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Abstract We present a class of asymptotically anti-de Sit-
ter charged rotating black hole solutions in f (T ) gravity
in N -dimensions, where f (T ) = T + αT 2. These solu-
tions are nontrivial extensions of the solutions presented
in Lemos (Phys Lett B 353:46–51. arXiv:gr-qc/9404041,
1995) and Awad (Class Quantum Gravity 20:2827–2834.
arXiv:hep-th/0209238, 2003) in the context of general rel-
ativity. They are characterized by cylindrical, toroidal or
flat horizons, depending on global identifications. The static
charged black hole configurations obtained in Awad et al.
(JHEP 07:136. arXiv:1706.01773, 2017) are recovered as
special cases when the rotation parameters vanish. Simi-
lar to Awad et al. (JHEP 07:136. arXiv:1706.01773, 2017)
the static black holes solutions have two different electric
multipole terms in the potential with related moments. Fur-
thermore, these solutions have milder singularities compared
to their general relativity counterparts. Using the conserved
charges expressions obtained in Ulhoa and Spaniol (Int J Mod
Phys D 22:1350069. arXiv:1303.3144, 2013) and Maluf and
Ulhoa (Gen Relativ Grav 41:1233–1247. arXiv:0810.1934,
2009) we calculate the total mass/energy and the angular
momentum of these solutions.

1 Introduction

In the last two decades there has been a growing interest in
gravitational solutions with cosmological constant in gen-
eral relativity (GR) and its extensions. This interest has been
generated by seminal observational and theoretical break-
throughs, namely, the discovery of cosmic acceleration [6,7]
and the gauge/gravity dualities [8]. Black hole solutions play
a very important role in unraveling several classical and quan-
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tum mechanical aspects of the underlying gravitational the-
ory. Therefore, it is viewed as an important tool to study var-
ious extensions of GR. Contrary to asymptotically flat black
holes, asymptotically de Sitter (dS) and anti-de Sitter (AdS)
black hole solutions possess more than one type of horizon
topology. They could have spherical, hyperbolic, or flat hori-
zons. dS and AdS black hole solutions have been obtained
and studied in GR extensively, as well as teleparallel gravi-
ties, please see [1,2,9–19], for diverse black hole solutions.

Since the confirmation of the above cosmological obser-
vations there have been several proposed extensions of GR
which are based on Riemannian as well as other types
of geometries. Gravitational theories based on Riemannian
geometry have been extended through f (R) gravitational
theory which was proposed in [20,21]. In such a theory,
the Ricci scalar R is replaced by an arbitrary function
f (R) in Einstein-Hilbert action. Other extensions consider
a Lagrangian density on the form of f (R, T ) where T the
trace of the energy-momentum tensor of the matter compo-
nent [22], or some f (R,G) where G is Gauss-Bonnet scalar
[23–27]. Different approach, however, has been developed
within Weitzenböck geometry by introducing the teleparal-
lel torsion scalar, T , as the Lagrangian density instead of the
Ricci scalar, that is the teleparallel equivalent of general rel-
ativity (TEGR) theory. Motivated by the f (R) gravity exten-
sion, TEGR has been generalized to f (T ) gravity by replac-
ing T by an arbitrary function f (T ) [28]. The f (T ) gravity is
considered to be one of the simplest extensions of GR, since
its field equations are still second order [29–31] in spite of
having arbitrary torsion scalar terms. Although there is an
equivalence between GR and TEGR on the field equations
level, their generalizations f (R) and f (T ) are not equivalent.

