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Abstract We investigate the type of dual superconductiv-
ity responsible for quark confinement. For this purpose, we
solve the field equations of the U (1) gauge-scalar model to
obtain a single static vortex solution in the whole range with-
out restricting to the long-distance region. Then we use the
resulting magnetic field of the vortex to fit the gauge-invariant
chromoelectric field connecting a pair of quark and antiquark
which was measured by numerical simulations for SU(2)
Yang—Mills theory on alattice. This result improves the accu-
racy of the fitted value for the Ginzburg—Landau parameter
to reconfirm the type I dual superconductivity for quark con-
finement which was claimed by preceding works based on
the fitting using the Clem ansatz. Moreover, we calculate the
Maxwell stress tensor to obtain the distribution of the force
around the flux tube. This result suggests that the attractive
force acts among chromoelectric flux tubes, in agreement
with the type I dual superconductivity.

1 Introduction

In high energy physics, quark confinement is a long-standing
problem to be solved in the framework of quantum field
theories, especially quantum chromodynamics (QCD). The
dual superconductivity picture [1-3] for the QCD vacuum is
known as one of the most promising scenarios for quark con-
finement. For a review of the dual superconductivity picture,
see, e.g., [4]. For this hypothesis to be realized, we must show
the existence of some magnetic objects which can cause the
dual Meissner effect. Then, the resulting chromofields are
squeezed into the flux tube by the dual Meissner effect. This
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situation should be compared with the Abrikosov—Nielsen—
Olesen (ANO) vortex [5,6] in the U (1) gauge-scalar model
as a model describing the superconductor. In the context of
the superconductor, in type II the repulsive force acts among
the vortices, while in type I the attractive force acts. The
boundary of the type I and type Il is called the Bogomol’ nyi—
Prasad—Sommerfield (BPS) limit and no forces act among the
vortices. From the viewpoint of the dual superconductivity
picture, the type of dual superconductor characterizes the
vacuum of the Yang—Mills theory or QCD for quark confine-
ment.

The type of dual superconductor has been investigated for
along time by fitting the chromoelectric flux obtained by lat-
tice simulations to the magnetic field of the ANO vortex. The
preceding studies [7—10] done in 1990’s concluded that the
vacuum of the Yang—Mills theory is of type II or the border of
type I and type II as a dual superconductor. In these studies,
however, the fitting range was restricted to a long-distance
region from a flux tube. The improved studies [11,12] con-
cluded that the vacuum of the Yang—Mills theory can be clas-
sified as weakly type I dual superconductor. Recent studies
[13-16] based on the standard framework of lattice gauge
theory, and studies [17,18] based on the new formulation
[19,20], on the other hand, show that the vacua of the SU (2)
and SU (3) Yang—Mills theories are strictly type I dual super-
conductor. In these works [13-18], the Clem ansatz [21] was
used to incorporate also the short distance behavior of a flux
tube. The Clem ansatz assumes an analytical form for the
behavior of the complex scalar field (as the order parameter
of a condensation of the Cooper pairs), which means that it
still uses an approximation. In this work, we shall fit the chro-
moelectric flux tube to the magnetic field of the ANO vortex
in the U (1) gauge-scalar model without any approximations
to examine the type of dual superconductor. Indeed, we deter-
mine the Ginzburg-Landau (GL) parameter by fitting the lat-
tice data of the chromoelectric flux to the numerical solution
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of the ANO vortex in the whole range. The resulting value of
the GL parameter reconfirms that the dual superconductivity
of SU(2) Yang—Mills theory is of type L.

In addition, in order to estimate the force acting among the
flux tubes, we investigate the Maxwell stress force carried by
a single vortex configuration. Recently, the Maxwell stress
force distribution around a quark-antiquark pair was directly
measured on a lattice via the gradient flow method [22]. Our
results should be compared with theirs. For this purpose, we
shall calculate the energy-momentum tensor originating from
a single ANO vortex solution to obtain the distribution of the
Maxwell stress force corresponding to the obtained value of
the GL parameter.

This paper is organized as follows. In Sect. 2, we introduce
an operator to measure chromofields produced by a pair of
quark and antiquark on a lattice. We review the results of
lattice measurements in [17]. In Sect. 3, we give a brief review
of the ANO vortex in the U (1) gauge-scalar model. Then, we
discuss the type of superconductor characterized by the GL
parameter. In Sect. 4, we explain a new method of fitting
after giving a brief review of the fitting method based on the
Clem ansatz adopted in the previous study [17] in order to
compare our new result with the previous one. In Sect. 5,
we study the distribution of the force around a single flux
tube by considering the Maxwell stress tensor. In Sect. 6,
we summarize our results. In Appendix A, we explain the
advantage of the operator which we propose based on the new
formulation to measure the gauge-invariant field strength on
a lattice.

2 Operator on a lattice to measure the flux tube

In order to measure the chromofield strength .%,,,, generated
by a pair of static quark and antiquark belonging to the fun-
damental representation of the gauge group G = SU (2), we
use the gauge-invariant operator proposed by Di Giacomo,
Maggiore, and Olejnik [23] using the Wilson loop operator
WIU] defined by the Yang—Mills link variable U € SU (2)
along a path C (L x T rectangular):'

(r (WUILIUIUpLT[U]))

plU] =
(r(W[UD))
1 (wUpu(WU)) (1)
tr(l)  (wr(W[UD)

where Up is a single plaquette constructed by U and L[U]
is called the Schwinger line operator connecting the Wilson

I We use the notation plU] to indicate the average coming from the
operators defined in terms of the original link variable U, since we
define the similar operator defined in terms of the different variable
later.
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Fig. 1 The setup of the operator W[U]L[U]Up LT[U]in (1). z is the
position at which the Schwinger line L[U] is inserted, and y is the
distance from the Wilson loop W[U] to the plaquette Up

loop operator W[U] and the plaquette Up. See Fig. 1 for the
setup of the operator W[U|L[U|U pLT[U]. In the contin-
uum limit where the lattice spacing € vanishes € — 0, p[U]
reduces to

L (tr(Z [ AL UIWUILIUY))
(tr(W[UD)
~ g€ (Tl ) g5, )

plU] = ige + O(eh

where &7 € su(2) stands for the gauge field of the continuum
SU(2) Yang—Mills theory, which is related to the link vari-
able U as U, = exp (—ige;zfu (x)). Thus, the field strength
F,»[U] generated by a quark-antiquark pair can be obtained
by

4
FU] = %Bp[U], B = 2 3)

Figure 2 shows the chromofield strength F,,[U] measured
at the midpoint of the gg pair for the 8 x 8 Wilson loop on
the 244 lattice at 8 = 2.5 [17]. In this paper, we have fixed
the physical scale of the lattice spacing € = 0.08320 fm
at B = 2.5 for SU(2) by fixing the physical string tension
Ophys = (440 MeV)2 according to the relation o, = ophysez
[17]. Our results are consistent with the preceding studies
[13,14].

