21)

where as before 1∧3∧5 = dx1∧dx3∧dx5 etc., and one can
easily check that αK ’s are even under involution while βK ’s

are odd under the involution. We consider the holomorphic
three-form �3 to take the following form,

�3 ≡ X K αK − FK βK = 1 − i

2
√
U

dz1 ∧ dz2 ∧ dz3

= 1

2
√
U

[(
1

2
+U

)
α0 +

(
1

2
−U

)
α1

+i

(
1

2
+U

)
β0 − i

(
1

2
−U

)
β1

]
. (B.22)

From these relations, the period vectors can be read-off as
under,

X 0 = 1

2
√
U

(
1

2
+U

)
= i F0, X 1 = 1

2
√
U

(
1

2
−U

)
= − i F1.

(B.23)

Now using the definitions of chiral variable given as n′K ≡
ImNK = e−D X K , one observes that the following relation
holds,

(X 0)2 − (X 1)2 = 1

2
�⇒ (n′0)2 − (n′1)2 = 1

2
e−2 D,

(B.24)

which implies that the Kähler potential in the quaternion sec-
tor can be written as under,

KQ ≡ 4 D = −2 ln
(

2 (n′0)2 − 2 (n′1)2
)

. (B.25)

Comparing this Kähler potential KQ with the relation KQ =
−2 ln

(
4 i F(n′ I )

)
[34], one finds that KQ is determined by

a prepotential of the following form,

F(n′ I ) = − i

2

[
(n′0)2 − (n′1)2

]
, (B.26)

which is again a homogeneous function of degree 2 in the
n′ I variables as expected.

Using the various even/odd forms in Table 8 and the flux
actions given in Eq. (A.1), one finds the following non-zero
components for the various H, ω, Q and R fluxes [10],

H136 = − H246, R
135 = − R245,

H135 = − H245 = − H145 = − H235,

R136 = − R246 = − R146 = − R236,

H146 = H236 = − H135 + H136

R145 = R235 = R135 + R136

ω13
5 = −ω24

5, Q1
35 = − Q2

45,

ω13
6 = −ω14

6 = −ω23
6 = −ω24

6,

Q1
36 = Q1

46 = Q2
36 = − Q2

46,

2 ω16
1 = ω15

1 = −ω25
2 = −2 ω26

2,

2 Q1
15 = −Q1

16 = −2 Q2
25 = Q2

26,
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ω26
1 = −ω61

2,

2 Q4
35 = −Q4

36 = 2 Q3
45 = − Q3

46,

ω36
1 = −ω46

2, Q3
51 = − Q4

52, ω46
1 = ω36

2,

Q2
51 = − Q1

25, ω16
3 = ω62

4,

Q3
35 = − Q4

45, ω26
3 = ω16

4,

Q3
61 = Q4

61 = Q3
62 = − Q4

62,

ω36
3 = −ω46

4, Q6
13 = − Q6

24,

2 ω46
3 = ω45

3 = ω35
4 = 2 ω36

4,

Q5
13 = − Q5

14 = − Q5
23 = − Q5

24,

More constraints :
ω35

1 = ω45
1 = ω35

2 = −ω45
2 = ω36

1 + ω46
1,

Q6
14 = Q6

23 = −Q5
13 + Q6

13,

ω15
3 = ω25

3 = ω15
4 = −ω25

4 = ω16
3 + ω26

3,

Q4
15 = Q3

25 = −Q3
15 − Q3

16,

ω14
5 = ω23

5 = ω13
5 + ω13

6,

Q2
35 = Q1

45 = −Q1
35 − Q1

36. (B.27)

Note that 12 components out of 20 for each of the Hi jk-flux
and the Ri jk-flux, while 54 components out of 90 for each of
the ωi j

k-flux and Qi
jk-flux, are identically zero under this

orientifold construction. Moreover, all the non-zero compo-
nents are not independent, and we find that there are 6 con-
straints among the 8 non-zero components for each of the
Hi jk-flux and the Ri jk-flux while there are 26 constraints
among the 36 non-zero components for each of the ωi j

k-flux
and Qi

jk-flux. Subsequently it turns out that there are only
two independent flux components for each of the Hi jk and
Ri jk flux while there are only 10 independent flux compo-
nents for each of the ωi j

k and Qi
jk fluxes. These details

are collected in Eq. (B.27) while the cohomology version
of the flux components are presented the Eq. (3.10). Also,
from the collection of the various non-zero flux components
in Eq. (B.27) it is obvious to observe that the tracelessness
condition (2.8) is trivially satisfied.

