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Abstract We extend recent discussions of singularity
avoidance in quantum gravity from isotropic to anisotropic
cosmological models. The investigation is done in the frame-
work of quantum geometrodynamics (Wheeler–DeWitt
equation). We formulate criteria of singularity avoidance for
general Bianchi class A models and give explicit and detailed
results for Bianchi I models with and without matter. The sin-
gularities in these cases are big bang and big rip. We find that
the classical singularities can generally be avoided in these
models.

1 Introduction

A major issue in any quantum theory of gravity is the fate of
the classical singularities. So far, such a theory is not avail-
able in final form, although various approaches exist in which
this question can be sensibly addressed [1,2]. It is clear that
such an investigation cannot yet be done at the level of math-
ematical rigor comparable to the singularity theorems in the
classical theory (see e.g. [3]). Nevertheless, focusing on con-
crete approaches and concrete models, one can state criteria
of singularity avoidance and discuss their implementation.
This is what we shall do here.

We restrict our analysis of singularity avoidance to quan-
tum geometrodynamics, with the Wheeler–DeWitt equation
as its central equation [1]. Although this may not be the
most fundamental level of quantum gravity, it is sufficient
for addressing the issue of singularity avoidance. Quantum
geometrodynamics follows directly from general relativity
by rewriting the Einstein equations in Hamilton–Jacobi form
and formulating quantum equations that yield the Hamilton–
Jacobi equations in the semiclassical (WKB) limit. It thus
makes as much sense to addressing singularity avoidance
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here than it does to addressing it in quantum mechanics at
the level of the Schrödinger equation. Singularity avoidance
has also been discussed in loop quantum gravity [2,4,5], with
various results, but we will not consider this here.

Singularity avoidance was already addressed by DeWitt
in his pioneering paper on canonical quantum gravity [6]. He
suggested to impose the condition � → 0 for the quantum-
gravitational wave functional � when approaching the region
of a classical singularity. The wave functional is effectively
defined on the configuration space of all three-dimensional
geometries, also called superspace [1,7]. The “DeWitt cri-
terion” of vanishing wave function then means that � must
approach zero when approaching a singular three-geometry
(which itself is not part of superspace, but can be envisaged
as its boundary). It is important to emphasize that this crite-
rion is a sufficient but not a necessary one: singularities can
be avoided for non-vanishing or even diverging � (recall the
ground state solution of the Dirac equation for the hydrogen
atom, which diverges).

DeWitt had in mind cosmological singularities such as big
bang or big crunch. The DeWitt criterion applies, of course,
also to the singularities that classically arise from gravita-
tional collapse. In simple models of quantum geometrody-
namics, their avoidance can be rigorously addressed. One
example is the collapse of a null dust shell, which clas-
sically develops into a black hole, but quantum gravita-
tionally evolves into a re-expanding shell, with � = 0
in the region of the classical singularity [8–10]. In gen-
eral, however, such cases are too difficult to allow for
an exact mathematical treatment, so most investigations
so far were restricted to Friedmann–Lemaître–Robertson–
Walker (FLRW) cosmology. The first detailed discussion of
singularity avoidance in Wheeler–DeWitt quantum cosmol-
ogy was performed for the big-rip singularity that occurs in
the presence of phantom matter [11].1 Other applications fol-

1 See [12] for a recent review of the fate of singularities in models with
phantom matter.
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lowed, which generally focused on singularities occurring in
dark-energy models but also on the big bang; see, for exam-
ple, [13–16] and the references therein. The question was
also investigated for f (R) quantum cosmology [17–19]. In
most cases, the DeWitt criterion was applied. In our paper,
too, the main focus will be on this criterion, although we
shall employ a second criterion that makes use of a current
density.

In the present paper, we make a step forward and discuss
the issue of singularity avoidance for anisotropic cosmolo-
gies. The simplest case is the Bianchi I model (see e.g. [20]),
to which we restrict our investigation here. The more inter-
esting Bianchi IX model is reserved for a future investiga-
tion. Anisotropic models are characterized by the fact that the
dimension of their configuration space (minisuperspace) is
bigger than two already for the pure gravitational case. This
will be important for the formulation of the DeWitt criterion.
We address the anisotropic case here mainly for structural
reasons, in order to see how criteria of singularity avoidance
apply there. We do not expect anisotropies to play a crucial
role in the late universe, although such anisotropies may be
relevant in the early universe.

Our article is organized as follows. In Sect. 2, we formu-
late our criteria for singularity avoidance. In this, a general-
ization is made that takes into account the conformal struc-
ture of minisuperspace. Section 3 then addresses the vacuum
Bianchi I (Kasner) model. There, we encounter only the big
bang singularity. Sections 4 and 5 are devoted to Bianchi I
models with matter: an effective matter potential is used in
Sect. 4, and a dynamical (phantom) scalar field is used in
Sect.5. While in Sect. 4 both the big bang and big rip singu-
larities are addressed, Sect. 5 focuses on the big rip singu-
larity. We shall find that singularities can be avoided in all
relevant cases. Section 6 presents a short conclusion and an
outlook.

2 Criteria for singularity avoidance

In this section, we formulate the criteria of singularity avoid-
ance at the level of a general (diagonal) Bianchi class A
model. These will be applied in detail to the Bianchi I model
in the following sections.

The action for such Bianchi models can be brought into
the form [20–22]

SEH + Sm =
∫

dt Ne3α

[
−α̇2 + β̇2+ + β̇2−

2N 2 +
(3)R

12

]
+ Sm.