In the previous study [17], we used the new formulation
[19,20] of the lattice Yang—Mills theory by decomposing the
gauge field U, , into Vi, and Xy 4, Uy = Xy 1V,
where V, ,, € SU(2) called the restricted link variable is
supposed to have the same transformation law as the orig-
inal link variable U under the gauge transformation, and a
remaining part X, ;, € SU(2) called the remaining site vari-
able transforms in an adjoint way under the gauge transfor-
mation. The restricted link variable V. , plays a very impor-
tant role for realizing the dual superconductor picture, since
the dominant mode for quark confinement is extracted from
it, for example, Vi, induces naturally the magnetic current.
See, e.g., [4] for more details.

In the new formulation, the key ingredient is the color
direction field n, which takes the value in the SU (2) Lie
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Fig. 2 [17] (Left panel) The gauge-invariant chromofields F,,[U] in (3) at the midpoint of the gg pair (z = 4) for the 8 x 8 Wilson loop on the
24* lattice with the lattice spacing € = 0.08320 fm at 8 = 2.5 . (Right panel) The distribution of E,[U] = F34[U]in y — z plane
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Fig. 3 [17] (Left panel) the gauge-invariant chromofields F,,[V]in (7) under the same conditions as those in Fig. 2. (Right panel) the distribution

of E.[V]iny — z plane

algebra with a constraint of a unit length n, - n, = 1 and
transforms in an adjoint way under the gauge transforma-
tion. The color direction field n, is in advance obtained as a
functional of the original link variable Uy , by solving the
reduction condition [4,24]. Then the restricted link variable
V., u 1s expressed in terms of the original link variable U,
and the color direction field n, as

N 1 . -
Vew = Veu/ Etr[Vx',qu,u],

Vx,u = Ux,u + "xe,;/.”eru- “4)

See Appendix A for more details.

In view of these, we propose to use the operator p[V]
similar to (1) by replacing the full link variable U by the
restricted link variable V:

(tr (WIVIL[VIVpLT[V]))

V]:=
ALV ((WIVD)

I (u(Vp)ur(WIVD)

_ , 5
tr()  (w(W[VD) ©)

where W[V] is the restricted Wilson loop operator obtained
by replacing the link variable U by V. In the continuum limit
€ — 0, p[V] reduces to

pIV1 =~ ge*(Zul¥ Dai» (6)

and therefore, we can define the chromofield strength F,,[ V]
generated by ¢gg pair for the restricted link variable V by

VB 4
.

FunlV] = T'O[V]’ B = P (N

Figure 3 shows the restricted chromofield strength F,,[V]
measured in the same settings as F,,[U] [17].

In Appendix A, we demonstrate advantages of using p[V]
constructed from the restricted link variable V based on the
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Fig. 4 [17] (Left panel) the
relation among the
chromoelectric field E, the
induced magnetic current k;,,
and the quark-antiquark pair ¢q. _
(Right panel) the induced q
magnetic current k;, obtained by
(8) using the chromofield
Fi[V]in (7)

new formulation, in sharp contrast to the preceding operator
p[U] defined in terms of the original link variable U based on
the ordinary framework of lattice gauge theory: (i) The oper-
ator p[ V] enables us to extract the non-trivial gauge-invariant
and Abelian-like field strength which is used to measure the
chromoelectrix flux, in sharp contrast to the gauge-covariant
non-Abelian field strength. (ii) The operator p[V] does not
depend on the choice of the Schwinger lines L, LY, namely,
the shape of L, L' and the position z at which the Schwinger
lines are inserted.

Recent study [25] suggests that the operator p[U] under-
goes nontrivial renormalizations, which depend on the length
and on the number of cusps in the Schwinger lines. The
study [26] suggests that the extended smearing behaves like
an effective renormalization of the operator p[U]. For p[V],
however, such renormalizations are not necessary since p[ V]
does not depend on the Schwinger lines. On the other hand,
renormalization or smearing for the restricted Wilson loop
operator and the probe should be taken into account. In the
previous study [17], we used the hypercubic blocking (HYP)
method [27] once for the link variables on the Wilson loop to
reduce high-energy noises for both U and V. However, we
find numerically that for the restricted field V, the measured
expectation value hardly differs from the unsmeared case.

First of all, we observe that the z-component of the
restricted chromoelectric field E.[V] forms a uniform flux
tube compared with a non-uniform one E,[U][17,18], since
the effect due to the static sources placed at a finite distance in
E.[V]is smaller than E_[U]. Therefore, the restricted chro-
moelectric flux E£,[V] can be well approximated by the ANO
vortex with an infinite length. Moreover, it was shown in the
previous studies [17, 18] that the type of dual superconductor
determined only by the flux tube does not change irrespec-
tive of whether we use E,[U] or E,[V]. By these reasons,
we shall use the data of E,[V] for fitting.

It should be noticed that we can define the magnetic cur-
rent k,, induced by the chromofield F,,[V] as
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with the lattice derivative V,, so that the conservation law
V,k, = 0 holds [17,18]. Since the nontrivial component
of the chromofield F,,[V] is only the z-component E,[V]
of the chromoelectric field (see the left panel of Fig. 3), the
induced magnetic current k,, has only the component k,, cir-
culating around a flux tube. The left panel of Fig. 4 is an
illustration of the relation between the chromoelectric field
E and the induced magnetic current k. The right panel of
Fig. 4 is a plot of the chromoelectric field E;[V] and the
magnetic current k, induced around a single chromoelectric
flux tube.

3 The gauge-scalar model and type of superconductor
3.1 The Abrikosov—Nielsen—Olesen vortex

In this subsection, we give a brief review of the U (1) gauge-
scalar model with the Lagrangian density given by

1 N A2 2
L= FuF" + (D) D' — = (¢*¢ - v2) . )

where A is a coupling constant of the scalar self-interaction,
and v is a value of the magnitude |¢ (x)| of the complex scalar
field ¢ (x) at the vacuum |x| = oo. The asterisk (*) denotes
the complex conjugation. The field strength F),, of the U (1)
gauge field A, and the covariant derivative D, ¢ of the scalar
field ¢ are defined by

Fup(x) :=0,A,(x) — 9,A,(x), (10)
Dy (x) := 9,9 (x) —igAu(x)p(x), Y

where ¢ is the electric charge of the scalar field ¢ (x). The
Euler—Lagrange equations are given as
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D" Dy = 3? (v2 - ¢*¢>) ®, (12)
" Fuy = ju, (13)

where we define the electric current j, by
Jvi=iq[¢ (Dvd)* — (D) ¢*]. (14)

