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Abstract A study of the slow-roll inflation for an expo-
nential potential in the frame of the scalar-tensor theory is
performed, where non-minimal kinetic coupling to curvature
and non-minimal coupling of the scalar field to the Gauss-
Bonnet invariant are considered. Different models were con-
sidered with couplings given by exponential functions of the
scalar field, that lead to graceful exit from inflation and give
values of the scalar spectral index and the tensor-to-scalar
ratio in the region bounded by the current observational data.
Special cases were found, where the coupling functions are
inverse of the potential, that lead to inflation with constant
slow-roll parameters, and it was possible to reconstruct the
model parameters for given ns and r . In first-order approxi-
mation the standard consistency relation maintains its valid-
ity in the model with non-minimal coupling, but it modifies
in presence of Gauss–Bonnet coupling. The obtained Hub-
ble parameter during inflation, H ∼ 10−5Mp and the energy
scale of inflation V 1/4 ∼ 10−3Mp, are consistent with the
upper bounds set by latest observations.

1 Introduction

The theory of cosmic inflation [1–3] that has been favored by
the latest observational data [4–7], is by now the most likely
scenario for the early universe, since it provides the expla-
nation to flatness, horizon and monopole problems, among
others, for the standard hot Bing Bang cosmology [8–14].
Inflation provides a detailed account of fluctuations that con-
stitute the seeds for the large scale structure and the observed
CMB anisotropies [15–24], as well as predicts a nearly scale
invariant power spectrum.

The inflation scenario can be realized by many mod-
els, starting from the simplest, the minimally coupled scalar
field [2,3] and continuing with more elaborated models like
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non-minimally coupled scalar field [25–29], kinetic inflation
[30], vector inflation [31–33], inflaton potential in supergrav-
ity [34–36], string theory inspired inflation [37–42], Dirac–
Born–Infeld inflation model [43–46], α-attractor models
originated in supergravity [47–51]. Apart from the DBI mod-
els of inflation, another class of ghost-free models has been
recently considered, named “Galileon” models [52,53]. The
main characteristic of these models is that the gravitational
and scalar field equations remain as second-order differential
equations. The Galileon terms modify the kinetic term com-
pared to the standard canonical scalar field, which in turn can
relax the physical constraints on the potential. In the case of
the Higgs-type potential, for instance, one of the effects of
the higher derivative terms is the reduction of the self cou-
pling of the Higgs boson, so that the spectra of primordial
density perturbations are consistent with the present obser-
vational data [54,55]. Galilean models of inflation have been
considered in [54–59]. Some aspects of slow-roll inflation
with non-minimal kinetic coupling have been analyzed in
[60–65]. For a sample papers devoted to the study of slow-
roll inflation in the context of Gauss–Bonnet (GB) coupling
see [66–79].

This paper is dedicated to the study of the slow-roll infla-
tion in the scalar-tensor model with non-minimal kinetic
coupling to the Einstein tensor and coupling of the scalar
field to the Gauss–Bonnet 4-dimensional invariant. The non-
minimal couplings of the scalar field to curvature of the type
considered in the present paper arise, among other couplings,
in fundamental theories like supergravity and string theory
after specific compactification to an effective four dimen-
sional theory [80–84], where the scalar field is related to
the size of the compact extra dimensions and the (expo-
nential) potential is related to the curvature of the extra
dimensional manifold. Note however that for the potential
V = V0eλφ , that produces power-law a ∝ t2/λ2

, the con-
stant λ that appear from compactifications is usually of order
1 or greater, which is insufficient to generate inflation. By
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considering non-minimal derivative and Gauss-Bonnet cou-
plings, this problem can be avoided. This makes it appealing
to analyze the mechanism of slow-roll inflation in such theo-
ries where the scalar field appears non-minimally coupled to
curvature terms. This could provide a connection with fun-
damental theories in a high curvature regime characteristic
of inflation.

The Gauss–Bonnet and non-minimal kinetic couplings
have also been considered in the dark energy problem [85–
90]. Particularly, couplings with exponential form have been
considered in [91] to study the late time cosmological dynam-
ics, where stable and saddle scaling solutions have been
obtained and a critical points corresponding to de Sitter
solution were found. The de Sitter solutions correspond to
the critical points C and E in [91] with marginal stability,
which could be considered as possible (saddle point) infla-
tionary solutions. So this model could describe an inflation-
ary de Sitter solution that can evolve towards scaling solu-
tions with saddle character or to stable attractor dominated
by the scalar field, describing accelerated expansion [91].
Thus, the present model can provide a connection between
early time inflation and late time accelerated expansion (in
[92] special cases of quintessence and phantom solutions
have been studied with exponential couplings). For unified
description of early time inflation and late time accelerated
expansion in the framework of scalar tensor theories see [93].

In the present work we consider models with exponential
potential and exponential couplings. An important feature
of the exponential potential (in the framework of minimally
coupled scalar field model) is that under its dominance the
universe expands following a power-law, which describes
the asymptotic behavior of the background spacetime in dif-
ferent epochs. This is the case of the late time dark energy
dominated universe, where the exponential potential can give
rise to accelerated expansion [94,95]. Applied to the study
of the early universe, the exponential potential in the min-
imally coupled scalar field model, gives rise to power-law
inflation [96–100] with constant slow-roll parameters. This
implies that the exponential potential lacks a successful exit
from inflation, which added to the fact that the tensor-to-
scalar ratio is larger than the limits set by Planck data, rules
out the exponential potential in the standard canonical scalar
field model. In the present paper we address the above short-
comings of the exponential potential, this time in the frame
of scalar-tensor theories, taking into account non-minimal
kinetic an GB couplings, which could play relevant role in the
high curvature regime typical for inflation. We find that the
above couplings predict values for the scalar spectral index
and the tensor-to-scalar ratio that fall in the region quoted by
the latest observational data. The paper is organized as fol-
lows. In the next section we introduce the model, the back-
ground field equations and define the slow-roll parameters.
In Sect. 3 we use quadratic action for the scalar and tensor

perturbations to evaluate the primordial power spectra. In
Sect. 4 we analyze several models with exponential potential
and exponential couplings. Some discussion is presented in
Sect. 5.

2 The model and background equations

We consider the following scalar-tensor model

S =
∫

d4x
√−g

[
1

2
F(φ)R − 1

2
∂μφ∂μφ − V (φ)

+ F1(φ)Gμν∂
μφ∂νφ − F2(φ)G

]
(2.1)

whereGμν is the Einstein’s tensor,G is the GB 4-dimensional
invariant given by

G = R2 − 4RμνR
μν + RμνλρR

μνλρ (2.2)

F(φ) = 1

κ2 + f (φ), (2.3)

and κ2 = M−2
p = 8πG. One remarkable characteristic of

this model is that it yields second-order field equations and
can avoid Ostrogradski instabilities. In the spatially flat FRW
background

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (2.4)

one can write the field equations as follows

3H2F

(
1−3F1φ̇

2

F
−8H Ḟ2

F

)
=1

2
φ̇2 + V − 3H Ḟ (2.5)

2Ḣ F

(
1− F1φ̇

2

F
−8H Ḟ2

F

)
= −φ̇2 − F̈ + H Ḟ + 8H2 F̈2

−8H3 Ḟ2 − 6H2F1φ̇
2 + 4HF1φ̇φ̈ + 2H Ḟ1φ̇

2 (2.6)