(1)

We parametrize the minisuperspace M of these models by
the coordinates q = {α, β+, β−, φ}, where α ≡ ln a, β+,

and β− are the Misner variables,2 and φ denotes matter
field degrees of freedom; (3)R is the three-dimensional Ricci
scalar. Units are chosen such that 3c6V0/4πG = 1, where
V0 is the volume of three-dimensional space (assumed to be
compact here).

Variation with respect to the lapse N yields the Hamilto-
nian constraint,

H = 1

2
G I J pI pJ + V = 0, (2)

where the pI are the momenta canonically conjugate to the
configuration variables q, the GI J denote the components of
the DeWitt metric, G I J the components of its inverse, and V
is the minisuperspace potential which contains contributions
from the three-curvature and from the matter part. We remark
that the equations of motion can be formulated in configura-
tion space as a geodesic equation plus a forcing term ([22],
p. 452).

Because of the constraint nature (2) of the Hamiltonian,
minisuperspace possesses a natural conformal structure. This
can be seen as follows. Let us consider a rescaling of the
lapse, N → Ñ = �2N , with a differentiable function � :
M → R+. The transformation of the Hamiltonian constraint
then follows from the invariance of the total Hamiltonian H
according to

H = NH = ÑH̃ = Ñ

(
1

2
�−2G I J pI pJ + �−2V

)

=: Ñ
(

1

2
G̃ I J pI pJ + Ṽ

)
. (3)

This rescaling induces a local Weyl transformation of the
DeWitt metric,

GI J → G̃I J := �2GI J . (4)

We can thus interpret minisuperspace as a conformal mani-
fold (M, [GI Jdq I ⊗ dq J ]), that is, as a manifold equipped
with an equivalence class of metrics,

[GI Jdq I ⊗ dq J ] =
{
�2GI Jdq I ⊗ dq J | � : M → R+

}
.

Objects of interest on such a manifold are conformally covari-
ant objects, for example tensors that transform like

T → T̃ = �kT (5)

under Weyl transformations. We call k the conformal weight
of T and denote it by w(T ) = k. Because of the conformal
nature of configuration space, a spacetime which satisfies

2 But note that Misner in [22] uses � = −α.
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Einstein’s equations can, in fact, be regarded as a sheaf of
geodesics on this space [23].

In geometrodynamics, quantization is performed formally
by replacing the canonical momenta according to the rule
pI → −ih̄ ∂

∂q I and substituting these expressions into the
Hamiltonian constraint (2) [1]. This procedure leads to the
minisuperspace Wheeler–DeWitt equation

Ĥ� = 0 , with Ĥ = − h̄2

2
“ G I J ∂

∂qI

∂

∂qJ
” + V, (6)

where the quotation marks indicate the need for choosing an
appropriate factor ordering.

The underlying conformal structure of minisuperspace
motivates us to choose a factor ordering that makes the
Wheeler–DeWitt equation conformally covariant. Following
the discussion by Misner ([22], p. 462),3 this is achieved by

[
− h̄2

2
(� − ξR) + V

]
� = 0, (7)

where R denotes the Ricci scalar constructed from GI J and
ξ = d−2

4(d−1)
, with d = dim(M). If we, in addition, impose the

weights w(�) = −(d−2)/2 and w(V) = −2, the Wheeler–
DeWitt equation (7) is indeed conformally covariant. The
operator � − ξR is called the conformal Laplacian or Yam-
abe operator. It was shown that, given a compact Riemannian
manifold of dimension d ≥ 3, one can find a metric confor-
mal to GI J with constant scalar curvature [25].

Let us now turn to the discussion of the criteria for singu-
larity avoidance. As mentioned in the Introduction, the first
one goes back to DeWitt [6], who suggested to take � → 0
near the region of the classical singularity as a sufficient cri-
terion for quantum avoidance. In a heuristic sense, this corre-
sponds to “probability zero” for the singularity. Application
of this criterion is based on the idea that the (square of) the
wave function is related to probability, as is the case in quan-
tum mechanics. In quantum gravity, this is far from clear [1].
The main reason is the absence of an external time parameter
in the Wheeler–DeWitt equation. Only in the semiclassical
(Born-Oppenheimer) approximation, where an approximate
time parameter emerges, can one impose the usual probabil-
ity interpretation in a straightforward manner. Nevertheless,
we shall stick heuristically to this idea also in the full theory.
Peaks of the wave function have often been interpreted as
giving predictions in cosmology; see, for example, [27] and
the references therein.

In the semiclassical limit with only one WKB compo-
nent, an interpretation using probabilties in minisuperspace
was suggested in [28]; see also [29], pp. 186–190. Because

3 See also [24].

the DeWitt criterion rests on the heuristic notion of a proba-
bility, we find it appropriate to include in this section some
remarks on the formulation of this proposal in the language
of conformal minisuperspace.

Let us consider solutions of the Wheeler–DeWitt equation
in the WKB approximation given by � ≈ √

D ei/h̄ S, where
S is a solution to the Hamilton–Jacobi equation

1

2
G I J (∂I S) (∂J S) + V = 0, (8)

and D is the van Vleck factor which satisfies the linear trans-
port equation

G I J (∂I S) ∂J D = −(�S)D. (9)

Let now A ⊆ M be a region in minisuperspace and B a thin
‘pencil’ drawn out by the classical solutions, that is, integral
curves of the vector field G I J (∂I S)∂J . It was shown in [28]
that

∫
A∩B


|�|2 ≈
∫
A∩B


D ≈ F(B)

∫
Ndt, (10)

where

F(B) :=
∫

�∩B
D(∂I S) 
 dq I ,

is the conformally invariant and conserved flux through a
hypersurface � crossing the pencil B.4 The contribution of
B to

∫
A∩B 
|�|2 is therefore proportional to the coordinate-

time that the classical solutions filling out the pencil B spend
in the region A. Note that w(
D) = w(
|�|2) = 2. This
reflects the fact that the integral

∫
Ndt on the right-hand side

of (10) depends on the representation of the lapse which we
choose before the quantization of the Hamiltonian constraint
in order to obtain the Wheeler–DeWitt equation (7). In this
sense, a conformal rescaling GI J → �2GI J , � → �w(�)�

corresponds to a time reparametrization at the quantum level.
Equation (10) can also help us to interpret the behavior of
wave packets in regions of minisuperspace where the WKB
approximation is valid.

