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Abstract The collisional energy loss of heavy partons
(charm and bottom quarks) has been determined within
the framework of semi-classical transport theory implying
the Bhatnagar–Gross–Krook (BGK) collisional kernel. Hot
QCD medium effects have been incorporated while employ-
ing a quasi-particle description of the medium in terms
of effective gluons, quarks and antiquarks with respective
temperature dependent effective fugacities. The momentum
dependence of the energy loss for the charm and the bot-
tom quark has been investigated. It is observed that with the
increase in momentum of the heavy quarks, the loss increases
sharply for the smaller values and reaches saturation later.
Furthermore, as compared to the charm quark, the bottom
quark loses less energy at a particular momentum and col-
lisional frequency. The energy loss is seen to increase with
increasing collisional frequency. We also provide a compara-
tive study of the results obtained using the BGK kernel rather
than those using the relaxation time approximation (RTA)
kernel and found them to be consistent with each other. The
medium effects in all the situations are seen to play a quite
significant role.

1 Introduction

The quark–gluon plasma (QGP) produced in the Relativistic
Heavy-Ion Collider (RHIC) at Brookhaven National Labora-
tory and Large Hadron Collider (LHC) at CERN provides an
opportunity to study the universe at the age of a few microsec-
onds and the different phases of quantum chromodynamics
(QCD). The observed QGP is seen to behave more like a near-
perfect fluid (a tiny value of η/s) [1–8]. There have been pro-
posed several indirect probes for the QGP in heavy-ion colli-
sions. Among them, collective flow, jet quenching, quarkonia
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suppression and the suppression of high pT hadrons are the
most reliable ones indicating the creation of a QGP. The sup-
pression of high pT hadrons is mainly caused by the energy
loss of moving heavy partons in the QGP medium [9–14].
This set the motivation for the present work.

Let us now discuss the current understanding of energy
loss due to a fast charged particle in the interacting plasma
medium. In classical electrodynamics, the energy loss of a
fast-moving charged particle, passing through a plasma is
of particular importance in which one can relate the stop-
ping power to the dielectric permittivity of the medium [15].
In QCD, the analog of this problem is the energy loss of
high energy partons moving in the hot QCD medium. The
high energy partons/heavy quarks that are created in the
initial hard scatterings, in ultra-relativistic heavy-ion colli-
sions, pass through the hot and dense matter produced after
the collision and lose their energy through various processes
(collisions, radiation, etc). Some of the initial investigations
primarily involve work by Bjorken, who studied the colli-
sional energy loss suffered by the high energy partons due
to the elastic scatterings off thermal quarks and gluons in
the QCD plasma [16]. Later on, Thoma and Gyulassy devel-
oped a formalism [17] in which they obtained the collisional
energy loss in terms of the longitudinal and transverse dielec-
tric functions. In this approach, the infrared divergence is
self-regulated due to the collective plasma effects. Within
the finite temperature field theory approach, Braaten and
Thoma [18,19] had constructed a systematic framework of
the energy loss for both soft and hard momentum transfers
[20–22]. As the (momentum) anisotropy is present in all the
stages of the system expansion, the authors in Refs. [23–
27] have studied the anisotropic effects in the context of
heavy quarks energy loss. Apart from that, there are sev-
eral excellent articles in which authors have discussed the
energy loss of heavy quarks either through radiative or colli-
sional means [28–53]. Recently, the polarization energy loss
of heavy quarks, considering a hot viscous QGP, has also been
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studied by Jiang et al. [54,55]. The heavy quarks’ collisional
energy loss inside the QGP medium within the framework of
the transport approach, employing the finite RTA, has been
studied in Ref. [56]. The same with the BGK collisional ker-
nel has been investigated in Ref. [57]. The energy loss of
moving heavy quarks has also been studied considering the
ADS/CFT approach in Refs. [58–60].