φ̈ + 3H φ̇ + V ′ − 3F ′ (2H2 + Ḣ
)

+24H2
(
H2 + Ḣ

)
F ′

2 + 18H3F1φ̇

+12H Ḣ F1φ̇ + 6H2F1φ̈ + 3H2F ′
1φ̇

2 = 0 (2.7)

where (′) denotes derivative with respect to the scalar field.
Related to the different terms in the action (2.1) we define
the following slow-roll parameters

ε0 = − Ḣ

H2 , ε1 = ε̇0

Hε0
(2.8)

�0 = Ḟ

H F
, �1 = �̇0

H�0
(2.9)

k0 = 3F1φ̇
2

F
, k1 = k̇0

Hk0
(2.10)

�0 = 8H Ḟ2

F
, �1 = �̇0

H�0
(2.11)
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The slow-roll conditions in this model are satisfied if
ε0, ε1, �0, . . . << 1. From the cosmological Eqs. (2.5)
and (2.6) and using the parameters (2.8)–(2.11) we can write
the following expressions for φ̇2 and V

V = H2F

[
3−5

2
�0−2k0−ε0+5

2
�0+1

2
�0 (�1−ε0+�0)

−1

2
�0 (�1 − ε0 + �0) − 1

3
k0 (k1 + �0 − ε0)

]

(2.12)

φ̇2 = H2F

[
2ε0 + �0 − �0 − 2k0 + �0 (�1 − ε0 + �0)

−�0 (�1 − ε0 + �0) + 2

3
k0 (k1 + �0 − ε0)

]
(2.13)

where we used

F̈ = H2F�0 (�1 − ε0 + �0) ,

F̈2 = F�0

8
(�1 + ε0 + �0) (2.14)

It is also useful to define the variable Y from Eq. (2.13) as

Y = φ̇2

H2F
(2.15)

where it follows that Y = O(ε). Under the slow-roll condi-
tions φ̈ << 3H φ̇ and �i , ki ,�i << 1, it follows from the
field Eqs. (2.5)–(2.7) that they can be reduced to

3H2F � V, (2.16)

2Ḣ F � −φ̇2 + H Ḟ − 6H2F1φ̇
2 − 8H3 Ḟ2, (2.17)

3H φ̇ + V ′ − 6H2F ′ + 18H3F1φ̇ + 24H4F ′
2 � 0, (2.18)

The scalar field equation (2.18) allows to determine the num-
ber of e-folds as

N =
∫ φE

φI

H

φ̇
dφ

=
∫ φE

φI

H2 + 6H4F1

2H2F ′ − 8H4F ′
2 − 1

3V
′ dφ (2.19)

where φI and φE are the values of the scalar field at the
beginning and end of inflation respectively.

3 Second order action for the scalar and tensor
perturbations

3.1 Scalar perturbations

The details of the first and second order perturbations from
the model (2.1) are given in [101]. The second order action

for the scalar perturbations is given by the following expres-
sion

δS2
s =

∫
dtd3xa3

[
Gs ξ̇2 − Fs

a2 (∇ξ)2
]

, (3.1)

where

Gs = �

�2 G2
T + 3GT (3.2)

Fs = 1

a

d

dt

( a

�
G2
T

)
− FT (3.3)

with

GT = F − F1φ̇
2 − 8H Ḟ2. (3.4)

FT = F + F1φ̇
2 − 8F̈2 (3.5)

� = FH + 1

2
Ḟ − 3HF1φ̇

2 − 12H2 Ḟ2 (3.6)

� = −3FH2 − 3H Ḟ + 1

2
φ̇2

+18H2F1φ̇
2 + 48H3 Ḟ2 (3.7)

And the sound speed of scalar perturbations is given
by

c2
S = FS

GS
(3.8)

The conditions for avoidance of ghost and Laplacian insta-
bilities as seen from the action (3.1) are

F > 0, G > 0

We can rewrite GT , FT , � and � in terms of the slow-roll
parameters (2.8)–(2.11) and using Eqs. (2.13) and (2.14), as
follows

GT = F

(
1 − 1

3
k0 − �0

)
(3.9)

FT = F

(
1 + 1

3
k0 − �0 (�1 + ε0 + �0)

)
(3.10)

� = FH

(
1 + 1

2
�0 − k0 − 3

2
�0

)
(3.11)

� = −FH2
[

3−ε0+5

2
�0−5k0−11

2
�0+1

2
�0 (�1−ε0+�0)

−1

3
k0 (k1−ε0+�0) −1

2
�0 (�1−ε0+�0)

]
(3.12)

The expressions forGS and c2
S in terms of the slow roll param-

eters can be written as
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GS = F
( 1

2Y + k0 + 3
4W

2(1 − �0 − 1
3k0)

)
(
1 + 1

2W
)2 (3.13)

c2
S = 1 + W 2

( 1
2�0(�1 + ε0 + l0 − 1) − 1

3k0
) + W

( 2
3k0 (2 − k1 − l0) + 2�0ε0

) − 4
3k0ε0

Y + 2k0 + 3
2W

2(1 − �0 − 1
3k0)

(3.14)

where

W = �0 − �0 − 4
3k0

1 − �0 − 1
3k0

(3.15)

Notice that in general GS = FO(ε) and c2
S = 1 + O(ε).

Also in absence of the kinetic coupling it follows that c2
S =

1+O(ε2). Keeping first order terms in slow-roll parameters,
the expressions for GS y c2

S reduce to

GS = F

(
ε0 + 1

2
l0 − 1

2
�0

)
(3.16)

c2
S = 1 +

4
3k0

(
l0 − �0 − 4

3k0
) − 4

3k0ε0

2ε0 + l0 − �0
(3.17)

After the appropriate change of variables to normalize the
action (2.1), we find the equation of motion, working in the
Fourier representation, as [59] (see (F.7) of [101])

Ũ ′′
k +

(
k2 − z̃′′

z̃

)
Ũk = 0 (3.18)

where

dτs = cS
a
dt, z̃ = √

2a (FSGS)
1/4 , Ũ = ξ z̃ (3.19)

From (3.19), and keeping up to first-order terms in slow-roll
variables in (3.13) and (3.14), we find the following expres-
sion for z̃′′/z̃

z̃′′

z̃
= a2H2

c2
S

[
2 − ε0 + 3

2
�0 + 3

2

2ε0ε1 + �0�1 − �0�1

2ε0 + �0 − �0

]
.