In order to describe the vortex solution, we introduce the
cylindrical coordinate system (p, ¢, z) for the spatial coor-
dinates with the associated unit vectors e,, e,, and e,, and
adopt a static and axisymmetric ansatz:

Ao(x) =0, A(x)=A(p)ey, ¢(x) =vf(p)e™, (15)

where n is an integer. Under this ansatz, the field equations
(13) and (12) are cast into

1d[ d n 2
- ——[p—f(p)} + [— - qA(m} £

pdp| dp P

=221 = 2] f (o), (16)
d [1 d A }_ . 17
7| 525 PAEY| = o). an

where a non-vanishing component j, of the electric current
is written as

: n
Jo(p) = 2q2v2[A<p> - —]f2<p). (18)
qp
Moreover, the magnetic field B is given in the present ansatz
by

1d
B(x) =V x A(x) = —— (pA(p)) e;. (19)
pdp

To determine the boundary conditions, let us consider
the static energy E. The energy-momentum tensor 7/V is
obtained from the Lagrangian density (9) as

T = L, o e, 1 (D) (%)
+(D"¢)" (D'¢) — g (D,0) (D"¢)"
)»2 ; ) N 2
g (g )

Notice that this energy-momentum tensor is symmetric, i.e.,
THY = T Then, the static energy E is obtained as

£ [t

o [T a4 lLiA)z
—n[m Z/O o p 2pz[dp(/o (p)}

+2| Lt 2+v2 L gAp) 2f2<>
G 5 AL 1)
2.4

A
¥ T”[l - f2(p)]2} . @1)

In what follows, we consider the energy per unit length of a
vortex to avoid the divergence, since the energy density 7%
does not depend on z.

The static energy E given by (21) is nonnegative, £ > 0.
The equality £ = 0 holds if and only if

fp)=1. A(p) = —, 22)
qp

are satisfied. Since the equation (22) is the solution of the
field equations (16) and (17), we call it the vacuum solution.

Therefore, we require the solution to satisfy the boundary
conditions for p — oo:

p—>oo0 N

fo) 51, A 2= —, (23)
qp

so that the static energy E does not diverge in the long-
distance region p > 1. Indeed, these boundary conditions
describe that in the long-distance region, the scalar field ¢ (x)
goes to its vacuum value |¢(co)| = v and the gauge field
A, (x) becomes the pure gauge configuration.

In the limit p — 0, we assume

For 2250, A 220, (24)

so that the energy E does not have a short-distance diver-
gence.

Now we can clarify the meaning of the integer n by using
the boundary conditions. Let us consider the magnetic flux
® passing through the surface S bounded by a circle C with
the center at the origin and the large radius p — oo,

b= / do"’ F,, = f dx* A,
S C=09S

2 27

= lim do pA(p) = lim 27p— = ZZpn,  (25)
p—ox " gp T g

P—>0Q 0

which implies that the integer n corresponds to the quantiza-
tion of the magnetic flux. By this reason, we call the integer
n the topological charge, especially the winding number of
a vortex.

Motivated by the vacuum solution (22), we modify the
ansatz for the gauge field A(p) as

Alp) = —al(p). (26)
qp

@ Springer
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Fig. 5 (Leftpanel) the solutions f and a of the field equations (28) and
(29) as functions of R for various values of the GL parameter defined

in (32), K::ﬁq = %, \%’ and 1, with a unit winding number n = 1.

For convenience, we plot 1 — a in place of a. (Right panel) the corre-
Moreover, in order to make the field equations dimensionless,
we introduce the dimensionless variable:

R:=qvp, (27)

and redefine the profile functions as f(p) = f(R) and
a(p) = a(R). Thus, the field equations (16), (17), and (18)
are rewritten into

7 1 / n2 2
F'(R) + 2 f'(R) = ﬁ[l —a(R)] f(R)
A2 )
+ 5[l FP®R]fFR) =0, (28)
q
a’(R) — %a’(m +2[1 —a(®]f*(R) =0, (29)

where the prime (') stands for the derivative with respect to
R. The boundary conditions are also modified as

FR) 2%, ar) £2% 0, (30)
FR) 2%, ar) 2% 4, G1)

We have simultaneously solved the field equations (28)
and (29) in a numerical way under the boundary conditions
(30) and (31). The left panel of Fig. 5 shows the solutions
f and a of the field equations (28) and (29) as functions of
R with a unit winding number n = 1 for various values «,

= %, «/LE’ and 1 of the Ginzburg—Landau (GL) parameter,
which is defined by

Ki=———. (32)
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sponding dimensionless magnetic field b defined in (34) as a function

of R for various values of «, k = %, % and 1, with a unit winding

number n = 1

For the physical meaning of the GL parameter, see the
next section. This solution is called the Abrikosov—Nielsen—
Olesen (ANO) vortex [5,6]. When we introduce the dimen-
sionless magnetic field b(R) and electric current j(R), (18)
and (19) are rewritten as follows:

2
Jo(x) := g%V j(R), j<R>=§[1—a<R>]f2<R), (33)

B.(x):=qvb(R), b(R)::%a/(R). (34)

The right panel of Fig. 5 shows the dimensionless magnetic
field b(R) corresponding to (34). Notice that the magnetic
field b(R) has no short-distance divergences, which is sup-
ported by the boundary condition (24). This means that the
boundary condition (24) implies the regularity of the mag-
netic field b(R) and the finiteness of the energy E for a short
distance.

3.2 Type of the superconductor

In order to investigate the asymptotic forms of the profile
functions in the long-distance region R > 1, we introduce g
and w in place of f and a as functions of R by
f(R)=1-g(R), a(R)=1—Rw(R), (35)
where [g(R)|, lw(R)| < 1 for R > 1. Then, the field equa-
tions for g and w read

" 1 / A2 2,2
8 (R) + ¢ (R) — 2q—2g(R) =n"w"(R), (36)
” 1 ’ 1
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Fig. 6 The penetration and coherent lengths: (Left panel) the type I superconductor with k = % (Right panel) the type II superconductor with

k=4

The second equation (37) can be solved by using the modified
Bessel function of the second kind K, (x) as

w(R) = C1 K, (ﬁR) =K, (ﬁqv,o) : (38)

which behaves for R > 1 as

~ T V2R _ 4 —2qvp
wR)~C| [——ce =C| |——c¢ . (39
(R) 1 /zﬁR 1 NI (39

Therefore, the magnetic field B, (R) has the asymptotic form
for R > 1:

B.(R) =quﬁi[1 — Rw(R)]
RdR

= qv>C1nV2K («/ER)

T e_ﬁR
24/2R

T —V2qu
—e , (40)
V2qvp

where we have used the formula zK(z) + vK,(z) =
—zK,—1(2).