Here, we present the study of energy loss of bottom and
charm quarks traversing through the isotropic collisional
QGP within the effective transport theory approach. The col-
lisions have been modeled using the BGK collisional ker-
nel in the Boltzmann–Vlasov transport equation. Whenever
a charged quark passes through the hot QCD medium, it
induces the chromo-electric field that generates the Lorentz
force which acts back on the moving quark. Hence, the inci-
dent quark loses its energy. The induced chromo-electric field
is obtained in terms of the longitudinal and transverse parts
of the medium’s dielectric permittivity, which, in turn, can be
expressed in terms of the gluon selfenergy. The gluon selfen-
ergy has been obtained using the transport theory approach
in the Abelian limit. This matches with the one-loop results
from the HTL effective theory [61–63]. In this limit, one
needs to consider a high temperature, where the perturba-
tion theory is relevant. To incorporate the non-ideal hot
QCD medium interaction effects in the analysis, the effective
fugacity quasi-particle model (EQPM) [64–66] is employed
which has recently been studied in Refs. [67–69]. The results
are then compared with those obtained on considering the
ideal case (or leading order (LO)). A systematic compari-
son of the results as regards the energy loss of heavy quarks
employing the BGK and RTA kernels (collisions) is presented
here.

The paper is organized as follows. In Sect. 2, we shall
discuss the energy loss of heavy quarks moving in the hot
QCD medium. Here, we shall obtain its expression in terms
of dielectric functions using the BGK kernel within a semi-
classical transport theory approach. It is important to note
that in our previous work [70], we have already calculated
the gluon selfenergy using the BGK kernel within the same
method. We shall use a few of the results directly from there.
In Sect. 3, we shall discuss the various outcomes and provide
a comparative analysis. Section 4 is dedicated to the summary
and future possibilities of the present work.

2 Energy loss of a moving heavy parton

The motion of a classical color charged particle travers-
ing through the chromodynamic field of a plasma can be
described by Wong’s equations [26,27,71]. These equa-
tions are simply a set of classical equations of motion for a
point-like particle interacting with a chromo-dynamical field,
which is in the Lorentz covariant form given by

dxμ(τ)

dτ
= uμ(τ),

dpμ(τ)

dτ
= gqa(τ )Fμν

a (x(τ ))uν(τ ),

dqa(τ )

dτ
= −g f abcuμ(τ)Aμ

b (x(τ ))qc(τ ), (1)

where qa(τ ) is the quark’s color charge, g is the coupling
constant and Fμν

a is the chromodynamic field strength ten-
sor. τ , xμ and pμ(τ) are the proper time, trajectory and four
momentum of the parton, respectively. The four velocity is
uμ = γ (1,u) = pμ(τ)

m (where m is the mass of the particle).
Here, we have N 2

c −1 chromo-electric/magnetic fields which
belong to the SU (Nc) gauge group, Aμ

a is the four poten-
tial. The expression of the energy loss can be obtained from
Wong’s equations (given in Eq. (1)), following two assump-
tions. First, we consider the gauge condition uμA

μ
a = 0

which says thatqa is independent of τ , and second the quark’s
momentum and energy evolve in time without changing the
magnitude of its velocity while interacting with the chro-
modynamic field. Now considering the zeroth component,
μ = 0, in the second Wong equation (Eq. (1)) one can obtain
the energy loss per unit length:

− dE

dx
= g qa

u
|u| · Ea(X). (2)

The QGP is, in fact, a statistical system and hence, the
polarization (Ea

ind(X) ) and fluctuating (Ea
f l ) chromo-

electromagnetic fields produced at the same time when a
heavy quark travels through the QGP. The Ea

ind(X) relates
to the external current of the moving heavy quark whereas
the randomly fluctuating Ea

f l vanishes on the statistical aver-

aging, i.e.,
〈
Ea

f l

〉
= 0. Therefore, the main contribution to

the energy loss comes from the polarization of the chromo-
electric field that can be expressed as in [17,22,56,57],

− dE

dx
= g qa

u
|u| · Ea

ind(X). (3)

It is to be noted that the other components (μ = 1, 2, 3) are
also important to consider while doing the full analysis on
the energy loss (such as energy loss due to fluctuations and
correlations, etc.). Here, we mainly focus on the polarization
energy loss. Therefore, it is sufficient to consider the zeroth
component.

