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Abstract The μνSSM is a simple supersymmetric exten-
sion of the Standard Model (SM) capable of describing
neutrino physics in agreement with experiments. We per-
form the complete one-loop renormalization of the neutral
scalar sector of the μνSSM with three generation of right-
handed neutrinos in a mixed on-shell/DR scheme. We cal-
culate the full one-loop corrections to the neutral scalar
masses of the μνSSM. The one-loop contributions are sup-
plemented by available MSSM higher-order corrections. We
obtain numerical results for a SM-like Higgs-boson mass
consistent with experimental bounds, while simultaneously
agreeing with neutrino oscillation data. We illustrate the dis-
tinct phenomenology of the μνSSM in scenarios in which
one or more right-handed sneutrinos are lighter than the SM-
like Higgs boson, which might be substantially mixed with
them. These scenarios are experimentally accessible, on the
one hand, through direct searches of the right-handed sneu-
trinos decaying into SM particles, and on the other hand,
via the measurements of the SM-like Higgs-boson mass
and its couplings. In this way the parameter space of the
μνSSM can be probed without the need to propose model
dependent searches at colliders. Finally, we demonstrate how
the μνSSM can simultaneously accommodate two excesses
measured at LEP and LHC at ∼ 96 GeV at the 1σ level,
while at the same time reproducing neutrino masses and
mixings in agreement with neutrino oscillation measure-
ments.

a e-mail: thomas.biekotter@csic.es
b e-mail: Sven.Heinemeyer@cern.ch
c e-mail: c.munoz@uam.es

1 Introduction

The scalar particle at ∼ 125 GeV discovered by the ATLAS
[1] and CMS [2] experiments has so far shown to be consis-
tent with the Standard Model (SM) Higgs-boson prediction.
The Higgs boson was the last missing piece in the description
of electroweak symmetry breaking (EWSB) and the genera-
tion of masses of fundamental particles within the SM. The
measurement of the mass of this new state already reached a
remarkable precision [3]:1

mH = 125.09 ± 0.21(stat.) ± 0.11(syst.). (1.1)

However, other properties of the Higgs boson, while being in
agreement with the SM predictions, are still measured with
relatively large uncertainties [6,7]. Thus, even though any
theory beyond the SM necessarily needs to accommodate a
state corresponding to a SM-like Higgs boson at ∼ 125 GeV,
there is still ample room for interpretations of the Higgs-
boson signal with sizable deviations w.r.t. the SM prediction.

Supersymmetry (SUSY) is one of the most studied beyond
the Standard Model (BSM) extensions. SUSY combines
bosonic and fermionic degrees of freedom of the fundamental
fields and spacetime itself. In particular, SUSY models pre-
dict two scalar particles for each SM fermion and a fermion
for each SM gauge boson. The simplest version of such mod-
els is the Minimal Supersymmetric Standard Model (MSSM)
[8,9]. Besides the doubling of the SM particle content due
to SUSY, the MSSM contains a second Higgs doublet which
in the CP-conserving case leads to a physical spectrum of
two CP-even, one CP-odd and two charged Higgs bosons.
Both the lighter or the heavier CP-even scalar can be inter-
preted as the SM-like Higgs boson at ∼ 125 GeV [10–12].

1 This value constitutes the last ATLAS and CMS combination. Newer
measurements confirm the average within the given uncertainties [4,5].
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Despite its simplicity, the MSSM is capable of fixing a few
shortcomings of the SM. If the breaking of SUSY takes place
not too far away from the electroweak scale, the hierarchy
problem [13,14] is solved by additional quantum corrections
from the SUSY partners that cancel large corrections to the
Higgs mass from the heavy SM fermions. Apart from that, the
extended spectrum leads to the unification of the three gauge
couplings in a singular point at very high energies [15]. Due
to the conservation of R-parity, the lightest supersymmetric
particle (LSP) is stable and can contribute to the dark matter
relic abundance [16,17].

However, the MSSM does not address all the open prob-
lems of the SM, and also introduces new issues, motivat-
ing non-minimal SUSY extensions of the SM. The most
prominent example is the Next-to-Minimal supersymmetric
standard model (NMSSM) [18,19] which extends the par-
ticle content of the MSSM by a gauge-singlet superfield.
The Z3-symmetric NMSSM provides a solution to the μ-
problem by naturally associating an adequate scale to the
μ-parameter in the MSSM superpotential [20,21]. In the
NMSSM, the fermionic component of the singlet super-
field (called singlino) extends the neutral fermion sector of
the MSSM to a total of five neutralinos. Assuming CP-
conservation, the complex scalar component of the singlet
superfield will extend the CP-even and the CP-odd scalar
sector by an additional particle state, respectively.

Neither the MSSM nor the NMSSM accommodate neu-
trino masses and lepton-flavor violation in the neutrino sector.
Therefore, a well motivated extension of the SM is the μ-
from-ν Supersymmetric Standard Model (μνSSM) [22,23].
In this model, the particle content of the MSSM is extended
by right-handed neutrino superfields. Since they are gauge-
singlets, the μ-problem can be solved in total analogy to the
NMSSM. Remarkably, in the μνSSM it is possible to accom-
modate neutrino masses and mixings in agreement with
experiments via an electroweak seesaw mechanism, dynam-
ically generated during the EWSB [22,24–28]. In addition
to the Higgs doublet fields also the right- and left-handed
scalar neutrinos acquire a vacuum expectation value (vev).
Thus, the μνSSM solves the μ- and the ν-problem (neu-
trino masses) simultaneously without the need to introduce
additional energy scales beyond the SUSY-breaking scale. In
contrast to the (N)MSSM, R-parity and lepton number are not
conserved, leading to a completely different phenomenology,
characterized by distinct prompt or displaced decays of the
LSP [29–32]. Although the LSP is not stable anymore, the
μνSSM can provide a dark matter candidate with a gravitino
with a lifetime longer than the age of the universe [33–36].
The breaking of R-parity is induced by a neutrino Yukawa
term, with the size of the couplings Y ν

i j ≤ 10−6 determined
by the electroweak seesaw. Because of the values of Y ν

i j , mix-
ings between SM particles and their supersymmetric partners
are suppressed. Nevertheless, the additional sources of mix-

ing effects induce a conceptually modified spectrum com-
pared to the MSSM and the NMSSM. The spectrum will be
described in detail in Sect. 2.

SUSY relates the quartic couplings of the neutral scalar
potential to the gauge couplings of the underlying field the-
ory. Therefore, within SUSY the scalar masses can be pre-
dicted in terms of other model parameters, and the precise
value of the SM-like Higgs-boson mass is of particular signif-
icance. However, the SM-like Higgs-boson mass predictions
strongly depend on quantum corrections which can be cal-
culated only to certain order in perturbation theory. Missing
higher-order contributions lead to a sizable amount of uncer-
tainty which is usually of a few GeV (see below for details),
hence an order of magnitude larger than the experimental
uncertainty. This is why a lot of effort is made to predict
the Higgs mass to the highest possible precision [37]. We
briefly summarize the status of Higgs-mass predictions in
the MSSM, the NMSSM, and the μνSSM in the following.

In the MSSM the tree-level mass can be predicted by
just two SUSY parameters, i.e., the ratio of the vevs of
the Higgs doublets tan β, and either the mass of the CP-
odd Higgs boson MA or the mass of the charged Higgs
boson MH± , leading to an upper bound given by the Z -
boson mass. Large loop corrections are needed to achieve
a Higgs-boson mass of ∼ 125 GeV. Beyond the one-loop
level, the dominant two-loop corrections of O(αtαs) [38–
43], O(α2

t ) [44,45], O(αbαs) [46,47] and O(αtαb) [46] are
known (here we use α f = (Y f )2/(4π), with Y f denoting
the fermion Yukawa coupling). These corrections, together
with a resummation of leading and subleading logarithms
from the top/stop sector [48] (see also [49,50] for more
details on this type of approach), a resummation of leading
contributions from the bottom/sbottom sector [46,47,51–54]
(see also [55,56]) and momentum-dependent two-loop con-
tributions [57,58] (see also [59]) are included in the public
code FeynHiggs[40,48,60–67]. The most recent version
of FeynHiggs contains an improved effective field theory
calculation relevant for large SUSY scales [64,66,68]. The
complete two-loop QCD contributions in the CP-violating
MSSM were calculated in Ref. [69], but not yet included
in FeynHiggs. A (nearly) full two-loop effective poten-
tial (EP) calculation, including even the leading three-loop
corrections, has also been published [70,71], which is, how-
ever, not publicly available as a computer code. Furthermore,
another leading three-loop calculation of O(αtα

2
s ), depend-

ing on the various SUSY mass hierarchies, has been per-
formed [72,73], resulting in the code H3m and is now avail-
able as a stand-alone code [74]. It was proven that regular-
ization by dimensional reduction preserves supersymmetry
at the required three-loop order [75]. A new calculation of
the three-loop contributions of theO(αtα

2
s ) extends the valid-

ity of these corrections to the whole parameter space of the
CP-conserving MSSM [76]. Most recently, the leading log-
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arithmic terms of the O(αtα
3
s ) have been obtained (see the

updated version of the public code Himalaya) [77]. The
theoretical uncertainty on the lightest CP-even Higgs-boson
mass within the MSSM from unknown higher-order contri-
butions is still at the level of about 2−3 GeV for scalar
top masses at the TeV-scale, where the actual uncertainty
depends on the considered parameter region [62,78–82].

In the NMSSM the full one-loop calculation including the
momentum dependence has been performed in the DR renor-
malization scheme in Refs. [83,84], or in a mixed on-shell
(OS)-DR scheme in Refs. [85–87]. Dominant two-loop con-
tributions of O(αtαs, α

2
t ) have been calculated in the leading

logarithmic approximation [88,89], and of O(αtαs, αbαs) in
the DR scheme in the EP approach [83]. The two-loop cor-
rections involving only superpotential couplings were given
in Ref. [90]. A two-loop calculation of the O(αtαs) correc-
tions with the top/stop sector renormalized in the OS scheme
or in the DR scheme was provided in Ref. [91], while the
two-loop corrections of O(α2

t ) in the CP-violating NMSSM
were calculated in a mixed OS-DR scheme [92]. These con-
tributions are implemented in the public code NMSSMCalc.
A consistent combination of a full one-loop calculation with
all corrections beyond one-loop in the MSSM approxima-
tion was given in Ref. [87]. According to a comparison of
the various two-loop contributions, at present the theoretical
uncertainties from unknown higher-order corrections in the
NMSSM are expected to be still larger than for the MSSM
[92–94].

