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Abstract We analyze the stability of scalarized charged
black holes in the Einstein–Maxwell–Scalar (EMS) theory
with quadratic coupling. These black holes are labelled by
the number of n = 0, 1, 2, . . ., where n = 0 is called the fun-
damental black hole and n = 1, 2, . . . denote the n-excited
black holes. We show that the n = 0 black hole is sta-
ble against full perturbations, whereas the n = 1, 2 excited
black holes are unstable against the s(l = 0)-mode scalar
perturbation. This is consistent with the EMS theory with
exponential coupling, but it contrasts to the n = 0 scalarized
black hole in the Einstein–Gauss–Bonnet–Scalar theory with
quadratic coupling. This implies that the endpoint of unsta-
ble Reissner-Nordström black holes with α > 8.019 is the
n = 0 black hole with the same q. Furthermore, we study
the scalarized charged black holes in the EMS theory with
scalar mass m2

φ = α/β.

1 Introduction

A scalarization of the Reissner–Nordström (RN) black holes
was obtained in the Einstein–Maxwell–Scalar (EMS) the-
ory [1]. The EMS theory is a simple second-order theory
providing three kinds of propagating modes of scalar, vec-
tor, and tensor around the black hole background. It is worth
reminding that the appearance of the scalarized charged black
holes is closely connected to the instability of the RN black
hole [2]. We note that these black holes are denoted as the
n = 0, 1, 2, . . . black holes with α coupling constant.

All black hole solutions could be linearly tested to con-
firm that some solutions are selected as black holes in the
curved spacetimes. Concerning the stability of scalarized
black holes, it was firstly shown that the n = 0 black hole
is stable against l = 0(s-mode) scalar perturbation, while
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n = 1, 2, . . . black holes are unstable against the s-mode
scalar perturbation in the Einstein-Born-Infeld-Scalar the-
ory [3]. As was mention in [4], a difference between exponen-
tial and quadratic couplings in the Einstein-Gauss-Bonnet-
Scalar (EGBS) theory is that the n = 0 black hole is sta-
ble against radial perturbations for the exponential coupling,
while it is unstable for the quadratic coupling. This implies
that the n = 0 black hole could be regarded as the endpoint
of the evolution of unstable Schwarzschild black hole for
the exponential coupling, whereas this is not the case for the
quadratic coupling. Recently, it is argued that the quadratic
term controls the onset of the instability giving the n = 0
black hole, while the higher-order terms including the expo-
nential coupling control the stability of the n = 0 black
hole in the EGBS theory [5]. Very recently, the spontaneous
scalarization of black holes and its stability in the EGBS
theory were studied by including a massive scalar term for
different couplings [6,7].

For the stability of scalarized black holes in the EMS the-
ory with exponential coupling [8], it is known that the n = 0
black hole is stable against full perturbations, while n = 1, 2
black holes are unstable against the s-mode scalar perturba-
tion. In this case, the endpoint of unstable RN black holes
may be the stable n = 0 black hole with the same q in the
EMS theory with exponential coupling. Hence, it is curious
to know the stability issue of the n = 0, 1, 2 black holes in
the EMS theory with quadratic coupling. In this respect, it is
shown that the n = 0 black hole may be stable in the EMS
theory with quadratic coupling by mentioning the positive
potentials [9].

In this work, we will study the n = 0, 1, 2 scalarized
charged black holes in the EMS theory with quadratic cou-
pling by observing the potentials and computing quasinor-
mal mode spectrum. Also, we wish to investigate the scalar-
ized charged black holes in the EMS theory with scalar mass
m2

φ = α/β. The full tensor-vector-scalar perturbations will
be adopted for the massless case. Observing the potentials

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7176-7&domain=pdf
mailto:ysmyung@inje.ac.kr
mailto:dczou@yzu.edu.cn


641 Page 2 of 11 Eur. Phys. J. C (2019) 79 :641

around the n = 0, 1, 2 black holes and together with comput-
ing quasinormal frequencies of the five physical modes, we
show that the n = 0 black hole is still stable against full per-
turbations, whilen = 1, 2 black holes are unstable against the
s-mode scalar perturbation in the EMS theory with quadratic
coupling. This implies that the endpoint of unstable RN black
holes with α > 8.019 and q = Q/M = 0.7 may be the
n = 0(α ≥ 8.019) scalarized charged black hole with the
same q.

2 n = 0, 1, 2, . . . black holes

We consider the action of EMS theory with quadratic cou-
pling [1]

SEMS = 1

16π

∫
d4x

√−g
[
R−2∂μφ∂μφ−Vφ−

(
1 + αφ2

)
F2

]
,

(1)

whereα is a Maxwell-scalar coupling constant and we choose
Vφ = 0. If one considers a quadratic coupling of αφ2, one
has to choose φ̄ = const to obtain the RN black hole with a
different charge Q̃2 = φ̄2Q2. In order to make the analysis
clear, here, we choose an equivalent coupling of 1 +αφ2 [9]
together with φ̄ = 0 to give the same RN black hole.