To obtain the induced chromo-electric field, we start with
the classical Yang–Mills equation in the Lorentz covariant
form given by

∂μF
μν
a (X) = J ν

a,ind(X) + J ν
a,ext (X). (4)

Rewriting the above equation in Fourier space, we obtain

− i KμF
′μν
a (K ) = J ′ν

a,ind(K ) + J ′ν
a,ext (K ), (5)

where K ≡ Kμ = (ω,k). Now, the induced current,
J ′μ
a,ind(K ), in the Fourier space can be obtained:

J ′μ
a,ind(K ) = Πμν(K )A′

ν,a(K ). (6)
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Here Πμν(K ) is the gluon selfenergy (or the gluon polariza-
tion tensor). Using Eqs. (5) and (6) we get
[
K 2gμν − KμK ν + Πμν(K )

]
A′

μ,a(K ) = −J ′ν
a,ext (K ).

(7)

Considering the temporal axial gauge defined by A0 = 0

(with A j
a = E j

a
iω ), we can write Eq. (7) in terms of a chromo-

electric field as
[
(k2 − ω2)δi j − ki k j + Π i j (k)

]
E j
a (K ) = iωJ ′i

a,ext (K ).

(8)

Rewriting the above equation, we have

[Δi j (K )]−1E j
a (K ) = iωJ ′i

a,ext (K ), (9)

or

E j
a (K ) = iω Δi j (K )J ′i

a,ext (K ), (10)

with

[Δi j (K )]−1 = (k2 − ω2)δi j − ki k j + Π i j (K ), (11)

where Δi j (k) is the gluon propagator for the isotropic hot
QCD medium. It is important to note that the inclusion of
collisions does not change the above expressions (only the
form of Π i j (K ) is modified with the effects of collisions as
we shall discuss in the next section). The external current,
Jaext (X), of a color point charge is given by

Jaext (X) = g qa u δ3 (x − ut) . (12)

In Fourier space Jexta(X) reads

J′a
ext (K ) = i gqa u

ω − k.u + i0+ . (13)

Here, we are considering a very near equilibrium situation.
Therefore, all the collective modes are damped and the only
stationary contribution comes from the pole of J′a

ext (K ).
Next, for the isotropic collisional case, the gluon selfenergy,
Π ij(K , ν) relates with the dielectric permittivity, εi j (K , ν),
thus:

εi j (K , ν) = δi j − 1

ω2 Π ij(K , ν), (14)

where ν is the collision frequency.
The permittivity tensor can be expanded in terms of lon-

gitudinal and transverse components by

εij(K , ν) = Ai j εT (K , ν) + Bi j εL(K , ν), (15)

with

Aij = δij − ki k j

k2 , Bij = ki k j

k2 . (16)

Using Eqs. (11), (14) and (15) in (10), and taking the inverse
Fourier transformation, the induced chromo-electric field in
the coordinate space is obtained:

Ea
ind(X) = −i

gqa

π

∫
dωd3k

1

ω k2

[
k (k · u)

(
ε−1
L − 1

)

+
(
k2u − k (k · u)

){(
εT − k2

ω2

)−1

−
(

1 − k2

ω2

)−1 }]
ei(k·x−ωt)

ω − k · u + i0+ . (17)

Integrating over, ω in Eqs. (17) and substituting in Eq. (3),
we obtain the energy loss of a heavy parton moving in the
hot QCD medium:

− dE

d x
= CFαs

2π2|u|
∫ k∞

k0

d3k
ω

k2

{ (
k2|u|2 − ω2) Im(ω2εT − k2)−1

+Imε−1
L

}

ω=k·u
, (18)

where αs(T ) is the QCD running coupling constant at finite
temperature [72] and CF = 4/3 is the Casimir invariant in
the fundamental representation of the SU (3).

Now to solve Eq. (18), we need to know the form of the
transverse and longitudinal components of the dielectric per-
mittivity. We shall discuss this while considering the colli-
sional effects using the BGK kernel in the next subsection.