Beyond the MSSM and the NMSSM, only generic DR-
calculations of Higgs-boson mass corrections exist publicly
available. An automated calculation of the full one-loop cor-
rections, supplemented by partial two-loop corrections to
neutral scalars [90] is implemented in the Mathematica pack-
ageSARAH [95,96], which can be used to produce a spectrum
generator based on the public code SPheno [97]. A hybrid
Higgs-boson mass calculation combining effective field the-
ory and fixed-order calculations for a generic class of SUSY
models is publicly available in the code FlexibleSUSY
[98], also using the expression for the renormalization group
equations and fixed-order self-energies as they are calculated
by SARAH.

In a previous publication we presented the first calcula-
tion of radiative corrections to the neutral scalars in a mixed
OS-DR scheme for the μνSSM with only one generation
of right-handed neutrinos [99]. We described in detail the
renormalization of the scalar potential, including the full one-
loop quantum corrections. We consistently combined the full
one-loop corrections with the leading MSSM-like two-loop
contributions using FeynHiggs. We showed that the con-
tributions from the (s)top- and the (s)bottom-sector are also
dominant in the μνSSM, therefore proving that the combina-
tion of the one-loop result together with the two-loop contri-
butions from FeynHiggs provides a calculation of the SM-

like Higgs-boson mass at a similar accuracy as the NMSSM
prediction. In this work, we go one step beyond and extend
the calculation to the full μνSSM with three generations of
right-handed neutrinos. A striking difference between the
one- and the three-generation case is that in the latter case
the neutrino sector can be described in agreement with exper-
imental results without having to rely on the radiative gen-
eration of neutrino masses. On account of this, we are able
to present benchmark scenarios of the μνSSM accurately
accommodating a SM-like Higgs boson at ∼ 125 GeV, as
well as correct neutrino mass differences and mixing angles.
In addition, we show that it is possible to simultaneously
explain two excesses measured at LEP and CMS at a mass of
∼ 96 GeV at the 1σ level. An earlier study in the μνSSM,
before the discovery of the Higgs boson, discussing Higgs
bounds and possible signals at the LHC, and suggesting the
re-analysis of the LEP data in light of the excess, can be
found in Ref. [100].

The paper is organized as follows. In Sect. 2 we describe
the model and explain the particle mixings in each sector.
In Sect. 3 we give details about the renormalization of the
neutral scalar potential at the one-loop level, including the
full set of free parameters of the μνSSM. We present the
renormalization conditions applied to extract the parame-
ter counterterms, either in the neutral scalar or the neutral
fermion sector. In Sect. 4 we explain the extraction of the
one-loop corrections to the CP-even scalar masses, based
on the renormalization prescription introduced before. We
also describe the incorporation of higher-order contributions
from the MSSM. In Sect. 5 we discuss a set of benchmark
scenarios with several light Higgs bosons. We conclude in
Sect. 6.

2 The model: μνSSM with three generations of right
handed neutrinos

The superpotential of the μνSSM with three generations of
right-handed neutrinos is written as

W = εab

(
Y e
i j Ĥ

a
d L̂b

i ê
c
j + Yd

i j Ĥ
a
d Q̂b

i d̂
c
j + Yu

i j Ĥ
b
u Q̂a

i û
c
j

)

+ εab

(
Y ν
i j Ĥ

b
u L̂a

i ν̂cj − λi ν̂
c
i Ĥ

b
u Ĥ

a
d

)
+ 1

3
κ i jk ν̂

c
i ν̂

c
j ν̂

c
k

(2.1)

where Ĥ T
d = (Ĥ0

d , Ĥ−
d ) and Ĥ T

u = (Ĥ+
u , Ĥ0

u ) are the

MSSM-like doublet Higgs superfields, Q̂T
i = (ûi , d̂i ) and

L̂T
i = (ν̂i , êi ) are the left-chiral quark and lepton superfield

doublets, and ûci , d̂ci , êci and ν̂ci are the right-chiral quark and
lepton superfields. i and j are family indices running from
one to three and a, b = 1, 2 are indices of the fundamental
representation of SU(2) with εab the totally antisymmetric
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tensor and ε12 = 1. The color indices are not written out.
Yu , Yd and Y e are the usual Yukawa couplings also present
in the MSSM. The trilinear singlet self couplings κi jk and
the trilinear coupling with the Higgs doublets λi in the sec-
ond row are analogues to the couplings of the singlet in the
superpotential of the Z3-symmetric NMSSM. The μ-term is
generated dynamically after the spontaneous EWSB, when
the right-handed sneutrinos obtain a vev. The κ-term forbids a
global U(1) symmetry avoiding the existence of a Goldstone
boson in the CP-odd sector. The remarkable difference to
the NMSSM is the additional Yukawa coupling Y ν which
induces explicit breaking of R-parity through the λ- and κ-
terms, and which justifies the interpretation of the singlet
superfields as right-handed neutrino superfields. It should be
pointed out that in this case lepton number is not conserved
anymore, and also the flavor symmetry in the leptonic sector
is broken. A more complete motivation of this superpotential
can be found in Refs. [22,24,29].

Working in the framework of low-energy SUSY the cor-
responding soft SUSY-breaking Lagrangian is given by

−Lsoft = εab

(
T e
i j H

a
d L̃b

i L ẽ
∗
j R + T d

i j H
a
d Q̃b

i L d̃
∗
j R

+ T u
i j H

b
u Q̃

a
i L ũ

∗
j R + h.c.

)

+ εab

(
T ν
i j H

b
u L̃a

i L ν̃∗
j R − T λ

i ν̃∗
i R Ha

d H
b
u

+1

3
T κ
i jk ν̃∗

i R ν̃∗
j R ν̃∗

kR + h.c.

)

+
(
m2

Q̃

)
i j
Q̃a∗

i L Q̃
a
j L +

(
m2

ũ

)
i j
ũ∗
i Rũ j R

+
(
m2

d̃

)
i j
d̃∗
i R d̃ j R +

(
m2

L̃

)
i j
L̃a∗
i L L̃

a
j L

+
(
m2

ν̃

)
i j

ν̃∗
i R ν̃ j R +

(
m2

ẽ

)
i j
ẽ∗
i R ẽ j R

+ m2
Hd

Ha
d

∗Ha
d +m2

Hu
Ha
u

∗Ha
u +

(
m2

Hd L̃

)
i
Ha∗
d L̃a

i L

+ 1

2

(
M3 g̃ g̃ + M2 W̃ W̃ + M1 B̃0 B̃0 + h.c.

)
.

(2.2)

In the first four lines the fields denote the scalar components
of the corresponding superfields. In the last line the fields
denote the fermionic superpartners of the gauge bosons. The
scalar trilinear parameters T e,ν,d,u,λ,κ correspond to the tri-
linear couplings in the superpotential. The soft mass parame-
tersm2

Q̃ ,̃u,d̃,L̃ ,̃ν,̃e
are hermitian 3×3 matrices in family space.

m2
Hd ,Hu

are the soft masses of the doublet Higgs fields.
We will neglect flavor mixing in the squark and the quark

sector, so the soft masses will be diagonal and we write m2
Q̃i

,

m2
ũi

and m2
d̃i

, as well as for the soft trilinears T u
i = Au

i Y
u
i ,

T d
i = Ad

i Y
d
i , where the summation convention on repeated

indices is not implied, and the quark Yukawas Yu
ii = Yu

i

and Yd
ii = Yd

i are chosen to be diagonal. For the sleptons
we define T e

i j = Ae
i j Y

e
i j and T ν

i j = Aν
i j Y

ν
i j , again without

summation over repeated indices.
m2

Hd L̃
is a 3-dimensional vector in family space, which is

always regarded to be absent in the tree-level Lagrangian of
the μνSSM, because it spoils the electroweak seesaw mech-
anism. We include it here, because the operator is generated
at the one-loop level and the parameters m2

Hd L̃
are needed to

renormalize the scalar potential. The same reasoning applies
for the non-diagonal elements of the soft slepton masses
(m2

L̃
)i �= j and (m2

ν̃ )i �= j .
Theoretically, the absence of soft mass parameters mixing

different fields at tree level, (m2
Hd L̃

)i , (m2
L̃
)i �= j , (m2

Q̃
)i �= j ,

etc., can be justified by the diagonal structure of the Kähler
metric in certain supergravity models, or when the dilaton
field is the source of SUSY breaking in string constructions
[29]. Notice also that when the down-type Higgs doublet
superfield is interpreted as a fourth family of leptons the
parameters m2

Hd L̃
can be seen as off-diagonal elements of

m2
L̃

[101].
After the EWSB the neutral scalar fields will acquire a vev.

This includes the left- and right-handed sneutrinos, because
they are not protected by lepton-number conservation as in
the MSSM and the NMSSM. We define the decomposition

H0
d = 1√

2

(
HR
d + vd + i HI

d

)
, (2.3)

H0
u = 1√

2

(
HR
u + vu + i HI

u

)
, (2.4)

ν̃i R = 1√
2

(
ν̃Ri R + vi R + i ν̃Ii R

)
, (2.5)

ν̃i L = 1√
2

(
ν̃Ri L + vi L + i ν̃Ii L

)
, (2.6)

in such a way that after the EWSB they develop the real vevs

〈H0
d 〉 = vd√

2
, 〈H0

u 〉 = vu√
2
,

〈̃νi R〉 = vi R√
2

, 〈̃νi L 〉 = vi L√
2
, (2.7)

which is valid assuming CP-conservation, as we will do
throughout this paper.

The neutral scalar potential of the μνSSM is given at tree
level with all parameters chosen to be real by the soft terms
and the F- and D-term contributions of the superpotential.
One finds

V (0) = Vsoft + VF + VD, (2.8)

with

Vsoft =
(
T ν
i j H

0
u ν̃i L ν̃∗

j R − T λ
i ν̃∗

i R H0
d H

0
u

+ 1

3
T κ
i jk ν̃∗

i R ν̃∗
j R ν̃∗

kR + h.c.