From the action (1), the equations of motion are obtained
as

Gμν = 2∂μφ∂νφ − (∂φ)2gμν + 2Tμν (2)

with Gμν = Rμν − (R/2)gμν and Tμν = (1 + αφ2)

(FμρFν
ρ − F2gμν/4), and the Maxwell equation takes the

form

∇μFμν − 2αφ∇μ(φ)Fμν = 0. (3)

The scalar equation is given by

�φ − αF2

2
φ = 0. (4)

We introduce the scalar perturbed equation [(�̄ +
αQ2/r4)δϕ = 0] on the RN black hole background

ds2
RN = −Ñ (r)e−δ̃(r)dt2 + dr2

Ñ (r)
+ r2

(
dθ2 + sin2 θdϕ2

)

(5)

with

Ñ (r) = 1 − 2M

r
+ Q2

r2 , δ̃(r) = 0, φ̃(r) = 0, Ã0 = Q

r
.

(6)

We note that this RN background is surely independent of
α. Considering the separation of variables around the spher-
ically symmetric RN background

δϕ(t, r, θ, ϕ) = u(r)

r
e−iωt Ylm(θ, ϕ), (7)

and introducing a tortoise coordinate r∗ defined by dr∗ =
dr/Ñ (r), the perturbed scalar equation is given by

d2u

dr2∗
+

[
ω2 − Vml(r)

]
u(r) = 0, (8)

where the massless potential takes the form

Vml(r) = Ñ (r)

[
2M

r3 + l(l + 1)

r2 − 2Q2

r4 − α
Q2

r4

]
. (9)

Actually, (8) is suitable for analyzing the stability of RN
black hole.

In order to obtain bifurcation points, one needs to solve
the static perturbed equation for ϕ(r) = u(r)/r as

1

r2

d

dr

[
r2 Ñ (r)

dϕ(r)

dr

]
−

[
l(l + 1)

r2 − αQ2

r4

]
ϕ(r) = 0.

(10)

Here, Eq. (10) describes an eigenvalue problem: for given
l = 0, requiring an asymptotically vanishing, smooth scalar
selects a discrete set of the bifurcation points for scalarized
solution as αn(q = 0.7) = {8.019, 40.84, 99.89, . . .}. In
this case, the bifurcation points of the RN solution are the
same as those of exponential coupling eαφ2

[2,8] because
the static scalar perturbed equation takes the same form as
in (10). In Fig. 1, these solutions are classified by the node
number n for ϕ(z) with z = r/(2M). Furthermore, n will
denote the order number for classifying different branches
of scalarized black holes.

To obtain scalarized charged black holes, we have to intro-
duce the spherically symmetric metric ansatz as

ds2
SBH = ḡμνdx

μdxν = −N (r)e−2δ(r)dt2 + dr2

N (r)

+r2(dθ2 + sin2 θdϕ2) (11)

with a metric function of N (r) = 1 − 2m(r)/r , in addition
to electric potential Ā0 = v(r) and scalar field φ̄(r). We
note that scalarized charged black holes could be obtained
by restricting an allowable range for α. The threshold of
instability for the RN black hole is closely related to the
appearance of the n = 0(α ≥ 8.019) black hole. Also, we
emphasize that the static scalar perturbation around the RN
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Fig. 1 Radial profiles of ϕ(z) as function of z = r/(2M) for the first
three perturbed scalar solutions on the RN black hole with q = 0.7.
Here n represents the node number of ϕ(z) and it will denote the order
number for labelling different scalarized black holes

black hole determines the appearance of n = 1, 2 . . . black
holes.

Plugging (11) into (2)–(4), one has the four equations

−2m′(r) + e2δ(r)
[
1 + α(φ̄(r))2

]
r2(v′(r))2

+[r2 − 2rm(r)](φ̄′(r))2 = 0, (12)

δ′(r) + r(φ̄′(r))2 = 0, (13)

v′(r)
[

2 + rδ′(r) + 2rαφ̄(r)φ̄′(r)
1 + αφ̄(r)2

]
+ rv′′(r) = 0, (14)

e2δ(r)r2αφ̄(r)(v′(r))2 + r [r − 2m(r)]φ̄′′(r)
− [

m(r)(2 − 2rδ′(r))
+r(−2 + rδ′(r) + 2m′(r))

]
φ̄′(r) = 0, (15)

where the prime (′) denotes differentiation with respect to its
argument.

Considering the existence of a horizon located at r = r+,
one suggests an approximate solution to equations in the near
horizon

m(r) = r+
2

+ m1(r − r+) + · · · , (16)

δ(r) = δ0 + δ1(r − r+) + · · · , (17)

φ̄(r) = φ0 + φ1(r − r+) + · · · , (18)

v(r) = v1(r − r+) + . . . , (19)

where the four coefficients are given by

m1 = Q2

2r2+
(
1 + αφ2

0

) ,

φ1 = αφ0Q2

r+
((

1 + αφ2
0

)
Q2 − (

1 + αφ2
0

)2
r2+

) ,

δ1 = −r+φ2
1 , v1 = − e−δ0 Q

r2+
(
1 + αφ2

0

) . (20)