The DeWitt criterion was successfully applied to cosmo-
logical models in a series of recent papers; see, for exam-
ple, [16] and references therein. These examples deal mostly
with two-dimensional minisuperspaces where w(�) = 0 and
the usual Laplace–Beltrami operator coincides with the con-
formal Laplacian. In dimensions d ≥ 3, however, the DeWitt
criterion is not conformally invariant. Moreover, there does
not seem to be a privileged representative of the wave func-
tion for the imposition of the criterion. For the reasons

4 It is assumed that the hypersurface is chosen such as to cross each
classical trajectory in the pencil only once [26,28,29].
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mentioned above, we seek here a generalization of the DeWitt
criterion to guarantee its conformal invariance.

This leads us to consider conformally invariant objects
constructed from �. We first note that we can define a density
of conformal weight 0 by


|�| 2d
d−2 = |�| 2d

d−2 dvol, (11)

where dvol contains the square root of the (absolute value
of the) determinant of the DeWitt metric, and 
 denotes the
Hodge star. Moreover, we address the Klein–Gordon current
defined by

J[�1, �2] = 1

2i


(
�∗

1 d�2 − �2d�∗
1

)
, (12)

which is a (d − 1)−form with conformal weight 0. These
definitions allow us to propose the following two criteria.

Criterion 1 A singularity is said to be avoided if 
|�| 2d
d−2 →

0 in the vicinity of the singularity.

This is the conformally invariant version of the DeWitt
criterion [6].

Criterion 2 A singularity is said to be avoided if J[�,�] →
0 in the vicinity of the singularity.

Another criterion, which was introduced in the discussion
of the quantum fate of the big-rip singularity in [11], is the
following:

Criterion 3 A wave packet is said to avoid the singularity if
it spreads in the vicinity of the singularity.

The spreading of wave packets indicates the breakdown
of the semiclassical approximation. Classical cosmology and
in particular the classical singularity theorems then cease to
hold. The notion of a classical spacetime can no longer be
applied, which leads to the end of classical predictability
before reaching the singularity. This criterion is fulfilled, for
example, in the big-rip case studied in [11].

We note that the second criterion suffers from the prob-
lem that it is not applicable in the case of real wave func-
tions, which often arise as solutions to the (real) Wheeler–
DeWitt equation. An example of a real wave function is the
no-boundary (Hartle-Hawking) state. In contrast to this, the
“tunneling wave function” is complex, and criterion 2 can be
applied.5

The Klein–Gordon flux is not positive definite and can thus
in general not be interpreted as a probability flux. Exceptions
are situations where only one WKB branch is present; this

5 See, for example, [1,2] for a detailed discussion of boundary condi-
tions.

has led to the proposal that the Klein–Gordon current only
be applied to such cases [26]. The case of one WKB wave
function can also be interpreted as a decohered branch of a
real wave function. In the following, we shall thus mainly
concentrate on the first criterion, which is the natural gener-
alization of the DeWitt criterion to higher-dimensional min-
isuperspaces.

3 Kasner solution

The vacuum Bianchi I (Kasner) solution can be written in the
form

ds2 = −dt2 + t2px dx2 + t2pydy2 + t2pzdz2 with (13)

p2
x + p2

y + p2
z = 1 and px + py + pz = 1. (14)

The constraints on px , py and pz define the so-called Kasner
sphere and Kasner plane, respectively. The physical solu-
tions lie on their intersection, which represents a circle in the
(px , py, pz) space. The nature of the singularity depends on
the value of the coefficients px , py, pz . If one of them is equal
to 1, the Kasner solution will become the Milne universe,
which is diffeomorphic to slices of Minkowski spacetime.
The singularity is then only a coordinate singularity. For all
other values, the singularity is physical, which is indicated
by the divergence of the Kretschmann invariant,

Rμνλσ R
μνλσ = CμνλσC

μνλσ + 2RμνR
μν − 1

3
R2. (15)

Here, the singularity is a big bang (or big crunch) singularity.
Since Rμν = 0, the curvature singularity is a pure Weyl
singularity. If we use the common parametrization of the
Kasner circle,

px = − u

1 + u + u2 , py = 1 + u

1 + u + u2 , pz = u(1 + u)

1 + u + u2 ,

(16)

with u ∈ (−∞,∞), we find that

CμνλσC
μνλσ = 16(1 + u)2u2

(1 + u + u2)t4 . (17)

In order to obtain a Hamiltonian for the model, we employ
the general symmetry reduced ansatz

ds2 = −N 2dt2 + a2
xdx2 + a2

ydy2 + a2
z dz2, where

ax = aeβ++√
3β− , ay = aeβ+−√

3β− and az = ae−2β+ ,

with the scale factor a = (axayaz)1/3 =: eα , whose third
power describes the volume (which expands as a3 ∝ t), and
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with the anisotropy factors β±, which describe the shape
of the universe. Note that the scale factor is chosen here to
be dimensionless; the physical length dimension is in the
coordinates x , y, and z.