)
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+
(
m2

L̃

)
i j

ν̃∗
i L ν̃ j L +

(
m2

ν̃

)
i j

ν̃∗
i R ν̃ j R

+ m2
Hd

H0
d

∗
H0
d + m2

Hu
H0
u

∗
H0
u , (2.9)

VF = λ jλ j H
0
d H

0
d

∗
H0
u H

0
u

∗ + λiλ j ν̃
∗
i R ν̃ j R H

0
d H

0
d

∗

+ λiλ j ν̃
∗
i R ν̃ j R H

0
u H

0
u

∗ + κi jkκl jm ν̃∗
i R ν̃l R ν̃∗

kR ν̃mR

−
(
κi jkλ j ν̃

∗
i R ν̃∗

kRH
0∗
d H0∗

u − Y ν
i jκl jk ν̃i L ν̃l R ν̃kRH

0
u

+ Y ν
i jλ j ν̃i L H

0∗
d H0∗

u H0
u +Y ν

i jλk ν̃
∗
i L ν̃ j R ν̃∗

kRH
0
d +h.c.

)

+ Y ν
i j Y

ν
ik ν̃

∗
j R ν̃kRH

0
u H

0
u

∗ + Y ν
i j Y

ν
lk ν̃i L ν̃∗

l L ν̃∗
j R ν̃kR

+ Y ν
j i Y

ν
ki ν̃ j L ν̃∗

kL H
0
u H

0∗
u , (2.10)

VD = 1

8

(
g2

1 + g2
2

) (
ν̃i L ν̃∗

i L + H0
d H

0
d

∗ − H0
u H

0
u

∗)2
.

(2.11)

2.1 The neutral scalar sector

Using the decomposition from Eqs. (2.3)–(2.6) the linear and
bilinear terms in the fields define the tadpoles Tϕ and the
scalar CP-even and CP-odd neutral mass matrices m2

ϕ and
m2

σ after electroweak symmetry breaking,

VH = · · · − Tϕ iϕi + 1

2
ϕT
i

(
m2

ϕ

)
i j

ϕ j

+ 1

2
σ T
i

(
m2

σ

)
i j

σ j + · · · . (2.12)

where we collectively denote with ϕT = (HR
d , HR

u , ν̃R1R,

ν̃R2R, ν̃R3R, ν̃R1L , ν̃R2L , ν̃R3L) andσ T = (HI
d , HI

u , ν̃I1R, ν̃I2R, ν̃I3R,

ν̃I1L , ν̃I2L , ν̃I3L) the CP-even and CP-odd scalar fields, respec-
tively. The linear terms are only allowed for CP-even fields
and given by

THR
d

= −m2
Hd

vd −
(
m2

Hd L̃

)
i
vi L

− 1

8

(
g2

1 + g2
2

)
vd

(
v2
d + vi Lvi L − v2

u

)

− 1

2
vdv

2
uλiλi + 1√

2
vuvi RT

λ
i

+ 1

2
v2
uY

ν
j iλiv j L − 1

2
vdvi Rλiv j Rλ j

+ 1

2
vuκik jλiv j RvkR + 1

2
vi Rλiv j LY

ν
jkvkR , (2.13)

THR
u

= −m2
Hu

vu + 1

8

(
g2

1 + g2
2

)
vu

(
v2
d + vi Lvi L − v2

u

)

− 1

2
v2
dvuλiλi + 1√

2
vdvi RT

λ
i + vdvuY

ν
j iλiv j L

− 1√
2
vi L T

ν
i jv j R − 1

2
vuvi Rλiv j Rλ j

− 1

2
vuY

ν
j i Y

ν
kiv j LvkL − 1

2
vuY

ν
i j Y

ν
ikv j RvkR

+ 1

2
vdκi jkλiv j RvkR − 1

2
Y ν
liκik jv j RvkRvl L , (2.14)

T̃νRi R
= −

(
m2

ν̃

)
i j

v j R − 1√
2
vuv j L T

ν
j i − 1

2
v2
uY

ν
j i Y

ν
jkvkR

+ vdvuκi jkλ jvkR − 1√
2
T κ
i jkv j RvkR

+ 1

2
vdv j LY

ν
j ivkRλk − vuY

ν
l jκi jkvkRvl L

− 1

2
v j LY

ν
j ivkLY

ν
klvl R − κi jmκ jlkvkRvl RvmR

− 1

2

(
v2
d + v2

u

)
λiλ jv j R + 1

2
vdv j LY

ν
jkvkRλi

+ 1√
2
vdvuT

λ
i , (2.15)

T̃νRi L
= −

(
m2

L̃

)
i j

v j L −
(
m2

Hd L̃

)
i
vd

− 1

8

(
g2

1 + g2
2

)
vi L

(
v2
d + v j Lv j L − v2

u

)

+ 1

2
vdv

2
uY

ν
i jλ j − 1√

2
vuv j RT

ν
i j

− 1

2
v2
uY

ν
i j Y

ν
k jvkL + 1

2
vdv j RY

ν
i jvkRλk

− 1

2
vuY

ν
i jκ jklvkRvl R − 1

2
v j RY

ν
i jvkLY

ν
klvl R . (2.16)

The tadpoles vanish in the true vacuum of the model. We
stress that the proportionality of T ν and Y ν , as used above,
assures that the condition vi L 	 vd , vu, vi R , is fulfilled after
solving the minimization conditions in Eq. (2.16). This is
essential for the generation of the electroweak seesaw mech-
anism and the origin for the smallness of the left-handed neu-
trino masses, without introducing any further energy scale.
During the renormalization procedure they will be treated
as OS parameters, i.e., finite corrections will be canceled by
their corresponding counterterms. This guarantees that the
vacuum is stable w.r.t. quantum corrections.

The bilinear terms

m2
ϕ =

⎛
⎜⎜⎜⎜⎜⎜⎝

m2
HR
d HR

d
m2

HR
d HR

u
m2

HR
d ν̃Rj R

m2
HR
d ν̃Rj L

m2
HR
u HR

d
m2

HR
u HR

u
m2

HR
u ν̃Rj R

m2
HR
u ν̃Rj L

m ν̃Ri R H
R
d

m ν̃Ri R HR
u

m2
ν̃Ri R ν̃Rj R

m2
ν̃Ri R ν̃Rj L

m2
ν̃Ri L H

R
d

m2
ν̃Ri L HR

u
m2

ν̃Ri L ν̃Rj R
m2

ν̃Ri L ν̃Rj L

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(2.17)
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and

m2
σ =

⎛
⎜⎜⎜⎜⎜⎝

m2
HI
d HI

d
m2

HI
d HI

u
m2

HI
d ν̃Ij R

m2
HI
d ν̃Ij L

m2
HI
u HI

d
m2

HI
u HI

u
m2

HI
u ν̃Ij R

m2
HI
u ν̃Ij L

m2
ν̃Ii R H

I
d

m2
ν̃Ii R HI

u
m2

ν̃Ii R ν̃Ij R
m2

ν̃Ii R ν̃Ij L
m2

ν̃Ii L H
I
d

m2
ν̃Ii L HI

u
m2

ν̃Ii L ν̃Ij R
m2

ν̃Ii L ν̃Ij L

⎞
⎟⎟⎟⎟⎟⎠

, (2.18)

are 8×8 matrices in family space whose rather lengthy entries
are given in the Appendices A.1 and A.2 . We transform to
the mass eigenstate basis of the CP-even scalars through a
unitary transformation defined by the matrix UH that diago-
nalizes the mass matrix m2

ϕ ,

UHm2
ϕ UH

T = m2
h, (2.19)

with

ϕ = UH
T

h, (2.20)

where the hi are the CP-even scalar fields in the mass eigen-
state basis. Without CP-violation in the scalar sector the
matrixUH is real. Similarly, for theCP-odd scalars we define
the rotation matrixU A that diagonalizes the mass matrixm2

σ ,

U Am2
σ U A

T = m2
A , with σ = U AT A, (2.21)

which includes the neutral Goldstone boson A1 = G0.
Because of the smallness of the neutrino Yukawa couplings
Y ν
i j , which also implies that the left-handed sneutrino vevs

vi L have to be small, so that the tadpole coefficients vanish at
tree level [24], the mixing of the left-handed sneutrinos with
the doublet fields and the singlets will be small.

It is a well known fact that the quantum corrections to
the Higgs potential are highly significant in supersymmetric
models, see e.g. Refs. [78,102,103] for reviews. As in the
NMSSM [18], the upper bound on the lowest Higgs mass
squared at tree level is relaxed through additional contribu-
tions from the right-handed sneutrinos [24];

m(0)
h1

≤ M2
Z

(
cos2 2β + 2λλλ2

g2
1+g2

2
sin2 2β

)
,

with λλλ2 := λ2
1 + λ2

2 + λ2
3. (2.22)

Nevertheless, quantum corrections were still shown to con-
tribute significantly especially to the prediction of the SM-
like Higgs-boson mass [85,87,94,99,104–108]. In Ref. [99]
we already investigated how important the unique loop cor-
rections of the μνSSM beyond the NMSSM are in realistic
scenarios, considering only one generation of right-handed
neutrinos, finding only negligible differences compared to
the NMSSM-like corrections. This is related to the small size
of the neutrino Yukawas Y ν compared to the other couplings
in the superpotential. In this paper we go beyond Ref. [99]
and investigate the complete μνSSM with three right-handed

neutrinos. Thus, genuine effects from the μνSSM are guar-
anteed to play a role in the prediction of the SM-like Higgs-
boson mass just by the presence of additional singlets, whose
couplings to the Higgs doublet fields are not suppressed by
the size of Y ν . Furthermore, the model can accommodate
neutrino data at tree level, so we will be able to describe the
phenomenology related to both the scalar and the fermionic
sector (and their interplay) more precisely.