Fig. 2 A scalarized charged black hole solution with α = 8.083
located in the n = 0(α ≥ 8.019) fundamental branch in the EMS
theory. This is plotted as a function of ln r on and outside the horizon
at ln r= ln r+ = −0.154

This approximate solution involves two parameters of φ0 =
φ(r+) and δ0 = δ(r+), which will be found when matching
(16)–(19) with the asymptotic solutions in the far region

m(r) = M − Q2 + Q2
s

2r
+ · · · , φ̄(r) = φ∞ + Qs

r
+ · · · ,

δ(r) = Q2
s

2r2 + · · · , v(r) =  + Q

r
+ · · · , (21)

where Qs and  denote the scalar charge and the electrostatic
potential, in addition to the ADM mass M and the electric
charge Q. For simplicity, we choose φ∞ = 0.

Now, let us display a numerical solution with the coupling
constant α = 8.083 locating on the n = 0(α ≥ 8.019)

fundamental branch in Fig. 2 by solving (12)–(15) together
with q = 0.7 numerically. It is worth noting that the n =
1(α ≥ 40.84), 2(α ≥ 99.89) black holes take the similar
forms as the n = 0 case. Actually, we need to obtain hundreds
of numerical solution depending α to compute quasinormal
modes for full perturbations to each scalarized black hole.

On the other hand, we solve Eq. (12) after replacing eα(φ̄)2

with 1 + α(φ̄)2 and Eq. (15) after inserting eα(φ̄)2
at the first

term to obtain the scalarized RN black holes in the EMS
theory with exponential coupling. From Fig. 3, we find that
the fundamental branch (n = 0) of exponential coupling is
nearly the same as that of quadratic coupling. Here, both the
n = 0 branches are defined from 0 to M

α
= 0.5/8.019 ≈ 0.06

where the RN black holes are unstable. For M/α > 0.06,
the scalar hair (scalar charge Qs) disappears and the branch
merges with the stable RN branch.
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Fig. 3 Two similar graphs for scalar charge Qs/α vs M/α for the n = 0 black hole. The M/α-axis represents the unstable RN black hole with
q = 0.7 for 0 < M/α < 0.06 and the stable RN black hole for M/α > 0.06. (Left) exponential coupling and (Right) quadratic coupling

3 EMS theory with scalar mass term

Recently, it was shown that the introduction of a scalar
mass term has a significant influence on the bifurcation
points where the scalarized black holes branch out of the
Schwarzschild black hole in the EGBS theory [6,7]. In this
section, we wish to explore how the introduction of a spe-
cific mass term of Vφ = 2m2

φφ2 in the EMS theory affects
the bifurcation points where the scalarized charged black
holes branch out of the RN black hole with q = 0.418. In
general, the presence of a massive scalar term affects signifi-
cantly the stability of RN black hole and in turn the existence
of scalarized charged black holes. A choice of scalar mass
m2

φ = α/β is quite interesting because it does not belong to
an independent mass term, but it is given by the combination
of coupling parameter α and mass parameter β. This choice
would provide a compact result on the stability.

As a first step, we have to analysis the stability of RN
black hole in the EMS theory with mass term based on the
perturbed scalar equation

(
�̄ − α

β
+ αQ2

r4

)
δϕ = 0 (22)

because two other linearized equations remain Einstein–
Maxwell system for φ̄ = 0 case. In this case, a radial part of
the scalar perturbed equation takes the form

d2u

dr2∗
+

[
ω2 − V (r)

]
u(r) = 0. (23)

Here the scalar potential V (r) is given by

V (r) = Ñ (r)

[
2M

r3 + l(l + 1)

r2 + α

β
− 2Q2

r4 − α
Q2

r4

]
.

(24)

We focus on the l = 0 mode only since the s(l = 0)-mode is
allowed for the scalar perturbation and it plays the important
role in testing the stability of the RN black hole. Also, we
emphasize that V (r) → α/β (positive) as r → ∞, contrast-
ing to the massless case of Vml(r) → 0 in the EMS theory.
This implies that we could not derive the sufficient condition
for instability of

∫ ∞
r+ drVml(r)/Ñ (r) < 0 in the EMS theory

because of
∫ ∞
r+ drV (r)/Ñ (r) → ∞.

On the other hand, observing the potential (24) carefully,
the positive definite potential without negative region (suffi-
cient condition for stability) could be implemented by impos-
ing the bound

V (r)

Ñ (r)
≥ 0 → β ≤ g(r, α) = αr4

Q2(α + 2) − 2Mr
, (25)

which guarantees a stable RN black hole. This is so because
Ñ (r) ≤ 0 for r ∈ [r+,∞]. In Fig. 4, we observe the behavior
of g(r, α) function. Minimum value of g(r, α) appears ‘83’
around r = r+ for α = 20, 000. Explicitly, the stability
bound can be obtained from g(r, α) and Fig. 4 as

β ≤ r4+
Q2 = 83.217, as α → ∞, (26)

where any scalarized charged black holes could not be
obtained for any α because the appearance of the scalarized
charged black holes is closely related to the instability of the
RN black hole [2].