The symmetry reduced Einstein–Hilbert action takes the
form

SEH = 1

2

∫
dt

e3α

N

(
−α̇2 + β̇2+ + β̇2−

)
. (18)

The Hamiltonian obtained after the usual Legendre transform
reads

H = NH = Ne−3α

2
(−p2

α + p2+ + p2−). (19)

Choosing for the lapse function the value N = e3α , it
becomes clear that the Hamiltonian is equivalent to the
Hamiltonian of a free relativistic particle in 2 + 1 dimen-
sions. We conclude that the solutions represent straight lines
in minisuperspace, which can be parametrized as follows:

β± = p±√
p2+ + p2−

α + C±, (20)

with C± ∈ R arbitrary constants. The approach to the sin-
gularity is called velocity term dominated (VTD); see, for
example [30]. This terminology refers to the dominance of
the kinetic over the potential terms, which is trivially fulfilled
here (absence of potential).

The DeWitt metric on M is given by

GI J dq I ⊗ dq J = e3α(−dα2 + dβ2+ + dβ2−), (21)

from which we obtain for the Ricci scalar on M the value
R = 9

2 e−3α . The Wheeler–DeWitt equation now reads

h̄2e−3α

2

[
∂2

∂α2 + 2 f
∂

∂α
− ∂2

∂β2+
− ∂2

∂β2−
+ ξRe3α

]
� = 0,

where the numbers f and ξ parametrize a family of operator
orderings. After the transformation � → �̃ = e f α� we
obtain

[
− ∂2

∂α2 + ∂2

∂β2+
+ ∂2

∂β2−
+ f 2 − 9

2
ξ

]
�̃ = 0. (22)

The conformal factor ordering is obtained by setting f = 3/4
and ξ = 1/8. We then get

[
− ∂2

∂α2 + ∂2

∂β2+
+ ∂2

∂β2−

]
�̃ = 0. (23)

In the conformal factor ordering the Wheeler–DeWitt equa-
tion is thus identical to the classical wave equation in d =
1 + 2 dimensions. Note that the DeWitt metric is flat in this
representation, such that criterion 1 above is equivalent to the
DeWitt criterion �̃ → 0 as applied in earlier papers; see, for
example, [16].

Let us now turn to the formulation of the criteria for singu-
larity avoidance. There, the minisuperspace dimension d will
be crucial. Solutions to the free wave equation in 1+1 dimen-
sion can propagate only into two directions. Wave packets are
not subject to spreading and their amplitudes do not decay.
In higher dimensions, however, the wave can propagate into
infinitely many directions. This leads to a spreading and a
resulting decay of the amplitude of the wave. The above
statement can be made more precise in the form of decay
rate estimates.

In d > 2 dimensions, we can apply the following decay
rate estimate (see e.g. [37]): Let � be a solution to the initial
value problem⎧⎪⎨
⎪⎩

[
∂2

∂t2
−

d−1∑
i=1

∂2

∂x2
i

]
� = 0 (t, x1, . . . , xd−1) ∈ R+ × R

d−1

(�, ∂t�) |t=0= ( f, g),

where f and g are smooth functions Rd−1 → R with com-
pact support. Then there exist C1/2 > 0 such that

|�(t, x)| ≤ C1|t |− d−2
2 and |∂i�(t, x)| ≤ C2|t |− d−2

2 .

For the situation in question it follows that such wave packets
satisfy the above criteria 1, 2, and 3 for singularity avoidance,
that is we have,

J[�,�] → 0 and 
 |�|6 → 0 as α → ±∞. (24)

This is caused by the spreading of the wave packet when
approaching the region of the classical singularity. The sin-
gularity is thus avoided by all criteria. Since the Wheeler–
DeWitt equation (23) is symmetric with respect to α → −∞,
the same conclusion holds for α → +∞. What does this
mean? In quantum mechanics, such a spreading can also
occur, for example in the case of a free particle. But there one
has unitarity with respect to external time t and the standard
scalar product. In quantum cosmology, there is no consensus
about the choice of inner product. If one used a norm moti-
vated by the conformally invariant DeWitt criterion, that is,
an integral over β+ and β− of 
|�|6, this is not conserved
in α; one can even estimate that the integral goes to zero for
α → +∞, so the situation is very different from the quantum
mechanical free particle: there is no unitarity with respect to
the timelike variable α. In the spirit of the DeWitt criterion,
one could call this a quantum avoidance of the late-time evo-
lution. Figure 1 displays the behavior of the wave packet for
α → −∞ and α → +∞.
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Fig. 1 Plot of equipotential surfaces of |�| for a wave packet � solv-
ing the Wheeler–DeWitt Eq. (23). The thin black line is the classical
trajectory

This is an example where quantum effects are not
restricted to small scales of Planck size. Because the super-
position principle is universally valid in quantum cosmol-
ogy, quantum effects can arise in principle at any scale. One
example is the turning point of a classically recollapsing uni-
verse [31], where destructive interference has to occur in
order to guarantee a recollapsing wave packet.

One could argue that a natural inner product for the
Wheeler–DeWitt equation is the Klein–Gordon inner prod-
uct, which provides unitarity with respect to α. The vanishing
of the Klein–Gordon current corresponds to our criterion 2
of singularity avoidance and is fulfilled in the present case,
both for α → −∞ and α → +∞, see (24).

A somewhat different approach to the quantization of
Bianchi I vacuum models with and without cosmological
constant was developed in [32]. There, the dynamics was
reduced such that the wave function depends only on one
degree of freedom, the determinant of the scale factor a.
How a singularity avoidance in this approach relates to the
singularity avoidance discussed here, is an interesting ques-
tion that is beyond the scope of our investigation.