If the mixing of the CP-even and -odd sneutrinos with the
doublet fields is small, which is always the case for the left-
handed sneutrinos, one can obtain approximate analytical
expressions for the tree-level masses of the sneutrinos. For the
left-handed sneutrinos the dominant terms are proportional
to the inverse of their vevs. In particular, assuming that only
diagonal elements of Y ν

i j and κi jk are non-zero, one finds for

the diagonal entries of the mass matrix m2
ϕ corresponding to

the CP-even left-handed sneutrinos,

m2
ν̃Ri L ν̃Ri L

∼ Y ν
i i

2vi L

[
vdv

2
uλi + √

2vdvi Rμ

−vuvi R

(√
2Aν

i i + κi i ivi R

)]
, (2.23)

where we defined the effective μ-term as

μ = 1√
2

(v1Rλ1 + v2Rλ2 + v3Rλ3) . (2.24)

Note that the first term in Eq. (2.23) can usually be neglected
as long as vi R 
 vd , vu . Each CP-odd left-handed sneutrino
is nearly degenerate with the corresponding CP-even one,
though they are slightly lighter due to different contributions
proportional to the gauge couplings,

m2
ν̃Ii L ν̃Ii L

− m2
ν̃Ri L ν̃Ri L

= −1

4

(
g2

1 + g2
2

)
v2
i L . (2.25)

For the CP-even right-handed sneutrinos we find, under the
assumptions that non-diagonal elements of κi jk and (m2

ν̃R
)i j

vanish, for the 3 × 3 submatrix

m2
ν̃Ri R ν̃Rj R

∼ 1

2
v2λiλ j + δi j

[
1√
2
vi Rκi i i A

κ
i i i + 2κ2

i i iv
2
i R

− λi√
2vi R

(
μv2 − vdvu A

λ
i

)]
. (2.26)

Furthermore, in case of universal values κi i i = κ , Aκ
i i i = Aκ ,

vi R = vR , λi = λ and Aλ
i = Aλ, this matrix has the form

m2
ν̃Ri R ν̃Rj R

=
⎛
⎝
a b b
b a b
b b a

⎞
⎠ . (2.27)

The eigenvalues of such a matrix are a − b , a − b and
a + 2b, and only the mass eigenstate corresponding to the
latter eigenvalue mixes with the SM-like Higgs boson [109].
Later we will make use of this fact to simplify the accom-
modation of SM-like Higgs boson properties, even when all
three right-handed neutrinos have masses close to or even
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below 125 GeV, because two right-handed sneutrinos will
be conveniently decoupled from the remaining scalars, and
interact very weakly with SM particles. In extensions of the
NMSSM with several gauge singlets, this decoupling can
lead to practically stable particles. In the μνSSM this is not
possible, because the decoupling cannot be exact, even when
κi jk and (m2

ν̃R
)i j are diagonal. We stress that the universality

of the κi i i is stable with respect to the RGE running, if also
the λi parameters are universal. In this case, one can deduce
from the explicit form of the one-loop counterterms δκi jk
shown in the Appendix B.2.2 that differences in the running
are exclusively generated by terms proportional to (Y ν)2,
which are negligible in realistic scenarios. For vi R 
 vd , vu
Eq. (2.26) further simplifies to

m2
ν̃Ri R ν̃Ri R

∼ 1√
2
vi Rκi i i A

κ
i i i + 2κ2

i i iv
2
i R, (2.28)

while for the CP-odd right-handed sneutrinos one finds

m2
ν̃Ii R ν̃Ii R

∼ − 3√
2
Aκ
i i iκi i ivi R . (2.29)

Thus, to avoid tachyons both in the CP-even and -odd scalar
spectrum, we will follow the sign convention Aκ

i i i < 0, κi i i >

0 and vi R > 0.
Before we come to the one-loop renormalization of the

neutral scalar potential we briefly describe the other relevant
sectors of the μνSSM.

2.2 Squark sector

The numerically most important one-loop corrections to the
scalar potential are expected from the stop/top-sector, analo-
gous to the (N)MSSM [105–107,110–112], due to the huge
Yukawa coupling of the (scalar) top. The tree-level mass
matrices of the squarks differ slightly from the ones in the
MSSM. Neglecting flavor mixing in the squark sector, one
finds for the up-type squark mass matrix Mũ

i of generation i ,

(
Mũ

i

)
11 =

(
m2

Q̃

)
i
+ 1

24
(3g2

2 − g2
1)

(
v2
d + v j Lv j L − v2

u

)

+ 1

2
v2
uY

u
i

2
, (2.30)

(
Mũ

i

)
12 = 1

2

(√
2vu A

u
i + v j LY

ν
jkvkR − vdv j Rλ j

)
Yu
i ,

(2.31)
(
Mũ

i

)
22 =

(
m2

ũ

)
i
+ 1

6
g2

1(v2
d + v j Lv j L − v2

u) + 1

2
v2
uY

u
i

2
.

(2.32)

It should be noted that in the non-diagonal element explicitly
appear the neutrino Yukawa couplings. This term arises in the
F-term contributions of the squark potential through the quar-
tic coupling of up-type quarks and one left-handed and the

right-handed sneutrinos after EWSB. The mass eigenstates
ũi1 and ũi2 are obtained by the unitary transformation
(
ũi1
ũi2

)
= Uũ

i

(
ũi L
ũi R

)
, Uũ

i U
ũ
i

† = 1. (2.33)

Similarly, for the down-type squarks it is

(
Md̃

i

)
11

=
(
m2

Q̃

)
i
− 1

24
(3g2

2 + g2
1)(v2

d + v j Lv j L − v2
u)

+ 1

2
v2
dY

d
i

2
, (2.34)

(
Md̃

i

)
12

= 1

2

(√
2vd A

d
i − vuλ jv j R

)
Yd
i , (2.35)

(
Md̃

i

)
22

=
(
m2

d̃

)
i
− 1

12
g2

1(v2
d + v j Lv j L − v2

u) + 1

2
v2
dY

d
i

2
.

(2.36)

The mass eigenstates d̃i1 and d̃i2 are obtained by the unitary
transformation
(
d̃i1
d̃i2

)
= Ud̃

i

(
d̃i L
d̃i R

)
, Ud̃

i U
d̃
i

† = 1. (2.37)

2.3 Charged scalar sector

Since R-parity, lepton-number conservation and lepton-
flavor universality are broken, the six charged left- and
right-handed sleptons mix with each other and with the
two charged scalars from the Higgs doublets. In the basis
CT = (H−

d
∗
, H+

u , ẽ∗
i L , ẽ∗

j R) we find the following mass
terms in the Lagrangian:

LC = −C∗Tm2
H+C. (2.38)

Assuming CP conservation m2
H+ is a symmetric matrix of

dimension 8,

m2
H+ =

⎛
⎜⎜⎜⎜⎜⎝

m2
H−
d H−

d
∗ m2

H−
d H+

u
m2

H−
d ẽ∗

j L
m2

H−
d ẽ∗

j R

m2
H+
u

∗
H−
d

∗ m2
H+
u

∗
H+
u

m2
H+
u

∗
ẽ∗
j L

m2
H+
u

∗
ẽ∗
j R

m2
ẽi L H

−
d

∗ m2
ẽi L H

+
u

m2
ẽi L ẽ∗

j L
m2

ẽi L ẽ∗
j R

m2
ẽi R H

−
d

∗ m2
ẽi R H

+
u

m2
ẽi R ẽ∗

j L
m2

ẽi R ẽ∗
j R

⎞
⎟⎟⎟⎟⎟⎠

.

(2.39)

The entries are given in Appendix A.3. The mass matrix is
diagonalized by an orthogonal matrix U+:

U+m2
H+ U+T =

(
m2

H+
)diag

, (2.40)

where the diagonal elements of
(
m2

H+
)diag

are the squared
masses of the mass eigenstates

H+ = U+ C, (2.41)

which include the charged Goldstone boson H+
1 = G±.
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2.4 Charged fermion sector

The charged leptons mix with the charged gauginos and
the charged higgsinos. Following the notation of Ref. [29],
we write the relevant part of the Lagrangian in terms of

two-component spinors (χ−)T =
(
(ei L)c

∗
, W̃−, H̃−

d

)
and

(χ+)T = (
(e j R)c, W̃+, H̃+

u

)
:

Lχ± = −(χ−)Tmeχ
+ + h.c.. (2.42)

The 5 × 5 mass matrix me is defined by

me =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vdY e
11√
2

vdY e
12√
2

vdY e
13√
2

g2v1L√
2

− vi RY ν
i1√

2
vdY e

21√
2

vdY e
22√
2

vdY e
23√
2

g2v2L√
2

− vi RY ν
i2√

2
vdY e

31√
2

vdY e
32√
2

vdY e
33√
2

g2v3L√
2

− vi RY ν
i3√

2

0 0 0 M2
g2vu√

2

− vi LY e
1i√

2
− vi LY e

2i√
2

− vi LY e
3i√

2
g2vd√

2
μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.43)

The mass matrix is diagonalized by two unitary matrices Ue
L

and Ue
R ,

Ue
R

∗
meU

e
L

† = mdiag
e , (2.44)

where mdiag
e contains the masses of the charged fermions in

the mass eigenstate base

χ+ = Ue
L

†
λ+, (2.45)

χ− = Ue
R

†
λ−. (2.46)

Note that terms mixing the SM leptons and the MSSM-like
charginos in Eq. (2.43) are suppressed by the size of the left-
handed vevs vi L or the neutrino Yukawa couplings Y ν

i j . The
smallness of vi L in comparison to the other vevs and M2

assures the decoupling of the three leptons from the Hig-
gsino and the wino, prohibiting substantial lepton-flavor-
universality and lepton-number violation in the charged
fermion sector.

2.5 Neutral fermion sector

The three left-handed neutrinos and the right-handed neutri-
nos mix with the neutral Higgsinos and gauginos. Again,
following Ref. [29], we write the relevant part of the
Lagrangian in terms of two-component spinors (χ0)T =(
(νi L)c

∗
, B̃0, W̃ 0, H̃0

d , H̃0
u , ν∗

j R

)
as

Lχ0 = −1

2
(χ0)Tmνχ

0 + h.c., (2.47)

where mν is the 10×10 symmetric mass matrix. The neutral
fermion mass matrix is determined by

mν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 − g1v1L
2

g2v1L
2 0

vi RY ν
1i√

2

0 0 0 − g1v2L
2

g2v2L
2 0

vi RY ν
2i√

2

0 0 0 − g1v3L
2

g2v3L
2 0

vi RY ν
3i√

2

− g1v1L
2 − g1v2L

2 − g1v3L
2 M1 0 − g1vd

2
g1vu

2

g2v1L
2

g2v2L
2

g2v3L
2 0 M2

g2vd
2 − g2vu

2

0 0 0 − g1vd
2

g2vd
2 0 −μ

vi RY ν
1i√

2

vi RY ν
2i√

2

vi RY ν
3i√

2
g1vu

2 − g2vu
2 −μ 0

vuY ν
11√
2

vuY ν
21√
2

vuY ν
31√
2

0 0 − vuλ1√
2

−vdλ1+vi L Y ν
i1√

2

vuY ν
12√
2

vuY ν
22√
2

vuY ν
32√
2

0 0 − vuλ2√
2

−vdλ2+vi L Y ν
i2√

2

vuY ν
13√
2

vuY ν
23√
2

vuY ν
33√
2

0 0 − vuλ3√
2

−vdλ3+vi L Y ν
i3√

2

· · ·

· · ·

vuY ν
11√
2

vuY ν
12√
2

vuY ν
13√
2

vuY ν
21√
2

vuY ν
22√
2

vuY ν
23√
2

vuY ν
31√
2

vuY ν
32√
2

vuY ν
33√
2

0 0 0

0 0 0

− vuλ1√
2

− vuλ2√
2

− vuλ3√
2

−vdλ1+vi L Y ν
i1√

2

−vdλ2+vi L Y ν
i2√

2

−vdλ3+vi L Y ν
i3√

2√
2vi Rκ11i

√
2vi Rκ12i

√
2vi Rκ13i

√
2vi Rκ12i

√
2vi Rκ22i

√
2vi Rκ23i

√
2vi Rκ13i

√
2vi Rκ23i

√
2vi Rκ33i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.48)

Because of the Majorana nature of the neutral fermions we
can diagonalizemν with the help of just a single - but complex
- unitary matrix UV ,

UV
∗
mν U

V
† = mdiag

ν , (2.49)

with

χ0 = UV
†

λ0, (2.50)

where λ0 are the two-component spinors in the mass basis.
The eigenvalues of the diagonalized mass matrix mdiag

ν are
the masses of the neutral fermions in the mass eigenstate
basis.