2.1 Dielectric permittivity in the presence of collisions

As mentioned earlier εi j (K , ν) can be obtained within the
semi-classical transport theory approach. To do so, one first
needs to calculate the gluon selfenergy, Π i j (K , ν). The
detailed calculations of Π i j (K , ν) considering the BGK-
collision kernel is provided in our previous work shown in
Ref. [70]. There we have given a full calculation of gluon
selfenergy for a collisional anisotropic hot QCD medium
that can be easily transferred to the isotropic collisional case
by equating the anisotropic parameter, ξ to zero. For the sake
of completeness, we shall briefly provide its derivation. We
begin with the consideration that the current is induced in
the plasma due to a slight deviation, δ f a(p, X) in the parti-
cles’ distribution function from the equilibrium distribution
function, f 0(p) such that f 0(p) � δ f a(p, X). The induced
current then could be obtained:

Jμ,a
ind (X) = g

∫
d3p

(2π)3E
pμδ f a(p, X), (19)

where

δ f a(p, X) = 2Ncδ f
a
g (p, X) + N f (δ f

a
q (p, X) − δ f aq̄ (p, X)).

(20)

Here δ f ag (p, x), δ f aq (p, x) and δ f aq̄ (p, x) are the fluctuating
parts of the gluon, the quark and anti-quark densities, respec-
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tively. In the Abelian limit, the fluctuation in the distribution
function of each species in the medium can be understood
from the Boltzmann–Vlasov [73–76] transport equation,

uμ · ∂X
μ δ f ia (p, X) + gθi uμF

μν
a (X)∂ p

ν f i (p) = Ci
a(p, X),

(21)

where the index i represents the plasma species (quark, anti-
quark and gluon). θi ∈ {θg, θq , θq̄} have the values θg = θq =
1 and θq̄ = −1. Ci

a(p, X) is the collisional kernel which
describes the effects of collisions between hard particles in
the hot QCD medium. Here, we initially focus on Ci

a(p, X)

consiedred to be of BGK-type [73,74,77], which is defined
by

Ci
a(p, X) = −ν

[
f ia (p, X) − Ni

a(X)

Ni
eq

f ieq(|p|)
]

, (22)

where ν is the same collision frequency as mentioned earlier.
The BGK collision term [77] describes the equilibration of
the system, due to the collisions, in a time proportional to
ν−1. Here, we assume ν to be independent of the momen-
tum and particle species. The collision term, Ci

a(p, X) in the

special case, Ni
a(X)

Ni
eq

→ 1 with ν = 1
τ

, τ being the relaxation

time, gives the form of the RTA kernel. BGK modeling is
comparatively more reliable in the sense that it conserves the
particle number instantaneously, which is absent in the RTA
approach, i.e., while using the BGK kernel we have
∫

d3 p

(2π)3C
i
a(p, X) = 0, (23)

where the particle number, Ni
a(X) and its equilibrium value,

Ni
eq are defined as follows:

Ni
a(X) =

∫
d3 p

(2π)3 f ia (p, X), (24)

Ni
eq =

∫
d3 p

(2π)3 f ieq(|p|) =
∫

d3 p

(2π)3 f i (p). (25)

Next, solving Eq. (21) for δ f aq,q̄,g in Fourier space and
using Eqs. (19) and (6), we obtain the spatial components of
the gluon selfenergy, Π i j (K ):

Π i j (K , ν) = m2
D(T )

∫
dΩ

4π
uiul

{
u j kl + (ω − k · u) δl j

}

×D−1 (K , ν) , (26)

where

D (K , ν) = ω + iν − k · u. (27)

The Debye mass, mD , is given by

m2
D = −4παs(T )

(
2Nc

∫
d3 p

(2π)3 ∂p fg(p)

+2N f

∫
d3 p

(2π)3 ∂p fq(p)

)
. (28)

Here, we adopt the quasi-particle distribution functions con-
sidering the EQPM, feq ≡ { fg, fq}, which describes the
strong interaction effects in terms of effective fugacities, zg,q
[64–66],

fg/q = zg/q exp[−βEp](
1 ∓ zg/q exp[−βEp]

) , (29)

where Ep = |p| for the gluons and
√

|p|2 + m2
q for the quark

degrees of freedom (mq denotes the mass of the quarks).
The fugacity parameter, zg/q → 0, as temperature T → ∞.
Since the model is valid only in the deconfined phase of QCD
(beyond Tc), the mass of the light quarks can be neglected
as compared to the temperature. Next, the Π i j (K , ν) can
be further decomposed (in the isotropic collisional case) in
terms of its longitudinal and transverse parts:

Π ij(K , ν) = Ai j PT (K , ν) + Bi j PL(K , ν), (30)

where the structure constants PT (K , ν) and PL(K , ν) for the
isotropic collisional case can be obtained:

PT (K , ν) = m2
D ω

4k3

[
2k(ω + iν) +

(
k2 + (ν − iω)2

)

× log
(ω + iν + k

ω + iν − k

)]
, (31)

PL(K , ν) = −
ω2m2

D

(
1 − ω+iν

2k log
(

ω+iν+k
ω+iν−k

))

k2
(

1 − iν
2k log

(
ω+iν+k
ω+iν−k

)) . (32)

From Eqs. (14), (15) and (30), one can obtain the longitudinal
and transverse part of the dielectric permittivity, respectively:

εL(K , ν) = 1 − PL(K , ν)

ω2 , (33)

εT (K ) = 1 − PT (K , ν)

ω2 , (34)

which can could be written

εL(K , ν) = 1 +
m2

D

(
2k − (ω + iν) log

(
− k+iν+ω

k−iν−ω

))

k2
(

2k − iν log
(
− k+iν+ω

k−iν−ω

))

(35)

and

εT (K , ν) = 1 − m2
D

2 ω k

[
(ω + iν)

k
+ 1

2

(
1 − (ω + iν)2

k2

)

× log

(
−k + iν + ω

k − iν − ω

) ]
. (36)
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Fig. 1 Energy loss of the charm quark (m = 1.8 GeV ) for various values of ν at T = 2Tc and different Equations of State (EoSs)

Fig. 2 Energy loss of the bottom quark (m = 4.5 GeV ) for various values of ν at T = 2Tc and different EoSs

As mentioned earlier, the RTA kernel can be obtained from

the BGK one (given in Eq. (22)) by considering Ni
a(X)

Ni
eq

→ 1

and ν = 1
τ

, τ being the relaxation time. We repeated the
whole analysis using the RTA term in Eq. (22) and obtained
the longitudinal and transverse part of the dielectric permit-
tivity considering the hot QCD medium:

εL(K , ν) = 1 + m2
D ω′

k2ω

(
1 − ω′

2k
log

[
ω′ + k

ω′ − k

])
, (37)

εT (K , ν) = 71 − m2
D

ω2

(
ω ω′

k2 + ω

2k

(
1 − ω′2

k2

)

× log

[
ω′ + k

ω′ − k

])
, (38)

where ω′ = ω + iν. Now, in both cases, using εL(K , ν) and
εT (K , ν) in Eq. (18), one can obtain the energy loss for the
heavy quarks (charm and bottom) moving in the isotropic
collisional hot QCD medium. In the next section, we shall
show and discuss the various plots regarding the energy loss
of the charm and bottom quarks against their momenta at
different collision frequencies.

3 Results and discussion

The energy loss of heavy quarks (charm and bottom) moving
in the isotropic collisional hot QCD/QGP medium has been
studied. In this context, Eq. (18) has been solved numeri-
cally. To perform the numerical integration, the lower and
upper limits have, respectively, been taken as kEoSs0 = 0 and
kEoSs∞ ∼ mEoSs

D (T ) for each Equation of State (EoS). The
results obtained for the ideal case (or the leading order (LO))
are compared with the non-ideal cases ((2 + 1) lattice EoS
and 3-loop HTL EoS, denoted LB and HT L pt , respectively,
in the plots). The different collision frequencies, ν, have been
chosen to investigate their impact on the energy loss and also
have been compared with the collision-less case ν = 0.0.
Little work considering the LO case using the BGK kernel
is already available in the literature [57]. Our numbers for
the LO are slightly different. The reason is that in the present
case the coupling constant and the Debye mass are not fixed.
Instead, they are temperature dependent. Here, we are work-
ing at temperature, T = 2 Tc where Tc = 0.17 GeV .