In general, finding an exact nontrivial black hole solution
in the above extensions, including f (T ) gravity, is not an easy
task [3,32–38]. In this work, we present a rotating black hole
in all dimensions within Maxwell- f (T ) theory with a nega-
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tive cosmological constant, where f (T ) = T + αT 2. These
asymptotically AdS black holes are characterized by cylin-
drical, toroidal or flat horizons depending on the global iden-
tifications of some coordinates. These solutions can be con-
structed from coordinate transformations which are allowed
locally on a manifold but not globally [39]. They are the f (T )

analogue of the solutions found in GR by Lemos [1] and their
generalizations in higher dimensions that were introduced by
one of us in [2]. The charged static configurations obtained
in [3] are recovered in the limit of vanishing rotation parame-
ters. These interesting black hole solutions have two different
electric multipole terms in the electric potential with related
multipole moments. In addition, they have milder singulari-
ties at r = 0, similar to that of the static solutions obtained
in [3], compared to Reissner Nordström solutions in GR.
We calculate the energy and the angular momentum of the
black hole using the conserved quantities in the framework
of teleparallel gravity.

This work is arranged as follow: In Sect. 2, a brief account
of f (T ) gravitational theories are provided in addition to
the previous solutions derived in [3] within the framework
of f (T ) gravitational theory. In Sect. 3, charged rotating N
dimensional exact solutions are derived. These solutions have
monopoles and quadrupole moments which are not indepen-
dent, in addition of being asymptotically AdS. In Sect. 4,
we calculate the energy and angular momentum of these
solutions. In the final section we comment on some phys-
ical aspects of these black hole solutions.

2 Maxwell- f (T ) gravity

2.1 Teleparallel geometry

A Vielbein space can be defined as a pair (M , ea), where
M is an N -dimensional differentiable manifold and the set
{ea} contains N independent vector fields defined globally
on M , this set at point p is the basis of its tangent space
TpM . Because of the independence of ea , the determinant
e ≡ det(eaμ) is nonzero. The vielbein vector fields sat-
isfy eaμeaν = δ

μ
ν and eaμebμ = δba , where δ is the Kro-

necker tensor. Thus, we can construct an associated (pseudo-
Riemannian) metric and its inverse, respectively, for any
set of basis gμν ≡ ηabeaμebν, gμν = ηabeaμebν , where
ηi j = (−,+,+,+, · · · ) is the metric of N -dimensions
Minkowski spacetime. Also, it can be shown that e = √−g,
where g ≡ det(g). Thus, we go further to define the sym-
metric Levi-Civita connection. In this sense, the vielbein
space is a pseudo-Riemannian as well. However, if we decide
not to use curvature as the basic description of gravity, we
may begin with the vielbein vector fields as the fundamen-
tal field variables. Then, we define the nonsymmetric lin-
ear (Weitzenböck) connection [40] Wα

μν ≡ eaα∂νeaμ =

−eaμ∂νeaα . This connection is characterized by the prop-
erty that ∇νeaμ ≡ ∂νeaμ +Wμ

λνeaλ ≡ 0, where the covari-
ant derivative ∇ν is associated to the Weitzenböck connec-
tion. This nonsymmetric connection uniquely determines the
teleparallel geometry, since the vielbein vector fields are par-
allel with respect to it. Indeed, the Weitzenböck connec-
tion is curvature free, but it has a non vanishing torsion
T α

μν = Wα
νμ − Wα

μν = eiα[∂μei ν − ∂νeiμ]. Now we
can go directly to construct the teleparallel torsion scalar

T = T α
μνSα

μν, (1)

where the superpotential tensor is defined as Sα
μν :=

1
2

(
Kμν

α + δ
μ
α T βν

β − δν
αT

βμ
β

)
and the Contortion tensor

is Kαμν = 1
2

(
Tναμ + Tαμν − Tμαν

)
.

2.2 The theory

We take the action of the f (T )-Maxwell theory in N -
dimensional for asymptotically (Anti)-de-Sitter spacetimes
as

Sg + Sem = 1

2κ

∫
dN x |e| ( f (T ) − 2
)

− 1

2κ

∫
dN x |e|F ∧� F, (2)

where 
 = − (N−1)(N−2)

2l2
is the N -dimensional cosmolog-

ical constant in N dimensions, l is the length scale of AdS
spacetime, κ is a dimensional constant which can be related to
the Newton constant GN by κ = 2(N − 3)�N−2GN , where

�N−2 = 2π(N−1)/2

�([N−1]/2)
is the volume of (N − 2)-dimensional

unit sphere and � function being the argument that depends
on the dimension of the spacetime.1,2 Also, in the Maxwell
action, F = dA, withA = Aμdxμ being the gauge potential
1-form [3,37].