The mass matrix has a seesaw structure, assuring that
the three lightest eigenvalues will be very small, so that the
mass eigenstates λ0

1,2,3 can practically be identified with the
SM left-handed neutrinos. Components from the MSSM-like
neutralinos and the right-handed neutrinos are negligible for
the three lightest states. Thus, the left-handed neutrino mix-
ing can in very good approximation (using diagonal Y e) be
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expressed in the usual PMNS formalism [113,115] by the
three mixing angles θ12, θ13 and θ23,

⎛
⎜⎜⎝

λ0
1

λ0
2

λ0
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

c12c13 −s12c23 − c12s23s13 s12s23 − c12c23s13

s12c13 c12c23 − s12s23s13 −c12s23 − s12c23s13

s13 s23c13 c23c13

⎞
⎟⎟⎠

⎛
⎜⎜⎝

χ0
1

χ0
2

χ0
3

⎞
⎟⎟⎠ = UV

i j

⎛
⎜⎜⎝

χ0
1

χ0
2

χ0
3

⎞
⎟⎟⎠ , (2.51)

with i, j = {1, 2, 3}, and we used the short-hand notation
cx = cos θx and sx = sin θx . In our numerical studies we
fitted the experimentally well measured quantities

s2
13 = |UV

31|2 , s2
12 = |UV

21|2
1 − s2

13

, s2
23 = |UV

32|2
1 − s2

13

,

(2.52)

δm2
12 = m2

λ0
2
− m2

λ0
1

, �m2
13 ∼ �m2

23 = m2
λ0

3
− m2

λ0
1,2

(2.53)

We restricted ourselves in the neutrino sector to a tree-level
analysis, because the one-loop corrections turn out to be
moderate in size (in the normal hierarchy pattern) [28] and
can always be compensated by a small shift in the neu-
trino Yukawa couplings Y ν

i j without affecting the conclusions
drawn in the scalar sector, in particular for the observables
related to the SM-like Higgs boson.

To reduce the parameter space in our analysis, we usually
assume the couplings Y ν to be diagonal, as we do for the lep-
ton Yukawa couplings Y e. We emphasize that non-diagonal
Y ν
i j are not required to reproduce the correct neutrino mix-

ing, because sizable flavor mixing is always present after the
diagonalization of mν , generated by the mixing terms of the
left-handed neutrino states with the gauginos, Higgsinos and
right-handed neutrinos. Quantitatively, this can be illustrated
assuming universal parameters λ := λi , vR := vi R , κ := κi i i
and Y ν

i := Y ν
i i (κi jk = 0 and Y ν

i j = 0 otherwise), by the for-
mula [27]

(meff
ν )i j � Y ν

i Y
ν
j v

2
u

6
√

2κvR
(1 − 3δi j ) − vi Lv j L

4Meff

− 1

4Meff

⎡
⎣vd

(
Y ν
i v j L + Y ν

j vi L

)

3λ
+ Y ν

i Y
ν
j v

2
d

9λ2

⎤
⎦ , (2.54)

with

Meff ≡ M1M2

g2
1M2 + g2

2M1
− v2

2
√

2
(
κv2

R + λvuvd
)

3λvR

×
(

2κv2
R

vuvd

v2 + λv2

2

)
. (2.55)

Equation (2.54) demonstrates that substantial flavor mixing
is practically unavoidable in the μνSSM. The first two terms
are of particular importance. The first term can be attributed
to the mixing with the right-handed neutrinos and higgsinos,
and the other terms also include the gaugino mixing. Note that
for moderate values of tan β and not too small values of λ the
first two terms are the dominant contributions. They contain
diagonal and non-diagonal contributions that can easily be
adjusted by an appropriate choice of the parameters Y ν

i , vi L
and the soft gaugino mass parameters M1 and M2. These
parameters play only a minor role in the predictions for the
SM-like Higgs boson mass and its mixing with the right-
handed sneutrinos. Thus, the above mentioned parameters
will be used to reproduce neutrino physics in agreement with
experimental limits, without having to worry about spoiling
the properties of the SM-like Higgs boson.

3 Renormalization of the Higgs potential at one-loop

At tree level the part of the Higgs potential relevant for the
masses of the scalars is given by the tadpole coefficients in
Eqs. (2.13)–(2.16) and the CP-even and CP-odd scalar mass
matrix elements in Eqs. (2.17) and (2.18). We want to employ
a renormalization procedure as close as possible to the ones
used in the (N)MSSM. Therefore, we define in the following
subsection certain replacements to obtain a new set of free
parameters. The new set of free parameter will permit us
to make use of a mixed On-Shell (OS)/DR renormalization
scheme. The precise definition of the counterterms of the free
parameters will be given in Sect. 3.2. Finally, we describe the
renormalization conditions applied on each parameter and
the extraction of the counterterms in Sect. 3.3.

3.1 Parameter replacements

The vevs of the doublet Higgs fields vu and vd are substituted
by the MSSM-like parameters tan β and v according to

tan β = vu

vd
and v2 = v2

d + v2
u + vi Lvi L . (3.1)

Note that the definition of v2 differs from the one in the
MSSM by the term vi Lvi L . This allows to maintain the rela-
tions between v2 and the gauge-boson masses as they are in
the MSSM. Numerically, the difference in the definition of v2

is negligible. Maintaining the functional form of tan β as it is
in the (N)MSSM is convenient to facilitate the comparison of
the quantum corrections in the μνSSM and the (N)MSSM, as
the one-loop counterterm of tan β is expressed without hav-
ing to include the counterterms for the left-handed sneutrino
vevs [99]. The gauge couplings g1 and g2 will be replaced
by the gauge-boson masses MW and MZ ,
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Table 1 Set of independent parameters initially entering the tree-level Higgs potential of the μνSSM in the first row, and final choice of free
parameters after the substitutions defined in the text

Soft masses vevs Gauge cpl. Superpot. Soft trilinears

m2
Hd

, m2
Hu

, m2
ν̃R i j

, m2
L̃ i j

, m2
Hd L̃ i

vd , vu , vi R , vi L g1, g2 λi , κi jk , Y ν
i j T λ

i , T κ
i jk , T ν

i j

↓ ↓ ↓
THR

d
, THR

u
, T̃νRi R

, T̃νRi L
, tan β, v, vi R , vi L MW , MZ

m2
ν̃ i �= j , m

2
L̃ i �= j

, m2
Hd L̃ i

M2
W = 1

4
g2

2v2 and M2
Z = 1

4

(
g2

1 + g2
2

)
v2. (3.2)

This is reasonable, because the gauge-boson masses are well
measured physical observables, so we can define them as OS
parameters. The explicit dependence of the quantum correc-
tions on the mass counterterm for M2

W drops out at the one-
loop level, but it will contribute implicitly in the definition of
the counterterm for v2. The scalar soft masses m2

Hd
and m2

Hu
and the diagonal elements of the soft slepton mass matrices
m2

L̃
and m2

ν̃ are replaced by the tadpole coefficient in which
they appear. Using the tadpole coefficients as input param-
eters facilitates the absorption of quantum corrections that

would spoil the true vacuum of the potential. Alternatively,
one could also trade the vevs for the tadpole coefficients, and
keep the soft masses as input parameters. However, it is com-
putationally much more convenient to use the vevs as input
and solve the tadpole equations for the squared soft masses,
because they appear linearly, while solving the tadpole equa-
tions for the vevs, using the soft masses as input, is a complex
non-linear problem with multiple solutions. The complete set
of independent parameters is summarized in Table 1.

3.2 Counterterms

The entries of the neutral scalar mass matrices are functions
of the independent parameters,

m2
ϕ = m2

ϕ

(
M2

Z , v2, tan β, λi , . . .
)

, (3.3)

m2
σ = m2

σ

(
M2

Z , v2, tan β, λi , . . .
)

, (3.4)

and we define their renormalization as

m2
ϕ → m2

ϕ + δm2
ϕ, (3.5)

m2
σ → m2

σ + δm2
σ . (3.6)

The mass counterterms δm2
ϕ and δm2

σ enter the renormalized
one-loop scalar self-energies. They are given as a linear com-
bination of the counterterms of the independent parameters,
which we define as

THR
d

→ THR
d

+ δTHR
d

,

THR
u

→ THR
u

+ δTHR
u

,

T̃νRi R
→ T̃νRi R

+ δT̃νRi R
,

T̃νRi L
→ T̃νRi L

+ δT̃νRi L
,

m2
ν̃ i �= j → m2

ν̃ i �= j + δm2
ν̃ i �= j ,

m2
L̃ i �= j

→ m2
L̃ i �= j

+ δm2
L̃ i �= j

,

m2
Hd L̃ i

→ m2
Hd L̃ i

+ δm2
Hd L̃ i

,

tan β → tan β + δ tan β,

v2 → v2 + δv2,

v2
i R → v2

i R + δv2
i R,

v2
i L → v2

i L + δv2
i L ,

M2
W → M2

W + δM2
W ,

M2
Z → M2

Z + δM2
Z ,

λi → λi + δλi ,

κi jk → κi jk + δκi jk ,

Y ν
i j → Y ν

i j + δY ν
i j ,

T λ
i → T λ

i + δT λ
i ,

T κ
i jk → T κ

i jk + δT κ
i jk ,

T ν
i j → T ν

i j + δT ν
i j .