In Figs. 1 and 2, the energy loss of the charm and bottom
quarks have been plotted for the collision-less case ν = 0
(left), with collision frequency ν = 0.1 mD (center) and ν =

123
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Fig. 3 Energy loss of the charm and bottom quarks at T = 2Tc and
ν = 0.0 and 0.1mD for the leading order case

0.3 mD (right), respectively. We have noticed that the energy
loss initially increases and then saturates with the increasing
particle’s momentum, which matches with the results that are
already present in the literature [57]. While considering the
non-ideal EoSs (LB and HT L pt ) the energy loss (for both
heavy quarks) have been found to be suppressed as compared
to the ideal one (LO) at fixed collision frequency. An increase
in the collision frequency causes a higher energy loss. In
Fig. 3, we compare the energy loss of charm and bottom
quarks at ν = 0.0 and 0.1 mD for the leading order case and
observed that the charm quark loses more energy at fixed
momentum than the bottom quark. This supports the idea
that a heavy particle loses less energy while moving in a
medium than the lighter one, given the same conditions.

As mentioned earlier, we also obtained the results using
the RTA-collisional kernel to have a comparative study with
the BGK case. Mathematically, the difference occurs only
in the expressions of the longitudinal and transverse part of
the dielectric tensor. The energy loss of charm and bottom
quarks using the RTA kernel has been plotted in Fig. 4 and we
observed the same patterns as the BGK one at ν = 0.1mD . In
Fig. 5, a comparison between RTA and BGK results is shown

Fig. 4 Energy loss of charm and bottom quark using the RTA kernel
at ν = 0.1mD and T = 2Tc

Fig. 5 Comparison of energy loss of the charm and bottom quarks the
using BGK and RTA kernels at ν = 0.1mD and T = 2Tc

for the charm quark (in the upper panel) and the bottom quark
(in the lower panel) at ν = 0.1mD . It has been observed that,
given the same momentum and the collision frequency, the
energy loss is seen to be higher in the RTA case than in the
BGK case.
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4 Summary and future aspects

The energy loss of the heavy quarks moving through the
isotropic collisional hot QCD medium produced in the rel-
ativistic heavy-ion collision experiments has been investi-
gated. The expression of the energy loss is obtained in terms
of the longitudinal and transverse part of the dielectric per-
mittivity. Employing the effective kinetic theory in the high-
temperature limit (considering the Abelian part) using the
BGK kernel, the gluon selfenergy and the dielectric permit-
tivity tensor have been obtained. We found that the energy
loss increases initially with the momentum and then satu-
rates. The energy loss also is found to be higher for higher
collision frequency. Moreover, the bottom quark is found to
lose less energy than the charm quark for the same collision
frequency and momentum and, therefore, thermalizes late as
compared to the charm quark. We also performed the same
analysis considering the RTA kernel and provided a compar-
ative study. It has been observed that the expression of the
dielectric permittivity was modified and a slight deviation
has been found in the results. Considering the same values
of momentum and collision frequency, a higher energy loss
is observed in the RTA case than in the BGK case.

We intend to incorporate the momentum anisotropy in the
formalism in the near future. The inclusion of viscous effects
by employing the effective quasi-particle picture will also
be an immediate extension to the present work. In addition,
RAA would be another important quantity to investigate, as
it is essential to relate the theoretical estimations with the
experimental observations.

Acknowledgements M. Y. Jamal would like to thank Prof. Jitesh R.
Bhatt and Dr. Avdhesh Kumar for fruitful discussions and valuable
inputs that helped in improving the present manuscript. M. Y. Jamal fur-
ther acknowledges NISER Bhubaneswar for providing a postdoctoral
position. V. Chandra would like to sincerely acknowledge DST, Govt.
of India, for Inspire Faculty Award -IFA13/PH-15 and Early Career
Research Award (ECRA) Grant 2016. We would also like to acknowl-
edge the people of India for their generous support for the research in
the fundamental sciences in the country.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This is completely
a theoretical study. Therefore, there is no data attached to it.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. J. Adams et al., STAR Collaboration, Nucl. Phys. A 757, 102 (2005)

