
Eur. Phys. J. C (2019) 79:767
https://doi.org/10.1140/epjc/s10052-019-7283-5

Regular Article - Theoretical Physics

Strong cosmic censorship under quasinormal modes of
non-minimally coupled massive scalar field

Bogeun Gwaka

Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea

Received: 26 January 2019 / Accepted: 6 September 2019 / Published online: 16 September 2019
© The Author(s) 2019

Abstract We investigate the strong cosmic censorship con-
jecture in lukewarm Reissner–Nordström–de Sitter black
holes (and Martínez–Troncoso–Zanelli black holes) using
the quasinormal resonance of non-minimally coupled mas-
sive scalar field. The strong cosmic censorship conjecture is
closely related to the stability of the Cauchy horizon gov-
erned by the decay rate of the dominant quasinormal mode.
Here, dominant modes are obtained in the limits of small
and large mass black holes. Then, we connect the modes by
using the WKB approximation. In our analysis, the strong
cosmic censorship conjecture is valid except in the range of
the small-mass limit, in which the dominant mode can be
assumed to be that of the de Sitter spacetime. Particularly,
the coupling constant and mass of the scalar field determine
the decay rate in the small mass range. Therefore, the validity
of the strong cosmic censorship conjecture depends on the
characteristics of the scalar field.

1 Introduction

The inside of a black hole is covered by its event horizon,
from which no light can escape. Hence, it is not possible to
detect black holes by its own radiation, classically. However,
quantum theory suggests that a black hole can emit a por-
tion of the energy from the horizon. This radiation is called
Hawking radiation [1,2]. In consideration of Hawking radia-
tion, a black hole can be treated as a thermodynamic system
with the Hawking temperature, which is proportional to the
surface gravity at the horizon. Moreover, the area of the black
holes horizon is irreducible in an irreversible process [3–5].
Therefore, Bekenstein–Hawking entropy of a black hole is
defined as being proportional to the area of its event horizon
[6,7]. Because properties of black holes are different from
any other astronomical object in the universe, the existence
of the black hole evokes curiosity. However, the recent detec-

a e-mail: rasenis@dongguk.edu

tion of gravitational wave signals, which originated from
collisions between black holes, by the laser interferometer
gravitational-wave observatory (LIGO) has proven that black
holes are in fact stable celestial bodies spread across the uni-
verse.

The center of a black hole is the location of a curvature
singularity. Physically, a visible singularity causes the break-
down of causality and loss of predictability in the theory
of gravity. Hence, to avoid this unpredictability, the singu-
larity should be invisible to the observer. This is called the
cosmic censorship conjecture [8–10]. According to a given
observer, the cosmic censorship conjecture is divided into
two types: weak conjecture and strong conjecture. On the one
hand, the weak cosmic censorship (WCC) conjecture states
that the singularity should be covered by an outer horizon
for an asymptotic observer. Thus, the outer horizon needs to
be stable under perturbation to satisfy the WCC conjecture.
The first test on the WCC conjecture was performed on the
Kerr black hole [11]. Here, adding a particle into the Kerr
black hole cannot overspin it beyond the extremality. Since
then, the WCC conjecture has been tested in various black
holes. Moreover, the validity of this conjecture depends on
the state of the black hole and the method of perturbation.
For example, the horizon of the near-extremal Kerr black
hole becomes unstable upon adding a particle [12], but it can
be still be stable when considering self-force effects [13–17].
This test can be extended to the Reissner–Nordström black
hole where a situation similar to that of the Kerr black hole
arises, as discussed in [18,19]. Further, as there is no gen-
eral proof of the validity of the WCC conjecture, the test
is now extended to various black holes by adding a parti-
cle [20–32]. Particularly, when the thermodynamic pressure
and volume terms are considered for the electrically charged
anti-de Sitter black hole, the WCC conjecture is proven to
be valid under particle absorption [33]. For the test of the
WCC conjecture, adding a particle can be generalized to
the scattering of the test field [34–41]. Under the scatter-
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ing of a scalar field, the weak cosmic censorship conjecture
is shown to be valid for the Kerr-(anti-)de Sitter black holes
[42].