(3.7)

The divergent parts of the counterterms are fixed to cancel
the UV divergences. The finite pieces, and thus the meaning
of the parameters, have to be fixed by renormalization condi-
tions. We will adopt a mixed renormalization scheme, where
tadpoles and gauge boson masses are fixed OS, and the other
parameters are fixed in the DR scheme. The exact renormal-
ization conditions will be given in Sect. 3.3. The dependence
of the mass counterterms δm2

ϕ and δm2
σ on the counterterms

of the free parameters is given at the one-loop level by the
first order expansion w.r.t. the free parameters,

δm2
ϕ =

∑
X∈ free param.

(
∂

∂X
m2

ϕ

)
δX,

δm2
σ =

∑
X∈ free param.

(
∂

∂X
m2

σ

)
δX. (3.8)
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We define the mixing matrices UH and U A to diagonalize
the renormalized mass matrices, so they do not have to be
renormalized. The expressions for the counterterms of the
scalar mass matrices in the mass eigenstate basis are then
given by

δm2
h = UH δm2

ϕU
HT

, δm2
A = U Aδm2

σU
AT , (3.9)

where we emphasize that δm2
h and δm2

A are not diagonal,
as they would be in a purely OS renormalization procedure
which is often used in theories with flavor mixing [116].

The field renormalization required to obtain finite scalar
self-energies at arbitrary momentum, is defined by
⎛
⎜⎜⎝

Hd

Hu

ν̃i R
ν̃i L

⎞
⎟⎟⎠ → √

Z

⎛
⎜⎜⎝

Hd

Hu

ν̃i R
ν̃i L

⎞
⎟⎟⎠ =

(
1 + 1

2
δZ

)
⎛
⎜⎜⎝

Hd

Hu

ν̃i R
ν̃i L

⎞
⎟⎟⎠ , (3.10)

where
√
Z and δZ are 8 × 8 dimensional matrices and the

equal sign is valid at the one-loop level. In contrast to the
(N)MSSM, the field renormalization is not diagonal in the
interaction basis. The reason is that the μνSSM explicitly
breaks lepton-number conservation and lepton-flavor univer-
sality, resulting in kinetic mixing terms at one-loop order.2

For the CP-even and CP-odd neutral scalar fields the defini-
tion in Eq. (3.10) implies the following field renormalization
in the mass eigenstate basis:

h →
(
1 + 1

2
δZH

)
h , A →

(
1 + 1

2
δZ A

)
A, (3.11)

with

δZH = UH (δZ)UHT
and δZ A = U A (δZ)U AT .

(3.12)

3.3 Renormalization conditions

In this section we briefly describe our choice for the renor-
malization conditions. We start with the OS conditions for
the gauge boson mass parameters and the tadpole coefficients
followed by our definitions for the DR renormalized parame-
ters, including the field renormalization. All counterterms are
extracted diagrammatically by calculating one-loop correc-
tions to linear, bilinear or trilinear terms of the Lagrangian,
and identifying the part of the corrections that had to be
absorbed individually by the counterterms of the parameters
appearing in the tree-level expression of the term. We gen-
erated the Feynman diagrams using our FeynArts [118]

2 As was argued in Ref. [117], non-diagonal field renormalization con-
stants are not necessary if one only demands physical quantities to be
UV finite, permitting UV divergences in non-diagonal 2-point Green’s
functions to remain. These would then be canceled by the additional
mixing effects on the outer legs of S-matrix elements following the
LSZ theorem.

model file, which was initially created with SARAH version
4.12.0 [95,119]. We modified the model file by hand to be
able to use FormCalc [120] for further evaluations and to
improve the analytical and numerical evaluation of the rather
large expressions. Since the divergent parts of one-loop coun-
terterms can in principle also be derived from the one-loop
beta functions, for which generic analytical formulas exist
[121–126], the diagrammatic calculation of the counterterms
was an excellent test for the correctness of our FeynArts
model file.

The determination of the counterterms for the set of inde-
pendent parameters was done in a specific order, because in
some cases the definition of the renormalization condition
of one counterterm depends on other counterterms, that nec-
essarily had to be determined before. In Fig. 1 we give an
overview of the strategy for the extraction of the countert-
erms. We also highlight in color the sectors of the μνSSM
in which the corresponding counterterm was extracted (see
caption). The exact definition of the counterterms and their
final analytic expressions in terms of UV divergences for the
DR counterterms are listed in Appendix B.

Therein, divergent parts are expressed proporional to �,

� = 1

ε
− γE + ln 4π, (3.13)

where loop integral are solved in 4 − 2ε dimensions and
γE = 0.5772 . . . is the Euler-Mascharoni constant. Since the
field renormalization constants contribute only via divergent
parts, they do not contribute to the finite result after canceling
divergences in the self-energies. As regularization scheme we
choose dimensional reduction [127,128] which was shown
to be SUSY conserving at the one-loop level [129]. In con-
trast to the OS renormalization scheme our field renormal-
ization matrices are hermitian. This holds also true for the
field renormalization in the mass eigenstate basis, because
as already mentioned the rotations in Eqs. (2.19) and (2.21)
diagonalize the renormalized tree-level scalar mass matrices,
so Eq. (3.12) do not introduce non-hermitian parts into the
field renormalization that would have to be canceled by a
renormalization of the mixing matrices UH and U A them-
selves.

3.3.1 OS conditions

The SM gauge boson masses are renormalized OS requiring

Re
[
�̂T

Z Z

(
M2

Z

)]
= 0 and Re

[
�̂T

WW

(
M2

W

)]
= 0,

(3.14)

where �̂T stands for the transverse part of the renormalized
gauge boson self-energy. For their mass counterterms these
conditions yield
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Fig. 1 Strategy for extracting
the counterterms needed for
renormalizing the neutral scalar
potential. The arrows indicate
the order in which the
counterterms were obtained,
while the colors stand for the
sector that was used to extract
the counterterms. Red:
Renormalization of
electromagnetic coupling.
Violet: Renormalization of
CP-odd self-energies. Yellow:
Renormalization of gauge boson
self-energies. Blue:
Renormalization of neutral
fermion self-energies. Green:
Renormalization of CP-even
scalar trilinear couplings. White:
Completely fixed by the
dependence on other
counterterms. The counterterms
in the dashed boxes do not
belong to the set of independent
parameters, but their
counterterms were calculated as
an intermediate step. The
counterterms below one of the
horizontal dashed lines could be
extracted only after the
counterterms above the same
horizontal line were determined

δM2
Z = Re

[
�T

Z Z

(
M2

Z

)]
and

δM2
W = Re

[
�T

WW

(
M2

W

)]
. (3.15)

Here the �T (without the hat) denote the transverse part of
the unrenormalized gauge boson self-energies.

For the tadpole coefficients Tϕi the OS conditions read

T (1)
ϕi

+ δTϕi = 0, (3.16)

where T (1)
ϕi are the one-loop contributions to the linear terms

of the scalar potential, stemming from tadpole diagrams
shown in Fig. 2. The tadpole diagrams are calculated in the
mass eigenstate basis h. The one-loop tadpole contributions

in the interaction basis ϕ are then obtained by the rotation

T (1)
ϕ = UHT

T (1)
h . (3.17)

Accordingly we find for the one-loop tadpole counterterms

δTϕi = −T (1)
ϕi

. (3.18)

3.3.2 DR conditions

For practical purposes we decided to renormalize all remain-
ing parameters in the DR scheme, reflecting the fact that there
are no physical observables yet that could be directly related
to them. The counterterms of each parameter were obtained
by calculating the divergent parts of one-loop corrections to
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Fig. 2 Generic Feynman diagrams for the tadpoles Thi

different scalar and fermionic two- and three-point functions.
We sketch the determination of the counterterms in the (pos-
sible) order in which they can be successively derived (see
Fig. 1).

The general strategy for extracting the counterterms of
the free parameters is the following. At first one finds a rel-
atively simple tree-level expression, containing the parame-
ter whose counterterm one wants to extract, and, apart from
that, exclusively parameters whose countertems are already
known. In our case we used bilinear and trilinear couplings
in the neutral scalar and fermionic sector for this. Then one
calculates the one-loop corrections to the term by evaluating
the corresponding Feynman diagrams. As we only need the
divergent parts of the loop corrections for DR conditions,
we are able to calculate the diagrams in the gauge eigenstate
basis, where the number of diagrams is drastically reduced.
Once the divergent contributions are known, the counterterm
to be identified directly follows from the expression of the
renormalized Green’s functions.

In this chapter we only state the general formulas for the
renormalized two- and three-point Green’s functions. The
exact conditions used to extract each countertem is listed
in Appendix B.2. Therein, we also show the resulting ana-
lytic expressions for the counterterms renormalized in the
DR scheme.3 A more detailed discussion in the case of the
μνSSM with one generation of right-handed neutrinos can
be found in Ref. [99].

Neutral fermion sector

We derived most of the counterterms in the neutral fermion
sector. The mass matrix elements of the neutral fermions
(mν)i j get one-loop corrections via the neutral fermion self-
energies

∑
χ0
i χ0

j
, that for Majorana fermions can be decom-

posed as

�χ0
i χ0

j

(
p2

)
= /p�F

χ0
i χ0

j

(
p2

)
+ �S

χ0
i χ0

j

(
p2

)
. (3.19)

3 An exceptions is the renormalization of the SM vev v, which we
extract from the counterterm of the electromagnetic gauge coupling in
the Thomson limit (see Ref. [99] for details).