Inserting the asymptotic form (39) of w(R) into the first
equation (36), we have the closed equation for g(R)

~ qv*Cinv2

=qv2C1n

2

" 1 / )\’ —_
§'(R) + 1/ (R) = 275(R) = n’C} VIR (41

e

T
2V2R
The solution of this inhomogeneous equation is given by

A o
g(R) = C2Ko (ﬁ—R) e VR @)
¢ (s f)

where the first term is the general solution of the homoge-
neous equation obtained by ignoring the right hand side of

(41) and the second term is a particular solution of (41). In
terms of the dimensionful variable p, g(R) behaves as

C2 2«/5)\1)/)

n’C} ; le_z\fzqvp (
_r2\ P
2ﬁqv(8 qz)

b4 e*«/i)nvp (

Q>

< 2\/5)

g(R) = >2«/§)’

(43)

Q>

which means that the fall-off factor of the scalar field must
be distinguished by the value of A /q.
We can define two typical lengths 6 and & by

1 1 1 V2
= =—, f=—=—, (44)
V2qv  my A mg
and the ratio by
3 1 mg 1 A
K== = (45)

£ Vamv V249

The length § is called the penetration length (or depth), at
which the magnitude of the magnetic field B, falls to 1/e ~
37% of its original value at the origin p = 0. The length & is
called the coherent length because the magnitude of the scalar
field |¢(x)| grows to 1 — 1/e ~ 63% of its vacuum value
v (see Fig. 6). Taking into account the fall-off rates (or the
masses) of the gauge and scalar fields, the mass of the gauge
field my = ~/2quv is larger than that of the scalar field ms =
V2 fork < JLE’ while for « > % the opposite situation
occurs. At the critical value k = Lz’ the two masses my and
mg become equal: my = mg. Therefore, the superconductor
is classified by the value of the ratio « as

1 1 1
K< ——: typel, k=—": Kk > ——: type Il.
(46)

@ Springer
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The ratio « is called the Ginzburg—Landau (GL) parameter.
The limit k — oo, which is realized by & — O ormg — oo,
is called the London limit.

4 Type of dual superconductor

To determine the type of dual superconductivity for SU (2)
Yang—-Mills theory, we simultaneously fit the chromoelectric
field and the induced magnetic current obtained by the lattice
simulation [17] (see Figs. 3 and 4) to the magnetic field and
electric current of the n = 1 ANO vortex.

4.1 The previous study using the Clem ansatz

In this subsection, we give a review of the approximated
method of fitting with the Clem ansatz [21]. The previous
studies [13—18] considered only the regression of the chro-
moelectric flux, however in this paper, we also take into
account the regression of the induced magnetic current to
compare with our new method. In the Clem ansatz adopted
to the U (1) gauge-scalar model, the scalar profile function
f(p) is assumed to be

L
pP+¢?

flo) = , 47

where ¢ is a variational parameter for the core radius of the
ANO vortex and p is a dimensionful variable p = R/(qv).
For the profile function of the gauge field a(p), we introduce
a new function w(p) by

Vo w/p?+ 2
¢ w(l)

a(p)=1-— (48)

which satisfies the boundary condition (30),i.e.,a(p = 0) =
0. Then, the field equation (29) for the gauge field is now
written as the differential equation for w:

dwix) 1dw(x) 1 5 5
- (=2 -0, (49
dx? +x dx <x2+ qv)w(x) )
where we have defined a variable x:=+/p? + ¢2. The solution

is given by the modified Bessel function of the second kind
K,(z) as

w(x) « K («/Equx) , (50)

and hence

Vv i (V)

51
¢ K1(v/2qv0) Gh

a(p)=1-

@ Springer

Therefore, the magnetic field B(p) is given by

B(p) = aKo (Bvp? +¢2), (52)

where we have defined

®p 1

B:=v2qv, @i=——— (53)
27 ¢ K1 (BE)

with the external flux & = 2mn/q. The electric current

J(p) = J(p)e,, is also written as:

0
1(p) = ap s Ky (V0 +¢2). (54)

In the present setting, the energy per unit length E can be
calculated by restricting ourselves to the unit vortex with
n=1as

(55)

11 1 Ko(s)
E =2m0?| = + —s2%2 + ~ 208 |
v [4+4” +SK1(s):|

where we have introduced the parameter s = +/2gv¢. Since
the vortex solution is obtained by minimizing the energy with
respect to the parameter s, or ¢, for a given GL parameter «,
the energy (55) must satisfy

d E 1, 1 1[Kos))>
_ L TR _ 56
ds2m? 20T + s (Kl(s)> (56)

Therefore, the GL parameter « is given by

V2 (Ko(s))2
Kk=——]1-
Ki(s)

2
V2 {— <Ko(ﬁqv§)> _ 57)

~ V2qut K1(\2qv0)

In the previous study [17], we adopted the fitting only for
the chromoelectric flux. In this paper, we adopt the fitting
for the chromoelectric flux and magnetic current simultane-
ously. In what follows, we use values measured in the lat-
tice unit, e.g., the distance y = y/e with a lattice spacing
€, the chromoelectric flux E,(3) = F34[V]() in (7), and
the magnetic current k,(9) in (8). Then, we denote the set
of data as (;, E;(3;), 8 E,(9;)) for the chromoelectric field,
and (3}, ky(9;), 8ky(¥)) for the induced magnetic current,
where §O represents the error of the measurement O.

To define dimensionless regression functions, let us
rescale the parameters 8 and ¢ to be dimensionless by using
the lattice spacing € as

A

p:=Be, =

<, (58)
€
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and hence a parameter « is rescaled as
Ao 2
oi=we”. 59)

We also rescale the magnetic field B and the electric current
J as
B:=e’B, J:=€3J. (60)

Then, we can define regression functions by

B(p;a.B.7) =aKo (B p? +22>, (61)
J(p: 6. .8) = f——L—K (B ﬁ2+22), (62)
p*+¢?

with the dimensionless variable p:=p/¢ in the lattice unit.
Then, the error functions of the regression with the weights
are given by

_E.() - BGi;6,B.0)

e (i3 &, B. £) = SE.G) : (63)
z 1
A A A 2 k A-_jA-;AyAyA
beumen Gy &, B, ) = 200 - ((yﬁ")“ LEL2S
2]

When we assume that these errors obey independent standard
normal distributions, the parameters &, /§, and g: can be esti-
mated by maximizing the log-likelihood function £(&, ﬁ . 0)
for (63) and (64) defined by

1
2

A

0@ 5= 53 (ennGiia f.5)

M=

i=1
i (Scunent()A’jQ a, ,é, 2))2 . (65)

j=1

1
2

The GL parameter « is determined according to (57) in
terms of the estimated values B, and ¢, by

(66)

Ky

V2| (KB
:3\*2* Kl(,é*é:*)

The obtained values in the previous work [17], which can
be achieved by ignoring the second term in (65) and restrict-
ing the fitting range to 2 < p < 8, are given by

&, =0.41 £044, B, =0.77 +£0.13,

L, =275+0.79, Kk, =0.38+0.23,

MSR fiyx:= Z €2 Gis &, By L) /do0f. = 0171, (67)

1

where MSR g« is the sum of squared residuals for the regres-
sion of (63) divided by the degrees of freedom (d.o.f.) for
fitting: (the number of data points) minus (the number of
independent variational parameters), i.e.,d.o.f. =7—-3 = 4.