The strong cosmic censorship (SCC) conjecture proposes
that the singularity is invisible to any observer, and hence
must be a spacelike singularity. It is important to note that a
timelike singularity appears in well-known solutions such as
Reissner–Nordström and Kerr–Newman black holes, which
often leads to the notion that these black holes are coun-
terexamples to the SCC conjecture. However, this is not true
because inside the outer horizon, the timelike singularity is
enclosed by a Cauchy (inner) horizon at which an inward
wave undergoes an infinite blueshift. Hence, when a wave
enters the black hole, the infinitely blueshifted wave makes
the Cauchy horizon unstable. As a result, the singularity
becomes spacelike, making the SCC conjecture valid even in
this case [43–48]. However, the issues with the SCC conjec-
ture becomes more complicated in the Reissner–Nordström–
de Sitter (RNdS) black hole. For instance, in the de Sitter (dS)
spacetime, the existence of a cosmological horizon causes
the redshift of an influx into the Cauchy horizon, so the red-
shift competes with the blueshift from the Cauchy horizon.
Then, the redshift originating from the cosmological hori-
zon becomes dominant, stabilizing the Cauchy horizon [49].
However, there can be an additional influx to the Cauchy hori-
zon. Furthermore, this influx is predominantly blueshifted at
the Cauchy horizon, which can destabilize the Cauchy hori-
zon [50]. Recently, quasinormal modes have been physically
categorized into three families based on their behaviors in an
RNdS black hole, and these behaviors play an important role
in the validity of the SCC conjecture [51,52]. Particularly, the
stability of the Cauchy horizon depends significantly on the
competition between the surface gravity on the Cauchy hori-
zon and the decay rate of the quasinormal mode on the outer
horizon. By the analysis of the quasinormal modes in RNdS
black holes, ranges have been found over which the SCC
conjecture is invalid [52]. Nevertheless, the SCC conjecture
in the RNdS black hole is still actively studied in [53–61].
The historical review can be found in [62] (and references
therein).

Here, we consider a dS black hole whose metric is a
solution (of the same geometry) to two theories of grav-
ity: Einstein’s gravity coupled with the Maxwell field, and
gravity theory coupled with a conformal scalar field includ-
ing a quartic self-interaction potential. The solution in these
two theories is known by different names. The former is
called the lukewarm RNdS black hole [63] and the latter
Martínez–Troncoso–Zanelli (MTZ) black hole [64]. Fur-
ther, dS black holes encounter an issue with the tempera-
ture. Since dS black holes have two horizons surrounding
the timelike spacetime, two temperatures for the two hori-
zons can be obtained. It should be noted that these two
temperatures are not coincident, so the system is not bal-

anced between the input and output radiations through the
horizons. Hence, the systems are thermodynamically unsta-
ble. The lukewarm RNdS black hole resolves unbalanced
radiations by setting the two temperatures at a coinciding
value [63,65,66]. In the gravity theory coupled with a confor-
mal scalar field including a quartic self-interaction potential,
the geometry becomes that of the MTZ black hole, which
is a four-dimensional dS black hole with a non-singular
scalar hair outside the outer horizon. Further, the MTZ black
hole can satisfy the strong energy condition [64]. How-
ever, during a perturbation, an instability can be observed
in the MTZ black hole [67], which is consistent with the no-
hair theorem. Thermodynamically, according to the effect
of the scalar field, derived from the Euclidean action, the
entropy of the MTZ black hole is given by a modified form
[68].

In this work, we investigate the SCC conjecture in the
lukewarm RNdS (or MTZ) black hole under the quasinormal
modes of non-minimally coupled massive scalar field. The
decay rate of the scalar field is closely related to the investi-
gation of the SCC conjecture. In our analysis, as the decay
rate depends on non-minimal coupling and scalar field mass,
we elucidate these effects in the SCC conjecture, which has
not been done yet under the non-minimally coupled massive
scalar field. Further, in the case of the lukewarm RNdS black
hole, we will investigate the SCC conjecture for a thermally
stable dS black hole and test its consistency with previous
studies on non-lukewarm RNdS black holes. In the case of
the MTZ black hole, the SCC conjecture for hairy black holes
has not been studied much. Although the MTZ black hole is
unstable, we propose it is a useful solution to extending stud-
ies on its SCC conjecture to black holes having scalar hair.
It should be noted that because our analysis is based on the
quasinormal resonances that are considered linear effects of
the scalar field, its results depend only on the equations of
motion for the scalar field rather than on the action for grav-
ity theories. Therefore, our conclusion on the SCC conjecture
are the same for both the black holes. Here, for convenience,
we will call the geometry as the MTZ black hole.

The paper is organized as follows: Section 2 introduces the
geometry of the MTZ black hole. Section 3 solves the non-
minimally coupled massive scalar field equation at the outer
horizon in the MTZ black hole. Section 4 investigates the
SCC conjecture in two limits of the scalar field’s mass. Then,
it approximates the quasinormal modes in the intermediate
range of the mass by the WKB method. Section 5 summarizes
the results.