Defining for the renormalized mass matrix

(mν)i j → (mν)i j + δ (mν)i j , (3.20)

the renormalized scalar part of the self-energies at zero
momentum is given by

�̂S
χ0
i χ0

j
(0) = �S

χ0
i χ0

j
(0)

−1

2

(
δZχ

ki (mν)k j + (mν)ik δZχ
k j

)
− δ (mν)i j . (3.21)

The field renormalization constants can be obtained in the
DR scheme by calculating the divergent part of the fermionic
piece,

δZχ
i j = − �F

χ0
i χ0

j

∣∣∣∣
div

. (3.22)

The divergent parts of the self-energies of the neutral
fermions were calculated diagrammatically in the interac-
tion basis, where diagrams with mass insertions have to be
included. If (mν)i j containes just a single parameter whose
counterterm is unknow, Eq. (3.21) provides a definition for
the missing counterterm once the mass counterterm δ (mν)i j
is expressed in terms of the counterterms of the fundamental
parameters. Unfortunately, the right-handed vevs vi R always
appear in sums over the family index and never isolated.
Therefore we calculated loop corrections to the three ele-
ments (mν)i,7 = −Y ν

i jv j R/
√

2, which provides us with a
linear system of three independent equations;

Y ν
i jδv j R = √

2 �S
νi L H̃0

u

∣∣∣
div − 1

2

(
δZχ

i jvkRY
ν
jk − δZχ

i6v j Rλ j

+δZχ
77v j RY

ν
i j

)
− v j RδY ν

i j , (3.23)

that can be solved analytically for the three counterterms
δv2

i R = 2vi R δvi R .

Neutral scalar trilinear couplings

General one-loop scalar three-point functions can be renor-
malized by wavefunction counterterms and the specific ver-
tex counterterm as

�̂(1)
ϕiϕ jϕk

= �(0)
ϕiϕ jϕk

+ �(1)
ϕiϕ jϕk

− 1

2

(
�(0)

ϕlϕ jϕk
δZli

+ �(0)
ϕiϕlϕk

δZl j + �(0)
ϕiϕ jϕl

δZlk

)
− δ�(1)

ϕiϕ jϕk
,

(3.24)

where δZi j are the scalar field renormailzation constants

defined in Eq. (3.10), �
(0)
ϕiϕ jϕk are the tree-level couplings,

�
(1)
ϕiϕ jϕk are the one-loop corrections obtained by evaluat-

ing the non-irreducible one-loop three-point diagrams, and
δ�

(1)
ϕiϕ jϕk is the coupling counterterm given as a function of

the counterterms of the independent parameters. The field
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renormalization constants are defined as DR-parameters. We
calculate the UV-divergent part of the derivative of the scalar
CP-even self-energies in the interaction basis and define

δZi j = − d

dp2 �ϕiϕ j

∣∣∣∣
div

. (3.25)

As before, if at tree level �(0)
ϕiϕ jϕk just contains a single param-

eter whose counterterm is still unknown, the counterterm can
be extracted from the divergent part of the one-loop correc-
tions �

(1)
ϕiϕ jϕk demanding that the renormalized quantity is

finite. Similarly to the vevs vi R , for the parameters κi i j it
is not possible to find a tree-level expression where each
element appears isolated. However, using the renormalized
expression in Eq. (3.24) for the vertex

�
(0)

ν̃Ri R ν̃RkR ν̃Rj L
= 1

2
vdλkY

ν
j i + 1

2
vdλi Y

ν
jk

−1

2
vl LY

ν
li Y

ν
jk − 1

2
vl LY

ν
lkY

ν
j i − vuκiklY

ν
jl ,

(3.26)

we can extract the counterterms for the three subsets
(δκ11 j , δκ22 j , δκ33 j ) by renormalizing the subset of vertices
(�ν̃R1R ν̃R1R ν̃Rj L

, �ν̃R2R ν̃R2R ν̃Rj L
, �ν̃R3R ν̃R3R ν̃Rj L

). Thus, for each subset

(κi i j ; i = 1, 2, 3) we get a linear system of three ( j = 1, 2, 3)
equations to extract the counterterms δκi i j from the condi-
tion that the renormalized one-loop three-point function is
finite.

Neutral scalar masses

The soft scalar masses appear in the bilinear terms of the
Higgs potential. They can be renormalized by calculating
radiative corrections to scalar self-energies. Since our final
aim is to obtain loop corrections for the CP-even scalars, we
used the CP-odd scalar sector to extract the counterterms of
the soft masses to have an independent crosscheck of both
neutral scalar sectors.

The general form of the renormalized scalar self-energies
at the one-loop level is

�̂Xi X j

(
p2

)
= �Xi X j

(
p2

)
+ 1

2
p2 (

δZ ji + δZi j
)

− 1

2

(
δZki

(
m2

X

)
k j

+
(
m2

X

)
ik

δZkj

)
− δ

(
m2

X

)
i j

,

(3.27)

where X = (ϕ, σ ) represents either the CP-even or the CP-
odd scalar fields and we made use of the fact that the field
renormalization constants δZ and the mass matrix m2

X are
real. Demanding that the renormalized self-energies �̂Ai A j

are finite in the mass eigenstate basis we can define the diver-
gent parts of the mass counterterms via

δ
(
m2

A

)
i j

∣∣∣∣
div

= �Ai A j (0)
∣∣div

−1

2

((
δZ A

)
j i
m2

A j
+ m2

Ai

(
δZ A

)
i j

)
, (3.28)

where the field counterterms in the mass eigenstate basis
were defined in Eq. (3.12), and renormalized as DR param-
eters like the ones for the CP-even scalars (see Eq. (3.25)),
and the masses squared m2

Ai
are the eigenvalues of the diag-

onal CP-odd scalar mass matrix m2
A. In Fig. 3 we show the

diagrams that have to be calculated to obtain the quantum
corrections to scalar self-energies at the one-loop level in the
mass eigenstate basis.

We calculated all diagrams in the ’t Hooft-Feynman gauge
in which the Goldstone bosons A1 and H±

1 and the ghost
fields u± and uZ have the same masses as the corresponding
gauge bosons. Calculating the CP-odd self-energies �Ai Ai

diagrammatically, we obtain the mass counterterms in mass
eigenstate basis through the Eq. (3.28). Now inverting the
rotation in Eq. (3.9) yields the mass counterterms for the
CP-odd self-energies in the interaction basis,

δm2
σ

∣∣∣
div = U AT δm2

A

∣∣∣
div

U A. (3.29)

Analytically, following the expansion in Eq. (3.8), some of
the mass counterterms δm2

σ depend on the counterterms of
the soft mass parameters. We use this dependences to extract
the counterterms of (m2

Hd L̃
)i and the counterterms of the

non-diagonal elements of (m2
L̃
)i j and (m2

ν̃ )i j .

4 Loop corrected scalar masses

In the previous section we have defined an OS/DR renormal-
ization scheme for the μνSSM neutral scalar sector. This
can be applied (via the FeynArts model file, in which
the counterterms are implemented) to any higher-order cor-
rection in the μνSSM. As a first application, we evaluate
the full one-loop corrections to the CP-even scalar sector in
the μνSSM. In the following we emphasize the differences
w.r.t the analysis with just one right-handed neutrino from
Ref. [99].

4.1 Evaluation at the one-loop level

The one-loop renormalized self-energies in the mass eigen-
state basis are given by

�̂
(1)
hi h j

(
p2

)
= �

(1)
hi h j

(
p2

)

+δZH
i j

(
p2 − 1

2

(
m2

hi + m2
h j

))
−

(
δm2

h

)
i j

, (4.1)
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Fig. 3 Generic diagrams for
the CP-even (h) and CP-odd
(A) scalar self-energies in the
mass eigenstate basis

with the field renormalization constants δZH and the mass
counter terms δm2

h in the mass eigenstate basis defined
by the rotations in Eqs. (3.12) and (3.9), respectively.
�hi h j is the unrenormalized self-energy obtained by cal-
culating the diagrams shown in Fig. 3 with the CP-even
states h on the external legs. The self-energies were cal-
culated in the ’t Hooft-Feynman gauge, so that gauge-
fixing terms do not yield counterterm contributions in the
Higgs sector at the one-loop level. The loop integrals
were regularized using dimensional reduction [127,128]
and numerically evaluated for arbitrary real momentum
using LoopTools[120]. The contributions from complex
values of p2 were approximated using a Taylor expan-
sion with respect to the imaginary part of p2 up to first
order.

In Eq. (4.1) we already made use of the fact that
δZH is real and symmetric in our renormalization scheme.
The mass counterterms are defined as functions of the
counterterms of the free parameters following Eqs. (3.8)
and (3.9). They contain finite contributions from the tad-
pole counterterms and from the counterterm for the gauge
boson mass M2

Z . The matrix δm2
h is real and symmet-

ric.

The renormalized self-energies enter the inverse propaga-
tor matrix

�̂h = i
[
p2 1 −

(
m2

h − �̂h

(
p2

))]
,

with
(
�̂h

)
i j

= �̂hi h j . (4.2)

The loop-corrected scalar masses squared are the zeroes of
the determinant of the inverse propagator matrix. The deter-
mination of corrected masses has to be done numerically
when one wants to account for the momentum-dependence
of the renormalized self-energies. This is done by an iterative
method that has to be carried out for each of the six squared
loop-corrected masses.4

4.2 Inclusion of higher orders

In Eq. (4.2) we did not include the superscript (1) in the self-
energies. Restricting the numerical evaluation to a pure one-
loop calculation would lead to very large theoretical uncer-
tainties. These can be avoided by the inclusion of corrections
beyond the one-loop level. Here we follow the approach of

4 Details about the numerical algorithm used can be found in Ref. [130].
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Refs. [87,99] and supplement the μνSSM one-loop results
by higher-order corrections in the MSSM limit as provided
by FeynHiggs (version 2.13.0) [40,48,60–64,67].5 In this
way the leading and subleading two-loop corrections are
included, as well as a resummation of large logarithmic terms,
see the discussion in Sect. 1,

�̂h

(
p2

)
= �̂

(1)
h

(
p2

)
+ �̂

(2′)
h + �̂resum

h . (4.3)

In the partial two-loop contributions �̂
(2′)
h we take over the

corrections of O(αsαt , αsαb, α
2
t , αtαb), assuming that the

MSSM-like corrections approximate numerically well the
corresponding μνSSM corrections. This assumption is rea-
sonable since the only difference between the squark sector of
the μνSSM in comparison to the MSSM are numerically sup-
pressed terms proportional to v j LY ν

jkvkR in the non-diagonal
element of the up-type squark mass matrices (see Eq. (2.31))
and proportional to vi Lvi L in the diagonal elements of the up-
and down-type squark mass matrices (see Eqs. (2.30, 2.32,
2.34) and (2.36)). Furthermore, in Refs. [87,108] the qual-
ity of the MSSM approximation was tested in the NMSSM,
showing that the genuine NMSSM contributions are in most
cases sub-leading. Our results in Ref. [99] confirm that the
same holds true in the μνSSM for the SM-like Higgs-boson
mass. The same is expected for the contributions stemming
from the resummation of large logarithmic terms given by
�̂resum

h .