By incorporating also the regression of the electric current
J, the fitting result is in good agreement with (67):

@, =043+042, B, =0.78+0.12,

¢ iy = 0.37 £ 0.20,

¢, =2.78 £ 0.70,
MSRgux = 0.171, MSReurent = 0.086,

MSRota1 = 0.135. (68)

It should be noticed that the fitting range is restricted to 2 <
0 < 8as well as (67).

We further investigate the fitting by using the whole range
0 < p < 8. The result obtained by using only the flux is
given by

&, =0.58£0.31, B, =0.811=+0.070,

£, =3.00£0.30, «, = 0.315 = 0.080,
MSRgux = 0.133. (69)

By including the magnetic current, the result is given by

@,0.63 £0.32, B, =0.821 £ 0.066,

Z, =3.05+0.28, k,=0.303+0.071,
MSRpux = 0.141, MSReysrent = 0.106,
MSR o = 0.125. (70)

The fitting result (70) is shown in the left panel of Fig. 7. We
find that the inclusion of the short range modifies the value
of the GL parameter « to a smaller one. We also find that the
inclusion of the regression for the magnetic current indeed
improves the accuracy of the fitting in both cases of the fitting
range2 < p <8and0 < p < 8.

4.2 The new method

In this subsection, we shall fit the chromoelectric flux and the
magnetic current to the magnetic field and the electric current
of the ANO vortex simultaneously without any approxima-
tions. The advantage of the new method could be that the
value of the GL parameter « is a direct fitting parameter
unlike the case in the Clem ansatz.

Such a fitting can be done by using the regression functions
B and J constructed by the solutions, f(R) and a(R), of the
field equations (28) and (29) through the dimensionless mag-
netic field b(R) in (34) and the electric current j (R) in (33).
However, there are difficulties to estimate the model param-
eters, when we flow the same procedure as in the previous
subsection. When we construct the regression functions B

@ Springer
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Fig. 7 The fitting results: (right panel) the approximated method based on the Clem ansatz including both the flux and magnetic current (70), (left
panel) the new method (78) by solving the field equations of the ANO vortex with a unit winding number

and J from the numerical solutions f(R) and a(R) by solv-
ing the field equations (28) and (29), we also calculate the
regression functions numerically. Indeed, it is necessary to
numerically calculate the derivative in (34) separately, and
this causes a large numerical error even if one obtains the
solutions f(R) and a(R) with small errors. To avoid these
difficulties, we reorganize the field equations to include both
b(R) and j(R) as independent unknown functions by

" 1 ’ n2 2
F'(R) + 2 f'(R) = 251 —a(®]" f(R)
+2*[1 = fAR)]f(R) =0, (71)
b'(R) +j(R) =0, (72)
na'(R) = Rb(R), (73)
2
J(R) = ;n[l —a(R)]f*(R), (74)

where we have decomposed the second order differen-
tial equation (29) for the gauge profile function a(R)
into two independent first order differential equations (72)
and (73) and one algebraic equation (74). We solve these
coupled equations simultaneously. We impose the fol-
lowing boundary conditions for four unknown functions
f(R),a(R), b(R), and j(R):

f(0) =0, b'(0)=0,
f(o0) =1,

(75)

a(oo) = 1. (76)

From (33) and (34), we obtain the regression functions

with the dimensionless variational parameters 7j:=qv>e>

t:=g?v3€3 in the lattice unit by

B(p; 0, T, k):=0b(Eps k), J(P; 1, T, k):=N0T j(Tp;«),
(17
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where p:=p/e is a dimensionless variable, and « is the GL
parameter.

By numerically solving (71)—(74) simultaneously and
maximizing the log-likelihood function (65) with the regres-
sion functions (77) by varying the parameters 7, 7, and k, we
estimate the model parameters 7, 7, and «. Note that since
the coupled differential equations (71)—(74) with respect to
R = 7/ depends on only the GL parameter «, the variation
of the parameters 7 and 7 does not deform the functions b(R)
and j(R). Thus we obtain the results:

A, = 0.0448 + 0.0050,
ke = 0.565 + 0.053,
MSRyx = 0.131,
MSR a1 = 0.114.

7, = 0.508 £+ 0.032,

MSRyrrent = 0.0938,
(78)

The fitting result is shown in the right panel of Fig. 7.
We further obtain the penetration length § and coherent
length & defined in (44) by using the fitted values (78) as

5= < —0.116 = 0.007 fm, (79)
Tw
5

£=" —0.205+0.032 fm. (80)
Ky

Figure 8 shows the penetration and coherent lengths for the
fitted value of the GL parameter « with corresponding func-
tions |¢|/v and B./(qv)>. See also Fig. 6.

This new result shows that the vacuum of SU (2) Yang—
Mills theory is of type I, k = 0.565 + 0.053 < 1/4/2 ~
0.707, which is consistent with the results based on the Clem
ansatz (67) and (68) within errors. We find that the inclusion
of the regression for the magnetic current (68), (70), and (78)
give small errors of the GL parameter « than the excluded
ones (67) and (69). We also observe that the sums of squared
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Fig. 8 The penetration and coherent lengths for the value of the fitted
GL parameter x = 0.565

residuals for both the flux and current in the new method
become smaller than the fitting method based on the Clem
ansatz. Therefore, the inclusion of the fitting for the magnetic
current is important to improve the accuracy.

We should be aware of the effect of changing the fitting
range. If we choose the fitting range 2 < p < 8, the value
of the GL parameter « agrees with the result of 0 < p < 8
within their errorbars. This fact quite differs from the previ-
ous result based on the Clem ansatz represented in (67)—(70).