C Cohomology version of the first formulation

Model A

In this section, we present a set of lengthy Bianchi identities
for Model A.

Class (II) identities:

The explicit form of the 12 constraints translated from the
first formulation identities using the conversion relations in

Eq. (3.1) can be collectively given as under,

ω22 ω30 + ω20 ω32 = H2Q
1

0 + H0Q
1

2,

ω23 ω30 + ω20 ω33 = H3Q
1

0 + H0Q
1

3,

ω11 ω30 + ω10 ω31 = H1Q
2

0 + H0Q
2

1,

ω13 ω30 + ω10 ω33 = H3Q
2

0 + H0Q
2

3,

ω11 ω20 + ω10 ω21 = H1Q
3

0 + H0Q
3

1,

ω12 ω20 + ω10 ω22 = H2Q
3

0 + H0Q
3

2,

ω22 ω31 + ω21 ω32 = H2Q
1

1 + H1Q
1

2,

ω23 ω31 + ω21 ω33 = H3Q
1

1 + H1Q
1

3,

ω13 ω32 + ω12 ω33 = H3Q
2

2 + H2Q
2

3,

ω12 ω31 + ω11 ω32 = H2Q
2

1 + H1Q
2

2,

ω13 ω22 + ω12 ω23 = H3Q
3

2 + H2Q
3

3,

ω13 ω21 + ω11 ω23 = H3Q
3

1 + H1Q
3

3. (C.1)

Class (III) identities:

The explicit expressions of the 24 constraints directly com-
ing from translating the first formulation identities using the
conversion relations in Eq. (3.1) can be collectively given as
under,

H0R1 + ω31Q
3

0 = ω10Q
1

1 + ω20Q
2

1 ,

H1R0 + ω30Q
3

1 = ω11Q
1

0 + ω21Q
2

0 ,

H0R2 + ω12Q
1

0 = ω20Q
2

2 + ω30Q
3

2 ,

H2R0 + ω30Q
3

2 = ω12Q
1

0 + ω22Q
2

0 ,

H0R3 + ω23Q
2

0 = ω10Q
1

3 + ω30Q
3

3 ,

H3R0 + ω10Q
1

3 = ω23Q
2

0 + ω33Q
3

0 ,

H1R0 + ω20Q
2

1 = ω11Q
1

0 + ω31Q
3

0 ,

H0R1 + ω21Q
2

0 = ω10Q
1

1 + ω30Q
3

1 ,

H2R0 + ω10Q
1

2 = ω22Q
2

0 + ω32Q
3

0 ,

H0R2 + ω32Q
3

0 = ω10Q
1

2 + ω20Q
2

2 ,

H3R0 + ω20Q
2

3 = ω13Q
1

0 + ω33Q
3

0 ,

H0R3 + ω13Q
1

0 = ω20Q
2

3 + ω30Q
3

3 ,

H2R1 + ω21Q
2

2 = ω12Q
1

1 + ω32Q
3

1 ,

H2R1 + ω11Q
1

2 = ω22Q
2

1 + ω32Q
3

1 ,

H1R2 + ω12Q
1

1 = ω21Q
2

2 + ω31Q
3

2 ,

H1R2 + ω22Q
2

1 = ω11Q
1

2 + ω31Q
3

2 ,

H2R3 + ω23Q
2

2 = ω12Q
1

3 + ω32Q
3

3 ,

H2R3 + ω33Q
3

2 = ω12Q
1

3 + ω22Q
2

3 ,

H3R2 + ω22Q
2

3 = ω13Q
1

2 + ω33Q
3

2 ,

H3R2 + ω32Q
3

3 = ω13Q
1

2 + ω23Q
2

2 ,

H1R3 + ω13Q
1

1 = ω21Q
2

3 + ω31Q
3

3 ,

H1R3 + ω33Q
3

1 = ω11Q
1

3 + ω21Q
2

3 ,

H3R1 + ω31Q
3

3 = ω13Q
1

1 + ω23Q
2

1 ,
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H3R1 + ω11Q
1

3 = ω23Q
2

1 + ω33Q
3

1 . (C.2)

