
Eur. Phys. J. C (2019) 79:709
https://doi.org/10.1140/epjc/s10052-019-7192-7

Regular Article - Theoretical Physics

Bound orbits near scalar field naked singularities

I. M. Potashova, Ju. V. Tchemarinab, A. N. Tsirulevc

Faculty of Mathematics, Tver State University, Sadovyi 35, Tver, Russia

Received: 13 May 2019 / Accepted: 1 August 2019 / Published online: 23 August 2019
© The Author(s) 2019

Abstract We study bound orbits near the centres of static,
spherically symmetric, asymptotically flat configurations of
a self-gravitating scalar field minimally coupled to gravity.
In our approach, a nonlinear scalar field is considered as an
idealized model of dark matter, and the main examples that
we have in mind are the centres of galaxies. We consider
both scalar field black holes and scalar field naked singu-
larities (SFNSs). It turns out that the shape and parameters
of a bound orbit depend crucially on the type of configura-
tion. The lapse metric function of a SFNS and, consequently,
the effective potential of a massive test particle with zero
angular momentum have a global minimum. A SFNS has a
static degenerated orbit on which a test particle, having zero
angular momentum and the minimum of its energy, remains
at rest at all times. This implies that there exists a spheri-
cal shell consisting of cold gas or dust, which for a distant
observer can look like the shadow of a black hole. We also
study the shape of noncircular bound orbits close to the cen-
tres of SFNSs and show that their angles of precession are
negative.

1 Introduction

At present, we still do not exactly know the geometry of
spacetime in the neighbourhood of the centre of normal
galaxies. The best observational results have been obtained
for the centres of our Galaxy and of M87 [1–6]. However,
the available data are so far insufficient to identify these
strongly gravitating objects and even to definitely distin-
guish between black holes, naked singularities, boson stars,
and wormholes [7–12]. The EHT collaboration has recently
observed [13] the shadow, circled by a bright ring, in the cen-
tre of M87: this can be interpreted as the existence of closed
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photon orbits. However, it is shown in [14] using a simple
model that a naked singularity can have both a shadow and
a photon sphere. In fact, observations of the orbits of stars
near the centres have a key role in dealing with this question,
but there are some obvious problems with the reasonable
geometrical interpretation of such observations. First, one
should not think of the central objects in galaxies as being in
vacuum, because dark matter is mainly concentrated around
them. Another problem is that the nature of dark matter and its
distribution near galactic centres remain unknown at present.
This means that a meaningful interpretation of the observa-
tions should be based on an appropriate mathematical model
of the central regions.

In this paper, we model dark matter by a nonlinear scalar
field which is assumed to be minimally coupled to gravity.
This model is an interesting alternative to the cold dark matter
phenomenology (see e.g. [15–19] and references therein). In
the centres of galaxies, the distribution of dark matter seems
to be spherically symmetric. Our aim is to study bound orbits
of test particles near the centres of static, spherically sym-
metric configurations of a self-gravitating nonlinear scalar
field; in our terminology, a bound orbit is a bounded complete
geodesic in an asymptotically flat spacetime. The motivation
for the choice of this special and idealized model is to treat
the problem in a fully analytical and self-consistent manner.
For the orbital motion of a test particle near a compact hairy
object, this model allows us to find out some important fea-
tures, which can possibly be observed in real astrophysical
systems, and which appear to be hidden in a purely numerical
analysis.

When we speak about SFNSs and SFBHs, we are faced
with some unsolved problems, such as the cosmic censor-
ship conjecture, instability of configurations, violation of the
nonnegativity of self-interaction potentials, and so on. How-
ever, a number of these problems, including the singularity
problem, disappear if we assume that there is some additional
matter (perhaps of an unknown nature, beyond the Standard
Model) in the very centre. Note also that we regard, in what
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follows, a scalar field as a phenomenological construction
rather than a fundamental natural field; on the other hand,
the Standard Model of particle physics predicts the existence
of such a field, and it is of great importance for the modern
cosmology. In both the cases, we do not know (in advance,
without appealing to astrophysical observations) the self-
interaction potential of the scalar field. Therefore, in order to
consider the problem in a sufficiently general approach, we
use the so-called inverse problem method for self-gravitating
spherically symmetric scalar fields; the method was proposed
in [27–29] and later was explored in [30–34] and applied, for
example, in [35–37].