Unfortunately, it is hard to obtain the instability bound
from the potential (24) directly. First of all, we wish to find
the negative region of potential outside the horizon because
it may show a signal of instability. Guided by the stability
condition (26), one expects that the negative region appears
for β > 83.217 and α < ∞. However, some potentials with
negative region near the horizon do not always imply the
instability. A truly criterion to determine whether a black
hole is stable or not against the massive scalar perturbation
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Fig. 4 A 3D graph of function g(r, α) for r ∈ [r+ = 1.995, 200] and
α ∈ [0.01, 20, 000]. Its minimum stays near r = r+ = 1.9943 as α

increases. The gray strip along the r -axis indicates negative region of
g(r, α) and so, it is excluded from consideration

Fig. 5 Five graphs of � in e�t vs α to determine the thresholds of
instability [αth(β)] which are the crossing points at α-axis. We read off
those as αth(β) = 174.22(200), 132.51(240), 102.29(300), 82.76(380),
and 68.41(500)

depends on whether the time-evolution of the perturbation is
decaying or not. The linearized equation (23) around a RN
black hole may allow for a growing (unstable) mode like
e�t (� > 0) of the scalar perturbation and thus, it indicates
the instability of the black hole. Therefore, we solve (23)
directly with appropriate boundary conditions. From Fig. 5,
we read off the thresholds αth(β) of instability depending on
β. Importantly, the instability bound is determined numeri-
cally by

α(β) ≥ αth(β) (27)

where αth(β) =174.22(200), 132.51(240), 102.29(300),
82.76(380), and 68.41(500) is exactly the same as the first
bifurcation point αn=0(β) which is determined when solv-
ing the static perturbed equation (23) with ω = 0. We find
that αn=0(β) decreases as β increases. It is conjectured that
αn=0(β) → ∞, as β → 83.217. In other words, we show
that there is no unstable RN black holes for the case of
β ≤ 83.217, where any scalarized charged black holes could
not be found for any α.

Importantly, it is noted that the RN black hole is allowed
for any value of α, whereas a scalarized charged black hole
solution may exist only for α(β) ≥ αth(β) for β > 83.217.
A close connection always exists between the instability of
a RN black hole and appearance of the n = 0 scalarized
charged black hole in the EMS theory with massive scalar
term.

Now, let us derive the n = 0 scalarized charged black
hole which corresponds to the q = 0.418 and α(β = 200) ≥
174.22 case. Adopting the metric ansatz (11), Eqs. (12)–(15)
get modified to include a scalar mass term. The approximate
solution in the near horizon is the same form as in (16)–
(19) with the same coefficients as δ1 and v1 in (20) and two
different coefficients

m1 = Q2

2r2+
(
1 + αφ2

0

) + αr2+φ2
0

2β
, (28)

φ1 = αφ0Q2 − α
(
1 + αφ2

0

)
φ0r4+/β

r+(1 + αφ2
0)

[
Q2 − r2+

(
1 + αφ2

0

) (
1 − αφ2

0r
2+/β

)] ,

(29)

which lead to (20) in the massless limit of β → ∞.
On the other hand, the asymptotic solution in the far region

takes the different form

m(r) = M − Q2

2r
− Q2

s e
−2

√
α
β
r

2r
1+2M

√
α
β

+ · · · ,

v(r) =  + Q

r
+ e

−2
√

α
β
r

r
2M

√
α
β

QQ2
s

2
√

αβr4
+ · · · ,

δ(r) = Q2
s

(
2
√

α/β
)2+2M

√
α/β

�
[

− 2

−2M
√

α/β, 2
√

α/βr
]

+ · · · ,

φ(r) = Qse−√
α/βr

r1+M
√

α/β
+ · · · , (30)

which lead to (21) except φ̄(r) in the massless limit of
β → ∞. This means that all asymptotic forms are changed
under the inclusion of scalar mass term. We wish to display a
numerical solution with α = 198.34 belonging to the n = 0
fundamental branch in Fig. 6 by solving (12)–(15) together
with mass term. Here we observe that N (r) and δ(r) are sim-
ilar to those in Fig. 2 of the EMS theory, while φ̄(r) shows
a different asymptotic behavior from the scalar in the EMS
theory.
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Fig. 6 Plots of a scalarized
charged black hole with
α = 198.34 for the n = 0
fundamental branch of
α(β = 200) ≥ 174.22 and
q = 0.418 in the EMS theory
with massive scalar. These are
plotted as a function of r on and
outside the horizon at
r+ = 1.9943

4 Full linearized theory

We consider the full perturbed fields around the background
quantities

gμν = ḡμν + hμν, Aμ = Āμ(r) + aμ, φ = φ̄(r) + δφ.

(31)

Plugging (31) into Eqs. (2)–(4) leads to complicated lin-
earized equations. Considering ten degrees of freedom for
hμν , four for aμ, and one for δφ initially, the EMS theory
describing a massless scalar and massless vector-tensor prop-
agations provides five (1 + 2 + 2 = 5) physically propagating
modes on the scalarized black hole background. The stabil-
ity analysis should be based on these physically propagating
fields as the solutions to the linearized equations. In a spher-
ically symmetric background (11), the perturbations can be
decomposed into spherical harmonics Ylm(θ, ϕ) with multi-
pole index l and azimuthal number m. This decomposition
splits the tensor-vector perturbations into “axial (A) part” and
“polar (P) part”.

