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Abstract In this paper, we analyze the clustering of galax-
ies using a modified theory of gravity, in which the field con-
tent of general relativity has been be increased. This increas-
ing in the field content of general relativity changes the large
distance behavior of the theory, and in weak field approx-
imation, it will also modify the large distance behavior of
Newtonian potential. So, we will analyzing the clustering of
multi-component system of galaxies interacting through this
modified Newtonian potential. We will obtain the partition
function for this multi-component system, and study the ther-
modynamics of this system. So, we will analyze the effects
of the large distance modification to the Newtonian potential
on Helmholtz free energy, internal energy, entropy, pressure
and chemical potential of this system. We obtain also the
modified distribution function and the modified clustering
parameter for this system, and hence observe the effect of
large distance modification of Newtonian potential on clus-
tering of galaxies.

1 Introduction

Observations made on the dynamics of galaxies indicate
a discrepancy between the observed mass of galaxy from
dynamics of galaxies and the mass inferred from the exis-
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tence of luminous matter [1,2]. It appears that a large part
of the mass of the galaxies and thus universe as a whole
universe is not visible, this non-luminous missing mass of
the universe is known as dark matter [3,4]. Several models
have been proposed for the dark matter, such as axion [5],
black holes [6], neutrino [7] and gravitino [8]. However, none
of these dark matter models has been verified, and this has
led to the development of alternative approaches to explain
this discrepancy between the observed and measured rota-
tion of galaxies. These approaches are motivated by a large
distance modification of dynamics, such that this modified
dynamics can resolve this discrepancy. In fact, it has been
demonstrated that by modifying the Newtonian dynamics at
galactic scales, it is possible to resolve this discrepancy, and
this large distance correction to the Newtonian dynamics is
called Modified Newtonian Dynamics (MOND) [9]. Even
though the MOND explains the dynamics at galactic scale,
it does not correct describe the dynamics at intra-galactic
scale, and hence it cannot be used to analyze the clustering
of galaxies [10–12].

It has also been argued that it is possible to have other
modifications to gravity, such as modified theory of gravity
(MOG), which do not have this problem, and can explain the
clustering of galaxies [13,14]. In MOG, the field content of
general relativity are increased to include scalar, and vector
fields, apart from the tensor field [15]. The dynamics of a
test particle in MOG are modified by the inclusion of these
additional fields. This is because the coupling of the metric
to both the scalar and the vector fields, modifies the usual
solution to the field equations for a point mass [16]. In fact,
the rotation curves of galaxies in MOG have also been ana-
lyzed using a static spherically symmetric point mass solution
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derived from the field equations [17,18]. The same procedure
has been applied to the dynamics of globular clusters [19],
clusters of galaxies [20], and the bullet cluster [21]. It has
been observed that MOG can explain the dynamics at intra-
galactic scales, and hence it can be used to analyze clustering
of galaxies. In the weak field approximation, MOG produces
the Newtonian potential with and a large distance correction
to the Newtonian potential. The weak field approximation of
the MOG has been used for analyzing such systems [22–24],
so in this paper, we will also use the weak field approximation
to MOG.

As the intra-galactic distances are much larger than the
diameter of individual galaxies, we can approximate the indi-
vidual galaxies as point particle [25]. So, such a system of
galaxies interacting through a potential can be studied using
standard techniques of statistical mechanics. In fact, such a
system of galaxies interacting thought a Newtonian potential
has already been studied using such techniques from statis-
tical mechanics [26–28]. It has also been observed that for
this system the gravitational clustering can evolve through a
sequence of quasi-equilibrium state [26,29]. Thus, the cos-
mological many body partition function has been obtained
by using an ensemble of co-moving cells containing galaxies
interacting through the usual Newtonian potential [30]. It has
also been observed that if the cells is smaller than the correla-
tion length, then each member of this ensemble is correlated
gravitationally with other cells. So, for such cells, the correla-
tions within a cell is greater than correlations among cells, so
that extensivity is a good approximation to study such a sys-
tem [30,31]. The techniques of statistical mechanics can also
used to analyze the clustering of different types of galaxies.
In fact, the clustering of different kind of galaxies has been
studied using a multi-component system [32–34]. The galax-
ies in this multi-component system were again assumed to
interact through a Newtonian potential.