The paper is organised as follows. In Sect. 2 we describe
the necessary mathematical background for static, spheri-
cally symmetric scalar field configurations, and obtain some
general results both for SFBHs and for SFNSs. One of the
most important issues is how to distinguish a naked singular-
ity from a black hole using available observational data. On
the other hand, our primary purpose is the study of geodesic
motion in these asymptotically flat spacetimes, and in Sect. 3
we discuss general features of bound orbits of free massive
particles, such as the shape of the orbits and the precession of
their pericentres. In Sect. 4 we consider a simple, fully ana-
lytical, one-parameter family of SFNSs and study the shapes
of bound orbits in these spacetimes in comparison with the
orbits in the corresponding Schwarzschild black hole space-
times.

In this paper, we use the geometrical system of units with
G = c = 1 and adopt the metric signature (+ − −−).

2 Comparing SFBHs and SFNSs

The action with the minimal coupling between curvature and
a real scalar field φ has the form

Σ = 1

8π

∫ (
−1

2
R + 〈dφ, dφ〉 − 2V (φ)

)√|g| d 4x , (1)

where R is the scalar curvature, V (φ) is a self-interaction
potential, and the angle brackets denote the scalar product
with respect to the spacetime metric. For our purposes, it
is convenient to write the metric of a spherically symmetric
spacetime in the Schwarzschild-like coordinates as

ds2 = Adt2 − dr2

f
− r2(dθ2 + sin2 θ dϕ2), (2)

where the metric functions A and f depend only on the radial
coordinate r . Writing

A(r) = f (r)e2Φ(r),

we obtain the Einstein–Klein–Gordon equations in the form

− f ′

r
− f − 1

r2 = φ′2 f + 2V , (3)

f

r

(
2Φ ′ + f ′

f

)
+ f − 1

r2 = φ′2 f − 2V , (4)

− f φ′′ − φ′

2
f ′ − φ′ f

(
Φ ′ + 1

2

f ′

f
+ 2

r

)
+ dV

dφ
= 0 , (5)

where a prime denotes differentiation with respect to r . Now
these equations can be reduced to two independent ones by
summing Eqs. (3) and (4) (with the result Φ ′ = rφ′2), and
then eliminating Φ ′ from (5).

The functions A and f , which completely determine
geodesic motion in the spacetime, should be the result of
solving Eqs. (3)–(5). However, we have no a priori knowl-
edge of the form of V (φ) and have to study bound orbits for
all physically admissible self-interaction potentials at once.
Our approach is based on the following result [33]:

A general static, spherically symmetric, asymptotically
flat solution of Eqs. (3)–(5)with an arbitrary self-interaction
potential is given by the quadratures

Φ(r) = −
∫ ∞

r
φ′2rdr , ξ(r) = r +

∫ ∞

r

(
1 − eΦ

)
dr ,

(6)

A(r) = 2r2
∫ ∞

r

ξ − 3m

r4 eΦdr , f (r) = e−2Φ A , (7)

Ṽ (r) = 1

2r2

(
1 − 3 f + r2φ′2 f + 2 e−Φ ξ − 3m

r

)
, (8)

where the parameter m is the Schwarzschild mass.
Each strictly monotonic1 function φ(r) of class C2

([0,∞)
)

with the asymptotic behaviour

φ = O
(
r−1/2− α

)
, r → ∞ (α > 0) (9)

determines a one-parameter family of solutions by these
quadratures: one sequentially finds the functions eΦ , ξ , A,
f , and Ṽ (r), and then find the potential V (φ) = Ṽ (r(φ)).
Note also that we could include the cosmological constant in
the potential as the additional term Λ/2, but its contribution
to the geometry of the central region would be negligible.
The absence of the cosmological constant simply means that
V (φ(∞)) = 0.

In spherically symmetric spacetimes, the Kretchmann
invariant, K = Rαβγ δRαβγ δ/4, equals the sum of the squared
curvature components. In the orthonormal basis associated
with the metric (2), algebraicallyindependent components of

1 Note, however, that each solution of the problem under consideration
satisfies the quadratures (6)–(8) regardless of the monotonicity of the
field function.
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the curvature can be reduced with the aid of (6) and (7) to
the form

R0101 = φ′2 f − f − 1

r2 , R2323 = f − 1

r2 , (10)

R0202 = R0303 = − f

r2 + e−Φ ξ − 3m

r3 , (11)

R1212 = R1313 = f

r2 − φ′2 f − e−Φ ξ − 3m

r3 , (12)

One can see that with the exception of some special fine-
tuned cases, K and R diverge at r = 0 for all solutions. In
the generally accepted manner, we call a solution a naked
singularity (a black hole) if K diverges at r = 0 and f > 0
for all r > 0 (respectively, f = 0 at some radius rh > 0 and
f > 0 for all r > rh).