2 Geometry of dS black holes

The spacetime geometry, as we consider, is a dS black hole.
The metric is given as
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ds2 = − �
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which is defined as a black hole having mass M and cos-
mological constant �. The curvature singularity is located
at the center of the spacetime. In the limit of the asymptotic
region, the metric becomes the dS spacetime containing the
cosmological horizon. The mass of the black hole is in the

range of 0 < M < 1
4

√
3
�

. There exists four solutions to
grr = �(r) = 0 in the spacetime

ri = 1

2

√
3

�

⎛
⎝−1 +

√
1 + 4M

√
�

3

⎞
⎠ ,

ro = 1

2

√
3

�

⎛
⎝1 −

√
1 − 4M

√
�

3

⎞
⎠ ,

rc = 1

2

√
3

�

⎛
⎝1 +

√
1 − 4M

√
�

3

⎞
⎠ ,

rn = −1

2

√
3

�

⎛
⎝1 +

√
1 + 4M

√
�

3

⎞
⎠ , (2)

where ri, ro, and rc correspond to Cauchy (inner), outer, and
cosmological horizons, and rn has no physical correspon-
dence. Note that G = 1 in this case. In our analysis of the
SCC conjecture, the surface gravities on the inner and outer
horizons, κi and κo, play important roles in competing with
the amplification and decay rates of the scalar field. Then,
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Interestingly, the metric of Eq. (1) appears in the same form
in both Einstein–Maxwell action and gravity action cou-
pled with conformal scalar field that includes a quartic self-
interaction potential. Hence, the geometric properties coin-
cide as reviewed above. However, the physics of the two, such
as coupling fields, is different from each other. Therefore, we
introduce them as follows.

2.1 Lukewarm Reissner–Nordström–de Sitter Black Hole

The Lukewarm RNdS black hole is the solution to the
Einstein–Maxwell action with the cosmological constant

S = 1

16π

∫
d4x

√−g
(
R − FμνF

μν − 2�
)
. (4)

Fμν and Aμ are the Maxwell field strength and electric poten-
tial of a charge Q related to

Fμν = ∂μAν − ∂ν Aμ, A = −Q

r
dt. (5)

The field equations of Eq. (4) contain a spherical symmetric
solution to the RNdS black hole whose the metric is obtained
as

ds2 = − �

r2 dt
2 + r2

�
dr2 + r2dθ2 + r2 sin2 θdφ2,

� = −�r4

3
+ r2 − 2Mr + Q2. (6)

Here, the Hawking temperatures on the outer and cosmolog-
ical horizons in Eq. (6) are
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)
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in which the difference between the two temperatures implies
that radiations are not in equilibrium. Hence, the thermo-
dynamic system is unstable. The RNdS black hole can be
in thermal equilibrium when the two temperatures become
equal to one another. Equal temperatures are achieved at the
same mass and electric charge, M = Q. Then,

To = Tc = 1
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3
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1 − 4M

√
�

3
. (8)

This is called the lukewarm RNdS black hole [63], and its
metric is exactly as that in Eq. (1). Note that the lukewarm
RNdS black hole has only an electric charge Q = M so that
it can still be coupled with an external electric charge.

2.2 Martínez–Troncoso–Zanelli black hole

The MTZ black hole appears in the four-dimensional theory
of gravity coupled with conformal scalar field including a
quartic self-interaction potential [64]. The action is

S=
∫

d4x
√−g

(R − 2�

16πG
−1

2
∂μ
∂μ
− 1

12
R
2−α
4

)
,

(9)

where α is a dimensionless constant. The MTZ black hole is
a solution to the field equations

Gμν + �gμν = 8πGTμν,
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where the energy-momentum tensor is given by
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∂ν
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2
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When the parameter pair is chosen as

R = 4�, α = −2

9
π�, (12)

the MTZ black hole is the only solution expressed as Eq. (1)
in a positive cosmological constant [64]. Given that the action
is coupled with a scalar field, the MTZ black hole includes a
scalar hair obtained as


(r) =
√

3

4π

M

r − M
, (13)

which is non-singular outside the outer horizon. Compared
with the RNdS black hole, the MTZ black hole is neutral.
Hence, the system is not coupled with an electric charge.

3 Non-minimally coupled massive scalar field

We consider the quasinormal resonance of non-minimally
coupled massive scalar field in the MTZ black hole. In the
SCC conjecture, the quasinormal frequency of the inward
field plays an important role in estimating its decay rate at the
outer horizon. Since the decay rate depends on the imaginary
part of the frequency, we need to find a solution for the scalar
field equation. Then, the action of the non-minimally coupled
massive scalar field 
 is [69]

S
 = −1

2

∫
d4x

√−g(∂μ
∂μ
∗ + (μ2 + ξR)

∗),

(14)

where the mass of the scalar is μ, and non-minimal coupling
constant is ξ . Then, we can obtain the field equation with
mass and non-minimal coupling terms.