The clustering has also been studied using the large dis-
tance modification of Newtonian potential. It is possible to
obtain large distance correction to the Newtonian potential in
brane world models [35], and the clustering of galaxies has
been studied using such a large distance correction to New-
tonian potential [36]. The effects of of cosmological constant
on clustering of galaxies has been analyzed, and the thermo-
dynamics for such a system of galaxies has been studied [37].
The cluster of galaxies under the effect of dynamical dark
energy has also been studied, and the gravitational partition
function for this system has been constructed [38]. This grav-
itational partition function has been used to analyze the ther-
modynamics of this system. As the dark energy is dynamical
in this model, the time evolution of the clustering parameter
is studied using the time dependence of this dynamical dark
energy. So, it is both interesting and important to analyze
the large distance modification to the clustering of galaxies
using standard techniques of statistical mechanics. As MOG

produces an phenomenologically important large distance
modification of Newtonian potential, in this paper, we will
use this MOG modified Newtonian potential to analyze the
clustering of galaxies.

2 Modified Newtonian potential

In this section, we obtain the MOG modified potential for a
system of different types of galaxies. So, first we will review
the weak field approximation of MOG [22–24], and then
analyze the modification to that potential from the soften-
ing parameter which is used for studding the clustering of
galaxies [26,28,30]. Apart from tensor field, MOG consists
of massive vector field φμ and three scalar fields, Newton’s
constant G, a vector field coupling constant ω. The mass of
the vector filed μ acts as scalar fields, and so the mass of
the scalar field is a dynamical function in space-time. This
theory also contains the self interacting potentials for various
field, which can be denoted by Vφ(φμφμ), VG(G), V (ω) and
Vμ(μ). Now the action for MOG can be written as [15,24],

S = SG + Sφ + SS + SM , (1)

where SG is the original Einstein gravity action, Sφ is the
action of a massive vector field φ, SS is the action of scalar
fields, and SM is the matter action, which can be considered
as pressureless dust. These actions can be expressed as

SG = − 1

16π

∫
1

G
(R + 2�)

√−g d4x,

Sφ = − 1

4π

∫
ω

[
1

4
BμνBμν − 1

2
μ2φμφμ + Vφ(φμφμ)

]√−g d4x,

SS = −
∫

1

G

×
[

1

2
gαβ

(∇αG∇βG

G2 + ∇αμ∇βμ

μ2

)
+VG (G)

G2 +Vμ(μ)

μ2

]√−g d4x,

SM =
∫

(−ρ
√
uμuμ − ωQ5u

μφμ)
√−gdx4, (2)

where Bμν = ∂μφν − ∂νφμ, and ∇ν is covariant derivative
with respect to metric gμν . In matter action ρ is matter den-
sity, and Q5 is the source of the fifth force, and it is related
to matter density as Q5 = κρ, where κ is a constant.

To make weak field approximation, we have considered
fields as background plus perturbation. The indices (0) and
(1) are background and perturbation respectively. Since,
there is no gravitational source for vector field φμ(0) = 0,
and φμ(1) ≡ φμ, the equation of motion for G is given by

∇μ∇μG(1) = −G(0)

16π
R(1), (3)

where R(1) is the perturbation of the Ricci scalar in the forth
order. Similarly, we get equation of motion varying the tensor
component we get
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Rμν(1) − 1

2
R(1)ημν = −8πG0T

(M)
μν(1) − 8πG0T

(φ)

μν(1) (4)

where we have considered only first order terms and T (φ)

μν(1)

is the energy momentum tensor of the vector field

T (φ)
μν = ω

4π

(
Bμ

αBνα − 1

4
gμνB

αβBαβ

)

−μ2ω

4π

(
φμφν − 1

2
φαφαgμν

)
. (5)

Here T (M)
μν(1) is the tensor for matter. Now considering

T (φ)

μν(1) � T (M)
μν(1), we get

R(1) = 8πG0T
μ(M)

μ(1). (6)

Since we are considering pressureless matter, the energy
momentum tensor Tμ(M)

μ(1) = ρ. For the scalar field G, we
have

∇2
(
G(1)

G0

)
= 1

2
G0ρ. (7)

Here, G(1)/G0 is of the order of the gravitational potential,
and is of the order (v/c)2, where v is the internal velocity of
the system. So, for clusters of galaxies, the deviation from
the constant G0 is of the order of G1/G0 � 10−7 − 10−5.