For a given nonzero scalar field φ(r), it follows directly
from (6) that ξ ′ = eΦ > 0 for all r > 0 and ξ(0) > 0, so that
the metric function A, given by the quadrature (7), passes
through zero and becomes negative as r → 0 if and only if
3m > ξ(0). In other words, the corresponding configuration
of mass m will be a naked singularity or a black hole if

0 < 3m < ξ(0) (naked singularities) (13)

or

3m > ξ(0) (black holes) (14)

respectively. In what follows we deal only with ’generic’
configurations and do not consider the special (fine-tuned)
case 3m = ξ(0); the latter leads to a naked singularity or a
regular solution.

It follows from (6) and (9) that

eΦ = 1 + o(1/r), ξ = r + o(1), r → ∞, (15)

eΦ = eΦ(0) + o(r), ξ = ξ(0) + ξ ′(0)r + o(r), r → 0,

(16)

where ξ(0) > 0 and ξ ′(0) = eΦ(0) > 0 if the scalar field is
not identically zero. Using the quadrature (7) and the asymp-
totic estimates (15) and (16), one can directly obtain the
asymptotic behaviours of the metric function A(r) for both
SFNSs and SFBHs; they are

A(r) = 1 − 2m

r
+ o(1/r), r → ∞, (17)

A(r) = 2

3

ξ(0) − 3m

r
eΦ(0) + O(1), r → 0. (18)

The condition m > 0 distinguishes SFNSs from the vacuum
(that is, Schwarzschild) naked singularities, which exist only
for negative values of mass. Below we will also need a few

inequalities and expressions for ξ and A. It follows directly
from (6) and (7) that for all r > 0

ξ ≥ r , 0 < ξ ′ ≤ 1, 0 < eΦ ≤ 1, ξ ′′ =
(

eΦ
)′ ≥ 0 ,

(19)

A′ = 2

r
A − 2

ξ − 3m

r2 eΦ , (20)

A′′ = 2

r
A′ − 2

r2 A + 2

r2

ξ − 3m

r
eΦ − 2

r

(
ξ − 3m

r
eΦ

)′

= A′

r
− 2

r

(
ξ − 3m

r
eΦ

)′
. (21)

The two following propositions give us an additional char-
acteristic feature, besides the existence or non-existence of
an event horizon and an innermost stable circular orbit, that
distinguishes SFNSs from SFBHs.

Proposition 1 In a SFBH spacetime defined by the quadra-
tures (6)–(8) and the conditions (9) and (14), A(r) is a strictly
increasing function outside the event horizon.

Proof In the region where ξ − 3m ≤ 0, the monotonicity
(outside the horizon) follows directly from (20), so we need
to consider only the region where ξ − 3m > 0.

An integration by parts in (6) yields

ξ(r) = r +
∫ ∞

r

(
1 − eΦ

)
dr = reΦ +

∫ ∞

r

(
eΦ

)′
rdr

= reΦ +
∫ ∞

0

(
eΦ

)′
rdr −

∫ r

0

(
eΦ

)′
rdr

= reΦ + ξ(0) −
∫ r

0

(
eΦ

)′
rdr ,

reΦ = ξ(r) − ξ(0) +
∫ r

0

(
eΦ

)′
rdr . (22)

Thus, for SFBHs (ξ(0) < 3m), we have the inequality

eΦ >
ξ − 3m

r
for all r > 0 . (23)

Integrating by parts in (7) and then applying the identity
(ξ − 3m)′ = eΦ , we obtain

A = 2r2
∫ ∞

r

ξ − 3m

r4 eΦdr

= 2

3

ξ − 3m

r
eΦ + 2r2

3

∫ ∞

r

[
(ξ − 3m)eΦ

]′
r3 dr

= 2

3

ξ − 3m

r
eΦ + e2Φ

3
+ r2

3

∫ ∞

r

(
e2Φ

)′ dr
r2

+ 2r2

3

∫ ∞

r

ξ − 3m

r3

(
eΦ

)′
dr . (24)

Taking into account (19) and (23), we have

A(r) >
ξ − 3m

r
eΦ for all r > 0 .
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As it can be seen from (20), this inequality implies that
A′ > 0 in the region where ξ − 3m > 0. 	