Varying the action (2) with respect to the vielbein and the
vector potentialAμ, one gets, respectively, the field equations
[29]

Iν
μ = Sμ

ρν∂ρT fT T

+
[
e−1eaμ∂ρ

(
eea

αSα
ρν
)− T α

λμSα
νλ
]
fT

−δν
μ

4

(
f + (N − 1)(N − 2)

l2

)
+ κ

2

em
T

ν
μ,

∂ν

(√−gFμν
) = 0, (3)

where f := f (T ), fT := ∂ f (T )
∂T , fT T := ∂2 f (T )

∂T 2 and
em
T ν

μ

is the energy momentum tensor of the electromagnetic field
which is given by [37]

1 For N = 4, one can recover 2(N − 3)�N−2 = 8πG4.
2 The spacetime indices are given by μ, ν · · · and the SO(3,1) indices
are given by a, b, · · · in which all of them run from 0 to 3. The
Latin indices i, j, · · · are denote to the SO(3,1) spatial components.

123



Eur. Phys. J. C (2019) 79 :668 Page 3 of 8 668

em
T

ν
μ = FμαF

να − 1

4
δμ

νFαβF
αβ.

2.3 AdS charged black holes with flat horizons

In a previous work [3] we have introduced the following
diagonal vielbein which describes a static configuration in
N -dimensions with the coordinates (t , r , φ1, φ2, . . ., φn , z1,
z2, . . ., zk , k = 1, 2, . . ., N − n − 2)
(
eiμ

)
=
(√

A(r),
1√
B(r)

, r, r, r · · ·
)

, (4)

where 0 ≤ r < ∞, −∞ < t < ∞, 0 ≤ φn < 2π

and −∞ < zk < ∞. The functions A(r) and B(r) are
two unknown functions of the radial coordinate r . Thus, the
spacetime which can be generated by (4) is

ds2 = −A(r)dt2 + 1

B(r)
dr2

+r2

(
n∑

i=1

dφ2
i +

N−n−2∑

k=1

dz2
k

l2

)

. (5)

Substituting from Eq. (4) into Eq. (1), we evaluate the torsion
scalar as3

T = 2(N − 2)
A′B
r A

+ (N − 2)(N − 3)
B

r2 . (6)

Using the N-dimensional spacetime of Eq. (4) with Eq. (6)
and the vector potentialA = �(r)dt , we obtain the following
Eq. (3):

I t t = 2(N − 2)B fT T T ′

r

+ (N − 2) fT [2(N − 3)AB + r BA′ + r AB ′]
r2A

− f + 2
 + 2�′2(r)B
A

= 0,

I r r = 2T fT + 2
 − f

+ 2�′2(r)B
A

= 0,

Iφ1
φ1 = Iφ2

φ2 = · · · Iφn
φn = Iz1

z1

= Iz2
z2 · · · = Izk zk = fT T [r2T + (N − 2)(N − 3)B]T ′

(N − 2)r

+ fT
2r2A2

{
2r2ABA′′

− r2BA′2 + 4(N − 3)2A2B

+ 2(2N − 5)r ABA′ + r2AA′B ′ + 2(N − 3)r A2B ′
}

− f + 2
 − 2�′2(r)B
A

= 0, (7)

3 For abbreviation we will write A(r) ≡ A, B(r) ≡ B, A′ ≡
d A
dr ,A′′ ≡ d2 A

dr2 ,B ′′ ≡ d2B
dr2 and B ′ ≡ dB

dr .

where �′ = d�
dr . The general N-dimensional solutions with

flat horizons of the Maxwell- f (T ) theory, where f (T ) =
T + αT 2 of the above differential equations takes the form
[3]

A(r) = r2
e f f − m

rN−3 + 3(N − 3)q2

(N − 2)r2(N−3)