(3.20)

Taking into account the slow-roll parameters we can rewrite
the Eq. (3.18) in the form

Ũ ′′
k + k2Ũk + 1

τ 2
s

(
μ2
s − 1

4

)
Ũk = 0 (3.21)

where

μ2
s = 9

4

[
1 + 4

3
ε0 + 2

3
�0 + 2

3

2ε0ε1 + �0�1 − �0�1

2ε0 + �0 − �0

]
,

(3.22)

After the integration of (3.21) using the slow-roll formal-
ism (see [101] for details) we find, at super horizon scales
(cSk << aH ), the following asymptotic solution

Ũk = 1√
2
ei

π
2 (μs− 1

2 )2μs− 3
2

�(μs)

�(3/2)

√−τs(−kτs)
−μs . (3.23)

On the other hand, from the relationship

z̃′

z̃
= − 1

(1 − ε0)τs

[
1 + 1

2
�0 + 1

2

2ε0ε1 + �0�1 − �0�1

2ε0 + �0 − �0

]

= − 1

τs

(
μs − 1

2

)
, (3.24)

and after integrating in the slow-roll approximation we find

z̃ ∝ τ
1
2 −μs
s , (3.25)

which gives in the super horizon regime, from (3.19), the
following k-dependence for the amplitude of the scalar per-
turbations

ξk = Ũk

z̃
∝ k−μs (3.26)

Then, from the power spectra for the scalar perturbations

Pξ = k3

2π2 |ξk |2 (3.27)

we find the spectral index, in first order in slow-roll param-
eters

ns − 1 = d ln Pξ

d ln k
= 3 − 2μs = −2ε0 − �0

−2ε0ε1 + �0�1 − �0�1

2ε0 + �0 − �0
(3.28)

3.2 Tensor perturbations

The second order action for the tensor perturbations is given
by [101]

δS2 = 1

8

∫
d3xdtGT a

2

[(
ḣi j

)2 − c2
T

a2

(∇hi j
)2

]
(3.29)

where GT and FT are defined in (3.4) and (3.5) [in terms of
the slow-roll variables (2.8)–(2.11)]. The velocity of tensor
perturbations is given by

c2
T = FT

GT
= 3 + k0 − 3�0 (�1 + ε0 + �0)

3 − k0 − 3�0
. (3.30)

Following the same lines as for the scalar perturbations and
introducing the following variables

dτT = cT
a
dt, zT = a

2
(FTGT )1/4 , vi j = zT hi j , (3.31)
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that lead to the equation

v′′
(k)i j +

(
k2 − z′′T

zT

)
v(k)i j = 0, (3.32)

The deduction of the power spectrum for primordial tensor
perturbations follows the same pattern as for the scalar per-
turbations. At super horizon scales (cT k << aH ) the tensor
modes (3.29) have the same functional form for the asymp-
totic behavior as the scalar modes (3.23), and therefore we
can write power spectrum for tensor perturbations as

PT = k3

2π2 |h(k)
i j |2 (3.33)

where, in first order in slow-roll parameters, the tensor spec-
tral index has the following form [101]

nT = 3 − 2μT = −2ε0 − �0 (3.34)

where

μT = 3

2
+ ε0 + 1

2
�0. (3.35)

An important quantity is the relative contribution to the power
spectra of tensor and scalar perturbations, defined as the ten-
sor/scalar ratio r

r = PT (k)

Pξ (k)
. (3.36)

For the scalar perturbations, using (3.27), we can write the
power spectra as

Pξ = AS
H2

(2π)2

G1/2
S

F3/2
S

(3.37)

where

AS = 1

2
22μs−3

∣∣∣ �(μs)

�(3/2)

∣∣∣2

and all magnitudes are evaluated at the moment of horizon
exit when csk = aH (kτs = −1). For z̃ we used (3.19)
with a = cSk/H . In analogous way we can write the power
spectra for tensor perturbations as

PT = 16AT
H2

(2π)2

G1/2
T

F3/2
T

(3.38)

where

AT = 1

2
22μT −3

∣∣∣ �(μT )

�(3/2)

∣∣∣2
.

Noticing that AT /AS � 1 when evaluated at the limit
ε0, �0,�0, . . . << 1, as follows from (3.22) and (3.35), we
can write the tensor/scalar ratio as follows

r = 16
G1/2
T F3/2

S

G1/2
S F3/2

T

= 16
c3
SGS

c3
TGT

(3.39)

taking into account the expressions forGT ,FT ,GS,FS given
in (3.9)–(3.15), up to first order, and using the condition
ε0, �0, k0,�0 << 1, then we can see that cT � cS � 1
(in fact in the limit �0 → 0, cS = 1 independently of the
values of ε0 and �0) and we can make the approximation

r = 8

(
2ε0 + �0 − �0

1 − 1
3k0 − �0

)
� 8 (2ε0 + �0 − �0) (3.40)

which is a modified consistency relation due to the non-
minimal and GB couplings. In the limit �0,�0 → 0 it gives
the standard consistency relation for the single canonical
scalar field inflation

r = −8nT , (3.41)

with nT = −2ε0. Note that if the model contains only non-
minimal coupling F(φ), then r � 8(2ε0 + �0), and from
(3.34) it follows that the standard consistency relation (3.41)
remains valid in presence of non-minimal coupling. In the
general case from (3.40) we find the deviation from the stan-
dard consistency relation in the form

r = −8nT + δr, δr = −8�0, (3.42)

with nT given by (3.34). Here for standard consistency rela-
tion we mean the relation (3.41) independently of the content
of nT . This expression can also be written as

r = −8nT

(
1 + �0

nT

)

= −8nT

(
1 − �0

2ε0 + �0

)
= −8γ nT (3.43)

where γ = 1 − �0/(2ε0 + �0) characterizes the deviation
from the standard consistency relation. Note that this devia-
tion in first-order approximation is independent of k0. Thus,
the consistency relation still valid in the case of non-minimal
coupling (�0 = 0), and a deviation from the standard con-
sistency relation can reveal the effect of interactions beyond
the simple canonical or non-minimally coupled scalar field.

4 Inflation driven by exponential potential and
exponential couplings

The exponential potential leads to scaling solutions impor-
tant to describe different epochs of cosmological evolution,
including solutions with accelerated expansion. In the stan-
dard minimally coupled scalar field it leads to inflationary
solutions with constant slow-roll parameters, that lead to
eternal inflation, which added to the strong signal of gravita-
tional waves (r > 0.1), makes the model inviable. As stated
in the introduction, the exponential potential and couplings
appear in a number of compactifications from higher dimen-
sional fundamental theories such as supergravity and string
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theory, where the scalar field encodes the size of the extra
dimensions. Although these couplings are inspired by higher-
dimensional gravitational theories, in the present study we
are not trying to match any specific model coming directly
from higher dimensional compactifications. The viability of
the present model is probed by the fact that it leads to grace-
ful exit from inflation, and after estimating the power spectra
of scalar and tensor perturbations it gives the main inflation-
ary observables ns and r in the region quoted by the latest
observational data.

4.1 Kinetic coupling

Let us start with the model (2.1) with the explicit form of the
couplings given by

F (φ) = 1

κ2 , V (φ) = V0e
−λκφ, F1 (φ) = fke

−ηκφ,

F2 (φ) = 0. (4.1)

from (2.8) to (2.11), using (2.16)–(2.18) we find the slow-roll
parameters

ε0 = λ2

2
(
2αe−(λ+η)φ + 1

) , ε1 = 2αλ(λ + η)e(λ+η)φ

(
e(λ+η)φ + 2α

)2 ,

k0 = αλ2e(λ+η)φ

(
e(λ+η)φ + 2α

)2 ,

k1 = −λ(λ + η)e(λ+η)φ
(
e(λ+η)φ − 2α

)
(
e(λ+η)φ + 2α

)2 (4.2)

where we have set κ = 1 and α = V0 fk . In standard slow-roll
inflation ( fk = 0, η = 0) the condition λ2 << 1 is required,
while in the presence of kinetic coupling this condition can
be avoided due to the φ dependence in the slow-roll param-
eters. This φ-dependence of the slow-roll parameters also
allows the graceful exit from inflation. Using the condition
ε0(φE ) = 1 we find the expression for the scalar field at the
end of inflation as

φE = 1

λ + η
ln

[
4α

λ2 − 2

]
. (4.3)

With fk being positive, this field is well defined whenever
λ >

√
2. It is clear from this expression that the larger η, the

smaller φE can be. It also follows that φE varies very slowly
with the increment of α because of the logarithm dependence.
Assuming for instance λ = 2, η = 5, α = 103, give φE �
1.08Mp , and λ = 2, η = 5, α = 102 give φE � 0.76Mp.