In the next section, we will investigate if and how the
situation changes if matter is added to the model.

4 Bianchi I model with an effective matter potential

In this section, we treat matter in a phenomenological way.
The representation of matter by a dynamical scalar field
φ is relegated to the next section. In anisotropic models,
anisotropic pressures can be used, but we address for sim-
plicity the case of a barotropic fluid.

A hypersurface orthogonal (non-tilted) barotropic fluid
with an equation of state p = wρ and ρ ∝ a−3(1+w) can
be modelled by adding an effective matter potential of the
form V(α) = NV0e−3(1+w)α ∝ ρ to the Einstein-Hilbert

action (18), with V0 > 0 being constant. The full action then
reads

S =
∫

dt e3α

(
−α̇2 + β̇2+ + β̇2−

2N
− NV0e−3(1+w)α

)
.

One recognizes that the introduction of matter introduces an
asymmetry with respect to α. We restrict our discussion to
w < 1, which excludes the case of a stiff matter fluid. The
important cases of a cosmological constant (w = −1), dust
(w = 0), and radiation (w = 1/3) are included. The null and
weak energy conditions are satisfied for w ≥ −1, while the
strong energy condition and the dominant energy condition
require w ≥ − 1

3 and −1 ≤ w ≤ 1, respectively.
The variables β± are cyclic and we call their conserved

conjugate momenta p±; cf. (19). Variation of the Lagrangian
with respect to N leads to

ȧ2 = N 2
(
p2+ + p2− + 2V0a

k
)
a−4, (25)

where k := 3(1 − w). We assume that p2+ + p2− �= 0 and
choose the comoving gauge N = 1. Equation (25) is then
solved by

t= a3

3
√
p2+ + p2−

2F1

[
1

2
,

3

k
; 1+ 3

k
;− 2V0

p2++ p2−
ak
]

, (26)

where 2F1[a, b; c; z] is the hypergeometric function. The
scale factor a(t) is shown for different w in Fig. 2a.

For small a, the hypergeometric function asymptotically
equals 1, and we get for a → 0:

t ∼ a3

3
√
p2+ + p2−

. (27)

Thus the universe starts with a big bang at t = 0, independent
of the value for the barotropic index w. For large a and w �=
−1, the hypergeometric function can be simplified, too, and
one gets from (26) in the limit a → ∞:

t ∼
√

2

V0

1

6 − k
a(6−k)/2 + t∗. (28)

For k < 6 (w > −1), the universe expands infinitely, whereas
in the phantom case, that is for k > 6 (w < −1), the universe
becomes infinitely large already at t = t∗ and ends with a big
rip. We note that (28) is the full solution for the flat FLRW
case: for k < 6 (non-phantom case), there is a big bang,
but for k > 6 (phantom case) there is no past singularity.
Therefore one can say that the anisotropy introduces the past
singularity, leading to a model with big bang and big rip.
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β

(a) (b)

Fig. 2 Scale factor a(t) and anisotropy factor β+(a) for different w and p+ = p− = V0 = 1. One recognizes isotropization for large universes

For the anisotropy factors one has

β± = 1

k

p±√
p2+ + p2−

log

∣∣∣∣∣∣∣∣

1 −
√

1 + 2V0
p2++p2−

ak

1 +
√

1 + 2V0
p2++p2−

ak

∣∣∣∣∣∣∣∣
; (29)

they become constant for large a, see also Fig. 2b. Thus in
contrast to the vacuum solution, this universe isotropizes for
late times. For small a, the asymptotic behavior corresponds
to (20), which is again independent of the matter content. This
property is sometimes called “matter doesn’t matter”. Since
the Kasner behavior is recovered in the limit a → 0, this
approach to the singularity is referred to as asymptotically
velocity term dominated (AVTD) [30].

We now turn to the quantum version of these models. The
Wheeler–DeWitt equation reads

[
∂2

∂α2 − ∂2

∂β2+
− ∂2

∂β2−
+ V0ekα

]
� = 0, (30)

where we have set h̄ = 1 and skipped the tilde over the wave
function. The solutions can be written in the form

� (α, β+, β−)

=
∑
σ=±

∫
R2

dp+dp− Aσ (p+, p−) ψσ
p+,p− (α, β+, β−) ,

with the mode functions given by

ψ±
p+,p− (α, β+, β−) = e−ip+β+−ip−β−

× c±
p+,p− J± 2i

k

√
p2++p2−

(
2

k

√
V0ekα/2

)
,

c±
p+,p− := �

(
1 ± 2i

k

√
p2+ + p2−

)(√
V0

k

)∓2i
√
p2++p2−/k

,

(31)

where Jν(z) and �(z) denote the Bessel function of the first
kind and the gamma function, respectively. Let us now inves-
tigate the asymptotic forms of the wave packet. In the limit
α → −∞ we can approximate the mode functions by

ψ±
p+,p− (α, β+, β−)=e±i

√
p2++p2− α−ip+β+−ip−β− +O(ekα),

which is independent of k. We conclude that the quantum
Kasner behavior is recovered in this limit (which follows as
a solution of (23)).

The discussion of the limit α → ∞ is slightly more com-
plicated, but it turns out that a discussion of the mode func-
tions in the WKB approximation

ψ ≈ √
D exp (iS) (32)

will be sufficient. A solution to the Hamilton-Jacobi equation
is given by

Sp+,p−(α, β+, β−) = ±
(

2

k

√
p2+ + p2− + V0ekα

+1

k

√
p2+ + p2− log

∣∣∣∣∣∣∣∣

1 −
√

1 + V0
p2++p2−

ekα

1 +
√

1 + V0
p2++p2−

ekα

∣∣∣∣∣∣∣∣

)

−p+β+ − p−β−.