We expand the metric perturbations in tensor spherical
harmonics under the Regge-Wheeler gauge, providing six
degrees of freedom. The axial part hA

μν(t, r, θ, ϕ) is com-
posed of two radial modes h0(r) and h1(r) and the polar
part hP

μν(t, r, θ, ϕ) takes four radial modes [H0(r), H1(r),

H2(r), K (r)] with time-dependence e−iωt . Similarly, we
decompose the vector perturbations into the axial vector
aA
μ(t, r, θ, ϕ) with single mode u4(r) and the polar vector

aP
μ(t, r, θ, ϕ) with two modes u1(r) and u2(r), giving three

degrees of freedom. Lastly, we have a polar scalar perturba-
tion as

δφ(t, r, θ, ϕ) =
∫

dωe−iωt
∑
l,m

δφ1(r)Ylm(θ, ϕ). (32)

We note that the linearized equations could be split into axial
and polar parts.

In general, the axial part is composed of two coupled equa-
tions for Maxwell F̂(u4) and Regge–Wheeler K̂ (h0, h1),[

d2

dr2∗
+ ω2

]
F̂(r) = VA

FF(r)F̂(r) + VA
FK(r)K̂ (r), (33)

[
d2

dr2∗
+ ω2

]
K̂ (r) = VA

KK(r)K̂ (r) + VA
KF(r)F̂(r), (34)

where the potentials are given by

VA
FF(r) = N

r2e2δ

[
e2δr2

(
4(1 + αφ̄2)

− α2φ̄2

1 + αφ̄2

)
(v′)2 + l(l + 1)

+ αr N φ̄′

1 + αφ̄2

(
r φ̄′

1 + αφ̄2
− 2φ̄

)]
,

VA
FK(r) = VA

KF(r) = −2
√

1 + αφ̄2e−δ(l − 1)(l + 2)Nv′

r
,

VA
KK(r) = N

r2e2δ

[
(l − 1)(l + 2) − r N ′ + N (2 + rδ)

]
.

(35)

Here the tortoise coordinate r∗ ∈ (−∞,∞) is defined by
the relation of dr∗/dr = eδ/N . At this stage, it is worth
noting that in the limits of φ̄ = δ = 0, VA

FF(r), VA
FK(r), and

VA
KK(r) recovers those for the RN black hole in the Einstein–

Maxwell theory [10]. Here, we will derive the quasinormal
modes propagating around n = 0, 1, 2 scalarized black holes
by solving the two coupled equations directly.

On the other hand, the polar part is composed of six cou-
pled equations for Zerilli (3), Maxwell (2), and scalar (1)
as

K ′(r) = −
(
l(l + 1) + 2N + 2r N ′ − 2

2r2 + e2δ(1 + αφ̄2)v′2

+ N φ̄′(r)2
)
H1(r)

+ H0(r)

r
+

(
N ′
2N

− 1

r
− δ′

)
K (r) − 2φ̄′

r
δφ1(r), (36)

H ′
1(r) = −4i(1 + αφ̄2)v′

ω
f12(r) − H0(r) + K (r)

N

+
(

δ′ − N ′
N

)
H1(r), (37)

H ′
0(r) =

(
1

r
+ 2δ′ − N ′

N

)[
H0(r) − K (r)

]

+4e2δ(1 + αφ̄2)v′
N

f02(r) + 2φ̄′
r

δφ1(r) (38)

+
(
e2δω2

N
− e2δ(1 + αφ̄2)v′2 − N φ̄′2
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− l(l + 1)

2r2 − N + r N ′ − 1

r2

)
H1(r),

f ′
02(r) = v′K (r) + 2αφ̄V ′

r(1 + αφ̄2)
δφ1(r)

+
(
l(l + 1)ie−2δN

r2ω
− iω

)
f12(r), (39)

f ′
12(r) = − iωe2δ

N2 f02(r) +
(

δ′ − 2αφ̄φ̄′
1 + αφ̄2

− N ′
N

)
f12(r), (40)

δφ′′
1 (r) =

[
e2δα(−1 + 3αφ̄2)v′2

N (1 + αφ̄2)

+ l(l + 1)

r2N
− e2δω2

N2

+ N ′ + N (−δ′ + 4r φ̄′2)

r N

]
δφ1(r)

+
(

δ′ − N ′
N

)
δφ′

1(r) + 2il(l + 1)αφ̄v′
rω

f12(r)

+4e2δ(1 + αφ̄2)rv′φ̄
N

f02(r)

−
r
(
e2δαφ̄v′2 + (N ′ − 2Nδ′)φ̄′)

N
H0(r)

+2re2δαφ̄v′2
N

K (r) (41)

with H2(r) = H0(r) and f01(r) = iω f12(r)+ f ′
02(r). Inter-

estingly, these coupled equations describe three physically
propagating modes.