1√−g
∂μ(

√−ggμν∂ν
) − (μ2 + ξR)
 = 0. (15)

The solution to the scalar field 
(t, r, θ, φ) is easily obtained
in a simple form from Eq. (15). Then,


(t, r, θ, φ) = e−iωt eimφ

r
R(r)Ylm(θ), (16)

where Ylm is spherical harmonics. Further, ω, m, and l are
separate variables corresponding to frequency and eigenval-
ues with respect to rotating axis and total angular momenta.
Hence, the only non-trivial equation is the radial part, which
is written as

1
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)
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The radial equation in Eq. (17) then becomes a Schrödinger-
like equation in a tortoise coordinate r∗, which is defined
as

dr∗

dr
= r2

�
, (18)

where the range of the tortoise coordinate corresponds to

ro < r < rc → −∞ < r∗ < ∞. (19)

Under the tortoise coordinate, the radial equation is obtained
as
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The potential term determines detailed propagation of the
scalar field. As shown in Fig. 1, there exists a peak between
the outer and cosmological horizons.

Further, effective potentials in various parameters are sim-
ilar to one another. At the spacetime boundary in the tortoise
coordinate r∗ = ±∞, the solutions to the radial equation in
Eq. (20) take on simpler forms because the boundaries corre-
spond to outer and cosmological horizons satisfying � = 0.

R(r) = e±iωr∗
at r∗ → ±∞. (21)

Here, we impose boundary conditions for the quasinormal
resonance, which is given by


(t, r, θ, φ) = e−iω(t+r∗)eimφ

r
Ylm(θ) at r∗ → −∞,


(t, r, θ, φ) = e−iω(t−r∗)eimφ

r
Ylm(θ) at r∗ → ∞, (22)

where a certain quasinormal mode is expected to originate
from null geodesics in unstable circular orbits called the pho-
ton sphere [52]. In the SCC conjecture, whether or not the
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(a) (b) (c)

Fig. 1 Effective potentials in M = 0.3 and ω = 1 with respect to l, ξ , and μ

flux of the scalar field diverges is important, which is gov-
erned by the imaginary part of the frequency ω obtained in the
near-horizon regime. This will be explored in the subsequent
section.

4 Strong cosmic censorship conjecture

Here, we investigate whether the SCC conjecture is valid with
respect to the non-minimally coupled massive scalar field in
the MTZ black hole. By scalar field scattering, the perturba-
tion can be blueshifted as it comes close to the Cauchy hori-
zon. The blueshift is given by the amplification rate, which is
related to the surface gravity of the Cauchy horizon κi [50].
Note that the scalar field also undergoes exponential decay,
which is given as |
 − 
0| ∼ e−αt with the spectral gap α.
Then, destabilizing the Cauchy horizon depends on the com-
petition between amplification and decay with respect to the
perturbation, owing to the scalar field [52]. Further, the com-
petition is governed by a very simple parameter, β ≡ α/κi

[52]. According to the SCC conjecture discussed in [70], the
parameter β determines whether the energy of the scalar field
at the Cauchy horizon is divergent [57]. When β < 1

2 , ampli-
fication becomes dominant, due to which the blueshifted
inward mode is able to destabilize the Cauchy horizon. In
this case, the SCC conjecture becomes valid. On the con-
trary, if β > 1

2 , then the quasinormal modes are damped.
Further, the Cauchy horizon is still stable. In this case, the
SCC conjecture is invalid. Therefore, the SCC conjecture can
be elucidated from the value of β. In the following subsec-
tions, we consider the MTZ black hole in the limits of the
large mass and small mass, and these limits are interpolated
by the WKB approximation as given in [53,71,72].

4.1 Large mass case: near-extremal black holes

We investigate the imaginary part of the lowest frequency
in the quasinormal resonance, which governs the decay of
the influx in the near-extremal case. For a given cosmologi-

cal constant, the maximum mass is achieved at the extremal
case; thus, the massive limit implies the near-extremal case.
In order to obtain the lowest frequency representing the dom-
inant mode, the potential term in Eq. (20) should be taken in
the first order under the near-horizon limit of the potential
peak. Then, the potential term needs to be written in terms
of the tortoise coordinate from Eq. (18)
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)
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2κi
ln

(
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r − ri

)
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When the peak of the potential barrier rp is located in the
near-horizon regime, we can assume that rp = ro + ε, where
ε 	 1, because the outer and cosmological horizons are close
in the near-extremal limit. Then, the location of the peak is
approximately written in terms of Eq. (23) with the tortoise
coordinate [73]
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)
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where the most dominant term is the first term in Eq. (24).
Then, the location of the peak in the tortoise coordinate can
be rewritten in the radial coordinate as

rp ≈ ro + rce
2κor∗

p

1 + e2κor∗
p

. (25)