However after some reshuffling, these 24 constraints are
reduced into 18 constraints which consists of the following
six constraints directly coming from the second formulation,

H[K RJ ] = ωa[K Qa
J ], ∀ I, J ∈ {0, 1, 2, 3}. (C.3)

In addition, there are 12 missing constraints collected as
under,

H0 R1 + H1 R0 = ω11 Q
1

0 + ω10 Q
1

1,

ω21 Q
2

0 + ω20 Q
2

1 = ω31 Q
3

0 + ω30 Q
3

1,

H0 R2 + H2 R0 = ω22 Q
2

0 + ω20 Q
2

2,

ω12 Q
1

0 + ω10 Q
1

2 = ω32 Q
3

0 + ω30 Q
3

2,

H0 R3 + H3 R0 = ω33 Q
3

0 + ω30 Q
3

3,

ω13 Q
1

0 + ω10 Q
1

3 = ω23 Q
2

0 + ω20 Q
2

3,

H1 R2 + H2 R1 = ω32 Q
3

1 + ω31 Q
3

2,

ω12 Q
1

1 + ω11 Q
1

2 = ω22 Q
2

1 + ω21 Q
2

2,

H2 R3 + H3 R2 = ω13 Q
1

2 + ω12 Q
1

3,

ω23 Q
2

2 + ω22 Q
2

3 = ω33 Q
3

2 + ω32 Q
3

3,

H3 R1 + H1 R3 = ω23 Q
2

1 + ω21 Q
2

3,

ω13 Q
1

1 + ω11 Q
1

3 = ω33 Q
3

1 + ω31 Q
3

3. (C.4)

Class (IV) identities:

The explicit form of the 12 constraints translated from the
first formulation identities using the conversion relations in
Eq. (3.1) can be collectively given as under,

R2ω30 + R0ω32 = Q1
2Q

2
0 + Q1

0Q
2

2,

R1ω30 + R0ω31 = Q1
1Q

2
0 + Q1

0Q
2

1,

R2ω10 + R0ω12 = Q2
2Q

3
0 + Q2

0Q
3

2,

R3ω10 + R0ω13 = Q2
3Q

3
0 + Q2

0Q
3

3,

R1ω20 + R0ω21 = Q1
1Q

3
0 + Q1

0Q
3

1,

R3ω20 + R0ω23 = Q1
3Q

3
0 + Q1

0Q
3

3,

R3ω32 + R2ω33 = Q1
3Q

2
2 + Q1

2Q
2

3,

R3ω31 + R1ω33 = Q1
3Q

2
1 + Q1

1Q
2

3,

R2ω11 + R1ω12 = Q2
2Q

3
1 + Q2

1Q
3

2,

R3ω11 + R1ω13 = Q2
3Q

3
1 + Q2

1Q
3

3,

R2ω21 + R1ω22 = Q1
2Q

3
1 + Q1

1Q
3

2,

R3ω22 + R2ω23 = Q1
3Q

3
2 + Q1

2Q
3

3. (C.5)

Let us give some remarks on the four identities mentioned
in Eq. (2.7). These are a set of weaker constraints which can
be derived from the first formulation by contracting some
more six-dimensional indices. We try to investigate if this
collection is somehow directly related with some of the sec-
ond formulation identities. It turns out that the first, the third
and the fourth identities of Eq. (2.7) are trivially satisfied for

Model A while the second identity results in the following
set of constraints,

H2R1 + H1R2 = ω32Q
3

1 + ω31Q
3

2 ,

H1R0 + H0R1 = ω11Q
1

0 + ω10Q
1

1 ,

H3R2 + H2R3 = ω13Q
1

2 + ω12Q
1

3 ,

H2R0 + H0R2 = ω22Q
2

0 + ω20Q
2

2 ,

H3R1 + H1R3 = ω23Q
2

1 + ω21Q
2

3 ,

H3R0 + H0R3 = ω33Q
3

0 + ω30Q
3

3. (C.6)

Notice that all of these identities are indeed contained in the
generic constraints of class (III) as collected in Eq. (C.4) or in
the compact collection of Eq. (3.5). In particular, the second
and third relations in Eq. (3.5) are precisely these identities.