2. Adcox K. et al., PHENIX Collaboration, Nucl. Phys. A 757, 184
(2005)

3. B.B. Back et al., PHOBOS Collaboration, Nucl. Phys. A 757, 28
(2005)

4. I. Arsene et al., BRAHMS Collaboration, Nucl. Phys. A 757, 1
(2005)

5. K. Aamodt et al., The Alice Collaboration, Phys. Rev. Lett. 105,
252302 (2010)

6. K. Aamodt et al., (The Alice Collaboration), Phys. Rev. Lett. 105,
252301 (2010)

7. K. Aamodt et al., The Alice Collaboration, Phys. Rev. Lett. 106,
032301 (2011)

8. U.W. Heinz, arXiv:hep-ph/0407360
9. M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B 571, 197 (2000)

10. B.G. Zakharov, JETP Lett. 73, 49 (2001)
11. M. Djordjevic, U.W. Heinz, Phys. Rev. Lett. 101, 022302 (2008)
12. R. Baier, Y.L. Dokshitzer, A.H. Mueller, D. Schiff, JHEP 0109,

033 (2001)
13. S. Jeon, G.D. Moore, Phys. Rev. C 71, 034901 (2005)
14. P. Roy, J.E. Alam, A.K. Dutt-Mazumder, J. Phys. G 35, 104047

(2008)
15. E. Infeld, Basic Principles of Plasma Physics: a Statistical

Approach. By S. Ichimaru. Benjamin Frontiers in Physics,
1973. 324 pp. $19.50 (hardcover), 12.50 (paperback), J.
Plasma Phys. 13(3), 571–572 (1975). https://doi.org/10.1017/
S0022377800025289

16. James D. Bjorken, Fermilab preprint 82/59-THY, (1982), unpub-
lished

17. M.H. Thoma, M. Gyulassy, Nucl. Phys. B 351, 491 (1991)
18. E. Braaten, M.H. Thoma, Phys. Rev. D 44, 1298 (1991)
19. E. Braaten, M.H. Thoma, Phys. Rev. D 44, R2625 (1991)
20. S. Mrowczynski, Phys. Lett. B 269, 383 (1991)
21. M.H. Thoma, Phys. Lett. B 273, 128 (1991)
22. Y. Koike, T. Matsui, Phys. Rev. D 45, 3237 (1992)
23. P. Romatschke, M. Strickland, Phys. Rev. D 69, 065005 (2004)
24. P. Romatschke, M. Strickland, Phys. Rev. D 71, 125008 (2005)
25. R. Baier, Y. Mehtar-Tani, Phys. Rev. C 78, 064906 (2008)
26. M.E. Carrington, K. Deja, S. Mrowczynski, Phys. Rev. C 92,

044914 (2015)
27. M.E. Carrington, K. Deja, S. Mrowczynski, Phys. Rev. C 95,

024906 (2017)
28. R. Baier, D. Schiff, B.G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50,

37 (2000)
29. P. Jacobs, X.N. Wang, Prog. Part. Nucl. Phys. 54, 443 (2005)
30. N. Armesto et al., Phys. Rev. C 86, 064904 (2012)
31. A. Majumder, M. Van Leeuwen, Prog. Part. Nucl. Phys. 66, 41

(2011)
32. M.G. Mustafa, D. Pal, D.K. Srivastava, M. Thoma, Phys. Lett. B

428, 234 (1998)
33. Y.L. Dokshitzer, D.E. Kharzeev, Phys. Lett. B 519, 199 (2001)
34. M. Djordjevic, M. Gyulassy, Nucl. Phys. A 733, 265 (2004)
35. S. Wicks et al., Nucl. Phys. A 783, 493 (2007)
36. S. Wicks et al., Nucl. Phys. A 784, 426 (2007)
37. R. Abir et al., Phys. Rev. D 85, 054012 (2012)
38. R. Abir et al., Phys. Lett. B 715, 183 (2012)
39. G.Y. Qin, J. Ruppert, C. Gale, S. Jeon, G.D. Moore, M.G. Mustafa,

Phys. Rev. Lett. 100, 072301 (2008)
40. S. Cao, G.Y. Qin, S.A. Bass, Phys. Rev. C 88, 044907 (2013)
41. M.G. Mustafa, M.H. Thoma, Acta Phys. Hung. A 22, 93 (2005)
42. M.G. Mustafa, M.H. Thoma, Phys. Rev. C 72, 014905 (2005)
43. A.K. Dutt-Mazumder, J.E. Alam, P. Roy, B. Sinha, Phys. Rev. D

71, 094016 (2005)
44. A. Meistrenko, A. Peshier, J. Uphoff, C. Greiner, Nucl. Phys. A