The Eq. (2.19) gives the number of e-foldings as

N = 1

2λ(λ + η)

(
2 − λ2 + 2 ln

[
4α

λ2 − 2

])

−
(

φI

λ
− 2αe−(λ+η)φI

λ(λ + η)

)
(4.4)

where φI is the scalar field N e-folds before the end of infla-
tion. Solving this equation gives the explicit form of φI

φI = 1

2(λ + η)

[
2 ln

(
4α

λ2 − 2

)
− 2λN (λ + η)

−λ2 + 2W

[
1

2

(
λ2 − 2

)
e

λ2
2 +λN (λ+η)−1

]]
. (4.5)

For the scalar spectral index, we see from (3.28) that up to
first order in slow-roll parameters ns does not depend on k0

and k1. So, if the model contains only non-minimal kinetic
coupling the scalar spectral index becomes ns = 1−2ε0−ε1,
and for the same reason from (3.40) follows that r = 16ε0.
However, both ε0 and ε1 depend on all the parameters of the
model. The analytical expression for ns is given by

ns = 1 − λ2

2αe−(λ+η)φI + 1
− 2αλ(λ + η)e(λ+η)φI(

e(λ+η)φI + 2α
)2 , (4.6)

where φI is given by (4.5). And for the tensor-to-scalar-ratio
it is found

r = 8λ2

1 + 2αe−(λ+η)φI
(4.7)

Notice that the kinetic coupling constant fk and V0 appear
only in the combination (reestablishing κ) α = κ2V0 fk =
V0 fk/M2

p. Taking into account the dimensionality of the
kinetic coupling one can set fk = 1/M2 and then, α =
V0/(M2M2

p). By replacing φI from (4.5) into (4.6) and (4.7)
we find the exact analytical expressions for the scalar spec-
tral index and the tensor-to-scalar ratio in terms of the model
parameters and the number of e-foldings in the slow-roll
approximation:

ns = 1 −
λ2 + λ(2λ + η)W

[
1
2

(
λ2 − 2

)
e

λ2
2 +λN (λ+η)−1

]

(
1 + W

[
1
2

(
λ2 − 2

)
e

λ2
2 +λN (λ+η)−1

])2

(4.8)

r = 8λ2

1 + W

[
1
2

(
λ2 − 2

)
e

λ2
2 +λN (λ+η)−1

] (4.9)

And for the slow-roll parameters N e-folds before the end of
inflation, we find the following analytical expressions

ε0 = λ2

2
(

1 + W

[
1
2

(
λ2 − 2

)
e

λ2
2 +λN (λ+η)−1

] ) (4.10)

ε1 =
λ(λ + η)W

[
1
2

(
λ2 − 2

)
e

λ2
2 +λN (λ+η)−1

]

(
1 + W

[
1
2

(
λ2 − 2

)
e

λ2
2 +λN (λ+η)−1

] )2
(4.11)
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�0 =
λ2W

[
1
2

(
λ2 − 2

)
e

λ2
2 +λN (λ+η)−1

]

2
(

1 + W

[
1
2

(
λ2 − 2

)
e

λ2
2 +λN (λ+η)−1

] )2
(4.12)

�1 =
λ(λ + η)

(
W

[
1
2

(
λ2 − 2

)
e

λ2
2 +λN (λ+η)−1

]
− 1

)
(

1 + W

[
1
2

(
λ2 − 2

)
e

λ2
2 +λN (λ+η)−1

] )2

(4.13)

An interesting result from these equations is that the two
observables ns and r and the slow-roll parameters (at the
horizon crossing) do not depend on α. So, the behavior of ns
and r is controlled exclusively by the dimensionless constants
λ and η and by the number of e-foldings N . However α is
important to define the scalar field at the beginning and the
end of inflation as follows from (4.3) and (4.5). Having fixed
α = V0 fk/M2

p = V0/(M2M2
p) by the initial conditions on

the scalar field, we still have freedom to fix V0 by using
the COBE-WMAP normalization [102,103], which sets the
scale of M . The restrictions imposed by the COBE-WMAP
normalization and the tensor-to-scalar ratio allows to set the
set the scales of Hubble parameter and the energy involved
in the inflation. From (3.37)

Pξ = AS
H2

(2π)2

G1/2
S

F3/2
S

∼ H2

2(2π)2

1

FS
∼ H2

8π2

1

ε0
(4.14)

where we used the limit (ε0, ε1, . . .) → 0 that gives AS →
1/2 and c2

S → 1. Taking for instance the case N = 60, λ = 2,
η = 1.5 we find ε0 ∼ 0.0048 and r ∼ 0.077. Taking into
account the COBE-WMAP normalization we find

Pξ � 2.5 × 10−9 ∼ H2

8π2

1

0.0048
⇒ H ∼ 3 × 10−5Mp ∼ 7 × 1013Gev. (4.15)

And using the tensor-to-scalar ratio under the same approx-
imations done for PS

PT = r PS ∼ 2
H2

π2M2
p

∼ 2V

3π2M4
p

∼ (r)2.5 × 10−9

∼ ⇒ V 1/4 ∼ 7 × 10−3Mp ∼ 1016Gev. (4.16)

Given V ∼ 3 × 10−9M4
p and α = 103, the mass M takes

the value M ∼ 10−6Mp. In Fig. 1 we show the behavior of
ns and r assuming N = 60 for some numerical values of the
constants. In Fig. 2 we illustrate the behavior of the slow-roll
parameters that show the successful exit from inflation.

A special case takes place when η = −λ. As seen from
(4.2) the slow-roll parameters become constant and the model
leads to eternal inflation. In this case N and φI are not well
defined as follows from (4.4) and (4.5) but ns and r can be

1.42

2

0.968 0.970 0.972 0.974 0.976 0.978 0.980

0.02

0.04

0.06

0.08

0.10

ns

r

Fig. 1 ns vs r for N = 60, and η varying in the interval 1/2 < η < 10.
The red line corresponds to λ = 2 and the blue line to λ = 1.42

Fig. 2 The evolution of slow-roll parameters in the interval φI < φ <

φE , for N = 60, α = 103, λ = 2 and η = 1/2. This behavior allows the
exit form inflation. The values of the slow-roll parameters 60 e-folds
before the end on inflation are: ε0 � 0.0067, ε1 � 0.016, k0 � 0.0067,
k1 � 0.016

found from (4.6), (4.7) and become constants given by

ns = 1 − λ2

2α + 1
, r = 8λ2

2α + 1
(4.17)

which gives the relationship

ns = 1 − 1

8
r, (4.18)

which imply that ns and r can not simultaneously satisfy
the observational restrictions, and therefore this case is dis-
carded.