5 Stability Analysis of n = 0, 1, 2 black holes

First of all, we wish to mention briefly why the n = 0 black
hole is stable (unstable) against radial perturbations for the
exponential (quadratic) coupling in the EGBS theory by pro-
viding two kinds of potentials. It is well known that the radial
perturbations for l = 0, 1-modes are equivalent to the full
perturbations for the same modes. However, this is not true
for higher modes of l = 2, 3, 4, . . . which are necessary to
introduce the full perturbations. The EGBS theory [11] is
given by

SEGBS = 1

16π

∫
d4x

√−g
[
R−2∂μφ∂μφ +λ2 f (φ)R2

GB

]
,

(42)

where λ is the Gauss-Bonnet coupling constant and f (φ) is
the coupling function defined as

exponential : f (φ) = 1

12
(1 − e−6φ2

);

quadratic : f (φ) = 1

2
φ2. (43)

When solving two linearized scalar equations with static
ansatz, one obtains a discrete spectrum of parameter λ

as M/λ = {0.587, 0.226, 0.140 . . .}, which describes the
n = 0, 1, 2, · · · scalarized black holes [12]. From Fig. 7,
we observe that the fundamental branch of n = 0 black
hole is a finite region of 0 < M/λ < 0.587 in the expo-
nential coupling, while it is just a band with bandwidth
of 0.587 < M/λ < 0.636 for quadratic coupling [4,13].
It is important to note that the latter locates on the stable
Schwarzschild black hole bound (outside the fundamental
branch for exponential coupling). This points out one of
differences between exponential and quadratic couplings in
the EGBS theory. Introducing radial (spherically symmetric)
perturbations around the scalarized black holes as

ds2
EGBS = −N (r)e−2δ(r) (1 + εH0) dt

2

+ dr2

N (r) (1 + εH1)
+ r2

(
dθ2 + sin2 θdϕ2

)
,

φ = φ̄(r) + εδφ, (44)

a decoupling process makes a single second order equation
for scalar perturbation [4,14]

g(r)2 ∂2δφ

∂t2 − ∂2δφ

∂r2 + C1
∂δφ

∂r
+U (r)δφ = 0, (45)

where g(r), C1(r) and U (r) are functions of N (r), δ(r) and
φ̄(r) [4]. Considering a further separation of perturbed scalar
δφ(t, r) = δφ(r)e−iωt , we obtain the Schrödinger equation
for scalar perturbation

d2Z

dr2∗
=

[
V (r) − ω2

]
Z , (46)

where r∗ is the tortoise coordinate and a redefined scalar
perturbation Z(r) reads as

r∗ =
∫ ∞

r+
g(r)dr, Z(r) = δφ(r)

C0(r)
. (47)

Importantly, the potential is given by

V (r) = U (r) − C ′
1(r)

g(r)2 + C1g′(r) + g′′(r)
g(r)3 − 2g′(r)2

g(r)4 .

(48)

In Fig. 8, we plot the potentials V0(r, λ) for l = 0-scalar
mode around the n = 0 black hole in the EGBS theory
with exponential and quadratic couplings. It is obvious that
the potential for exponential coupling is positive outside the
horizon, while the potential for quadratic coupling develops
negative-positive-negative regions outside the horizon, lead-
ing to

∫ ∞
r+ V0(r)g(r)dr < 0 [sufficient condition for insta-

bility]. This is the other of differences between exponen-
tial and quadratic couplings. Thus, the endpoint of unstable
Schwarzschild black holes may be the stable n = 0 black
hole in the EGBS theory with exponential coupling only.
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Fig. 7 Two different graphs of scalar charge Qs/λ vs M/λ for the
n = 0 black hole with r+ = 1.174. The M/λ-axis represents the unsta-
ble Schwarzschild black hole for 0 < M/λ < 0.587 and and the stable
Schwarzschild black hole for M/λ > 0.587 [12]. (Left) exponential

coupling has a finite region of 0 < M/λ < 0.587 which is the unstable
bound for Schwarzschild black hole, while (Right) quadratic coupling
has a band with bandwidth of 0.587< M/λ <0.636 which exits within
the stable bound for Schwarzschild black hole

Fig. 8 Two scalar potential graphs ofV0(r, λ) for s-mode scalar around
the n = 0 black hole with horizon radius r+ = 1.174. (Left) exponential
coupling. (Right) quadratic coupling. The magnification of the enclosed

region shows the specific potential behaviors just outside the horizon,
indicating negative-positive-negative regions

Now let us turn to the stability analysis for the n = 0, 1, 2
black holes in the EMS theory. The stability analysis may be
performed by getting quasinormal frequency of ω = ωr+iωi

in e−iωt when solving the linearized equations with appropri-
ate boundary conditions at the outer horizon: ingoing waves
and at infinity: purely outgoing waves. We will compute
the lowest quasinormal modes of the scalarized black holes
by making use of a reasonable numerical background and
the linearized equations (33)–(34) for axial part and the lin-
earized equations (36)–(41) for polar part. To compute the
quasinormal modes, we use a direct-integration method [15].