For a SFNS, the existence of a minimum follows directly
from (14), (17), and (18). Suppose that there are other
extrema. Let r0 be the local minimum point farthest from
the origin r = 0, and rm be the local maximum point nearest
to r0, that is, there are no local extrema in the interval (rm, r0).
Then A′(r0) = A′(rm) = 0, A′′(r0) > 0, and A′′(rm) < 0,
so that (21) gives

(
ξ − 3m

r
eΦ

)′

r=r0

< 0 ,

(
ξ − 3m

r
eΦ

)′

r=rm

> 0 .

Consequently, the minimum at r = r0 is unique if

(
ξ − 3m

r
eΦ

)′
≤ 0 , 0 < r < r0 . (25)

It is important to note that this condition is quite natural
and means simply that the configurations of a scalar field is
sufficiently compact and the function eΦ varies sufficiently
smoothly (has no steep jumps). A more detailed character-
ization in terms of the field function φ turns out to be still
more complicated, but numerous example show that the con-
dition (25) holds for physically reasonable configurations.
Thus we have stated the following proposition.

Proposition 2 In a SFNS spacetime defined by the quadra-
tures (6)–(8) and the conditions (9) and (14), the metric
function A(r) has a global minimum in the interval (0,∞).
If the condition (25) holds, this minimum is unique.

For simplicity, we will assume below that the metric func-
tion A(r) has exactly one minimum at r = r0.

It is shown in the next section that these propositions give
us a key distinguishing feature of scalar field configurations;

in particular, it determines different behaviours of bound
orbits around SFNSs on the one hand and around SFBHs
on the other.

3 Bound orbits

In any static, spherically symmetric spacetime a massive test
particle has three integrals of motion. For the metric of the
form (2) they are

dt

ds
= E

A
,

dϕ

ds
= J

r2 ,

(
dr

ds

)2

= e−2Φ
(
E2 − Vef f

)
,

(26)

Vef f = A

(
1 + J 2

r2

)
, (27)

where Vef f is the effective potential, E is the specific energy,
and J is the specific angular momentum of a massive test
particle.

We note that Vef f → 1 as r → ∞ for any value of J and
for any asymptotically flat spacetime, but the results obtained
in Sect. 2 show radically different behaviour of the effective
potentials in the interior regions of SFBHs and SFNSs, which
implies in turn a crucial distinction between geodesic struc-
tures of these spacetimes. In a SFBH spacetime as well as
in a Schwarzschild spacetime, the effective potential of a
test particle vanishes at the horizon and has, for sufficiently
large J , at least one minimum and one maximum outside
the horizon. The radius rh of the event horizon of a SFBH
is always less than that of the vacuum black hole with the
same mass (see Fig. 1). It follows directly from (18) that
rh → 0 as m → ξ(0)/3 + 0 and can be arbitrary close
to zero. Moreover, the various numerical simulations with
SFBH solutions allow us to conclude that the radius of the
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Fig. 1 The left panel shows the function ξ(r) given by (29); SFNSs
and SFBHs have masses in the intervals (0, ξ(0)) and (ξ(0),∞), respec-
tively. The middle panel shows the metric functions A(r) for the SFNS
(30) with a = 3 and for the Schwarzschild solution of the same mass

m = 1. For this Schwarzschild spacetime, the shape of the orbit with
the parameters J = 5.12, E = 0.97, rmin = 14.35, rmax = 50.33, and
Δϕ = +1.05 ≈ π/3 is plotted in the right panel
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corresponding innermost stable circular orbit, which is an
important observational characteristic for black holes, is of
order 3rh (analogously to the vacuum case). On the contrary, a
SFNS has no innermost stable circular orbit but has a unique
degenerated static orbit, which has J = 0 and is located
at r = r0, where r0 is the unique solution of the equation
A′(r) = 0. From the point of view of a distant observer
resting relative to the centre, a test particle remains at rest
in the static orbit all time. Particles in such a static orbit,
together with particles having zero or small specific angular
momentum and specific energy E2 � A(r0), can make up a
spherical shell consisting of cold gas or fluid. For a distant
observer, this shell would look like a shadow similar to that
of a black hole. The existence of static degenerated orbits
in other spacetimes is considered in [38–41]. We note also
that in SFNS spacetimes, as opposed to black holes, a freely
moving massive particle with E ≥ 1 will inevitably escape
to infinity, while such a particle with E < 1 will move on a
bound geodesic; thus the value E = 1 separates bound and
unbound orbits.