5 Distribution of the stress force around a vortex

In what follows, to clarify the difference between type I and
II of dual superconductors in view of force among the chro-
moelectric fluxes, we investigate the Maxwell stress tensor
according to the proposal [28-30]. We find that the compo-
nents (20) of the energy-momentum-stress tensor 7#" around
an ANO vortex are written under the ansatz (15), (26) and
(34) as

n

2
T = q2v4Bb2(R) + R + 23 (L= a(R)? F2(R)

+«? (1 - f2(R)>2] — 7%, 81)
r 2
T = g*v* _%b%R) + f2(R) — % (1 —a(R)’ f2(R)
2 (1 B fz(R)>2]’ (82)
r 2
T% = g*v* %bZ(R) — fA(R) + % (1 —a(R)? f2(R)
2 (1 a fz(R)>2]’ (83)

0.1
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Fig. 9 The components of the stress tensor 7/" as functions of R for
then = 1 ANO vortex configuration in the unit of g2v* forx = % ,0.565

(type 1), % (BPS), 1 (type II), and oo (London limit). The red solid

curves represent the stress tensor for the fitted parameter of the GL
parameter k = 0.565: T°° (top panel), T%% (middle panel), and 7%
(bottom panel)

and all the off-diagonal components vanish.”

Figure 9 shows TP°, and T%?, and T for various GL
parameter k = %, 0.565, %, 1, and co with a unit winding
number.

2 Here, we change the sign of T/ defined in (20) by using the ambiguity
of the overall sign of the Noether current in order to reproduce the
conventional Maxwell stress tensor.
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Fig. 10 (Left and mid panels)
the Maxwell stress force acting
on the flux tube originating from
the ANO vortex configuration.
(Right panel) the Maxwell stress
force in the electromagnetism.
Here, h represents a height of
the cylinder

Fig. 11 The distribution of the
stress forces F® and F@ on
the x = 0 plane for (left panel)
type I (« = 0.565) and (right
panel) type II (« = 1). We have
illustrated the stress forces
around the cross section of the
flux tube at z = h. The lengths
of the arrows stand for the
relative magnitude of the stress
forces. The red line stands for
the vortex

-06 04 -02 0 02 04 06 -06 -04-02 0 02 04 06

y [fm]

One finds that 7P is always positive in type I, while
always negative in type II:

TPP(R) > 0 (x < L) (84)
V2
TPP(R) <0 (K > %) (85)

At the boundary between them, i.e., the BPS limit k = \/Li’
T*P is identically zero:

1
TPR) =0 (k=—2]). 86
o (K ﬁ) (%0

It should be noticed that the components 7°° and T % are
not independent, since the conservation law of the Noether
current 0#7),, = 0 leads to

T%(R) = ;iR [RT"’”(R)}. (87)

This yields that the sign of 7%¥(R) flips and hence there is a
critical value R = R, where T¥?(R,) = 0. See the middle
panel of Fig. 9.

Next, we investigate the force acting on the area element
of the flux tube. By using the Maxwell stress tensor, the stress
force F acting on the infinitesimal area element d S is given

@ Springer

type II

y [fm]
by

F=T-dS=T- nAS, (88)

where n is a normal vector perpendicular to the area element
dS, and AS stands for the area of dS. See Fig. 10. The left
and mid panels show the situations for the ANO vortex, while
the right panel shows the corresponding situation in the elec-
tromagnetism, where a pair of electric charges %¢ is located
at Foo on the z-axis.

If we choose n to be equal to the normal vector pointing
the p-direction, i.e., n = e,, the corresponding stress force
F®) reads

FP) =T ASe,. (89)

Since T7° obeys (84) and (85), we observe that F) . e, =
TPPAS is always positive in type I, while always negative in
type II. Therefore, we find that F(®) represents the attractive
force for type I, while the repulsive force for type II.

If we choose n as the unit vector for the ¢-direction, n =
ey, the corresponding stress force F @) is written as

F% = T% ASe,. (90)

The sign of F@ . e, = T¥AS changes, since the sign of
T?%% flips at some critical value R = R,. This feature could
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Fig. 12 The chromoelectric flux obtained in [17] and the distribution
of the Maxwell stress forces F*) and F@ for the fitted value of the
GL parameter k = 0.565. We have taken the height of the cylinder as
h = 8e to correspond to the distance between the static sources. The
red line (the thick line in the y — z plane) stands for the ANO vortex

be an artifact due to the infinite length of the ANO vortex
and should be investigated in a more realistic situation.
The other choice of n is to be parallel to the ANO vortex,

i.e., n = e,. The corresponding stress force F@ can be
written as
F® =T%ASe,, F9 .e, =T%AS > 0. 91)

Figure 11 shows the distribution of the stress forces F(*)
and F@ in y — z plane. Therefore, F® represents the attrac-
tive force. Since 7% is always positive 7%* > 0 due to (81),
F® points the same direction regardless of the value of the
GL parameter «.

It should be noted that the situation of the type II super-
conductor is similar to the electromagnetism, see the mid and
right panels of Fig. 10.

Using the parameters obtained by fitting to the ANO vor-
tex, we can reproduce the distribution of the Maxwell stress
force around the flux tube, which is shown in Fig. 12. This
result indeed supports the type I dual superconductor for
quark confinement.

Our analysis on the Maxwell stress tensor around an ANO
vortex agrees with the result obtained by the preceding work
[22,28-30].

6 Conclusion

In this paper, we have studied the type of dual superconduc-
tivity for the SU(2) Yang-Mills theory based on the new
method:

e We have introduced the restricted field V to extract the
dominant mode for quark confinement and define the
induced magnetic current in a gauge-invariant way.

e We have solved the field equations of the ANO vortex
in the U (1) gauge-scalar model numerically without any
approximations. The previous method is based on the
Clem ansatz which assumes an analytic form of the com-
plex scalar field without solving the field equations.

e We have used the resulting magnetic field and the elec-
tric current to fit respectively the chromoelectric flux tube
and the induced magnetic current obtained by lattice sim-
ulations. In the previous method, only the regression for
the chromoelectric flux tube was considered.

We have reconfirmed that the vacuum of the SU (2) Yang—
Mills theory is of type I as a dual superconductor with the
GL parameter x = 0.565 &£ 0.053 by using the new method.

This result obtained by the new method should be com-
pared with the previous method based on the Clem ansatz:

e We found that the result of type I agrees with [17]
reproduced and supplemented by (67)—(70). In the new
method, we determined the GL parameter with good
accuracy.

e We have investigated the sensitivity for the fitting range.
We found that the inclusion of the short range modifies
the value of the GL parameter  to a smaller one under the
Clem ansatz. For the new method, on the other hand, we
found that the inclusion or exclusion of the short range
does not effect the GL parameter «.

e We also found that the new method proposed in this paper
improves the accuracy of the fitting as seen from the error
of the GL parameter, or the mean of squared residuals in
both methods. Therefore, the inclusion of the regression
of the magnetic current is important.

Moreover, we have obtained the distribution of the
Maxwell stress force around the flux tube by using the
obtained GL parameter. It was observed that there exists the
attractive force among the chromoelectric flux tubes, which
also supports the type I dual superconductor.
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Appendix A: Restricted field variable in the new formu-
lation

In this paper, we have used the new formulation [19,20] of
the lattice Yang—Mills theory: the gauge field variable Uy ,
is decomposed into Vy , and X ., Uy o = Xy ;i Vx,u. Here
Vew € SU(2) is called the restricted link variable which
has the same transformation law as the original link variable
U under the gauge transformation, while X, , € SU(2)
is a remaining part called the remaining site variable which
transforms in an adjoint way under the gauge transformation.