901, 51 (2013)
45. K.M. Burke et al., [JET Collaboration], Phys. Rev. C 90, 014909

(2014)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-ph/0407360
https://doi.org/10.1017/S0022377800025289
https://doi.org/10.1017/S0022377800025289


761 Page 8 of 8 Eur. Phys. J. C (2019) 79 :761

46. S. Peigne, A. Peshier, Phys. Rev. D 77, 014015 (2008)
47. S. Peigne, A. Peshier, Phys. Rev. D 77, 114017 (2008)
48. R.B. Neufeld, I. Vitev, H. Xing, Phys. Rev. D 89(2014), 096003

(2014)
49. P. Chakraborty, M.G. Mustafa, M.H. Thoma, Phys. Rev. C 75,

064908 (2007)
50. A. Adil, M. Gyulassy, W.A. Horowitz, S. Wicks, Phys. Rev. C 75,

044906 (2007)
51. S. Peigne, P.B. Gossiaux, T. Gousset, JHEP 0604, 011 (2006)
52. K. Dusling, I. Zahed, Nucl. Phys. A 833, 172 (2010)
53. S. Cho, I. Zahed, Phys. Rev. C 82, 064904 (2010)
54. B.F. Jiang, D. Hou, J.R. Li, J. Phys. G 42, 085107 (2015)
55. B.F. Jiang, D.F. Hou, J.R. Li, Nucl. Phys. A 953, 176 (2016)
56. M. Elias, J. Peralta-Ramos, E. Calzetta, Phys. Rev. D 90, 014038

(2014)
57. C. Han, D.F. Hou, B.F. Jiang, J.R. Li, Eur. Phys. J. A 53, 205 (2017)
58. K.B. Fadafan, JHEP 0812, 051 (2008)
59. K. Bitaghsir Fadafan, Eur. Phys. J. C 68, 505 (2010)
60. K.B. Fadafan, H. Soltanpanahi, JHEP 1210, 085 (2012)
61. M. Yousuf, S. Mitra, V. Chandra, Phys. Rev. D 95, 094022 (2017)
62. J.P. Blaizot, E. Iancu, Nucl. Phys. B 417, 608 (1994)
63. P.F. Kelly, Q. Liu, C. Lucchesi, C. Manuel, Phys. Rev. D 50, 4209

(1994)

64. V. Chandra, R. Kumar, V. Ravishankar, Phys. Rev. C 76, 054909
(2007); [Erratum: Phys. Rev. C 76, 069904 (2007)]

65. V. Chandra, A. Ranjan, V. Ravishankar, Eur. Phys. J. A 40, 109–117
(2009)

66. V. Chandra, V. Ravishankar, Phys. Rev. D 84, 074013 (2011)
67. M. Kurian, S.K. Das, V. Chandra, arXiv:1907.09556 [nucl-th]
68. M.Y. Jamal, I. Nilima, V. Chandra, V.K. Agotiya, Phys. Rev. D

97(9), 094033 (2018)
69. V.K. Agotiya, V. Chandra, M.Y. Jamal, I. Nilima, Phys. Rev. D

94(9), 094006 (2016)
70. A. Kumar, M.Y. Jamal, V. Chandra, J.R. Bhatt, Phys. Rev. D 97(3),

034007 (2018)
71. S.K. Wong, Nuovo Cim. A 65, 689 (1970)
72. M. Laine, Y. Schroder, JHEP 0503, 067 (2005)
73. Bing-feng Jiang, De-fu Hou, Jia-rong Li, Phys. Rev. D 94, 074026

(2016)
74. Bjoern Schenke, Michael Strickland, Carsten Greiner, Markus H.

Thoma, Phys. Rev. D 73, 125004 (2006)
75. S. Mrowczynski, Phys. Lett. B 314, 118 (1993)
76. P. Romatschke, M. Strickland, Phys. Rev. D 68, 036004 (2003)
77. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)

123

http://arxiv.org/abs/1907.09556

	Energy loss of heavy quarks in the isotropic collisional hot QCD medium
	Abstract 
	1 Introduction
	2 Energy loss of a moving heavy parton
	2.1 Dielectric permittivity in the presence of collisions

	3 Results and discussion
	4 Summary and future aspects
	Acknowledgements
	References