+ 2
√

6 |α|(N − 3)3q3

(2N − 5)(N − 2)r3N−8 ,

B(r) = A(r)

[
1 + (N − 3)q

√
6 |α|

r N−2

]−2

,

�(r) = q

r N−3 + (N − 3)2q2√6 |α|
(2N − 5)r2N−5

, (8)

where 
e f f = 1
6(N−1)(N−2)|α| , m is the mass parameter, q is

the charge parameter and �(r) is the electric potential which
defines the vector potential A = �(r)dt . As it is clear from
Eq. (8), that the potential �(r) depends on a monopole and
quadrupole moments. By setting q = 0 both momenta vanish
and we get a non-charged solution. It is worth mentioning that
the solution (8) has been derived for the quadratic polynomial
f (T ) theory in the presence of the constraint 
 = 1

24α
.

Consequently, one expects the model parameter to be α < 0,
since the cosmological constant is negative. The reason of the
constraint 
 = 1

24α
is as follows: If one chooses an ansatz for

the charged solution in which the functions A(r) and B(r) are
equal then one gets constant potential, i.e., a trivial potential
for a charged solution! In order to avoid this trivial potential,
we choose A(r) = C(r)B(r). In this case the potential will
not be trivial, but A(r) and B(r) are neither unique nor in
closed form. For example, for the 5-dimensional uncharged
solution, �(r) = 0, we have C(r) = const. and

A(r) = [1 ± √
1 − 24α
]r2

72α
+ c1

r2

which shows that A(r) is not unique. An extra complication is
obtained when the potential is not constant, in this case, A(r)
and B(r) can not be expressed in a closed form. Choosing

 = 1

24α
leave the solution unique and in a closed form.

Before closing this section, we note that the black hole
solution at hand cannot be considered as a special case of
the cubic polynomial f (T ) gravity which has been studied
in [41]. In the later, the solution has been obtained under
a specific constraint whereas the coefficient of cubic term
cannot be made to vanish.

3 AdS charged rotating black holes with flat horizons

One way to add an angular momentum for the above solution
in four dimensions4

4 It is well known, even in GR, that the addition of cosmological con-
stant might produce different types of rotating black holes among them
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ds2 = −A(r)dt2 + 1

B(r)
dr2 + r2

(
dφ2 + dz2

l2

)
. (9)

We follow the procedure developed in [1,2], applying the
transformations

φ̄ = −� φ + ω

l2
t, t̄ = � t − ω φ. (10)

We note that these transformations are allowed locally but
not globally on a manifold as will be clarified below. Thus
the spacetime (9) reads

ds2 = −A(r)
[
�dt̄ − ωdφ̄

]2 + dr2

B(r)

+r2

l4

[
ωdt̄ − �l2dφ̄

]2 + r2

l2
dz2, (11)

where

� :=
√

1 + ω2

l2
.

According to Stachel [39] if the first Betti number of the
manifold is non-vanishing, which is the case for the equiv-
alent Riemannian manifold of these solutions, there are no
global diffeomorphisms that can map one of these metrics
to the other, leaving the new manifold with an additional
parameter “ω”. Since in N dimensions we have more than
one rotation parameter, the construction of the rotating tetrad
or metric is not as obvious as the one rotation parameter case
as was shown in [2]. It requires the addition of other terms
which are not obtained by the above coordinate transforma-
tions. In the higher dimensional case the proposed form of
the tetrad for more than one rotation parameter is given by

(
eiμ

)
=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

�
√
A(r) 0 −ω1

√
A(r) −ω2

√
A(r) · · · −ωn

√
A(r) 0 0 · · · 0

0 1√
B(r)

0 0 · · · 0 0 0 · · · 0
ω1r
l2

0 −�r 0 · · · 0 0 0 · · · 0
ω2r
l2

0 0 −�r · · · 0 0 0 · · · 0
...

...
...

...
...

...
... · · · ...