In this decomposition we introduce the so-called color
direction field n, which is a Lie-algebra valued field written
using the Pauli matrices o4 (A = 1,2, 3) as

ne =njios, (A1)
and is subject to the condition of unit length

aa_ 1
Ny N =R N, = Etr(nxnx) = 1. (A2)

Therefore, the color direction field n, does not cover the
whole SU(2) and takes the value only in the coset G/H =
SU(2)/U (1). An expression exhibiting manifestly this fact
is given using 2, € SU(2) as
n, = Qxa3Qi e Lie(SU(2)/U(1))), (A3)
which is supposed to transform in an adjoint way under the
gauge transformation. The color direction field n, is obtained
by solving the reduction condition for a given set of the orig-
inal link variables U, ,. Therefore, the color direction field
n, is understood as a functional of the original link variables
Uy .. See, e.g., [4] for a review.

First, the expression (4) for the restricted link variable
V., u 1s obtained [24] by solving the defining equations:

(A4)
(AS5)

ny Vi = Ve pfxtp,
tr(my X, ;) = 0.

By solving the defining equations (A4) and (AS5), indeed, the
link variable V, , is determined up to an overall normaliza-
tion constant in terms of the site variable r, and the original
link variable U, ,, as Vy

Viwi=Ux p + 0 Uy yiyqy, (A6)

@ Springer

However, the defining equation (A4) is linear in V, . There-
fore, the normalization of V, , cannot be determined by the
defining equation alone. Consequently, unitarity is not guar-
anteed for the general solution of the defining equation and
hence a unitarity condition must be imposed afterwards. For-
tunately, this issue is easily solved at least for the SU (2)
group, since the speciality conditiondet Vy , = 1 determines
the normalization. Then the special unitary link variable V, ,,
is obtained after the normalization of V,_,, as

~ 1 ~h o~
Ve =Veu/ Etr[vﬁ,uvx,ﬂ]. (A7)
It is also shown [24] that the naive continuum limit € — 0
of the link variable V, , = exp(—ieg¥,,(x)) reduces to the
continuum expression:

V() = (0 ()AL ()n(x) —ig” ' [9un(x), n(x)], (A8)

which agrees with the expression of the restricted field in
the Cho-Duan-Ge decomposition in the continuum [31-33].
This is indeed the case for the remaining variable X, , =
exp(—ieg Z,.(x)). The SU(N) group is treated in [4,19,20].

Second, we focus on the fact that the color direction field
n, is covariantly constant under the restricted link variable
V., by construction (A4). The meaning of “covariantly con-
stant” is that one can perform the parallel transport of a vec-
tor along a path from point x to point y, so that the result is
independent of the path chosen. In particular, parallel trans-
port along a closed loop should leave the vector unchanged.
Suppose we parallel transport r, from a point x to a point
x + u + v via two different paths: (I) from x to x + u to
x 4+ +v, and (IT) from x to x + v to x +  + v. We quickly
see from (A4) that

Metprv = Viru Vi ulxVauVaspw  (path 1)
= ViV Ve Ve, (ath2). (A9)

Equating the right-hand side of the first and second lines, and
using the unitarity of the V’s, we find that the color direction
field n, at site x satisfies the relation
ny =V} nVp,, (A10)
where Vp,_ is the plaquette variable at x, namely, the product
of link variables starting at x along the plaquette P. The
relation (A10) is equivalent to
[Vp,, nx] =0, (A11)
due to the unitarity of Vp_, Vp, V;x = 1. This consideration

can be generalized: Let C, be any contour on the lattice
beginning and ending at site x, and let V¢, be the holonomy
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equal to the product of V link variables around the loop C,.
It is not hard to see that (A4) implies
ny =V Ve, & [Ve, ngl = 0. (A12)
This equation holds at every site x for every possible contour
C,. A naive inspection of these equations would yield the
view that the equation (A12) following from (A10) or (A11)
is possible only when the V field is a pure gauge with van-
ishing field strength. However, this is not true, because an
SU (2) group element V € SU(2) obeys the identity,

tr(V)

V=00

1+ 2tr (Vn)n. (A13)

See e.g., [20] for a proof of this identity. Indeed, this form
of V, a linear combination of a unit matrix 1 and the color
direction field n is consistent with (A11) and (A10).

Recall that we have already given the explicit expression
for the restricted link variable V, , as (4):

~ 1 ~ -
Vx,u = Vx,u/\/ Etr[vxﬁuvx,u]a

Veu=Us y +n,Uys ytyi . (A14)
This result shows that the product []_, . cc Vi of Vi y
along the loop C does not agree with the pure gauge. How-
ever, it should be remarked that this conclusion is due to
the special property of the color direction field n, which
we have adopted in this construction as mentioned above:
The color direction field n, takes the value only in the coset
G/H =SU2)/U(),
ny € Lie(SUQ2)/U(1))). (A15)
In contrast, if we start from a field qAbx taking the value in the
whole SU (2),

¢x € Lie(SU(2)), (A16)
and impose the covariant-constant condition
‘z’x Vx,/j, = Vx,quxﬂu (A17)

then the restricted variable just agrees with the pure gauge

Vy,u = pure gauge. (A18)
This case was indeed shown in the continuum formulation
[34].

The above remark is also understood in the continuum ver-
sion of the new formulation [4] which agrees with the naive
continuum limit obtained by taking the limit of vanishing

lattice spacing € — 0 in the lattice version. The restricted
plaquette variable is expanded as

Vp, = exp (—igezﬁ“uu[“f/](l’x))

=1—ige’Zu[V1(x) + O(h). (A19)
The continuum field strength %, [#1(x) of the restricted
field V, (x) is proportional to the color direction field 7 (x)
by construction:
FuV1(x) = fuv(X)n(x). (A20)
This implies that the gauge transformation .%,,,[¥](x) —
Q) F [ 71(x)Q(x)" of the field strength .#,,,[7](x) is
carried by the color direction field r(x) which transforms in
the adjoint way n(x) — Q)n(x)2(x)" under the gauge
transformation Q2(x) € SU(2) so that the field strength
fuv(x) defined using the color direction field n(x) with a
unit length rn(x) - n(x) = 1 by

fiv(x) =n(x) - Fu[V]1(x):=2tr(n(x)Z,,[V1(x))
(A21)

is invariant under the gauge transformation. Note that (A19)
and (A20) are consistent with (A13), since in the continuum
limit, 2tr (n,, Vp) reduces to the gauge-invariant field strength
n(x) - yp.v [71(x)

2tr (ny Vp) = 2tr (ny) — ige?2tr (ny [V 1(P)) + O(e*)
= —ige’n(x) - T [V1(x) + O(eh).  (A22)

Therefore, (A11) does not mean that the V field is a pure
gauge with vanishing field strength .%,,,[#]. Thus we have
the non-trivial gauge-invariant field strength f},,(x) which
is used to measure the chromoelectrix flux. This feature is
more clearly seen using the non-Abelian Stokes theorem for
the Wilson loop operator, see e.g., [4].