Another important observational aspect of geodesic motion
in the central regions of SFNSs is that orbits with sufficiently
large J can lie outside this shell and, at the same time, can
have parameters which differ strongly from those for the cor-
responding orbits in vacuum and SFBHs spacetimes. For a
given orbit in a SFNS spacetime, we are primarily interested
in the angle of precession Δϕ of the orbit; the latter can be
expressed as

ϕosc = 2J

rmax∫

rmin

eΦ

r2
√
E2 − Vef f

dr , Δϕ = ϕosc − 2π ,

(28)

where rmin and rmax are, respectively, the pericentre and apoc-
entre radii. In other words, they are solutions of the equation
E2 − Vef f = 0 such that rmin < rJ < rmax , where rJ is
a (global or local) minimum of Vef f (r, J ), and there are no
other solutions in the interval (rmin, rmax). Thus, a bound orbit
of the general type oscillates near a stable circular orbit (an
oscillation is the motion from pericentre to apocentre and
back) and ϕosc is the angle between any two successive peri-
centre points of the orbit. The relativistic precession of peri-
centres of bound orbits is considered in [1,5,11,40–44] both
from a purely theoretical point of view and in the context of
observations of S-stars in the Galactic Centre.

If a massive test particle moves radially in some non-
static degenerate orbit, which will be the case if J = 0 and
A(r0) < E2 < 1, then Δϕ = −2π . For any small J � 0,
this orbit becomes nondegenerate and can have an arbitrar-
ily large number of oscillations per revolution. With further
increasing J (and with fixed E), the number and the ampli-
tude of oscillations monotonically decrease, while the angle

of precession increases and reaches its maximum value. We
always have Δϕ < 0 for orbits located, even if only in part,
in the central region.

If an orbit is located in the asymptotic region where the
influence of a scalar field on the spacetime geometry van-
ishes, then the angle of precession is always positive, as well
as in the Schwarzschild spacetime. There is also the inter-
mediate spacetime region where the scalar field is relatively
weak and the precession is absent for some special values
of J and E . More exactly, for a given SFNS spacetime, the
domain (in the (J, E) plane) of the existence of noncircu-
lar bound orbits will be separated into two open parts, with
Δϕ < 0 and Δϕ > 0, by the curve defined by the equation
Δϕ(E, J ) = 0.

At the end of this section, it is important to note that we
have a powerful degree of freedom in the choice of the self-
interaction potential (in the wide class of physically admissi-
ble potentials) of a scalar field or, equivalently, in the choice
of the distribution of the scalar field itself. To see a degree of
universality of the construction under consideration, one can
take into account the identity 2(ξ − 3m)eΦ = [

(ξ − 3m)2
]′

and rewrite the expression (20) as an equation for ξ (and thus
for φ). The resulting equation,

[
(ξ − 3m)2

]′ = 2r A − r2A′

with the asymptotic condition (ξ − 3m)2 → r2 − 6mr as
r → ∞, has a unique solution in the region where 2A > r A′.
In this region, using a suitable scalar field distribution, we
can simulate some spherically symmetric geometry with a
given metric function A(r), and therefore the correspond-
ing effective potential of a test particle for arbitrary specific
angular momentum and energy. The condition 2A > r A′
holds for naked singularities with any physically reasonable
gravitating matter and it holds for black holes outside the pho-
ton sphere. The effective potential alone does not uniquely
determine all the parameters of a bound orbit but only the
pericentre and apocentre radii; in addition, we can approx-
imately reconstruct the shape of the orbit by simultaneous
varying the angular momentum and energy. In this paper we
are mainly interested in just the shape of orbits because the
angle of precession cumulates from revolution to revolution.
However, there are other important observational parameters,
namely, the period of an oscillation, the orbital (tangential)
velocity vo in pericentre, and the radial velocity vr of a test
particle, which can be expressed from (26) in the form

Tosc = 2E

rmax∫

rmin

eΦ

A
√
E2 − Vef f

dr ,

vo = J

E

A(rmin)

r
, vr = dr

dt
= 1

E

√
f A

(
E2 − Vef f

)
.
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Given an orbit around a SFNS and the orbit with the same
J , rmin , and rmax around the Schwarzschild black hole of the
same mass as the SFNS, it can be shown from (7) and (19)
that T SFNS

osc < T Sch
osc and vSFN S

o > vSch
o .