4.2 Gauss–Bonnet coupling

F (φ) = 1

κ2 , V (φ) = V0e
−λκφ,

F1 (φ) = 0, F2 (φ) = fge
−ηκφ. (4.19)

which from (2.8) gives the following slow-roll parameters

ε0 = 1

6
λ

(
8ηβe−(λ+η)φ + 3λ

)
,
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ε1 = −8

3
βη (λ + η) e−(λ+η)φ

�0 = −8

9
βη

(
3λe(λ+η)φ + 8βη

)
e−2(λ+η)φ,

�1 = −1

3
(λ + η)

(
3λe(λ+η)φ + 16βη

)
e−(λ+η)φ. (4.20)

where κ = 1 and β = V0 fg . The scalar field at the end of
inflation, from the condition ε0 = 1, takes the form

φE = 1

λ + η
ln

[
8βηλ

3(2 − λ2)

]
(4.21)

And the number of e-foldings from (2.19) is given by

N = 1

λ(λ + η)

(
ln

[
16βη

2 − λ2

]
− ln

[
8βη + 3λe(λ+η)φ

])
.

(4.22)

Solving this equation with respect to the scalar field we find
the scalar field N e-folds before the end of inflation as

φI = 1

λ + η
ln

[
16βηe−λN (λ+η)

3λ(2 − λ2)
− 8βη

3λ

]
(4.23)

Using (4.20) in (3.28) gives the expression for scalar spectral
index as follows

ns = 1 − λ2 + 8

3
βη (λ + 2η) e−(η+λ)φI . (4.24)

And replacing (4.20) into (3.40) gives the tensor-to-scalar
ratio as

r = 8

9

(
8βη + 3λe(η+λ)φI

)2
e−2(η+λ)φI . (4.25)

taking into account the above expression for φI , it is found

ns = 1 − λ2 − λ(2η + λ)

1 − 2e−λN (λ+η)

2−λ2

, (4.26)

and

r = 32λ2

(
2 + (λ2 − 2)eλN (λ+η)

)2 (4.27)

Notice that neither ns nor r depend on β, which appears only
in the expressions for φI and φE . In order to appreciate the
order of the parameters involved in inflation, having in mind
that at the end of inflation the slow-roll parameters should be
of order 1, we can evaluate the slow-roll parameters at the
end of inflation by replacing φE into Eq. (4.20), giving

ε0 = 1, ε1 = (λ + η)(λ2 − 2)

λ
, �0 = 2 − 4

λ2 ,

�1 = (λ + η)(λ2 − 4)

λ
. (4.28)

Replacing �I into (4.20) gives the slow-roll parameters N
e-foldings before the end of inflation as

ε0 = λ2

2 + (λ2 − 2)eNλ(λ+η)
, ε1 = λ(λ + η)

1 + 2e−Nλ(λ+η)

λ2−1

�0 = 2λ2(λ2 − 2)eNλ(λ+η)

(
2 + (λ2 − 2)eNλ(λ+η)

)2 ,

�1 = λ(λ + η)
(
(λ2 − 2)eNλ(λ+η) − 2

)
2 + (λ2 − 2)eNλ(λ+η)

(4.29)

According to (4.28), in order to keep �0 ∼ 1, λ should be
close to 2, and from the expressions for ε1,�1 follows that
η ∼ −1. All these approximations are valid under the con-
dition that ε = 1 at the end of inflation. On the other hand,
the exponential in the expressions for ns and r makes a big
difference between ns and r provided N ∼ 60 for the above
approximations for η and λ. In fact it provides a wrong value
for ns and r ∼ 0. One can also consider the region of param-
eters where the exponent e−λN (λ+η) is of order 1. In this case,
numerical analysis shows that if one assumes, for instance
the values λ = −0.001 and η = 1, then ns and r fall in
the appropriate region according to the latest observational
data. For N varying in the interval [50, 60], ns and r take
values 0.961 ≤ ns ≤ 0.967 and 0.002 ≤ r ≤ 0.003. But
in this same interval, the final field (4.21) which depends
on η, λ, β takes the value φE � 0.065Mp (assuming
λ = −0.001, η = 1, β = −8 × 102). And the ini-
tial field (4.23), which depends additionally on N , varies
in the interval 11.6Mp ≤ φI ≤ 11.8Mp . As we can see
the difference between the initial and final fields is almost
two orders of magnitude. Besides this, according to (4.28)
when the scalar field reaches the final value, the slow-roll
parameters ε1, |�0|,�1 >> 1 (ε0 = 1) indicating that the
slow-roll regime is broken long before the field reaches the
value φE � 0.065Mp . Numerical analysis shows that at
φ � 7.6Mp the slow-roll parameters ε1, |�0|,�1 ∼ 1 while
ε << 1. But given these values of the parameters, for the
scalar field it takes N ≈ 1 to evolve from φI = 11.8Mp

to 7.6Mp, making the slow-roll mechanism impracticable
under the condition ε0 = 1 at the end of inflation. It is also
possible to assume that the inflation ends when any of the
main slow-roll parameters becomes of order 1, which in our
case would be �0, and have viable inflation (see [76]). If the
condition to end the inflation is imposed on the GB slow-
roll parameter �0 [notice that ε0 and �0 enter with the same
hierarchy in the expression for the potential (2.12)], then the
following results can be obtained. First, from the condition
�0 = −1 the scalar field at the end of inflation takes the
value

φE = 1

λ + η
ln

[
4

3

(
ηλβ +

√
β2η2(λ2 + 4)

)]
. (4.30)
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From (2.19) we find the scalar field N e-folds before the end
of inflation as

φI = 1

λ + η
ln

[
1

3λ

(
4e−λN (λ+η) − 8βη

)

×
(

ηβ(λ2 + 2) + λ

√
β2η2(λ2 + 4)

)]
. (4.31)

This expression for φI leads to the following ns and r accord-
ing to (4.24) and (4.25) respectively

ns = 1−λ2+ 2βηλ(2η + λ)eλN (λ+η)

λ
√

β2η2(λ2 + 4) + βη(2 − 2eλN (λ+η) + λ2)
,

(4.32)

r =
8λ2

(
βη(λ2 + 2) + λ

√
β2η2(λ2 + 4)

)2

(
λ
√

β2η2(λ2 + 4) + βη(2 − 2eλN (λ+η) + λ2)
)2

(4.33)

The slow-roll parameters can be also explicitly written in
terms of the model parameters when evaluated at the end and
at the beginning of inflation. By replacing (4.30) into (4.20)
we find the following expressions at the end of inflation

ε0 =
λ

(
βη(λ2 + 2) + λ

√
β2η2(λ2 + 4)

)

2
((

βηλ + √
β2η2(λ2 + 4)

)) ,

ε1 = − 2βη(η + λ)

βηλ + √
β2η2(λ2 + 4)

�0 = −1, �1= −
(η + λ)

(
βη(λ2 + 2) + λ

√
β2η2(λ2 + 4)

)

βηλ + √
β2η2(λ2 + 4)

(4.34)

And replacing (4.31) into (4.20) gives the slow-roll parame-
ters N e-foldings before the end of inflation as

ε0 =
λ2

(
βη(λ2 + 2) + λ

√
β2η2(λ2 + 4)

)

2
((

βη(2 − 2eλN (λ+η) + λ2) + λ
√

β2η2(λ2 + 4)
)) ,

(4.35)

ε1 = − 2βηλ(η + λ)eλN (λ+η)

λ
√

β2η2(λ2 + 4) + βη(2 − 2eλN (λ+η) + λ2)
,

(4.36)

�0 = −
2βηλ2

(
βη(λ2 + 2) + λ

√
β2η2(λ2 + 4)

)
eN�(λ+η)

(
βη(2 − 2eλN (λ+η) + λ2) + λ

√
β2η2(λ2 + 4)

)2 ,

(4.37)

�1 = −
λ(λ + η)

(
βη(λ2 + 2 + 2eNλ(λ+η)) + λ

√
β2η2(λ2 + 4)

)

λ
√

β2η2(λ2 + 4) + βη(2 − 2eλN (λ+η) + λ2)
.