Finally, in oder to see the physical meaning of the
restricted operator p[V] and the independence from the
Schwinger lines to be inserted, we cast it into another form.
The covariant constantness (A4) of the color direction field
n, under the restricted link variable V, , yields another
expression for p[V]. In fact, we apply (A13) to Vp in (5) and
use the property (A4) to parallel transport the color direction
field n, on the plaquette P to n; at the point z on the line
connecting a pair of quark and antiquark, see Fig. 1:

<2tr (Vpny)tr (W[V]LVnXLTV»
(tr(W[VD)

<2tr (Vpn,)tr (W[V]nZLVLTV»

- (r(W[V]D)

plV]=
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_ P (Veno) r (WIVIno)) (A23)
(tr(W[V]))

where we have used the unitarity of Ly, LVLI, = 1 in the
last step.

Thus we find that p[ V'] does not depend on both the choice
of the Schwinger lines L, LT and the position z at which
the color direction field is inserted. This is not the case for
plU] constructed from the original gauge variable U. These
facts demonstrate advantages of using quantities like p[V]
constructed from the restricted variable based on the new
formulation.

References

1. Y. Nambu, Phys. Rev. D 10, 4262 (1974)

2. G.’t Hooft, in: High Energy Physics, edited by A. Zichichi (Edi-

torice Compositori, Bologna, 1975)

S. Mandelstam, Phys. Rep. 23, 245 (1976)

K.-I. Kondo, S. Kato, A. Shibata, T. Shinohara, Phys. Rept. 579, 1

(2015)

A.A. Abrikosov, J. Phys. Chem. Solids 2, 199 (1957)

H.B. Nielsen, P. Olesen, Nucl. Phys. B 61, 45 (1973)

T. Suzuki, Progr. Theor. Phys. 80, 929 (1988)

Y. Matsubara, S. Ejiri, T. Suzuki, Nucl. Phys. B Proc. Suppl. 34,

176 (1994)

9. G.S. Bail, C. Schlichter, K. Schilling, Progr. Theor. Phys. Suppl.

131, 645 (1998)

10. F. Gubarev, E.M. Ilgenfritz, M. Polikarpov, T. Suzuki, Phys. Lett.
B 468, 134 (1999)

11. Y. Koma, M. Koma, E.-M. Ilgenfritz, T. Suzuki, M.I. Polikarpov,
Phys. Rev. D 68, 094018 (2003)

B

® AW

@ Springer

12.

13.
14.
15.
16.

17.
18.

19.
20.

21.
22.

23.
24.

25.
26.

217.
28.

20.
30.
31.
32.
. Y.S. Duan, M.L. Ge, Sinica Sci. 11, 1072-1081 (1979)
34,

Y. Koma, M. Koma, E.-M. Ilgenfritz, T. Suzuki, Phys. Rev. D 68,
114504 (2003)

P. Cea, L. Cosmai, Phys. Rev. D 52, 5152 (1995)

P. Cea, L. Cosmai, Phys. Lett. B 349, 343 (1995)

P. Cea, L. Cosmai, A. Papa, Phys. Rev. D 86, 054501 (2012)

P. Cea, L. Cosmai, F. Cuteri, A. Papa, Phys. Rev. D 89, 049505
(2014)

S. Kato, K.-I1. Kondo, A. Shibata, Phys. Rev. D 91, 034506 (2015)
A. Shibata, K.-I. Kondo, S. Kato, T. Shinohara, Phys. Rev. D 87,
054011 (2013)

K.-I. Kondo, A. Shibata, T. Shinohara, T. Murakami, S. Kato, S.
Ito, Phys. Lett. B 669, 107 (2008). arXiv:0803.2351 [hep-lat]

A. Shibata, K.-I. Kondo, T. Shinohara, Phys. Lett. B 691,91 (2010).
arXiv:0911.5294 [hep-lat]

J.R. Clem, J. Low. Temp. Phys. 18, 427 (1975)

R. Yanagihara, T. Iritani, M. Kitazawa, M. Asakawa, T. Hatsuda,
Phys. Lett. B 789, 210 (2019). arXiv:1803.05656 [hep-lat]

A. Di Giacomo, M. Maggiore, and S. Olejnik, Phys. Lett. B236,
199 (1990), Nucl. Phys. B347, 441 (1990)

S.Ito, S. Kato, K.-I. Kondo, T. Murakami, A. Shibata, T. Shinohara,
Phys. Lett. B 645, 67-74 (2007). [hep-1at/0604016]

N. Battelli, C. Bonati, Phys. Rev. D 99, 114501 (2019)

M. Baker, P. Cea, V. Chelnokov, L. Cosmai, F. Cuteri, A. Papa, Eur.
Phys. J. C 79, 478 (2019)

A. Hasenfratz, F. Knechtli, Phys. Rev. D 64, 034504 (2001)

R. Yanagihara et al., Talk given at Annual Meeting of the Physical
Society of Japan, at Tokyo University of Science, 22 March 2018
M. Kitazawa. arXiv:1901.06604 [hep-lat]

R. Yanagihara, M. Kitazawa. arXiv:1905.10056 [hep-ph]

Y.M. Cho, Phys. Rev. D 21, 1080-1088 (1980)

Y.M. Cho, Phys. Rev. D 23, 2415-2426 (1981)

K.-I. Kondo, Eur. Phys. J. C 78, 577 (2018). arXiv:1804.03279
[hep-th]


http://arxiv.org/abs/0803.2351
http://arxiv.org/abs/0911.5294
http://arxiv.org/abs/1803.05656
http://arxiv.org/abs/1901.06604
http://arxiv.org/abs/1905.10056
http://arxiv.org/abs/1804.03279

	Type of dual superconductivity for the SU(2) Yang–Mills theory
	Abstract 
	1 Introduction
	2 Operator on a lattice to measure the flux tube
	3 The gauge-scalar model and type of superconductor
	3.1 The Abrikosov–Nielsen–Olesen vortex
	3.2 Type of the superconductor

	4 Type of dual superconductor
	4.1 The previous study using the Clem ansatz
	4.2 The new method

	5 Distribution of the stress force around a vortex
	6 Conclusion
	Acknowledgements
	Appendix A: Restricted field variable in the new formulation
	References