For (0, 0) component of first order perturbation of Ricci
tensor can be written as

R00(1) = 1

2
∇2h00, (8)

and so, the equation of motion is

1

2
∇2(h00) = −4πG0ρ. (9)

The equation of motion for massive vector field is

∇νB
μν − μ2φμ = −4π

ω
Jμ. (10)

Assuming conservation of the vector matter current, ∇μ Jμ =
0, makes it possible to impose the gauge condition, φμ

,μ = 0
in the weak field approximation. Thus, for the static case, we
can write

∇2φ0 − μ2φ0 = −4π

ω
J 0, (11)

and this has the solution,

φ0(r) = 1

ω

∫
e−μ|r−r′|

|r − r′| J 0(r′)d3r′. (12)

The field equation for an effective potential in the weak field
approximation, can be obtained as follows,

∇ · a − 1

2
∇2h00 = −ωκ∇2φ0, (13)

where a is acceleration of the test particle. An effective
potential for the test particle can be defined and given by,
a = −∇
e f f , and relate it to matter distribution as follows,

∇ · (∇
e f f − κω∇φ0) = 4πG0ρ. (14)

The solution to the above Poisson equation, 
N is given by


N = 
e f f − κωφ0. (15)

So, the effective potential can be written as


e f f (r) = −
∫

G0ρ(r′)
|r − r′| d

3r′ + κ2
∫

e−μ|r−r′|

|r − r′| ρ(r′)d3x′.

(16)

From the above relation it is clear that there is a repulsive
Yukawa force term, in addition to attractive gravitational
force. Using the Dirac-delta function ρ(r′) = Mδ3(r′), for a
point massive particle the effective potential becomes,


e f f (r) = −G0M

r
+ κ2 Me−μr

r
, (17)

where r = |r|. Expanding the exponential term for distances
compared to μ−1, the effective potential becomes


e f f (r) = − (G0 − κ2)M

r
− μκ2M. (18)

The first term is the Newtonian gravitational contribution,
G0 − κ2 = GN . As at large distances, (μr → ∞), we just
have the first term of this equation, so G0 can be identified
with the effective gravitational constant at infinity G∞. The
effective potential for an extended distribution of matter in
MOG, can be written as [22–24]


e f f (r) = −G∞
[∫

ρ(r′)
|r − r′|

(
1 − G∞ − GN

G∞
e−μ|r−r′ |

)
d3r′

]
.

(19)

So, we can define α = (G∞ − GN )/GN , and write the
effective potential as


e f f (
r) = −GN

[∫
ρ(
r ′)

|
r − 
r ′| (1 + α − αe−μ|
r−
r ′|)d3r ′
]

.

(20)

where α and μ can be treated as constant parameters, in
the weak field approximation [22–24]. Now for a system of
galaxies, the MOG modified Newtonian potential between
two galaxies, can be written as [15],

φi, j = −Gm2

ri j

(
1 + α − αe−μr

)
, (21)

It may be noted that, for the point masses, the partition func-
tion of galaxies interacting through usual Newtonian poten-
tial diverges at ri j = 0. This divergence occurs due to the
assumption that the galaxies are point like objects. However,
this divergence can be removed by taking the extended nature
of galaxies into account by introducing a softening parameter
which takes care of the finite size of each galaxy [26,28,30].
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Thus by incorporating the softening parameter the MOG
modified interaction potential energy between galaxies can
be represented as,

φi, j = − Gm2

(r2
i j + ε2)1/2

(1 + α − αe−μri j ). (22)

This is the potential we will use for analyzing the clustering
of galaxies, in this paper.

3 Gravitational partition function

In this section, we will first approximate galaxies as point par-
ticles, as the intra-galactic distances are much larger than the
galactic scales. However, we will analyze this using a multi-
component system as we can have different types of galaxies,
with different parameters. The multi-component system has
already been used to analyze different types of galaxies inter-
acting though a Newtonian potential [32–34], and here we
will analyze such a system of galaxies interacting through
a MOG modified Newtonian potential. To analyze such a
multi-component system, we will first explicitly analyze a
three component system, which will consists of N1 galaxies
of mass m1, N2 galaxies of mass m2 and N3 galaxies of mass
m3. The partition function for such a system can be expressed
as

ZN (T, V ) = 1

�3N N !
×

∫
d3N1 pid

3N1rd3N2 p jd
3N2r ′d3N3 pkd

3N3r ′′

× exp

(
−

[ N∑
i=1

p2
i

2m1
+

N∑
j=1

p2
j

2m2
+

N∑
k=1

p2
k

2m1

+ 
(r1, . . ., rN1 , r
′
1, . . ., r

′
N2
r ′′

1 , . . ., r ′′
N3

)