(4.38)

0.962 0.964 0.966 0.968 0.970

0.0025

0.0030

0.0035

ns

r

Fig. 3 The scalar spectral index ns and tensor/scalar ratio r , for λ =
−0.001, η = 1, β = −1 (blue) and λ = −0.004, η = 1, β = −1
(red), for N varying between 50 ≤ N ≤ 60. Both curves fall in the
region constrained by the latest observations

Assuming for instance, N = 50, λ = −0.005, η = 1, f2 =
−1, we find

ns = 0.965, r = 0.004, φI = 5.06, φE = 0.988.

The slow-roll parameters 50e-foldings before the end of infla-
tion take the values

(ε0, ε1,�0,�1)
∣∣
φI

=(0.000056, 0.017,−0.00039, 0.039),

(4.39)

and at the end of inflation

(ε0, ε1, �0, �1)
∣∣
φE

= (0.0025, 0.99,−1, 1.99). (4.40)

In Fig. 3 we show the ns − r trajectory for 50 ≤ N ≤ 60.
The above results show that the scalar potential in the

frame of scalar-tensor models is not the only magnitude that
drives the inflation. The effect of interactions terms amounts
to the effect of an effective potential since the scalar field also
rolls down the coupling functions. Concerning the restric-
tions imposed by the COBE-WMAP normalization, we find
from (3.37)

Pξ = AS
H2

(2π)2

G1/2
S

F3/2
S

∼ H2

2(2π)2

1

FS
∼ H2

(2π)2

1

2ε0 − �0

(4.41)

Taking into account the values for the sample (4.39), where
�0 is larger than ε, and using the COBE normalization for
the power spectrum Pξ , we can write

Pξ � 2.5 × 10−9 ∼ H2

(2π)2

1

4 × 10−4

⇒ H ∼ 6.3 × 10−6Mp ∼ 1013Gev. (4.42)

And from the tensor-to-scalar ratio it is found

PT = r PS ∼ 2
H2

π2M2
p

∼ 2V

3π2M4
p

∼ (r)2.5 × 10−9

⇒ V 1/4 ∼ 3 × 10−3Mp ∼ 7 × 1015Gev, (4.43)
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where we used the value for r given in the sample (4.40).
This imply, given that β = fgV0

M4
p

= −1, that the GB coupling

constant | f | ∼ 1012.
A special case takes place when η = −λ in (4.19). The

slow-roll parameters become constants given by

ε0 = 1

6
(3 − 8β) λ2, ε1 = 0, �0 = 8

9
(3 − 8β) βλ2

(4.44)

The spectral index and tensor-to-scalar ratio are given by

ns = 1 −
(

1 − 8

3
β

)
λ2, r = 8

(
1 − 8

3
β

)2

λ2 (4.45)

Solving these equations with respect to β and λ gives

β = 3(8ns + r − 8)

64(ns − 1)
, λ = ±2

√
2(1 − ns)√

r
. (4.46)

Thus, given the values of the observables ns and r , we can
find the model parameters. Taking for instance ns = 0.968
and r = 10−2, give β � 0.36 and λ � ±0.9. According to
(4.42) and (4.43)

Pξ ∼ H2

(2π)2

1

2ε0 − �0
∼ H2

(2π)2

1

1.3 × 10−3

∼ � 2.5 × 10−9 ⇒ H ∼ 10−5Mp

and

PT = r PS ∼ 2V

3π2M4
p

∼ (10−2) 2.5 × 10−9

⇒ V 1/4 ∼ 4.4 × 10−3Mp

The issue with this case is the constancy of the slow-roll
parameters that leads to eternal inflation, unless an alterna-
tive mechanism to trigger the graceful exit from inflation is
provided.

4.3 Kinetic and Gauss–Bonnet couplings I

The following model includes both, the non-minimal kinetic
and Gauss–Bonnet couplings.

F (φ) = 1

κ2 , V (φ) = V0e
−λκφ,

F1 (φ) = fke
λκφ, F2 (φ) = fge

−λκφ. (4.47)

The slow-roll parameters in terms of the scalar field take the
form

ε0 = (8βe−2λφ + 3)λ2

12α + 6
, ε1 = −16βλ2e−2λφ

6α + 3

�0 = −8βe−4λφ(8β + 3e2λφ)λ2

9(2α + 1)
,

�1 = −2(16βe−2λφ + 3)λ2

6α + 3
,

k0 = βe−4λφ(8β + 3e2λφ)2λ2

9(2α + 1)2 , k1 = −32βλ2e−2λφ

6α + 3
,

(4.48)

where α and β are defined as before, i.e. α = fkV0 and
β = fgV0. By solving the condition to end the inflation,
ε0 = 1 we find

φE = 1

2λ
ln

[
8βλ2

3(4α − λ2 + 2)

]
. (4.49)

From (2.19) we find

N = 3

λ2(3 − 8β)

(
λφ − αe−2λφ

) ∣∣∣φE

φI
, (4.50)

which gives the scalar field N e-folds before the end of infla-
tion as

φI = 1

2λ

(
ln

[
8βλ2

3(4α − λ2 + 2)

]

+W

[
3α(4α − λ2 + 2)

4βλ2 e
36α2+8Nβ(3−8β)λ4−9α(λ2−2)

12βλ2

])

+9α
(
λ2 − 4α − 2

) + 8Nβλ4(8β − 3)

24βλ3

(4.51)

writing the scalar spectral index in terms of the scalar field
from (3.28) and using (4.48) we find

ns = 1 +
(
8βe−2λφ − 1

)
λ2

2α + 1
(4.52)

and for the tensor-to-scalar ratio from (3.40) and (4.48) we
find

r = 8λ2
(
3e2λφ + 8β

)2
e−4λφ

9(2α + 1)
. (4.53)

At the horizon crossing, N e-folds before the end of inflation,
we find the following expressions for ns and r

ns = 1 − λ2

2α + 1
+ 4βλ2

α(2α + 1)

×W

[
3α(4α − λ2 + 2)

4βλ2 e
36α2+8Nβ(3−8β)λ4−9α(λ2−2)

12βλ2

]
,

(4.54)

and

r = 8λ2

9α2(2α + 1)

×
(

3α + 4βW

[
3α(4α − λ2 + 2)

4βλ2 e
36α2+8Nβ(3−8β)λ4−9α(λ2−2)

12βλ2

])2

(4.55)

Notice that setting β = 0 we obtain the previous results
(4.17) for ns and r . Evaluating the slow-roll parameters at
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the end of inflation (under the condition ε = 1) we find

ε0 = 1, ε1 = 6(λ2 − 4α − 2)

6α + 3
, �0 = 2(λ2 − 4α − 2)

λ2

�1 = 2(λ2 − 8α − 4)

2α + 1
, k0 = 4α

λ2 , k1 = 4(λ2 − 4α − 2)

2α + 1
(4.56)

Looking at the expressions (4.54) and (4.55) it can be seen
that to obtain the observable values for ns and r , λ should be
small or of the order 1 and α should be large. But, according
to (4.56), this will make �0 >> 1 and k0 >> 1, meaning
that they become of the order 1 long before the end of infla-
tion, spoiling the slow-roll approximation. Therefore it is not
possible to satisfy the condition that all slow-roll parameters
maintain in the region of ±1 at the end of inflation, for appro-
priate values of λ and α. Better results are obtained with the
following model.