Model B

In this section, we present a set of lengthy Bianchi identi-
ties for Model B. Unlike the case for Model A, we do not
present the results which directly come from translating the
first formulation identities using the conversion relations in
Eqs. (3.9) and (3.10) as the same are not only too lengthy
to be presented but also are not very illuminating. However
after reshuffling such relations, one can separate out the con-
straints which come from the second formulation, and in
addition there are some which cannot be obtained from the
second formulation. We present such identities in the follow-
ing collections.

Class (II) identities:

In this case, there are 5 constraints which correspond to the
second formulation, and the same are given as under,

H0 Q̂10 + H1 Q̂
11 = 0, ω10 ω̂1

0 + ω11 ω̂1
1 = 0,

ω20 ω̂1
0 + ω21 ω̂1

1 = 0, ω30 ω̂1
0 + ω31 ω̂1

1 = 0,

ω40 ω̂1
0 + ω41 ω̂1

1 = 0, (C.7)

while there are 11 constraints which are not the part of the
second formulation. Nine of these are the followings which
appears in both the Models B1 and B2,

H0 Q1
0 = ω20 ω30, H1 Q

1
1 = ω21 ω31,

H1 Q
1

0 + H0 Q
1

1 = ω21 ω30 + ω20 ω31 ,

H0 Q2
0 = ω10 ω30, H1 Q

2
1 = ω11 ω31,

H1 Q
2

0 + H0 Q
2

1 = ω11 ω30 + ω10 ω31,

H0 Q4
0 + ω40 ω30 = 0, H1 Q

4
1 + ω41 ω31 = 0,

H1 Q
4

0 + H0 Q4
1 + ω31 ω40 + ω30 ω41 = 0, (C.8)

while there are two more identities which apparently differ
in the two constructions, and these are given as under,

Model B1 : H1 Q̂11 − H0 Q̂10 + ω31 ω̂1
1 − ω30 ω̂1

0 = 0 ,

123
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H1Q
3

0 + H0Q
3

1 − ω10 ω21 − ω11 ω20 + ω40 ω41 + ω̂1
0 ω̂1

1 = 0 .

Model B2 : H1 Q̂10 + H0 Q̂11 + ω31 ω̂1
0 + ω30 ω̂1

1 = 0 ,

H0Q
3

0 − ω10 ω20 + 1

2
ω2

40 + 1

2
(ω̂1

0)2

= H1Q
3

1 − ω11 ω21 + 1

2
ω2

41 + 1

2
(ω̂1

1)2 . (C.9)

Class (III) identities:

In this case, there are 10 constraints which correspond to the
second formulation, and the same are given as under,

ω̂1
0 Q1

0 + ω̂1
1 Q1

1 = 0, ω̂1
0 Q2

0 + ω̂1
1 Q2

1 = 0,

ω̂1
0 Q3

0 + ω̂1
1 Q3

1 = 0,

ω̂1
0 Q4

0 + ω̂1
1 Q4

1 = 0, Q̂10 ω10 + Q̂11 ω11 = 0,

Q̂10 ω20 + Q̂11 ω21 = 0,

Q̂10 ω30 + Q̂11 ω31 = 0, Q̂10 ω40 + Q̂11 ω41 = 0 ,

ω̂1
0 Q̂11 − ω̂1

1 Q̂10 = 0,

H0R1 − ω10 Q
1

1 − ω20 Q2
1 − ω30Q

3
1 − ω40Q

4
1

= H1R0 − ω11 Q
1

0 − ω21 Q
2

0 − ω31Q
3

0 − ω41Q
4

0,

(C.10)

while there are 16 constraints which are not the part of the
second formulation. Twelve of these constraints are the fol-
lowings which appear in both the Models B1 and B2,