The corresponding van Vleck factor reads

Dp+,p−(α) = 1√
p2+ + p2− + V0ekα

. (33)

If we introduce the functions

B+(p+, p−)

=
√

k

8π
(1 − i)

[
c+
p+,p−e

π
k

√
p2++p2−A+(p+, p−)
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+ c−
p+,p−e− π

k

√
p2++p2−A−(p+, p−)

]
,

B−(p+, p−)

=
√

k

8π
(1 + i)

[
c+
p+,p−e− π

k

√
p2++p2−A+(p+, p−)

+ c−
p+,p−e

π
k

√
p2++p2−A−(p+, p−)

]
,

then the approximate wave packet with these coefficients,

∑
σ=±

∫
R2

dp+dp− Bσ

√
D exp (σ iS) , (34)

matches the exact wave packet for large α at the leading
order. This follows from the asymptotic expansion of the
exact mode functions and an approximation of the WKB
modes of the form

ψ ≈ 1
4
√
V0

e−kα/4 exp

[
±i

(
2

k

√
V0ekα/2

)]
.

Then one has

�(α, β+, β−) ≈ e− k
4 α

4
√
V0

∑
σ=±

exp

(
σ

2i

k

√
V0e

k
2 α

)

×
∫
R2

dp+dp− Bσ (p+, p−) e−ip+β+−ip−β− . (35)

We can now draw a clear picture of the behavior of wave pack-
ets. In the limit α → −∞, we recover the quantum Kasner
behavior. Consequently, we expect a spreading with a result-
ing decay of amplitudes. The behavior in the limit α → ∞
can be inferred from (35): the term in the second line of this
equation is just the Fourier transform of Bσ and is indepen-
dent of α. If, for example, we choose Bσ to be Gaussian, its
Fourier transform will be a Gaussian which is peaked around
some particular values of β+ and β−. This strongly reflects
the classical behavior of isotropization. Most importantly,
wave packets do not spread in the region where α is large.
The wave packet is modulated by a strongly oscillating fac-
tor and an exponentially decaying factor. The exponentially
decaying factor comes from the van Vleck factor (33) and can
be interpreted as arising from the particular representation of
the wave function.

The decay of the mode functions in this representation
can be intuitively understood by inspecting the Hawking–
Page formula (10): the representation of the wave function
� we are working with is related to the gauge N = e3α

by the corresponding representation of the DeWitt metric.
In this gauge, classical solutions reach α = ∞ in a finite
time t . Hence they spend less and less time t in the region of
minisuperspace where α is large. In this sense the decay of
the density

√−GD is implied by (10).

Fig. 3 Plot of the equipotential surfaces of the rescaled wavepacket
D−1/2

p̄+, p̄− |�| for the dust case (k = 3). The amplitude A+ was chosen
to be a symmetric Gaussian peaked about some momenta (p+, p−) =
( p̄+, p̄−), while A− was set to zero. The thin black line is the corre-
sponding classical trajectory

Figure 3 displays the behavior of the wave packet in the
model with dust. The asymmetry compared to Fig. 1 is clearly
visible.

For simplicity, we now set B− = 0. Then the large-α limit
of the Klein–Gordon current is given by

J[�,�] =
∣∣∣∣
∫
R2

dp+dp− B+e−ip+β+−ip−β−
∣∣∣∣
2

dβ+ ∧ dβ−

+ O
(

e− k
4 α
)

.

Up to leading order, the current only has an α component
given by the Fourier transform of B+ (p+, p−). If we assume
that B+ is peaked at some particular values p+ and p−, we
will expect the Fourier transform of B+ to be peaked at some
particular value of β+ and β−. The current thus reflects the
classical behavior in the region where α is large (in contrast to
the vacuum Kasner case). We have, however, 
|�|6 → 0
as α → ∞. Note that the behavior is qualitatively indepen-
dent of w, that is, there is no difference between the cases
w ≥ −1 and w < −1, although the latter case leads to a big
rip. The big rip is thus only avoided by criterion 1.

5 Bianchi I model with a phantom field

In the previous section, we have added matter degrees of
freedom through an effective potential V(a). Here, we will
instead implement the equation of state p = wρ by a scalar
field φ with a potential V (φ), a procedure described in [36].
Matter degrees of freedom are now dynamical. The connec-
tion between the kinetic and potential terms and the param-
eters ρ and p are as follows:

φ̇2 = N 2

l
(ρ + p) , V = 1

2
(ρ − p). (36)
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(a) (b)

Fig. 4 Scalar field |φ|(a) and its potential V (φ) for different w and p+ = p− = V0 = 1; the red curves correspond to the approximations (39)

Note that l = ±1 depending on whether we consider normal
or phantom matter, respectively. Using these relations one
finds the same functions for a(t) and β±(t) as in the previ-
ous section. We use here κ± instead of p±, because these
constants will be used in the construction of V (φ). Combin-
ing (36), (25), p = wρ, and ρ(a) we get for the classical
solution in configuration space,

φ(a) = ±1

k

√
2

3
l(6 − k) arcsinh

[√
2ρ0

κ2+ + κ2−
ak/2

]
, (37)

see Fig. 4a. The scalar field vanishes like a polynomial for
small a and diverges logarithmically for large a.