4.4 Kinetic and Gauss–Bonnet couplings II

F (φ) = 1

κ2 , V (φ) = V0e
−λκφ,

F1 (φ) = fke
−λκφ, F2 (φ) = fge

λκφ. (4.57)

where the slow-roll parameters in terms of the scalar field
take the form

ε0 = (3 − 8β)λ2e2λφ

6(e2λφ + 2α)
, ε1 = 4α(3 − 8β)λ2e2λφ

3(e2λφ + 2α)2

�0 = 8β(3 − 8β)λ2e2λφ

9(e2λφ + 2α)
, �1 = 4α(3 − 8β)λ2e2λφ

3(e2λφ + 2α)2 ,

k0 = α(3 − 8β)2λ2e2λφ

9(e2λφ + 2α)2 ,

k1 = −2(3 − 8β)λ2e2λφ(e2λφ − 2α)

3(e2λφ + 2α)2 (4.58)

The end of inflation takes place for the scalar field φE given
by

φE = 1

2λ
ln

[
12α

λ2(3 − 8β) − 6

]
. (4.59)

The number of e-folds, from (2.19) is given by

N = 3

λ2(3 − 8β)

(
λφ − αe−2λφ

) ∣∣∣φE

φI
. (4.60)

Replacing φE and solving with respect to φI we find

φI = 1

12λ

(
6 ln

[
12α

λ2(3 − 8β) − 6

]

+6W

[
1

6

(
(3 − 8β)λ2 − 6

)
e

1
6 (3−8β)(1+4N )λ2−1

]

+λ2 (32βN − 12N + 8β − 3) + 6

)
.

(4.61)

The scalar spectral index in terms of the scalar field is given
by the following expression [from (3.28) and (4.58)]

ns = 12α2 + 6α((8β − 3)λ2 + 2)e2λφ + ((8β − 3)λ2 + 3))e4λφ

3(e2λφ + 2α)2 , (4.62)

and for the tensor/scalar ratio [using (3.40) and (4.58)] it is
found

r = 8λ2(3 − 8β)2e2λφ

9(e2λφ + 2α)
. (4.63)

The observed values of ns and r are found through the eval-
uation of the above expressions N e-foldings before the end
of inflation, leading to

ns = 1 −
(3 − 8β)λ2

(
1 + 3W

[
1
6

(
(3 − 8β)λ2 − 6

)
e

1
6 (3−8β)(1+4N )λ2−1

])

3

(
1 + W

[
1
6

(
(3 − 8β)λ2 − 6

)
e

1
6 (3−8β)(1+4N )λ2−1

] )2

(4.64)

and

r = 8λ2(3 − 8β)2

9

(
1 + W

[
1
6

(
(3 − 8β)λ2 − 6

)
e

1
6 (3−8β)(1+4N )λ2−1

])

(4.65)

Notice that in fact the dependence of ns and r on α disappears
when evaluated at the horizon crossing. Replacing (4.59) into
(4.58) we find the expressions for the slow-roll parameters
at the end of inflation

ε0 = 1, ε1 = 4 + 24

(8β − 3)λ2 , �0 = 16β

3
,

�1 = 4 + 24

(8β − 3)λ2 ,

k0 = 1 − 2

λ2 − 8β

3
, k1 = 4 + 48

(8β − 3)λ2 .

(4.66)

Analyzing these results, it can be seen that it is possible to
find values ε1,�0, . . . ∼ 1 (guaranteeing graceful exit from
inflation), assuming | f2| << 1 and λ ∼ 1, which at the
same time give adequate values for the observables ns and r .
In Fig. 4 we show the evolution of ns and r for the number of
e-foldings in the interval 50 ≤ N ≤ 60. taking for instance
N = 60, λ = 1.42, α = 103, β = −0.001, the slow-roll
parameters at the beginning of inflation take the values

ε0 � 0.0043, ε1 � 0.017, �0 � −0.000023,

�1 � 0.017, k0 � 0.0043, k1 � 0.017.

Following the same lines as in the previous cases, we can
evaluate the size of the Hubble parameter and the energy
involved during inflation, obtaining that H ∼ 3 × 10−5Mp

andV 1/4 ∼ 7×10−3Mp (taking into account the above slow-
roll parameters). The evolution of the slow-roll parameters
for this case is shown in Fig. 5, where φI � 0.76Mp and
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r

Fig. 4 The scalar spectral index ns and tensor/scalar ratio r , for λ =
1.42, β = −0.01 (blue) and λ = 1.42, β = −0.001 (red), for N
varying between 50 ≤ N ≤ 60. ns and r do not depend on α, which is
used to set the values of φI and φE

φE � 4.2Mp. Observing Fig. 5 we can see that the slow-roll
dynamics can also be consistent if one imposes the condition
to end the inflation on the slow-roll parameters ε1 = �1 = 1.
This leads [from (4.58)] to the following scalar field at the
end of inflation

φE = 1

2λ
ln

[
2

3

(
α((3 − 8β)λ2 − 3)

+
√

α2λ2(8β − 3)(6 + (8β − 3)λ2)

)]
(4.67)

Then, from (4.60) and replacing φE given by (4.67) it is found

φI = 1

3
(8β − 3)(N − fN )λ

+ 1

2λ
W

[
2αe− 2

3 (8β−3)(N− fN )λ2
]
, (4.68)

which leads, from (4.62) and (4.63), to the following expres-
sions for ns and r

ns = 1 −
(3 − 8β)λ2

(
1 + 3W

[
2αe− 2

3 (8β−3)(N− fN )λ2
])

3
(

1 + 3W
[
2αe− 2

3 (8β−3)(N− fN )λ2
])2

(4.69)

and

r = 8λ2

9α2(2α + 1)

(
3α + 4βW

[
2αe− 2

3 (8β−3)(N− fN )λ2
])2

(4.70)

Figure 6 shows the behavior of ns and r for 50 ≤ N ≤
60. The variation of the slow-roll parameters between the
beginning and the end of inflation is shown in Fig. 7.

The values of the slow-roll parameters 60 e-folds before
the end of inflation (λ = 1.42, α = 103, β = −0.1) are

ε0 � 0.0042, ε1 � 0.017, �0 � −0.0023,

�1 � 0.017, k0 � 0.005, k1 � 0.017.