ωnr
l2

0 0 0 · · · −�r 0 0 · · · 0
0 0 0 0 · · · 0 r 0 · · · 0
0 0 0 0 · · · 0 0 r · · · 0
0 0 0 0 · · · 0 0 0 · · · r

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

, (12)

where n = 	(N −1)/2
 is the number of rotation parameters
with 	y
 is the integer part of y, ω j are the rotation parameters
and � is defined as

� :=
√√
√√1 +

n∑

j=1

ω j
2

l2
.

Footnote 4 continued
is the class under consideration here, please see [13] for a discussion
on these types of rotating black holes.

Also, the functions A(r) and B(r) are given by (8). In addi-
tion, the gauge potential takes the form

�̄(r) = −�(r)
[
ωi dφ̄i − � dt̄

]
. (13)

We note that Eqs. (8) and (13) are also solutions of the station-
ary configuration (12). Since transformation (10) mixes com-
pact and noncompact coordinates, it leaves the local prop-
erties of spacetime the same. However, it does change the
spacetime properties globally, c.f. [1]. On other words, the
vielbein (4) and (12) can be locally mapped into each other
but not globally [1,2]. One can show that the spacetime which
is generated by the vielbein (12) takes the form

ds2 = −A(r)

[

�dt̄ −
n∑

i=1

ωi dφ̄

]2

+ dr2

B(r)
+ r2

l4

n∑

i=1

[
ωi d t̄ − �l2dφ̄i

]2 + r2

l2
d�2

−r2

l2

n∑

i< j

(
ωi dφ̄ j − ω j dφ̄i

)2
, (14)

where 0 ≤ r < ∞, −∞ < t < ∞, 0 ≤ φi < 2π ,
i = 1, 2, . . . , n and −∞ < zk < ∞, d�2 = dzkdzk

is the Euclidean metric on (N − n − 2)-dimensions and
k = 1, 2, . . . , N −3. We note that the static configuration (9)
can be recovered as a special case when the rotation param-
eters ω j are chosen to be vanished. These charged rotating
solutions do not correspond to any known solutions in GR
or TEGR since by sending α → 0 we do not get a well
defined tetrad or metric. Notice that upon setting the mass

parameter m = 0 and the charge q = 0, the line-element
(14) reduces to the N -dimensional AdS metric in an unusual
coordinate system. One can easily check that the result-
ing boundary metric is indeed Minkowski through checking
the vanishing of its torsion components. Furthermore, this
shows that the whole metric in this limit (i.e., line-element
with m = 0 and the charge q = 0) is the AdS metric. In
the next section, we are going to study the main feature of
solution (12).
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4 Conserved charges

4.1 Four-momentum

Before we calculate the energy or total mass of these
black holes, let us follow [4] deriving the conserved four-
momentum for f (T ) gravity in few lines. Variation of the
action (2) with respect to the vielbein gives the field equa-
tions in the form

Sμ
ρν∂ρT fT T

+
[
e−1eaμ∂ρ

(
eea

αSα
ρν
)− T α

λμSα
νλ
]
fT

−δν
μ

4

(
f + (N − 1)(N − 2)

l2

)
= −κ

2
Tν

μ, (15)

where Tν
μ is the energy-momentum of the matter. Equation

(15) can be rewritten as

∂ρ

(
eSaνρ fT

) = κ

2
|e| (taν + T aν

)
, (16)

where

taν = 2

κ

[
fT S

bcνTbc
a − δν

μ

4

(
f + (N − 1)(N − 2)

l2

)]
.

(17)

Taking the derivative of Eq. (16) with respect to xν , we get

∂ν∂ρ

(
eSaνρ fT

) = 0 which leads to

∂ν

[κ

2
|e| (taν + T aν

)] = 0. (18)

Equations (18) give the conserved N -momentum of f (T )

gravitational theory in the form

Pa =
∫

V
dN−1x |e|t0a . (19)