The orbital velocity in pericentre is also determined only
by the metric function A, while the period of an oscillation
and the radial velocity can be determined only if another met-
ric function in (7), f (r), is known; however, the latter can-
not in general be exactly reconstructed in this way. One has
eΦ ≤ 1 for all r > 0, in accordance with the expression (6);
the latter is equivalent to the condition f (r) ≥ A(r), which
holds for any physically reasonable configuration except for
wormholes. All that has been said allows us to conclude that
scalar fields, even if they do not exist in nature, are useful in
modelling spherically symmetric, self-gravitating, compact
hairy objects, and thus are useful in interpreting the astro-
nomical observations of bound orbits.

4 An analytic example

In a purely analytical treatment of the quadratures (7) – (8),
it is more convenient to start with some specially chosen
function ξ(r) (or eΦ(r)) instead of the field function φ(r),
because each of the functions eΦ(r), ξ(r), and φ(r) uniquely
determines another two functions.

For the sake of brevity, we will explore a simple, fully
analytic, one-parameter family of solutions with

ξ =
√
r2 + 2ar + 5a2 − a, eΦ = r + a√

r2 + 2ar + 5a2
.

(29)

By direct integration in (7), we obtain

A = 1 + 2a

3r
− 2

a + 3m

15a

×
{√

r2 + 2ar + 5a2

r

(
1 + r

a
− r2

a2

)
+ r2

a2

}
, (30)

where a is the parameter of ’intensity’ of the scalar field.
In studying bound orbits, we are interested only in the

metric functions and can, therefore, use an arbitrary unit of
length. On the other hand, the solution (7) – (8) is invariant
under the scale transformations

r → r/λ, m → m/λ, V → λ2V, λ > 0.

It means that by applying λ = m in this transformation, we
can take, as it is usually done in general relativity, the mass
of a SFNS as the current unit of length. Thus, without loss
of generality, we suppose everywhere below that m = 1.

Using (10) – (12) we find that the Kretchmann invariant
diverges at the centre, namely,

K = 5
(
3 − √

5
)(

4a − 3
√

5 − 3
)2

6 r6 + O
(
r−5) , r → 0.

In accordance with (14), the condition a > 3/(
√

5 − 1)

determines the subfamily of SFNSs.
The scalar field can be obtained by solving the problem

φ′ = √
Φ ′/r , φ(∞) = 0. The result is

φ = 4
√

4/5
(
F(λ0, k) − F(λ(r), k)

)
, (31)

where

k =
√

1/2 + 1/
√

5, λ0 = arcsin

(
2 4
√

20√
5 + 2

)
,

λ(r) = arcsin

(
2 4
√

20
√
r(r + a)(√

5 + 2
)
r + √

5 a

)
,

and F(λ, k) denotes the incomplete elliptic integral of the
first kind in the Legendre normal form,

F(λ, k) =
∫ sin λ

0

dt√
1 − t2

√
1 − k2t2

.

One has φ = 4
√

4/5 F(λ0, k) − √
16r/5a + O(r3/2) near

r = 0 (φ(0) ≈ 2.498) and φ = 2a/r + O(r−2) at infinity.
As a function of r , the potential can be obtained directly from
Eq. (8) but has a cumbersome form; (8) and (31) determine,
parametrically, V (φ). This potential, which has arisen in a
simple demo example, is not physically interesting because it
is negative everywhere in the interval (0,∞). However, there
exist solutions whose self-interaction potential is positive in
the region r > rp with rp sufficiently close to the centre [36].