As we have already assumed that the MTZ black hole was
near-extremal, we can conclude that rc = ro+δ where δ 	 1.
Note that ε should be smaller than δ because the peak is
located in between outer and cosmological horizons. Under
near-horizon and near-extremal conditions, the potential term
in Eq. (20) is obtained as

V (rp) = ω2 − �(rp)

r2
p

(
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where we take the leading order of ε and δ, so neither of
them appears in Eq. (26). Then, the radial equation in Eq. (20)
becomes
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This type of potential in Eq. (28) is called the Pöschl–Teller
potential, whose solution is known. According to [74], the
quasinormal frequency ω is

ω =
√
V0 − κ2

o

4
− i

(
n + 1

2

)
κo. (29)

The most dominant mode of the quasinormal resonance is
at the least damping. This implies that the imaginary part of
the dominant mode has the smallest value in all the possi-
ble values of Im(ωn). With this, we can now determine the
imaginary part of the dominant mode

Im(ωn=0) = 1

2
κo. (30)

Therefore, the inequality of β is obtained as

Im(ωn=0)

κi
<

1

2
, (31)

where we consider κo < κi. As a comparison of the decay
and amplification rates of the quasinormal perturbation, the
value of β governs the stability of the Cauchy horizon, which
plays a significant role in the SCC conjecture. The inequal-
ity in Eq. (31) implies that the amplification is dominant in
the near-extremal MTZ black hole of ro ≈ rc. Then, the
Cauchy horizon becomes unstable due to the blueshifted
inward mode. Therefore, the SCC conjecture is valid for the
massive MTZ black hole case.

4.2 Small mass case: de Sitter mode approximation

As the mass of the MTZ black hole decreases, the size of the
black bole also decreases. Finally, when the mass becomes

zero, the geometry becomes the dS spacetime, containing
only the cosmological horizon. Thus, we expect that the
quasinormal modes physically smoothly become pure dS
spacetime modes in the limit of the small mass. This behavior
was already found in [52], which dealt with the RNdS black
hole in a massless scalar field, and was called a dS mode.
We rewrite this behavior in terms of our notation and obtain
the quasinormal mode of the non-minimally coupled mas-
sive scalar field in pure dS spacetime by modifying the result
obtained in [75], which studied the massive scalar case.

As the mass tends to zero, the metric in Eq. (1) approxi-
mately becomes that of the dS spacetime. Hence, the potential
term in the dS case is obtained from Eq. (20) taken to the limit
of M and tending to zero. Then, the potential term becomes
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Note that ζ → 1 for r∗ → 0 (r → 0) and ζ → 0 for
r∗ → ∞ (r → rc). We take the ansatz to the radial function

R(ζ ) = ζ k(1 − ζ )pF(ζ ). (34)

Then, the radial equation in Eq. (33) is rewritten as
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2
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F = 0.
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Because the terms 1/ζ and 1/(1 − ζ ) in Eq. (35) diverge at
ζ = 0 or ζ = 1, they are eliminated by taking k and p as

k2 + 3ω2

4�
= 0, p2 − 1

2
p − 1

4
l(l + 1) = 0. (36)

Under the choice in Eq. (36), the radial equation in Eq. (35)
becomes the hypergeometric differential equation, whose
general solution is given as
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R(ζ ) = A0ζ
−k(1 − ζ )p 2F1(a − c + 1, b−c+1, 2−c; ζ )
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Note that the general solution in Eq. (37) is assumed with
respect to the non-integer c. This is a suitable form of the
solution with arbitrary ξ and μ of the scalar field. Instead of
the non-integer c, the choice of the integer c is still possible
under a limited condition: μ2 + ξR = 0. The case of the
integer c is coincident with the massless scalar field without
the coupling. This is already discussed in [52], and our anal-
ysis of ω technically includes the massless case [75]. Hence,
to keep the arbitrary ξ and μ for general cases, we focus on
the solution about the non-integer c. According to the bound-
ary condition for the quasinormal resonance in Eq. (22), the
scalar field only has a purely outgoing mode near the cosmo-
logical horizon ζ → 0. In addition, the scalar field is assumed
to have vanished at the origin of the spacetime, ζ = 1. Thus,
we should take A0 = 0 in order to eliminate the incoming
wave at the cosmological horizon. This fixes k = −i�ω/2.
Then, the solution in Eq. (37) is reduced to

R(ζ ) = A1ζ
−i

√
3
�

ω
2 (1 − ζ )p 2F1(a, b, c; ζ ). (39)