Fig. 5 The variation of the slow-roll parameters between φI �
0.76Mp and φE � 4.2Mp obtained for N = 60, λ = 1.42, α =
103, β = −0.001

0.970 0.971 0.972 0.973 0.974

0.0075

0.0076

0.0077

0.0078

ns

r

Fig. 6 The scalar spectral index ns and tensor/scalar ratio r , for λ =
1.42, α = 103, β = −0.1 (blue) and λ = 1.42, α = 103, β =
−0.05 (red), for N in the interval 50 ≤ N ≤ 60. The tensor/scalar ratio
is an order of magnitude smaller than the case depicted in Fig. 4

k0

k1

1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

Fig. 7 The variation of slow-roll parameters between φI � 0.67Mp
and φE � 3Mp obtained for 60 e-foldings, with λ = 1.42, α =
103, β = −0.1. The growth towards values of the order of ±1 is more
homogeneous than the one depicted in Fig. 5

The Hubble and energy scales involved in the process of
inflation, for the present case, are H ∼ 3 × 10−5Mp and
V 1/4 ∼ 4 × 10−3Mp .

123



Eur. Phys. J. C (2019) 79 :772 Page 13 of 15 772

4.5 Kinetic and Gauss–Bonnet couplings III

F (φ) = 1

κ2 , V (φ) = V0e
−λκφ,

F1 (φ) = fke
λκφ, F2 (φ) = fge

λκφ. (4.71)

This model leads to exact power-law inflation with the con-
stant slow-roll parameters given by

ε0 = (3 − 8β)λ2

6(α + 1)
, ε1 = 0, �0 = 8β(3 − 8β)λ2

9(2α + 1)

�1 = 0, k0 = α(3 − 8β)2λ2

9(2α + 1)2 , k1 = 0, (4.72)

which predict the scalar spectral index and tensor/scalar ratio
given by the following expressions

ns = 1 − (3 − 8β)λ2

3(2α + 1)
, r = 8(3 − 8β)2λ2

9(2α + 1)
. (4.73)

These equations can be solved with respect to α and β, result-
ing in

α = 16ns − 8n2
s + λ2r − 8

16(ns − 1)2 , β = 3(8ns + r − 8)

64(ns − 1)
(4.74)

Thus, for a given λ we can always find adequate values for α

and β that satisfy the observed values of ns and r . Taking for
instance, λ = 2, ns = 0.968 and r = 0.01, the reconstructed
couplings acquire the values α = 1.94 and β = 0.36, and
the slow-roll parameters take the values ε0 � 0.016, �0 �
0.0031, k0 � 0.00005, ε1 = �1 = k1 = 0. Taking λ =
0.5 gives α � 304, β � 0.3 and the slow-roll parameters
ε0 � 4 × 10−5, �0 � 6.4 × 10−5, k0 � 7.8 × 10−6, ε1 =
�1 = k1 = 0.

5 Discussion

We have analyzed the slow-roll dynamics for the scalar-
tensor model with non-minimal kinetic and GB couplings,
where the potential and the functional form of the couplings
are given by exponential functions of the scalar field. These
type of couplings appear in a number of compactifications
from higher dimensional fundamental theories such as super-
gravity and string theory, where the scalar field encodes
the size of the extra dimensions. In the frame of the stan-
dard canonical scalar field, the exponential potential leads
to important scaling solutions that describe different epochs
of cosmological evolution, including solutions with late time
accelerated expansion. It also leads to early time inflationary
solutions, though it lacks successful exit from inflation and
leads to tensor-to-scalar ratio larger than the current observa-
tional limits. With the Introduction of additional interactions
like the non-minimal kinetic coupling and GB coupling (GB),

we address the above shortcomings of the exponential poten-
tial and show that the tensor-to-scalar ratio can be lowered
to values that are consistent with latest observational con-
straints [5,6] and that the model leads to a graceful exit from
inflation.

First we considered a model with potential V0e−κλφ and
kinetic coupling fke−κηφ and have found that the observable
magnitudes nsand r do not depend on α = V0 fk , and depend
only on the number of e-foldings and the exponential powers
λ and η. The constants α and η can be used to set the values of
the scalar field at the end and beginning of inflation, obtaining
that φE � Mp. A typical behavior of ns and r in this case is
shown in Fig. 1. In the particular case η = −λ, the slow-roll
parameters become constant, but the obtained relationship
between ns and r (4.18) makes it impossible to simultane-
ously satisfy the observational restrictions, making the model
non viable for η = −λ. In the second case we considered
the GB coupling given by F2 = fge−κηφ , and it was found
that, similar to the previous case, neither ns nor r depend on
β = V0 fg , but this parameter can be used to set φE and φI .
Considering the region of parameters where e−λN (λ+η) ∼ 1
it was found that, for 50 ≤ N ≤ 60, ns and r can take values
in the intervals 0.961 ≤ ns ≤ 0.967 and 0.002 ≤ r ≤ 0.003,
and the scalar field at the end of inflation can be as small as
φE ∼ 0.07Mp. However, in this case some of the slow-roll
parameters become larger than 1 long before ε0 ∼ 1, break-
ing the slow-roll conditions. To fix this problem we have
chosen to break the slow-roll conditions when �0 = −1,
which gives excellent results as sown in Fig. 3 and is con-
sistent with the slow-roll formalism according to the values
obtained in (4.39) and (4.40). Considering the case η = −λ

it was found that it leads to constant slow-roll inflation, but
contrary to the case of kinetic coupling, it is always possible
to find adequate values for the scalar spectral index and the
tensor-to-scalar ratio. In the model with non-minimal kinetic
coupling F1 = fkeκλφ and GB coupling F2 = fge−κλφ it
was found that in order to obtain viable values of ns (4.54)
and r (4.55), the conditions λ � 1 and α >> 1 should be sat-
isfied, but this imply according to (4.56), that some slow-roll
parameters reach values ∼ 1 long before the end of infla-
tion, spoiling the slow-roll approximation. Better result is
obtained with the model F1 = fke−κλφ and F2 = fgeκλφ ,
where there is appropriate slow-roll approximation for val-
ues of λ and β that lead to ns and r in the range quoted by
observations, as seen in Figs. 4 and 5. But more appropriate
behavior of the slow-roll parameters was found if the con-
dition to end the inflation is assumed as ε1 = �1 = 1. In
the proposed numerical example, the scalar-to-tensor ratio
decreases to values r ∼ 0.008 as shown in Fig. 6, and the
growth of the slow-roll parameters toward values of the order
of ±1 at the end of inflation is more homogeneous than in
the previous case, as seen in Fig. 7. Finally, the model with
V = V0e−κλφ , F1 = fkeκλφ and F2 = fgeκλφ was ana-
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lyzed. This model leads to inflation with constant slow-roll
parameters and, as follows from (4.73) and (4.74), it is always
possible to find adequate values of λ, α and β that give the
observational values of ns and r . In all models considered
in the present paper it was possible to find exact analytical
expressions for the scalar spectral index and the tensor-to-
scalar ratio, which facilitated the analysis. In all considered
numerical examples the Hubble and energy scales involved
in the inflationary process were of the order of H ∼ 10−5Mp

and V 1/4 ∼ 10−3.
The slow-roll analysis for the exponential potential, in the

frame of the scalar-tensor theories with non-minimal kinetic
and GB couplings, allows to find the scalar spectral index
and tensor-to-scalar ratio in the range set by the latest obser-
vational data, and lead to successful exit from inflation. The
advance in the future observations will allow to establish
more accurate restrictions on the inflationary models with
non-minimal couplings of the type considered in the present
model and reaffirm or rule out its viability.
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