H0 R0 = ω30 Q
3

0, H1 R1 = ω31 Q
3

1,

H0 R1 + H1 R0 = ω30 Q
3

1 + ω31 Q
3

0,

ω10 Q1
0 = ω20 Q

2
0,

ω11 Q
1

1 = ω21 Q
2

1, ω11 Q
1

0 + ω10 Q
1

1

= ω21 Q
2

0 + ω20 Q
2

1,

ω40 Q1
0 + ω20 Q

4
0 = 0, ω41 Q

1
1 + ω21 Q

4
1 = 0,

ω41 Q
1

0 + ω40 Q
1

1 + ω21 Q
4

0 + ω20 Q
4

1 = 0,

ω40 Q2
0 + ω10 Q

4
0 = 0, ω41 Q

2
1 + ω11 Q

4
1 = 0,

ω41 Q
2

0 + ω40 Q
2

1 + ω11 Q
4

0 + ω10 Q4
1 = 0,

(C.11)

while there are four more identities which apparently differ
in the two constructions, and these are given as under,

Model B1 : Q1
0 ω̂1

0 − Q1
1 ω̂1

1

= ω21 Q̂
11 − ω20 Q̂

10,

Q2
0 ω̂1

0 − Q2
1 ω̂1

1 = ω11 Q̂
11

−ω10 Q̂10, Q4
0 ω̂1

0 − Q4
1 ω̂1

1

= ω40 Q̂
10 − ω41 Q̂

11,

H0R1 + H1R0 − ω11 Q
1

0

−ω10 Q1
1 − ω21 Q

2
0 − ω20 Q

2
1

+ω31Q
3

0 + ω30Q
3

1 + ω41Q
4

0

+ω40Q
4

1 + ω̂1
0 Q̂11 + ω̂1

1 Q̂10 = 0,

Model B2 : Q1
1 ω̂1

0 + Q1
0 ω̂1

1

+ω21 Q̂
10 + ω20 Q̂11 = 0,

Q2
1 ω̂1

0 + Q2
0 ω̂1

1 + ω11 Q̂
10 + ω10 Q̂

11 = 0,

Q4
1 ω̂1

0 + Q4
0 ω̂1

1 + ω41 Q̂
10

+ω40 Q̂11 = 0,

H0R0 − ω10 Q1
0 − ω20 Q

2
0 + ω30Q

3
0

+ω40Q
4

0 + ω̂1
0 Q̂10

= H1R1 − ω11 Q
1

1 − ω21 Q
2

1 + ω31Q
3

1

+ω41Q
4

1 + ω̂1
1 Q̂11. (C.12)

Class (IV) identities:

In this case, there are 5 constraints which correspond to the
second formulation, and the same are given as under,

R0 ω̂1
0 + R1 ω̂1

1 = 0, Q1
0 Q̂10 + Q1

1 Q̂
11 = 0,

Q2
0 Q̂

10 + Q2
1 Q̂

11 = 0, Q3
0 Q̂

10 + Q3
1 Q̂

11 = 0,

Q4
0 Q̂10 + Q4

1 Q̂
11 = 0, (C.13)

while there are 11 constraints which are not the part of the
second formulation. Nine of these are the followings which
appears in both the Models B1 and B2,

Q1
0 Q

3
0 = R0 ω20,

Q1
1 Q

3
1 = R1 ω21, Q1

1 Q
3

0 + Q1
0 Q3

1

= R1 ω20 + R0 ω21 ,

Q2
0 Q

3
0 = R0 ω10, Q2

1 Q
3

1

= R1 ω11,

Q2
1 Q

3
0 + Q2

0 Q3
1 = R1 ω10 + R0 ω11 ,

Q4
0 Q3

0 + R0 ω40 = 0, Q4
1 Q

3
1 + R1 ω41 = 0,

Q3
1 Q

4
0 + Q3

0 Q
4

1 + R1 ω40 + R0 ω41 = 0, (C.14)

while there are two more identities which apparently differ
in the two constructions, and these are given as under,

Model B1 : Q3
0 Q̂10 − Q3

1 Q̂
11 + R0 ω̂1

0 − R1 ω̂1
1 = 0 ,

R0 ω31 + R1 ω30 − Q1
1 Q

2
0 − Q1

0 Q2
1 + Q4

0 Q4
1

+ Q̂10 Q̂11 = 0 .
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Table 9 A correlation of the
weaker first formulation
identities in Model A and Model
B