Equation (19) which defines the N -momentum of f (T ) grav-
ity was derived before in [4]. This has been used, mostly,
to calculate energy for asymptotically flat spacetime back-
ground. However, the solutions (12) are asymptotically AdS.
Here we adopt the point of view of the authors in [42–45] to
calculate conserved quantities of a gravitational solution in
reference to a specific background spacetime. These back-
grounds are naturally chosen as Minkowski spacetime for
asymptotically flat solutions and AdS or dS for asymptoti-
cally AdS or dS solutions. Furthermore, infinities due to the
asymptotic regions are canceled out in this subtraction pre-
scription leaving the physical quantities finite. For example,
the total energy of an AdS black hole, measured by a station-
ary observer at very large radial distance, is considered to
be the difference in energy between the AdS black hole and
the AdS space itself. Therefore, in calculating the conserved
quantities, it is natural to subtract the contribution due to pure

AdS spacetime from that of the solution. Therefore Eqs. (19)
and (28) take the form

Pa =
∫

V
dN−1x

[
|e|t0a

]

reg
, (20)

where the subscript “reg” stands for the regularized value of
the physical quantity.

Let us now calculate the energy related to the rotating
charged black holes given by Eq. (12). Using Eq. (19), it is
possible to derive the components that are necessary for the
calculations of energy in the form5:

S(0)(0)1 = (N − 2)B

2r
. (21)

P0 = E = (N − 2)[m − 
e f f r (N−1)]�
3(N − 3)GN

+
(

1

r

)
+ ...,

(22)

where n ≥ 1. expression of Eq. (19) takes the form of a
surface integral

Pa
reg := 2

κ

∫

∂V
dN−2x

[
eSa0μ nμ fT

]

− 2

κ

∫

∂V
dN−2x

[
eSa0μ nμ fT

]

AdS
, (23)

where nμ is the normal vector to the surface ∂V and AdS
means evaluating the second expression of Eq. (19) for pure
Anti-de-Sitter space. Using (23) in solution (12), we get

Ereg = 2(N − 2)� M

3 (N − 3)
, (24)

where the mass parameter is taken to be m = 2 GN M . As
expected, the black hole energy is fully characterized by its
mass.

4.2 Angular momentum

Although there is a hamiltonian formulation in teleparal-
lel equivalent of general relativity (i.e., f (T ) = T ) which
produces some known expressions for the conserved four-
momenta and angular momentum [5], there is no known
expression for angular momentum in f (T ) gravity. But since
the angular momentum is independent of the charge q, by
sending q → 0 we obtain a solution with constant torsion
scale T , since the scalar torsion is given by,

T = −1

6α
+ 2q

√
6

3
√

α r3
. (25)

A solution in f (T ) gravity with constant torsion scalars,
T = Tc, is equivalent to a solution in TEGR with constant
torsion, where T ′ = f (Tc). Therefore, one can use Maluf’s

5 The square parentheses in the quantities S(0)(0)1 refer to the tangent
components, i.e., S(0)(0)1 = e0

μe0
ν Sμν1.
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expression in [5] to calculate the angular momentum of our
solution in this limit. Following [5], the angular momentum
tensor can be written in terms of the superpotential Sabc in
the following form

Maμc ≡ |e|ebμ
[
Sabc − Scab

]
= |e| [Saμc − Scaμ

]

= −1

2
∂ν{|e| [eaνecμ − eaμecν] }. (26)

From Eq. (26) one can easily show that

∂μM
aμc = 0. (27)

Using Eqs. (26) and (27) the conserved angular momentum
is given by

Lab =
∫

V
dN−1Ma0b

= − 1

κ

∫

V
dN−1x∂ν{|e| [eaνeb0 − ea0ebν] }

= − 1

κ

∫

∂V
dN−2x nρ |e| [eaρeb0 − ea0ebρ], (28)

where nρ is the outward unit normal vector.
Now we are going to calculate the angular momentum

of solution (12) in the limit q → 0. For this aim we are
going to list the necessary components needed for these cal-
culations. The non-vanishing components of the torsion ten-
sor, T abc = eaμebνecρTμνρ , and the superpotential tensor,
Sabc = eaμebνecρSμνρ , are

T(0)(1)(0) = A′√B

2A
, (29)