Usually, a positive definite potentialV (r)without any neg-
ative region guarantees the stability of black hole. On the
other hand, a sufficient condition for instability is given by∫ ∞
r+ dr [eδV (r)/N (r)] < 0 [16] in accordance with the exis-

tence of unstable modes. However, some potentials with neg-
ative region near the outer horizon whose integral is positive
(
∫ ∞
r+ dr [eδV (r)/N (r)] > 0) may not imply a definite insta-

bility. To determine the instability of the n = 0, 1, 2 black
holes clearly, one has to solve all linearized equations for
physical perturbations numerically. Accordingly, the crite-

rion to determine whether a black hole is stable or not against
the physical perturbations is whether the time evolution e−iωt

of the perturbation is decaying or not. If ωi < 0(> 0), the
black hole is stable (unstable), irrespective of any value of
ωr . However, it is not an easy task to carry out the stability
of scalarized charged black holes because these black holes
comes out as not an analytic solution but numerical solu-
tions. To have a reasonable numerical background, it needs
to obtain hundreds of numerical solutions in the each branch.
It is convenient to classify the linearized equations accord-
ing to multiple index of l = 0, 1, 2, . . . because l determines
number of physical fields at the axial and polar sectors.

5.1 l = 0 case: n = 0, 1, 2 black holes

For l = 0(s-mode), the linearized equation obtained from the
polar part is given entirely by a scalar equation

(
SP

0 = rδφ1
)

[
d2

dr2∗
+ ω2

]
SP

0 − V P
0 (r, α)SP

0 = 0, (49)
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where the potential V P
0 (r, α) is given by [9]

V P
0 (r, α) = N

e2δr2

[
(N + r(N ′ − Nδ′) − 1)

×
(

2r2φ̄′2 − 4αφ̄φ̄′r2

1 + αφ̄2

−1 + α + αφ̄2(2 − 3α + αφ̄2)

(1 + αφ̄2)2

)

+1 − N − 2r2(φ̄′)2
]
, (50)

which is the same form as that obtained by taking radial per-
turbations [9]. We display three scalar potentials V P

0 (r, α) in
Fig. 9 for l = 0 case around the n = 0 black hole. The whole
potentials are positive definite except that the α = 8.65 case
has negative region near the horizon. It does not represent
instability because this is near the threshold of instability.
Actually, the n = 0 black hole is stable against the l = 0
scalar perturbation. We confirm it from Fig. 10 that the imag-
inary frequency is negative for α ≥ 8.019, implying a stable
n = 0 black hole. This means that the endpoint of unstable
RN black holes with α > 8.019 is the n = 0(α ≥ 8.019)

scalarized charged black hole with the same q. This is one
of our main results.

Now let us turn to the stability issue of the n = 1, 2 black
holes. We observe from Fig. 11 that

∫ ∞
r+ dr [eδV (r)/N (r)] <

0 for the n = 1 black hole, while the whole potentials are
negative definite for the n = 2 black hole. This implies that
the n = 1, 2 black holes are unstable against the l = 0
scalar perturbation. Clearly, the instability could be found
from Fig. 10 because their imaginary frequencies are posi-
tive. Here the red curve denotes the unstable RN black holes
as a function of α > 8.091. Hereafter, we will perform the
stability analysis for higher multipoles on the n = 0 black
hole only because the n = 1, 2 black holes turned out to
be unstable against the l = 0 scalar perturbation. In other
words, it seems meaningless to carry out a further stability
analysis for the unstable n = 1, 2 black holes.

5.2 l = 1 case: n = 0 black hole

In this case, we have three physical modes propagating
around the n = 0 black hole. For l = 1 case, the axial
linearized equation around the n = 0 black hole is given by

[
d2

dr2∗
+ ω2

]
ZA

1 − VA
1 (r, α)ZA

1 = 0, (51)

where the potential takes the form

VA
1 (r, α) = −e−2δN

r2

[
N

(
4 − α2φ̄2 + αr(φ̄2)′

−r2(α − 4 + 2α2φ2)(φ̄′)2
)

−6 + 4r N ′ + α2φ̄2(1 − r N ′)
]

(52)

Fig. 9 Three scalar potential graphs V P
0 (r, α) for l = 0 mode around

the n = 0(α ≥ 8.019) black hole. The whole potentials are positive
definite except that the α = 8.65 case having negative region near the
horizon does not imply instability

Fig. 10 The negative imaginary frequency ωi (ωr = 0) as function of
α appears for the l = 0 scalar around the n = 0 black hole, imply-
ing the stability. Two positive imaginary frequencies ωi (ωr = 0) are
as functions of α for the l = 0 scalar around the n = 1, 2 black
holes, indicating the instability. A red solid curve with q = 0.7 rep-
resents the quasinormal frequency of l = 0 scalar mode as function of
α around the RN black hole [2], showing the unstable RN black holes
for α > 8.019

We find that all potentials are positive definite for the n =
0(α ≥ 8.019) black hole. This means that the n = 0 black
hole is stable against the axial l = 1 vector perturbation. We
confirm it by showing that ωi is negative, indicating a stable
black hole.