]
T−1

)
,

(23)

where N ! takes the distinguish-ability of classical galaxies
into account, and � is the normalization factor which results
from integration over momentum space. Now, integrating the
momentum space, we obtain the following expression

ZN (T, V ) = 1

�3N N ! (2πm1T )3N1/2(2πm2T )3N2/2

× (2πm3T )3N3/2QN (N1, N2, N3, T, V ), (24)

where QN (N1, N2, T, V ) is the configurational integral
given by [30],

QN (N1, N2, N3, T, V )

=
∫

exp

(
−
(r1, . . . , rN1 , r

′
1, . . . , r

′
N2

, r ′′
1 , . . . , r ′′

N3
)

)

× d3N1rd3N2r ′d3N3r ′′ (25)

where, after taking the softening parameter into account, we
have

φi, j = − Gm2

(r2
i j + ε2)1/2

(1 + α − αe−μri j ). (26)

We can use a two particle Mayer function fi j = e−
i j /T −
1, such that it vanishes in absence of interactions, and is
non-zero only for interacting galaxies and the configurational
integral can be expressed in terms of the MOG modified
function fi j

QN (T, V ) =
∫

....

∫
((1 + f12)(1 + f13) . . . ))

×d3r1 . . . d3rN1d
3r ′

1 . . . d3r ′
N2
d3r ′′

1 . . . d3r ′′
N3

(27)

where we have used the MOG modified potential

fi j = Gm1m′

(r2 + ε2)1/2

(
1 + α − αe−μr ). (28)

It may be noted that this configurational integral has been
studied for usual Newtonian gravity [30], however, here we
have analyzed the large distance modification to it from
MOG. Here m′ can be m1 or m2, and so we can obtain,

Q3(T, V ) = 4πV
∫ R1

0

(
1 + Gm1m2

T

[
(1 + α)

r2

(r2 + ε2)1/2

− α
r2e−μr

(r2 + ε2)1/2

])

×
(

1 + Gm1m3

T

[
(1 + α)

r2

(r2 + ε2)1/2

− α
r2e−μr

(r2 + ε2)1/2

])
drdr ′dr ′′. (29)

In order to calculate the integral containing exponential part,
we further make an approximation that for small ε, we have
(r2 + ε2)1/2 = r , and obtain

Q3(T, V )=V 3
(

1+(α1+β1)
m2

m1
x

) (
1+(α1 + β1)

m3

m1
x

)
,

(30)

where x = βρT−3 with β = (3Gm2
1/2). The values of α1

and β1 are given by

α1 = (1 + α)γ1, (31)

β1 = −αγ2, (32)

where, we have

γ1 =

⎛
⎜⎜⎝

√
1 + ε2/R2

1 + ε2

R2
1

ln
ε/R1

1 +
√

1 + ε2

R2
1

⎞
⎟⎟⎠ , (33)
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γ2 = 2

R2
1μ2

(−e−μR1(μR1 + 1) + 1)). (34)

By using the scale invariance, ρ → λ−3ρ, T → λ−1T and
r → λr , we obtain

3

2
(Gm2)3ρT−3 = βρT−3. (35)

The general configurational integral for a three component
system can be obtained by similar procedure, thus we write
expression for general term as

QN (T, V ) = V N (
1 + (α1 + β1)x

)N1−1

×
(

1+(α1+β1)
m2

m1
x

)N2
(

1+(α1+β1)
m3

m1
x

)N3

.

(36)

For N1 >> 1, we can write the configurational integral as,

QN (T, V ) = V N (
1+(α1+β1)x

)N1

×
(

1+(α1+β1)
m2

m1
x

)N2
(

1+(α1+β1)
m3

m1
x

)N3

.

(37)

For a multi-component system i.e., the system containing
N1 galaxies with mass m1, N2 galaxies with mass m2, N3

galaxies with mass m3, . . . , the configurational integral can
be generalized as,

QN (T, V ) = V N
s∏

l=1

(
1 + (α1 + β1)

ml

m1
x

)Nl

. (38)

Hence, the gravitational partition function for such a multi-
component system given by,

ZN (T, V ) = 1

N !
∏
l

Nl !ZNl , (39)

where we can write

ZNl = V Nl

�3Nl Nl ! (2πml)
3Nl/2

(
1 + ml

m1
(α1 + β1)x

)Nl

.