Using the same equations as before we get for the potential

V = ρ0
k

6
ak−6. (38)

(Recall k = 3(1 − w).) After substituting a by φ and using
(37) we find

V (φ) = ρ0
k

6

⎡
⎣
√

κ2+ + κ2−
2ρ0

sinh

(√
3

2l(6 − k)
k|φ|

)⎤
⎦

2 k−6
k

;

compare Fig. 4b. Potentials with sinh-functions also occur
frequently in FLRW models [33,34].

As the Wheeler–DeWitt equation will not be analytically
solvable for a general potential, we choose here k = 12
(w = −3, l = −1) as a particular example. This is, on the
one hand, simply solvable and reflects, on the other hand, the
general case. We approximate V (φ) and |φ(a)| for large a
and therefore large |φ|; that is, we investigate the limit when
approaching the big rip. This gives

V (φ) ∼
√

ρ0

2
(κ2+ + κ2−) e6|φ|,

|φ| ∼ 1

6
log

[√
8ρ0

κ2+ + κ2−

]
+ α.

(39)

Let us now turn to quantum cosmology. Note that the
DeWitt metric has here signature (−,−,+,+), since the
kinetic term of the (phantom) scalar field has the same sign
as the one of the scale factor (cf. Eq. (30) in [11]). The con-
formally covariant Wheeler–DeWitt equation with the scalar
potential in the limit approaching the big rip reads

[
∂2

∂α2 − ∂2

∂β2+
− ∂2

∂β2−
+ ∂2

∂φ2 + V0e6(α+|φ|)
]

� = 0, (40)

where V0 :=
√

2ρ0(κ
2+ + κ2−). After intermediate steps in

which one makes use of the variables u := α + |φ| and
v := α−|φ|, we solve the equation using a separation ansatz.
Then the full solution is

� (α, β+, β−, φ)

=
∑
σ=±

∫
R3

dp+dp−dp3 Aσ (p+, p−, p3)

× ψσ
p+,p−,p3

(α, β+, β−, φ) (41)

with mode functions

ψ±
p+,p−,p3

(α, β+, β−, φ) = eip+β++ip−β−

× H (1,2)
p3
3

(√
V0

18
e3(α+|φ|)

)

× exp

⎛
⎝∓i

√
p2+ + p2−

2
+ p2

3(α − |φ|)
⎞
⎠ , (42)
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where H (1,2)
ν (z) are the Hankel functions. Note that the latter

assume the WKB form for large arguments, where for the van
Vleck determinant D ∝ e−3(α+|φ|) holds. From (39) we see
that |φ| ∝ α for large α. Thus the amplitude of the wave
function decreases and the wave function vanishes as we
approach the big rip singularity. As in the previous section,
the DeWitt criterion is fulfilled, and the singularity is avoided
if this criterion is adopted.

Using the asymptotic WKB form of the Hankel functions,
we get a WKB solution for the complete mode wave function.
The phase is

S = ±
(√

V0

18
e3(α+|φ|) − π

6
p3

−
√

p2+ + p2−
2

+ p2
3(α − |φ|)

⎞
⎠

+ p+β+ + p−β−. (43)

Using the principle of constructive interference [7,35], we
get

|φ| = π

6

√
1 + p2+ + p2−

2p2
3

+ α,

β± = ± p±√
2(p2+ + p2−) + 4p2

3

(α − |φ|).
(44)

As expected, we find that |φ| ∝ α + const. and that β±
become constant. Note that we have not recovered here (29),
because we have used an approximated form of the potential
and an asymptotic expression of the wave function.

From now on we set A− = 0 and choose a Gaussian
weighting function for A+, that is,

A+ (p+, p−, p3) = e
− (p+− p̄+)2+(p−− p̄−)2+(p3− p̄3)2

2�p2

(
√

2π�p)3
, (45)

where p̄±,3 are non-zero mean values, and �p denotes the
width. To perform the integrals analytically, we assume that
the momenta are sharply peaked around their mean values
such that we can linearize the dispersion relation

√
p2+
2

+ p2−
2

+ p2
3 ≈ 1

2

p̄+
p̄

p+ + 1

2

p̄−
p̄

p− + p̄3

p̄
p3,

p̄ :=
√

p̄2+
2

+ p̄2−
2

+ p̄2
3, (46)

and use the WKB limit of the mode functions. Using the
formula for Gaussian integrals we end up with

�(α, β+, β−, φ) = exp

[
−�p2

2

[(
β+ − p̄+

2 p̄
(α − |φ|)

)2

+
(

β− − p̄−
2 p̄

(α − |φ|)
)2

+
(

π

6
+ p̄3

p̄
(α − |φ|)

)2
]]

× exp

[
i

(
p̄+
(

β+ − p̄+
2 p̄

(α − |φ|)
)

+ p̄−
(

β− − p̄−
2 p̄

(α − |φ|)
)

− p̄3

(
π

6
+ p̄3

p̄
(α − |φ|)

))]

× exp

[
i

√
V0

18
e3(α+|φ|) − i

π

4

]

×
(

72

V0π2

) 1
4

e− 3
2 (α+|φ|). (47)

As before, the wave packet decreases due to the presence
of the van Vleck determinant. It is peaked around the classi-
cal trajectory without dispersion, with a slight modification
coming from the van Vleck determinant. A similar behav-
ior was found in [35] for a massless scalar field in a FLRW
universe.

The linearization (46) breaks down when the absolute
value of α−|φ| becomes large. We then perform a numerical

integration of the full wave packet6 |�|e 3
2 (α+|φ|). Figure 5a

shows the results for α = 10 and different values of |φ|. For
|φ| ≈ 10.75, the wave packet has a global maximum which
corresponds to the analytical result (47). For increasing |φ|,
the wave packet assumes an annular shape and propagates
outwards with decreasing amplitude. The wave is peaked in
the direction of negative β±. For decreasing |φ|, one has a
similar behavior with the maximum moving into the oppo-
site direction. Note that this annular waves also appear for the
corresponding wave packet of the Kasner solution. The dis-
persion takes place due to the additional degrees of freedom
introduced by the anisotropy.