To impose the boundary condition at the origin, we can
rewrite Eq. (39) under the transformation ζ → 1 − ζ as

R(ζ ) = A1

[
ζ

−i
√

3
�

ω
2 (1 − ζ )p

× �(c)�(c − a − b)

�(c − a)�(c − b)
2F1(a, b, a + b − c + 1; 1 − ζ )

+ ζ
−i

√
3
�

ω
2 (1 − ζ )

1
2 −p �(c)�(a + b − c)

�(a)�(b)
2

× F1(c − a, c − b, c − a − b; 1 − ζ )

]
. (40)

According to Eq. (36), there are two solutions for p in
Eq. (36): p = −l/2 or p = (1 + l)/2. (a) When we choose
p = −l/2, the parameters in Eq. (38) are fixed as c−a = −n
or c− b = −n, because the radial solution should be regular
at the origin ζ → 1. Then, the radial solution in Eq. (39)
becomes

R(ζ ) = A1

[
ζ

−i
√

3
�

ω
2 (1 − ζ )

1
2 (1+l) �(c)�(a + b − c)

�(a)�(b)
2

× F1(c − a, c − b, c − a − b; 1 − ζ )

]
. (41)

(b) When we choose p = (1+l)/2, the parameters in Eq. (38)
are fixed as a = −n or b = −n to be a regular radial solution.
Then, the radial solution in this choice is

R(ζ ) = A1

[
ζ

−i
√

3
�

ω
2 (1 − ζ )

1
2 (1+l)

× �(c)�(c − a − b)

�(c − a)�(c − b)
2F1(a, b, a + b − c + 1; 1 − ζ )

]
.

(42)

The main concern of this study is the frequency ω rather
than the radial solutions. Interestingly, in combination with
Eq. (38), the frequencies in both choices of p = −l/2 and
p = (1 + l)/2 are exactly coincident to

ω = −i

√
�

3

(
2n + l + 3

2
±

√
9

4
+ 12ξ − 3

�
μ2

)
, (43)

which is given as a pure imaginary, which means all the
modes will decay. The most dominant mode among them is
the one that is least damping in Eq. (43). Thus, the dominant
mode is in n = 0 and l = 1 with the choice of the minus
sign. Then, the quasinormal frequency is in the dS spacetime

ωdS
n=0 = −i

√
�

3

(
5

2
−

√
9

4
+ 12ξ − 3

�
μ2

)
. (44)

Note that the most dominant mode of the minimally-coupled
massless scalar field is given as ωn=0 = −ilκc with μ = 0,
ξ = 0, n = 0, and l = 1. This is consistent with the dS
mode in [52]. Here, we expect that the quasinormal mode
in the MTZ black hole will come close to the pure dS mode
of Eq. (44) in the zero-mass limit. Then, the rate between
amplification and decay are obtained as

lim
M→0

β = |Im(ωdS
n=0)|

limM→0κi
=

(
5

2
−

√
9

4
+ 12ξ − 3

�
μ2

)
,

(45)

where we impose limM→0 κi =
√

�
3 in the zero-mass limit

and under the lukewarm condition. Therefore, the value of β

only depends on the mass and non-minimal coupling constant
of the scalar field in Eq. (45). In the choice of μ = 0 and
ξ = 0, it is easily shown that β = 1, which implies the
violation of the SCC conjecture, is shown in [52].

However, under the quasinormal resonance of the non-
minimally coupled massive scalar field, other choices can be
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Fig. 2 β of the dominant mode of dS spacetime with � = 1

possible, such as

12ξ − 3

�
μ2 >

7

4
. (46)

Then, β can be smaller than 1
2 . Therefore, the SCC conjecture

can be valid in the range shown in Eq. (46). More detailed
behaviors are shown in Fig. 2. In the small mass and coupling
constant of the scalar field, β exceeds 1

2 , so the amplification
can be dominant instead of decay rate. However, there are
ranges of μ and ξ that give a β smaller than 1

2 , between the
red dashed lines in Fig. 2. Here, the decay of the scalar field is
more efficient than the amplification. Thus, the Cauchy hori-
zon can be stable during the perturbation. Note that this study
only considers the linear perturbation of the quasinormal res-
onance; thus, a detailed discussion is needed to consider other
effects such as self-interaction and backreaction of the scalar
field.