T(N−i)(N− j)(1) =

([
l2�2 −∑n

a=1 ωa
2
]
δi j + ωiω j

)√
B

l2�2r
, (30)

T(
N−n−∑(N−n−2)

k=1 k
)(

N−n−∑(N−n−2)
k=1 k

)
(1)

=
√
B

r
, (31)

S(0)(0)1 = (N − 2)B

2r
, (32)

S(N−i)(1)(N− j)

=
√
B

([
l2�2 −∑n

a=1 ωa
2
]
δi j + ωiω j

)[
2(N − 3)A + r A′

]

4Al2�2r
,

(33)
S(

N−n−∑(N−n−2)
k=1 k

)
(1)
(
N−n−∑(N−n−2)

k=1 k
)

=
√
B

[
2(N − 3)A + r A′

]

4Ar
. (34)

Similar to the energy calculations, we are going to use the
background subtraction prescription to calculate the angu-
lar momentum of the black hole relative to the AdS space
background.

Li j = − 1

κ

∫

V
dN−1xeiμe

j
ν |e|[(Sμ0ν − Sν0μ)]reg. (35)

Using the above equation one gets

Ji |reg = ωi M

2 (N − 3)
, (36)

where

Ji = εi jk L
jk . (37)

As clear from the above equations that the angular momen-
tum vanishes when the rotation parameters ωi vanish. In con-
clusion, under the constraint q → 0, Eqs. (24) and (36) show
that the black holes are characterized by their masses and
angular momenta.

5 Conclusions

In this work, we present a new class of charged rotating solu-
tions in f (T ) theories in N dimensions. These solutions are
obtained for f (T ) = T + αT 2, where the parameter α < 0.
It is worth to mention that these solutions cannot be consid-
ered as special cases of the solutions of the cubic polynomial
f (T ) gravity which have been recently studied in [41]. This is
because the later are obtained whereas the cubic contribution
is parameterized by an extra parameter which cannot be made
to vanish. One of the attractive features of the solutions at
hand is that their electric potential has related monopole and
quadrupole moments. The relation between these moments
is a result of demanding an asymptotically AdS solution. It is
intriguing to note that all these black holes have a singularity
at r = 0, which is milder than that of their correspond-
ing solutions in TEGR or GR. The asymptotic behavior of
the Kretschmann invariant, the Ricci tensor squared, and the
Ricci scalar have the same form of the charged ones pre-
sented in [3], i.e. K = RμνRμν ∼ r−2(N−2), R ∼ r−(N−2).
This is in contrast with their corresponding known solutions
in Einstein-Maxwell theory in both GR and TEGR. Also it is
important to mention that, in spite that the charged rotating
black hole has different components for gtt and grr , their
Killing and event horizons coincide.

To understand these solutions more, we calculate their
total energy and angular momentum. For this aim we have
used the mass/energy expression in the framework of f (T )

obtained by [4]. For the angular momentum we have used
the expression in [5]. We have used the form of the energy-
momentum tensor to calculate the total energy of the rotating
charged black holes and have shown that the resulting form
depends on the mass of the black hole which is consistent
with the derived form in [3].

For calculating the angular momentum of the solutions
one notices that, although there is a hamiltonian formula-
tion for TEGR, which produces a known expression for the
angular momentum, there is no known expression for angular
momentum in f (T ) gravity. We argue that since the angular
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momentum in our solution is independent of the charge q,
by sending q → 0 we obtain a solution with constant tor-
sion scaler T , therefore, one can use the angular momentum
expression for TEGR following [5]. As a results we have used
the expressions obtained in [4] and [5] to calculate the mass
and angular momentum of these solutions together with the
subtraction technique used for asymptotically de-Sitter and
Anti-de-Sitter solutions. One of the interesting features that
we would like to check in future works is that if these milder
curvature singularities are weak enough to make these sin-
gularities “Tipler weak” according to Tipler’s criteria [46].
If it is weak enough, this might leads to possible exten-
sions of the manifold as was shown in the same theory (i.e.,
f (T ) = T + αT 2) for some cosmological solutions in [47].
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