BIs First formulation Second formulation

(1) 2 Hklm Rklm = 3 ωkl
k Qm

lm (Trivial) Model A: Trivial Model B: Trivial

(2) Hkl[i Q j]kl − 1
2 Qk

kl Hli j = 1
2 ωkl

k ωi j
l Model A: Trivial Model B: HK Q̂αK = 0

(3) ωkl
[i Rkl j] + 1

2 ωkl
k Rli j + 1

2 Qk
kl Ql

i j = 0 Model A: Trivial Model B: RK ω̂α
K = 0

(4) Hkli Rkl j = Qi
kl ω

j
kl + ωkl

k Qi
l j + Qk

kl ωli
j Model A: Eq. (C.6) Model B: Eq. (C.18)

Model B2 : Q3
1 Q̂

10 + Q3
0 Q̂11 + R1 ω̂1

0 + R0 ω̂1
1 = 0 ,

R0 ω30 − Q1
0 Q2

0 + 1

2
(Q4

0)
2 + 1

2
(Q̂10)

2 = R1 ω31

− Q1
1 Q

2
1 + 1

2
(Q4

1)
2 + 1

2
(Q̂11)

2
. (C.15)

On the lines of the discussion on the (2, 1)-cohomology struc-
ture in Sect. 4, we find that the apparent different constraints
in each of the three classes, namely (II), (III) and (IV), are
also correlated, and can be combined into the following rela-
tions,

l−1
0J K

[
H(J Q3

K ) − 1

2
κ−1

3bc ωb (J ωc K )

]

= l0J K

[
1

2
κ̂−1

3αβ ω̂α
(J ω̂β

K )

]
∀ J, K ,

l−1
0J K

[
3 H(J RK ) − Qa

(J ωa K )

]
= l0J K Q̂α(J ω̂α

K ) ∀ J, K ,

l−1
0J K

[
R(J ω3 K ) − 1

2
κ3bc Q

b
(J Qc

K )

]

= l0J K

[
1

2
κ̂3αβ Q̂α (J Q̂β K )

]
∀ J, K . (C.16)

Finally, let us give some remarks on the four identities men-
tioned in Eq. (2.7). In this case it turns out that the fourth
identity in Eq. (2.7) is trivially satisfied while the first and
third one give a single constraint each which can be rewritten
as

H0 Q̂
10 + H1 Q̂

11 = 0, R0 ω̂1
0 + R1 ω̂1

1 = 0, (C.17)

which are the same as those of the second formulation. In
addition, the most complicated identity out of (2.7) turns out
to be the second one which, with a little bit of reshuffling
and after being accompanied with the second formulation
constraints along with condition (3.11), can produce the fol-
lowing six ‘missing’ constraints,

Model B1 : H0R0 = ω30Q
3

0, H1R1 = ω31Q
3

1,

H0 R1 + H1 R0 = ω10 Q
1

1 + ω11 Q
1

0

= ω20 Q
2

1 + ω21 Q
2

0,

ω40 Q2
0 + ω11 Q

4
1 = ω41 Q

2
1 + ω10 Q4

0,

ω40 Q
1

0 + ω21 Q
4

1 = ω41 Q
1

1 + ω20 Q
4

0,

Model B2 : 2H0R0 − ω10Q
1

0 − ω20Q
2

0

= 2H1R1 − ω11Q
1

1 − ω21Q
2

1,

H0 R0 + H1 R1 = ω30 Q
3

0 + ω31 Q
3

1, H0 R1

+H1 R0 = ω30 Q
3

1 + ω31 Q
3

0 ,

ω40 Q
1

0 + ω20 Q4
0 = ω41 Q

1
1 + ω21 Q

4
1,

ω40 Q
2

0 + ω10 Q4
0 = ω41 Q

2
1 + ω11 Q

4
1,

ω10Q
1

0 + ω21 Q
2

1 = ω11 Q
1

1 + ω20Q
2

0, (C.18)

which is indeed a subset of the identities arising from their
respective first formulation.

We summarize the correlation of the weaker first formu-
lation identities for the Model A and Model B in Table 9.
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