4.3 WKB Approximation

The SCC conjecture is discussed in the large- and small-
mass limits of the MTZ black hole. However, the validity
of the SCC conjecture still remains in between the two lim-
its, according to our analysis. To interpolate these limits, we
apply the WKB approximation to obtain ωn=0 in the eikonal
limit l � 1 with respect to the mass of the MTZ black hole.
The WKB approximation, which will be used here, is given
in [71,72]. Then, the quasinormal frequencies of Eq. (20) are
determined to [72]

V ∗
p =

√
−2V ∗(2)

p �n=0 − i

2

√
2V ∗(2)

p (1 + �n=0) ,

V ∗
p ≡ V (r∗)

∣∣∣
r∗=r∗

p

, V ∗(n)
p ≡ dnV (r∗)

(dr∗)n
∣∣∣
r∗=r∗

p

, (47)

where

�n=0 = 1√
2V ∗(2)

p

⎛
⎝ 1

16

(
V ∗(4)

p

V ∗(2)
p

)
− 11

144

(
V ∗(3)

p

V ∗(2)
p

)2
⎞
⎠ ,

�n=0 = 1

2V ∗(2)
p

⎛
⎝ 155

1728

(
V ∗(3)

p

V ∗(2)
p

)4

− 19

96

⎛
⎜⎝

(
V ∗(3)

p

)2
V ∗(4)

p

(
V ∗(2)

p

)3

⎞
⎟⎠ + 7

192

(
V ∗(4)

p

V ∗(2)
p

)2

+ 13

144

⎛
⎜⎝V ∗(3)

p V ∗(5)
p(

V ∗(2)
p

)2

⎞
⎟⎠ − 1

48

(
V ∗(6)

p

V ∗(2)
p

)⎞
⎟⎠ . (48)

V ∗
p only includes the quasinormal frequency ω in Eq. (47),

we can obtain the quasinormal frequencies for the masses of
the MTZ black hole as shown in Fig. 3.

Each mode is represented by a pair of Re(ω) and Im(ω)

with the same color. The real part of the quasinormal fre-
quency is about a propagating oscillation in Fig. 3a, c. The
decay rate is closely related to the imaginary part of Im(ω) in
Fig. 3b, d. Here, we need to determine the dominant mode,
which is the least damping mode, so that it will have the
longest life span among all the modes. In Fig. 3b, the mode
with n = 0 is in the least damping state for various values
of n. Further, for a fixed n, the least damping mode appears
at the largest value of l in Fig. 3d. Particularly, the damping
becomes smaller as l increases. Thus, for our analysis, we
assume the eikonal limit, (l � 1) to l = 100. Therefore, the
dominant mode in the quasinormal resonance is in n = 0 and
l = 100. Note that the effects of μ and ξ do not much affect
our analysis; therefore, we did not introduce them in Fig. 3.

We can now integrate all our results for the β of quasinor-
mal modes in the MTZ black holes, and show them in Fig. 4
with magnified graphs in two limits.

The detailed behaviors of β with two limits are given
in Fig. 4a. The dominant modes obtained from the WKB
approximation is represented by the black lines. There are
two limits represented by blue and red lines. The blue line
is for the β obtained from the Pöschl–Teller potential in
the large-mass limit of the near-extremal approximation in
Eq. (30). At this limit, we can clearly observe that the WKB
and Pöschl–Teller potential approximations are exactly coin-
ciding as represented by the blue point. Further, the value of β

is much smaller than 1
2 . Thus, the SCC conjecture is valid for

this limit. However, in the small-mass limit of the MTZ black
hole, the behavior patterns become complex. The value of β

in the quasinormal resonance rises to the infinity in the limit
of the small mass in the black hole. On the other hand, the
value of β of the dominant quasinormal resonance in the dS
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(a) (b)

(d)(c)

Fig. 3 Quasinormal modes with respect to the mass of the MTZ black hole, for ξ = 1, μ = 1

(a) (b)

Fig. 4 Values of β of quasinormal modes with two limits of MTZ black holes

spacetime is finite and much smaller than that of the black
hole. As we already expected for the small-mass limit in
Sect. 4.2, the dominant mode of the quasinormal resonance
of the black hole, denoted by a black line, may smoothly
converge on that of the dS spacetime, denoted by a red line

in Fig. 4a. This is because, in the limit of the small mass,
the black hole could be too small, the configuration of the
quasinormal resonance may be a superposition of those res-
onances of black hole and dS spacetime. Then, the quasi-
normal resonance of the dS spacetime can be dominant as it
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has a smaller β value than the black hole. Different from the
WKB approximation, in the small-mass limit, β has a finite
value depending on ξ and μ in Eq. (45). In Fig. 4a, there is
a crossing point of red and black lines where the dominant
mode transforms into that of the dS spacetime l = 1 rather
than into the eikonal limit l = 100. Hence, the dominant
quasinormal resonance is assumed to be the red line of the
dS spacetime in the mass smaller than the crossing point.
The small-mass limit shows that β can rise over 1

2 at the
small mass. Therefore, the SCC conjecture may be invalid in
the small-mass range. However, there exists a specific case
where the SCC conjecture is valid for all the masses of the
MTZ black hole, as shown in Fig. 4b. Here, we simplify the
diagram by choosing the smaller β for a given mass, because
the dominant mode should have the smallest damping fac-
tor, Im(ω). The blue point is still largely coincident with the
WKB approximation. Interestingly, according to the choice
of ξ and μ, β can be lower than 1

2 at the small-mass limit
as shown in Fig. 4b. This implies that the SCC conjecture is
valid for all the masses of the MTZ black hole.