In Fig. 5b we display the maxima of the wave packet for
different |φ| together with a Gaussian fit to the peak region.
One can see that close to the peak the wave packet decreases
like a Gaussian, but decays much weaker (not even exponen-
tially) further away. The amplitude of the full wave packet
|�| including the van Vleck determinant will increase for
decreasing |φ| such that the peak along the classical trajec-
tory will be at best a local maximum. This might be inter-
pretable as a transition from a semiclassical into a full quan-
tum regime.

6 The wave packet is rescaled by the inverse of the van Vleck factor.

123



Eur. Phys. J. C (2019) 79 :686 Page 11 of 12 686

(a)
(b)

+

~

Fig. 5 Numerical results for the wave packet |�|e 3
2 (α+|φ|) using the asymptotic WKB form of (42) and α = 10, V0 = p̄+ = p̄− = p̄3 = 1,

�p = 1.5

The Klein–Gordon flux does not vanish. Similar to the case
considered in the previous section, the exponential function
from the van Vleck determinant cancels, yielding

Jα,φ ∝
∣∣∣∣
∫
R3

dp+dp−dp3A+(p+, p−, p3)

× exp

[
i

(
p+β+ + p−β− −

√
p2+ + p2−

2
+ p2

3(α + |φ|)

− π

6
p3

)]∣∣∣∣
2

+ O(e−3(α+|φ|))

Jβ± = O(e−3(α+|φ|)), (48)

where J I = 1
2iG

I J (�∗∂I� − �∂I�
∗), and Jα,φ means

that both Jα and Jφ are proportional to the expression on the
right-hand side. Numerically we find for it a similar structure

as for |�|e 3
2 (α+|φ|), that is, the Klein–Gordon flux is peaked

over the classical trajectory. According to criterion 2, the big
rip is not avoided. Similar to the case of the last section, the
singularity is thus only avoided by the DeWitt criterion. This
explicit calculation shows, moreover, that the wave packet is
not peaked all along the classical trajectory if one considers
|�|, whereas it is peaked with respect to the Klein–Gordon
flux.

6 Conclusion

In this paper, we have extended previous investigations of
singularity avoidance from isotropic to anisotropic models.

We have, in particular, adapted the avoidance criterion to the
covariant structure of minisuperspace, which becomes rele-
vant for dimensions higher than two. We have found that the
DeWitt criterion can, in general, be fulfilled, but not so the
vanishing of the Klein–Gordon current. For the reasons men-
tioned, however, we attribute more relevance to the DeWitt
criterion.

The flux criterion was recently applied in [38] to investi-
gating the fate of (big bang and big crunch) singularities in
FLRW models with Brown–Kuchař dust. Singularity avoid-
ance was then found for a certain class of factor orderings.

In our paper, singularity avoidance was found by study-
ing properties of the quantum cosmological Wheeler–DeWitt
equation. The structure of this differential equation was used
to disclose the fate of both the big bang and the big rip singu-
larities. The tacit assumption in this is that information about
the fates of different types of singularities can be obtained
from one and the same differential equation (in the same
way as information about different types of classical singu-
larities can be obtained from the same Friedmann–Lemaître
equations). A full mathematical treatment should address the
properties of the Wheeler–DeWitt equation and its boundary
conditions in much more detail, pointing out structural differ-
ences between the singularities, but this is beyond the scope
of this paper.

While the general criteria were formulated for general
Bianchi class A models, detailed investigations were made
for the Bianchi I model with and without matter. Bianchi I
models admit the prototype of an asymptotically velocity
term dominated (AVTD) model. Our results of singularity
avoidance should thus be representative for such a kind of

123



686 Page 12 of 12 Eur. Phys. J. C (2019) 79 :686

singularity with a sufficiently large number of degrees of
freedom. Other Bianchi models such as Bianchi VIII and
Bianchi IX exhibit an oscillatory behavior when approach-
ing the singularity. The singularity can, however, become
AVTD if, for example, a scalar field is added [30].

Because Bianchi IX models are generally considered as
reflecting the generic behavior towards a spacelike singu-
larity, future investigations of singularity avoidance should
attempt to address these models in as much detail as pos-
sible. For this, it would be desirable to have mathematical
theorems available such as those discussed here for the Kas-
ner solution. In [39] one finds an existence and uniqueness
theorem (Theorem 8.6 there), but for the Bianchi IX potential
no decay rate estimates seem to exist. The Wheeler–DeWitt
equation for the vacuum Bianchi IX (mixmaster) model was
solved numerically in [40] by using the ‘hard wall approxi-
mation’. The results found in this analysis strongly indicate
the decay of wave packet amplitudes.

It is generally believed that the approach to a spacelike
singularity at the level of the full Einstein equations can be
described by the Belinsky–Khalatnikov–Lifshits (BKL) sce-
nario; see, for example, [30,41] and references therein. This
corresponds to a decoupling of spatial points, in which every
spatial point exhibits the dynamics of a separate Bianchi
IX model. The eventual goal will be to present a quantum-
gravitational analysis of this situation, from which one should
be able to draw general conclusions about singularity avoid-
ance. An investigation in the framework of affine quantiza-
tion was made recently in [42]. Attempts in this direction
using the Wheeler–DeWitt equation will be the subject of
future investigations.
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