(40)

We will use partition function to study thermodynamics of
the system.

4 Multi-component system of galaxies

It is possible to study clustering of different types of galaxies
using the partition function of a multi-component system,
as different types of galaxies can be modeled using a multi-
component system [32–34]. So, such a partition function can
now be used to calculate relevant thermodynamical quantities

for the multi-component system of galaxies interacting with
MOG potential. First of all, we can write the Helmholtz free
energy using the following relation in the canonical ensem-
ble,

F = −T ln ZN (T, V )

= −T ln
1

N !
∏
l

Nl !ZNl

= NT ln N − NT − T
∑
l

ln Nl +
∑
l

Fl . (41)

where

∑
l

Fl = −
∑
l

T ln ZNl (T, V )

−
∑
l

(
T ln

(
1

Nl !
(

2πmlT

�2

)3Nl/2

V Nl

×
(

1 + (α1 + β1)
ml

m1
x

)Nl
))

. (42)

Here, we have made use of Stirling’s approximation, ln N ! ≈
N ln N − N . We can see behavior of the Helmholtz free
energy in terms of temperature by Fig. 1. We assumed dif-
ferent values for Nl , and find form the Fig. 1a that its value
is important in behavior of F . For Nl = 3, the Helmholtz
free energy is completely negative. For Nl = 4, we can
see some positive values of F , including a maximum, also a
minimum for low temperature case (Fig. 1b). In the case of
high temperature, we can find large value for the Helmholtz
free energy. The value of the mentioned maximum of the
Helmholtz free energy depends on number of components.
Increasing number of components, increased value of the
Helmholtz free energy at peak. There are some critical tem-
peratures (T ≈ 0.5 and T ≈ 5 in the Fig. 1b), where the
Helmholtz free energy of all multi-component systems are
the same. Moreover, the Helmholtz free energy is zero at
zero-temperature limit.

Also, the behavior of the Helmholtz free energy in terms of
N is shown in Fig. 2. It is clear that the Helmholtz free energy
is an increasing function of N . As before, we can see that by
increasing number of components, value of the Helmholtz
free energy is increased. We also find that the Helmholtz free
energy is a decreasing function of α.

The entropy S can now be calculated from the Helmholtz
free energy,

S = −
(

∂F

∂T

)
N ,V

= −N ln N + N +
∑
l

ln Nl +
∑
l

Sl , (43)

where, we have
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(a) (b)

Fig. 1 Typical behavior of the Helmholtz free energy in terms of T . (a) Nl = 3 (blue dash), Nl = 4 (red solid), Nl = 5 (green dash dot);
l = 1, 2, 3, 4, 5. (b) Nl = 4; l = 1, 2, 3 (blue dash), l = 1, 2, 3, 4 (red solid), l = 1, 2, 3, 4, 5 (green dash dot); l = 1, 2, 3, 4, 5, 6 (orange dot)

Fig. 2 Typical behavior of the Helmholtz free energy in terms of
N . Nl = 5; l = 1, 2, 3 (blue dash), l = 1, 2, 3, 4 (red solid),
l = 1, 2, 3, 4, 5 (green dash dot); l = 1, 2, 3, 4, 5, 6 (orange dot)

∑
l

Sl =
∑
l

(
Nl ln

(
T 3/2

ρ

)
+ Nl ln

(
1 + (α1 + β1)

ml

m1
x

)

− 3Nl
(α1+β1)

ml
m1

x

1+(α1+β1)
ml
m1

x
+5

2
Nl + 3

2
Nl ln

(
2πml

�2

))
.

(44)

In Fig. 3, we see typical behavior of the entropy. Figure 3a
shows that the entropy may be negative at low temperature
physics. It may be cause of some instability below a criti-
cal temperature. Also, at the critical temperature, all multi-

component systems are the same. Figure 3b shows that value
of the entropy increases by increasing number of compo-
nents. Finally, Fig. 3c shows that the entropy is decreasing
function of α, by the small variation linearly.