Finally, we obtain the vector-led and scalar-led modes
propagating around the n=0 black hole by solving the polar
l = 1 linearized equations (36)–(41). We find that ωi of
vector-led mode around the n =0 is negative, implying a sta-
ble black hole. Also, it is found that ωi of scalar-led mode
around the n = 0 black hole is negative, implying a stable
black hole.
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Fig. 11 Three scalar potential graphs V P
0 (r, α) for l = 0 scalar around (Left) n = 1(α ≥ 40.84) black hole and (Right) n = 2(α ≥ 99.89) black

hole

5.3 l = 2 case: n = 0 black hole

First of all, we consider the axial part because of its sim-
plicity. The axial l = 2 linearized equations are given by
two coupled equations for Regge-Wheeler-Maxwell system
as shown in (33)–(34). Solving these coupled equation with
boundary conditions leads to negative quasinormal frequen-
cies ωi for l = 2 vector-led mode around the n = 0 black
hole, implying stable black hole. Also, we find that the n = 0
black hole is stable against the l = 2 gravitational-led mode.

Finally, the polar l = 2 linearized equations are given
by Eqs. (36)–(41) with l = 2. Here we have three modes:
vector-led, gravitational-led, and scalar-led modes. We find
that all ωi of these modes are negative, implying the stable
n = 0 black hole.

6 Summary and discussions

First of all, it was shown in the EGBS theory that the n = 0
black hole is stable against radial perturbations for the expo-
nential coupling, while it is unstable for the quadratic cou-
pling. In the former case, the n = 0 black hole could
be regarded as the endpoint of the evolution of unstable
Schwarzschild black hole, whereas this is not the case for
the latter. We wish to point out the differences between
exponential and quadratic couplings for the n = 0 black
hole (fundamental blanch) in the EGBS theory. We observe
from Fig. 7 that the fundamental branch of n = 0 black
hole is a finite region of 0 < M/λ < 0.587 in the expo-
nential coupling, while it is just a band with bandwidth
of 0.587 < M/λ < 0.636 for quadratic coupling where
locates within the stable Schwarzschild black hole bound
(beyond the fundamental branch for exponential coupling).
This is one difference between exponential and quadratic
couplings in the EGBS theory. Also, it is shown from Fig. 8
that the potential for exponential coupling is positive out-
side the horizon, while the potential for quadratic coupling
develops negative-positive-negative regions outside the hori-

zon, leading to
∫ ∞
r+ V0(r)g(r)dr < 0 [sufficient condition for

instability]. This corresponds to the other difference between
exponential and quadratic couplings for the n = 0 black hole
in the EGBS theory.

Concerning the EMS theory with scalar mass m2
φ = α/β,

there is no unstable RN solution with q = 0.418 for β ≤
83.217 as α → ∞. This implies that for β ≤ 83.217, any
scalarized charged black holes could not found for any α. On
the other hand, we may develop then = 0, 1, 2, . . . scalarized
charged black holes for the case of β > 83.217 without limi-
tation on number of bifurcation points even though the mass
term changes significantly the location of bifurcation points.
We have found the n = 0 scalarized charged black hole solu-
tion from the EMS theory with scalar mass term whose metric
functions are similar to those in the n = 0 scalarized black
hole obtained from the EMS theory. It is emphasized that the
scalar is different from that found in the EMS theory. How-
ever, the stability analysis of the n = 0 scalarized charged
black hole in the EMS theory with scalar mass term seems
to be a difficult and complicated task and thus, we could not
report its result on this work. This is mainly due to difficulty
in handling the asymptotic boundary conditions.

We have shown that the n = 1(α ≥ 40.84), 2(α ≥ 99.89)

excited black holes are unstable against against the l = 0
scalar perturbation, while the n = 0(α ≥ 8.019) funda-
mental black hole is stable against all scalar-vector-tensor
perturbations in the EMS theory with quadratic coupling.
In the latter, we found all negative quasinormal frequencies
(ωi < 0) of 9 = 1(l = 0) + 3(l = 1) + 5(l = 2) phys-
ical modes around the n = 0 black hole. In other words,
we could not find any unstable modes from the l = 0, 1, 2
scalar-vector-tensor perturbations around the n = 0 black
hole. Even though we have carried out the stability analy-
sis on the n = 0, 1, 2 black holes, we expect from Fig. 10
that the other higher excited (n =3, 4, 5, . . .) black holes
are unstable against the s(l = 0)-mode scalar perturbation
because their frequencies may exist as further branches along
the unstable RN black holes. This is consistent with those for
the EMS theory with exponential coupling [8], but it contrasts
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to the n = 0 scalarized black hole found in the ESGB theory
with quadratic coupling when making use of radial perturba-
tions [4]. Actually, the n = 0 black hole found in the ESGB
theory with exponential coupling has a similar property found
in the EMS theory with exponential and quadratic couplings
(See Figs. 3, 7). This implies that the endpoint of unstable
RN black holes with α > 8.019 is the n = 0 scalarized black
hole with the same q = 0.7 in the EMS theory with quadratic
and exponential couplings.
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