Our main goal (of considerable observational interest) is to
compare orbits which have the same pericentre and apocen-
tre radii and a comparable number of oscillations, but which
either are in different spacetimes or have different param-
eters. Figure 1 shows the typical behaviour of the function
ξ(r) belonging to the family (29), the metric function A(r)
of a SFNS together (and in comparison) with the corre-
sponding metric function of the Schwarzschild solution of
the same mass, and a typical bound orbit in the latter space-
time. It is important to note that all noncircular bound orbits
in the Schwarzschild spacetime have ’the relativistic pericen-
tre advance’, that is Δϕ > 0. In contrast, in Fig. 2 we plot the
shape of orbits possessing the same apocentre radius as the
orbit in Fig. 1; one of them (in the middle panel) has, in addi-
tion, the same pericentre radius. In all three cases, the angles
of precession are negative and sufficiently large in magni-
tude. The shapeof an orbit depends on the specific angular

123



Eur. Phys. J. C (2019) 79 :709 Page 7 of 9 709

-40 -20 0 20 40

-40

-20

0

20

40

π/43π/4

5π/4 7π/4

-40 -20 0 20 40

-40

-20

0

20

40

π/43π/4

5π/4 7π/4

-40 -20 0 20 40

-40

-20

0

20

40

π/43π/4

5π/4 7π/4

Fig. 2 The shape of orbits with different parameters and different num-
bers of oscillations per revolution. They all have the apocentre radius
which is approximately the same as that for the Schwarzschild spacetime
in Fig. 1, rmax ≈ 50.3, but they all have a negative angle of precession.
Left panel:a = 3, J = 0.094, E = 0.9606, rmin = 0.37, rmax = 50.37,

Δϕ = −5.495 ≈ −7π/4. Middle panel: a = 10, J = 0.5, E = 0.966,
rmin = 14.31, rmax = 50.26, Δϕ = −5.71 ≈ −20π/11. Right panel:
a = 10, J = 1.445, E = 0.9667, rmin = 15.95, rmax = 50.27,
Δϕ = −4.71 ≈ −3π/2
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Fig. 3 Left panel: the shape of an orbit around a SFNS (left of center)
and the shape of an orbit in the Schwarzschild spacetime with the same
mass mSch = mNS = 1 (right of center); these orbits have the same peri-
centre and apocentre radii. The parameters of the orbits, respectively,
are: a = 2.5, J = 2.856, E = 0.9635, rmin = 4.07, rmax = 50.25,
Δϕ = 0 (SFNS), and J = 3.88, E = 0.966, rmin = 4.70, rmax =

50.25, Δϕ = +2π (the Schwarzschild spacetime). Middle panel: an
orbit around a SFNS with parameters a = 50, J = 5.66, E = 0.9998,
rmin = 191.1, rmax = 9978.7, Δϕ = −4.71 = −3π/2. Right panel: an
orbit around the Schwarzschild black hole (mSch = 1) with parameters
J = 4.72, E = 0.9998, rmin = 8.54, rmax = 9988.4, Δϕ = +π/2

momentum J and the specific energy E of a test particle.
Numerical simulations show that the number of oscillations
per revolution decreases with increasing J when the value of
E is fixed, as well as with decreasing E when the value of J
is fixed; both these dependences appear to be true in general,
not only for the family (29).

Figure 3 represents comparable orbits around SFNSs and
around the corresponding Schwarzschild black hole with the
same mass mSch = mNS = 1. For the SFNS with a = 2.5,
an orbit which looks like a Keplerian orbit, whose pericentre
and apocentre are not shifting during one revolution of a test
particle and thus Δϕ = 0, is represented in the left panel. In
the Schwarzschild spacetime, the only similar orbit, having
the same motionless pericentre and apocentre as the orbit

around the SFNS, has the angle of precession Δϕ = 2π . The
middle and right panels of Fig. 3 represent two very highly
elongated orbits around the SFNS spacetime with a = 50 and
the Schwarzschild black hole, respectively. These orbits have
approximately the same apocentre radius, which is larger
than the size of the central part of the orbits by a factor of
about 50. From the point of view of a distant observer, the
orbits can look very similar or even being observationally
indistinguishable from one another, whereas their angles of
precession are, respectively, −3π/2 and +π/2. The insets in
the middle and right panels show the obvious difference in the
behaviours of the orbits in the central regions; this example
explains why we need the observations of both pericentre
and apocentre of elongated orbits.
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5 Conclusions

In this paper, we considered a model of a spherically symmet-
ric strongly gravitating massive object surrounded by a self-
gravitating nonlinear scalar field, having in mind the centre of
a galaxy surrounded by dark matter. This idealized model is
treated in a fully analytical manner and, in this way, we have
found some new features of the orbital motion of free test
particles around SFNSs and SFBHs. First, for a given pos-
itive mass, there exists a continuum of SFNSs with asymp-
totic geometry of the Schwarzschild spacetime with the same
mass; thus, in contrast to Schwarzschild naked singularities,
SFNSs exhibit the attractive nature of gravitation.