Here, we define the multi-component clustering parameter
as,

Bl =
∑
l

(α1 + β1)
ml
m1

x

1 + (α1 + β1)
ml
m1

x
, (45)

We see the clustering parameter depends upon the masses
of the interacting galaxies. This can be used to study the
merging of galaxies. The internal energy U = F + T S of a
multi-component system of galaxies, can now be expressed
as,

U =
∑
l

3

2
NlT

(
1 − 2Bl

)
, (46)

which is independent of N , and decreasing function of α.
In the Fig. 4, we can see typical behavior of the internal
energy with respect to the temperature. We can see a mini-
mum of energy at low temperature, and large energy at high
temperature. However, such minimum has negative internal
energy, and negative entropy (Fig. 3b). Hence, we can see
negative entropy and internal energy below a critical tem-
perature (Tc ≈ 1 with fixed parameters as given by figures),
which may be sign of thermodynamical instability.

Similarly, we can write the pressure P and chemical poten-
tial μ as follows,

P = −
(

∂F

∂V

)
N ,T

=
∑
l

NlT

V

(
1 − Bl

)
, (47)
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(a) (b) (c)

Fig. 3 Typical behavior of the entropy in terms of a T , b N and c α. Nl = 3; l = 1, 2, 3 (blue dash), l = 1, 2, 3, 4 (red solid), l = 1, 2, 3, 4, 5
(green dash dot); l = 1, 2, 3, 4, 5, 6 (orange dot)

Fig. 4 Typical behavior of the internal energy in terms of T . Nl = 5;
l = 1, 2, 3 (blue dash), l = 1, 2, 3, 4 (red solid), l = 1, 2, 3, 4, 5 (green
dash dot); l = 1, 2, 3, 4, 5, 6 (orange dot)

Nμ

T
=

(
F

T
+ PV

T

)

= ln
N !∏
Nl ! +

∑
l

Nlμ

T
, (48)

μ = T

N

[
N ln N − N −

∑
l

ln Nl +
∑
l

Nlμl

T

]
, (49)

where

∑
l

Nlμl

T
=

∑
l

(
Nl ln(ρT−3/2)−Nl ln

(
1+(α1+β1)

ml

m1
x

)

−Nl
3

2
ln

(2πml

�2

) − Nl Bl

)
. (50)

Now Fig. 5 show typical behavior of the chemical potential
in terms of T , N , α and V . In the Fig. 5a we can see that
chemical potential is increasing function of the temperature.
Also, increasing number of component increases value of the
chemical potential. From the Fig. 5b we can see that chem-
ical potential is decreasing function of N . Figure 5c shows
that chemical potential is linearly decreasing function of N .
Finally, Fig. 5d shows that chemical potential is decreasing
function of V .

The probability of finding N galaxies can be written as

F(N ) = e
Nμ
T ZN (V, T )

ZG(T, V, z)
, (51)

where ZG = zZN and z is the activity.
Thus, for a multi-component system of gravitationally inter-
acting galaxies of different species, we have,

F(N1, N2, . . . Nl) =
∏
l

ZNl e
Nlμ
T

eN̄l (1−Bl )
(52)

where N = N1 + N2 + . . . Nl . The general distribution of a
multi-component system with MOG effect can be written as,

F(N ) = N̄1
N1

N1!
(

1+N1

N̄1

B1

(1 − B1)

)N1−1(
1+ B1

(1 − B1)

)−N1

×e(−N1B1−N̄1(1−B1))

×
l∏
2

(
N̄l

Nl

Nl !
(

1+Nl

N̄l

Bl
(1 − Bl)

)Nl
(

1+ Bl
(1 − Bl)

)−Nl

×e(−Nl Bl−N̄l (1−Bl ))
)

(53)

If all the galaxies are of same mass the result reduces to

F(N ) = N̄ N

N !
(

1 + N

N̄

B

(1 − B)

)N−1(
1 + B

(1 − B)

)−N

×e(−N B−N̄ (1−B)), (54)
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(a) (b)

(c) (d)

Fig. 5 Typical behavior of the chemical potential in terms of a T , b N , c α and d V . Nl = 5; l = 1, 2, 3 (blue dash), l = 1, 2, 3, 4 (red solid),
l = 1, 2, 3, 4, 5 (green dash dot); l = 1, 2, 3, 4, 5, 6 (orange dot)

where, we have

B = (α1 + β1)x

1 + (α1 + β1)x
. (55)

We find that distribution function is increasing function of
temperature, while it is a decreasing function of numbers.
We also find that clustering parameter decreases value of the
distribution function. In the next section the behavior of the
above mentioned parameter for the multi-component system
is discussed.