We have applied various methods to obtain the dominant
modes of the quasinormal resonance, including approximate
potentials and WKB method, in MTZ black holes. Our results
are consistent with previous studies conducted on the mass-
less scalar field. We will now check the consistency of the
results with those of the previous studies that discuss RNdS
black holes. As we consider the quasinormal mode of the
scalar field in the MTZ black hole, our analysis needs to be
consistent with [52]. Note that the detailed method is differ-
ent. The MTZ black hole can be considered for the lukewarm
case of Q/M = 1 compared with the RNdS black hole in
[52]. For the near-extremal black hole of ro ≈ rc, the SCC
conjecture is valid because β < 1

2 . This is consistent with our
results given in Sec. 4.1. Moreover, for the small-mass limit
of ro, ri → 0, the value of β becomes larger than 1

2 , which
means that the conjecture is invalid. This is also consistent
with our results in Sect. 4.2, in the case of the massless scalar
field of ξ = 0 and μ = 0. Then, we can find a point β = 1

2
after interpolating the two limits by the WKB approxima-
tion. This is also provided in Sect. 4.3. Although MTZ and
lukewarm RNdS black holes are solutions to different theo-
ries of gravity, their quasinormal frequencies are consistent
with one another. Whether or not non-linear effect is subtle is
still an issue in current studies. Our analysis is based on the
quasinormal resonance of a linear perturbation, and does not
consider non-linear effects. The non-linear effect is a subject
for future study.

5 Summary

We investigated the validity of the SCC conjecture in the
MTZ or lukewarm RNdS black hole by the quasinormal res-

onance of the non-minimally coupled massive scalar field.
Since the instability of the Cauchy horizon depends on the
amplification and decay rates of the quasinormal resonance,
we obtained the overall behaviors of β ≡ Im(ω)/κi with
respect to the mass of the black holes. In the analysis of the
SCC conjecture by quasinormal modes, the dominant mode,
which is the least damping mode, plays an important role.
Therefore, we first obtained the values of β for the small- and
large-mass limits of the MTZ black hole. Then, we combined
them by the WKB approximation. In the large-mass limit,
for a given cosmological constant, the black hole becomes
the near-extremal case where the effective potential of the
scalar field reduces to the Pöschl–Teller potential. Then, we
obtained the quasinormal frequency and read the value of
β < 1

2 for the dominant mode. This implies that the ampli-
fication of the inward field is more dominant than the decay
rate. Hence, the SCC conjecture is valid for large mass black
holes. Note that as the mass of the black hole decreases, the
value of β tends to increase. Particularly, at the small-mass
limit, β rapidly diverges in the eikonal limit of the scalar
field. To resolve this divergence, we carefully consider that
the dominant mode of the quasinormal resonance gradually
becomes similar to that of the dS spacetime, because the
black hole could be too small to affect the quasinormal mode
in the limit. Hence, it is possible that the least damping mode
originates from that of the dS spacetime. Moreover, the dom-
inant mode of the dS spacetime had less damping than that
found by the WKB approximation. Thus, the amplification
and decay rates depend on the dS spacetime mode in the
small-mass limit. Instead of the mass of the black hole, the
dominant mode of the dS spacetime is determined precisely
from ξ and μ. In the limit of the massless scalar field with-
out coupling, as shown in previous studies, the value of β

is still larger than 1
2 . On the contrary, we found that there

is a range producing smaller β than 1
2 in the phase-space

of ξ and μ. This implies that the SCC conjecture is invalid.
Therefore, the validity of the SCC conjecture depends on the
coupling constant and mass of the scalar field in the lukewarm
RNdS or MTZ black hole. It should be noted that our anal-
ysis is based on the perturbations of the quasinormal mode.
Therefore, it can be improved by considering backreaction
or non-linear effects. Nevertheless, the results of this study
extend the investigation of the SCC conjecture to the non-
minimally coupled massive scalar field. Further, we found
that the validity of the SCC conjecture in this case may be
different from that of the massless scalar field without cou-
pling.
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