Second, the radii of the event horizon and of the innermost
stable circular orbit of a SFBH are normally much less than
those of the Schwarzschild black hole with the same mass.
A SFNS does not have an innermost stable circular orbit
but has a stable, degenerated, static orbit on which a test
particle, having zero angular momentum and the minimum
of its energy, remains at rest as time passes. It is important
that this phenomena cannot take place on the outside of the
event horizon of a vacuum black hole or a SFBH. More-
over, in the theory of self-gravitating scalar fields with the
positive kinetic term in the Lagrangian, among all configu-
rations possessing a positive mass, naked singularities and
only naked singularities have such an orbit. If a noninteract-
ing test particle is initially has a sufficiently small specific
angular momentum, it will permanently remain close to the
static degenerate orbit. Consequently, in a SFNS spacetime,
’slow’ particles of matter, which rest on the static degenerate
orbit or slowly move near it, will form a gravitationally bound
cluster. One can expect that most of the energy of particles,
falling into this shell with initially high relative velocities,
will be radiated to infinity. If the accretion flow onto the
inner region is negligible or at least sufficiently small, as in
the central region of Sgr A*, then only collisions and radiative
processes determine the time evolution of the cluster. Eventu-
ally the cluster will cool down and then become a spherical
shell consisting of cold gas, dust, or fluid. Therefore, this
shell will be seen by a distant observer as a shadow or a
gray spot, which can be mistakenly taken for the shadow of a
black hole.

And third, we have studied the shape of orbits close to the
centres of SFNSs and shown that their angles of precession
are negative, that is, pericentre retreats during each orbital
revolution, and not advances as in the case of Schwarzschild
black holes. At the present time, we can observe only the
orbits of S-stars in the distant region of the Galactic center.
However, one can hope that the future development of precise
astronomical instruments (e.g., at the facilities of the Event
Horizon Telescope) will accurately measure the orbital pre-
cession of the pericentres of the known S-stars and of other,
at present unobserved, more short-period stars. Thus, we will

be able to recognize observationally the nature of the object
Sgr A*.
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Constraints on R

n gravity from precession of orbits of S2-like
stars. Phys. Rev. D 85, 124004 (2012). https://doi.org/10.1103/
PhysRevD.85.124004

43. V.I. Dokuchaev, YuN Eroshenko, Weighing of the dark matter at
the center of the Galaxy. JETP Lett. 101, 777–782 (2015). https://
doi.org/10.1134/S0021364015120048

44. A.F. Zakharov, Constraints on tidal charge of the supermassive
black hole at the Galactic Center with trajectories of bright stars.
Eur. Phys. J. C 78, 689 (2018). arXiv:1804.10374

123

http://arxiv.org/abs/astro-ph/0406194
http://arxiv.org/abs/1201.3032
http://arxiv.org/abs/1701.08667
http://arxiv.org/abs/1803.08064
http://arxiv.org/abs/1710.09581
http://arxiv.org/abs/1712.00265
http://arxiv.org/abs/1408.6041
http://arxiv.org/abs/1805.04447
http://arxiv.org/abs/1710.06791
http://arxiv.org/abs/1801.09769
http://arxiv.org/abs/1702.02800
http://arxiv.org/abs/gr-qc/9502011
http://arxiv.org/abs/gr-qc/9612062
http://arxiv.org/abs/gr-qc/0109027
http://arxiv.org/abs/0912.1722
http://arxiv.org/abs/1107.5979
https://doi.org/10.1007/s10440-018-00232-2
http://arxiv.org/abs/gr-qc/0703107
http://arxiv.org/abs/1805.08976
http://arxiv.org/abs/1012.4030
http://arxiv.org/abs/1012.5411
http://arxiv.org/abs/1311.5820
http://arxiv.org/abs/1711.05191
https://doi.org/10.1103/PhysRevD.85.124004
https://doi.org/10.1103/PhysRevD.85.124004
https://doi.org/10.1134/S0021364015120048
https://doi.org/10.1134/S0021364015120048
http://arxiv.org/abs/1804.10374

	Bound orbits near scalar field naked singularities
	Abstract 
	1 Introduction
	2 Comparing SFBHs and SFNSs
	3 Bound orbits
	4  An analytic example
	5 Conclusions
	References