We can defined the clustering parameter between the
galaxies of different mass components as follow,

Bl =
∑
l

(α1 + β1)
ml
m1

x

1 + (α1 + β1)
ml
m1

x
, (56)

We see the clustering parameter depends upon the masses of
the interacting galaxies. This can be used to study the merging
of galaxies. We can express the parameter x , in terms of the
number of galaxies as

x = βρT−3 = β(Nl/N1)ρ̄T
−3 = (Nl/N )y. (57)

Thus, we can write

Bl =
∑
l

(α1 + β1)
ml Nl
m1N1

y

1 + (α1 + β1)
ml Nl
m1N1

y
, (58)

It may be noted that as, we can express the clustering param-
eter as

Bl = b
∑
l

( 1 + α(1 − γ2
γ1

)
ml Nl
ml Nl

1 + α(1 − γ2
γ1

)
ml Nl
ml Nl

b

)
, (59)
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So, for one component, we have

B = b
1 + α(1 − γ2

γ1
)

1 + α(1 − γ2
γ1

)b
. (60)

where, b is given by

b = γ1y

1 + γ1y
, (61)

It is interesting to note that the effect of MOG modified
potential enter into the distribution function only through the
clustering parameter. Now for attractive potential, we have
0 ≤ Bl ≤ 1. So, it is the deviation of distribution func-
tion, which can give an estimate of merging as well as multi-
component clustering. Thus, it is possible to study the cluster-
ing of galaxies of different masses using a multi-component
systems.

5 Conclusion and discussion

In this paper, we have studied the clustering of a system
of galaxies interacting thought a MOG modified Newto-
nian potential. As it is possible for the system of galaxies
to have different masses, we have analyzed this system using
a multi-component systems. This MOG modified Newtonian
potential can be obtained from the weak field approximation
of MOG, and we have used it for calculating the partition
function of this multi-component system. We compute the
partition function, and studied the thermodynamics of this
system using that partition function. We also analyzed the
general clustering parameter for this multi-component sys-
tem of galaxies interacting though MOG.

Indeed we have thermodynamical study of clustering of
the multi-component systems of galaxies in modified grav-
ity to see how MOG (also number of components) affect
thermodynamics quantities. We have shown that clustering
parameter decreased value of most important thermodynam-
ics quantities, while number of components increase value of
thermodynamics variables. Helmholtz free energy for multi-
component system of galaxies is evaluated and the variation
Helmholtz free energy F with temperature depends on the
value of Nl . When Nl = 3, the F is negative for all values of
temperature. For Nl = 5 the Helmholtz free has high posi-
tive values and keeps increasing for higher temperatures. For
Nl = 4, F has positive values with a minima and a maxima,
we notice that changing the values of l the maxima or peak
shifts upwards with increasing values of l. We also study the
variation of free energy as a function of N , which increases
with the value of N , and by increasing the number of com-
ponents the free energy curve shifts upwards. The entropy of
multi-component system of galaxy is also studied, it is seen
that it has negative values for low values of temperature, and
further increasing the temperatures the entropy becomes pos-

itive and keeps increasing. The variation of entropy with N
shows that the value of entropy increases initially as a func-
tion of N , and then decreases on further increasing the value
of N . We also see that in entropy versus N plot, increasing
the value of l from 3 to 6, and the over all entropy curve is
shifted upwards. To check the dependency of entropy on the
parameters α, we plot S as a function of α and notice that S
decreases linearly with increasing value of α. The study of
the internal energy of multi-component system of galaxies
shows that it depends on the the multi-component clustering
parameter, Bl . The behavior of internal energy with respect to
temperature is studied, and it is seen that at low temperature
the internal energy has a minima. However, as the temper-
ature increases further it increases and takes large values.
Chemical potential plays very important role in clustering of
galaxies, and it depends on the temperature, α, N and vol-
ume, V . The variation of chemical potential with respect to
temperature shows that as temperature increases the chemi-
cal potential increases and for higher values l, the chemical
potential increases rapidly. With N the chemical potential ini-
tially drops rapidly for small values of N , and remains almost
constant for higher values of N . Furthermore, we notice that,
the rate at which μ changes for large values of l is slower
in comparison to small values of l. The chemical potential
decreases linearly as the value of α increases. The chemi-
cal potential decreases logarithmically as the volume of the
multi-component system increases. We found that distribu-
tion function is increasing function of clustering parameter as
well as temperature, while is decreasing function of numbers.
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