5 Numerical analysis

In the following we will present several benchmark points
(BPs) that illustrate the phenomenology of the scalar sector
of the μνSSM. We concentrate on scenarios in which a right-
handed sneutrino is mixed with the SM-like Higgs boson. By
setting κi jk = κ δi jδ jk , as explained in Sect. 2.1, we achieve
that only a single right-handed sneutrino substantially mixes
with the SM-like Higgs boson. Naturally, the mass scale of
the right-handed sneutrinos will then be of the order of the
SM-like Higgs boson. However, scenarios in which the decay
of the SM-like Higgs boson to two right-handed sneutrinos is
kinematically allowed, are experimentally very constrained
[109].

In contrast to most of the previous studies of the μνSSM
with three generations of right-handed neutrinos [24,25,27,
28,109], we will not always make the simplifying assump-
tion that genuine low-energy μνSSM-parameters have uni-
versal values independent of the family index. In Sect. 5.3
we elaborate on the effect of non-universal λi on the SM-like
Higgs-boson mass, while keeping λλλ2 = λiλi constant. Since

5 Using the latest version 2.14.3 would have a minor impact on our
numerical analysis.

we know from Eq. (2.22) that the tree-level mass of the SM-
like Higgs boson strongly depends on λλλ2, it will be discussed
whether the loop corrections increase the dependence on the
individual values λi .

We consider the following experimental constraints on the
scenarios presented:

– We use the public code HiggsBounds v.5.2.0
[131–135] to determine whether a BP has been excluded
by cross section limits from Higgs searches at LEP, LHC
or Tevatron. These searches are mostly sensitive to the
heavy Higgs and the right-handed sneutrinos, if these
are substantially mixed with the SM-like Higgs boson.
The production of the left-handed sneutrinos is much
smaller at the LHC, and signals from their decay usu-
ally demand dedicated searches [30], especially if the
left-handed sneutrino is the LSP [29,31].

– The properties of the SM-like Higgs boson, i.e., its mass
and signal rates at LHC and Tevatron, are checked using
the public code HiggsSignals v.2.2.1 [136–
138]. Here we assume a theoretical mass uncertainty of
3 GeV.HiggsSignals provides us with a χ2-analysis
of nobs = 106 observables in the 7+8 TeV data package
and nobs = 101 observables in the 13 TeV data package.
In our plots we show the reduced χ2

red = χ2/nobs, where
a value of χ2

red = 1 means that on average the signal rates
of the SM-like Higgs boson are at the level of the ±1σ

range of the measurements.
– The properties of the neutrino sector are in agreement

with the measurements of the mass-squared differences
and the mixing angles obtained from neutrino oscillation
experiments. We check that our predictions are within the
±3σ bands published by the NuFit collaboration [139,
140],

6.80 eV2 ≤ δm2
12/10−5 ≤ 8.02 eV2, 2.399 eV2

≤ �m2
13/10−3 ≤ 2.593 eV2, (5.1)

0.0198 ≤ s2
13 ≤ 0.0244, 0.272 ≤ s2

12

≤ 0.346, 0.418 ≤ s2
23 ≤ 0.613, (5.2)

where we considered the normal mass ordering which is
now favored by experiments [141]. A genetic algorithm
was used to find parameter points that minimize the sum
of squared deviations between theoretical prediction and
experimental values specified above [142]. Even though
the μνSSM allows for flavor-violating decays of leptons,
the existing experimental bounds (for instance on μ →
eγ ) are automatically fulfilled when the constrains on
neutrino masses are taken into account [26].

For the necessary input of HiggsBounds and
HiggsSignals we compute the decays of the scalars at

123



Eur. Phys. J. C (2019) 79 :667 Page 17 of 38 667

Table 2 Low-energy values for
the parameters, as defined in the
text, of the scan over λ.
Dimensionful parameters are
given in GeV. The parameters in
the last row are fitted to neutrino
oscillation data

tan β λ κ v1,3R v2R Aλ Aκ Aν

5 [0.13, 0.18] 0.5 1000 765 1000 −1000 −1000

Au
3 Au

1,2 Ad,e mQ̃ ,̃u,d̃ mẽ M3

−2000 −1500 −1500 1500 200 2700

v1L/10−4 v2L/10−4 v3L/10−4 Y ν
11/10−7 Y ν

22/10−7 Y ν
33/10−7 M1 M2

1.390 6.215 4.912 4.181 1.756 6.306 1228 2814

leading order, but with the loop-corrected mixing matrix ele-
ments inserted in the expressions of the scalar couplings. In
the limit of vanishing external momentum, which we used in
the determination of the mixing matrix elements for the cou-
plings, this method corresponds to include the finite wave-
function renormalization factors (Z -factors) for each exter-
nal scalar [63,143]. For loop-induced decays and off-shell
decays to vector bosons we implemented analytic results
from the MSSM well known in the literature [144–148], and
scaled the expressions with effective couplings defined by
the mixing matrix elements and tan β to obtain the result for
the scalars in the μνSSM. For the coupling to b quarks we
included the running bottom mass and for the decay to glu-
ons the running of αs from MZ to the mass of the decaying
scalar, and finally add leading higher-order QCD corrections
[146,149].

As described in Sect. 2.5 we use the left-handed vevs
vi L , the soft gaugino masses M1 and M2, and the neutrino
Yukawa couplings Y ν

i j to fit the neutrino masses and mixings
accurately, making use of the fact that they can be modi-
fied without spoiling the properties of the SM-like Higgs
boson. Besides for the scenario presented in Sect. 5.4, it will
be sufficient to just consider diagonal non-zero elements of
Y ν
i j . Because we concentrate here on the scalar sector of the

μνSSM, and since the fitting has to be done numerically,
we do the fitting in our scans just in one particular point for
each analysis. By varying a parameter, the prediction for the
neutrino properties can be outside the experimentally allowed
range in some points. We indicate in our plots when this is the
case. Since the neutral fermion mass matrix is of dimension
10, with large hierarchies between the neutrino sector and
the remaining part, including one-loop corrections is time-
consuming and numerically very challenging. Therefore we
stick to a tree-level analysis for the neutrinos. However, we
checked for several points that the one-loop corrections are
sub-leading and can in principle be compensated by a slight
change of the parameters.6

6 See also Ref. [28] for a detailed discussion of radiative corrections to
the neutrino masses.

5.1 Scan over λ

The first scenario we are presenting is one with a light right-
handed μ-sneutrino that mixes substantially with the SM-like
Higgs boson. We show the chosen parameters in Table 2. To
simplify the notation we define λ = λi , Aλ = Aλ

i , Aν = Aν
i i ,

κ = κi i i and Aκ = Aκ
i i i and vanishing otherwise. The soft

parameters are given in terms of Ad = Ad
i , Ae = Ae

ii , mQ̃ =
mQ̃i

, mũ = mũi , md̃ = md̃i , and mẽ = mẽii and vanishing
otherwise. We vary over the universal parameter λ, while
keeping the remaining parameters fixed. For the right-handed
e- and τ -sneutrino vevs we chose v1,3R = 1 TeV, but set a
smaller value of v2R = 765 GeV for the μ-sneutrino vev to
decrease the mass of the CP-even μ-sneutrino to the range
around the SM-like Higgs-boson mass. The choice to pick
ν̃μR as the light right-handed sneutrino is of no relevance. The
large value of κ = 0.5 assures that the other two right-handed
sneutrinos will have masses between 300 and 400 GeV, well
above 125 GeV. Because the SM-like Higgs boson mass will
get additional contributions from the mixing with ν̃RμR , tan β

can be chosen rather low.
As mentioned in the previous subsection, we fit the proper-

ties of the neutrinos in just one particular point of the parame-
ter scan. In this scenario, this was done for λ = 0.168, leading
to the values of vi L , Y ν

i i , M1 and M2 shown in Table 2. We
emphasize that this effectively leaves just the trilinear param-
eters Aν

i i to adjust the masses of the left-handed sneutrinos.
For the prediction of the masses of the right-handed sneutri-
nos and the SM-like Higgs boson, the fitted parameters only
play a minor role.

In Fig. 4 we show the resulting spectrum of the light CP-
even scalars. The remaining CP-even scalars not shown in
the plot have masses above 300 GeV and do not play a role
in the following discussion. The dotted lines represent the
tree-level masses, the dashed lines the masses including the
full one-loop corrections, and the solid lines the one-loop +
partial two-loop + resummed (referred to as two-loop in the
following) corrected masses, as explained in Sect. 4.2. We
mark four regions in the plot which are excluded either by
HiggsBounds (red), or by not being in agreement with the
neutrino oscillation data (yellow). We stress that region 2 is
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Fig. 4 CP-even scalar
spectrum in the scan over λ at
tree level, one-loop level and
partial two-loop level. We show
in the brackets the dominant
composition of the tree-level,
one-loop and two-loop mass
eigenstates h(0), h(1) and h(2), in
the experimentally allowed
region of the plot. The desired
SM-like Higgs-boson mass is
indicated with the horizontal
green band, assuming a theory
uncertainty of 3 GeV. The red
regions are excluded by direct
searches for additional scalars.
In the yellow region the
prediction for the mixing angles
of the neutrinos lies outside of
the 3σ band of the experimental
measurement. On top we show
χ2

red for various Higgs-boson
signal strength measurements at
LHC

just excluded for the precise choice of parameters shown in
Table 2. A new fit of the neutrino properties for each value
of λ could easily accommodate predictions for the properties
of the neutrinos in agreement with experiments. However,
since this would exclusively affect the phenomenology of
the heavier left-handed sneutrinos in the scalar sector, we do
not apply the fit for each value of λ.

This spectrum is characterized by the interplay between
the light ν̃RμR and the SM-like Higgs boson. For small λ the
two lightest loop-corrected mass eigenstates h1 and h2 have
roughly an equal amount of HR

u - and ν̃RνR-admixture (see
also Fig. 5). Consequently, region 1 is excluded by direct
searches at the LHC, because the diphoton resonance search
for a SM-like higgs boson excludesh1 via its decay to photons
[150]. At λ ∼ 0.14 the point is reached where the mass of
h1 drops well below 125 GeV. Thus, beyond that point h1

can be identified with ν̃RμR , as the doublet-component of h1

shrinks to values of roughly ∼ 10%. h2, on the other hand,
sheds its sneutrino admixture, so that it can be identified as

the SM-like Higgs boson, and the large quantum corrections
from the top/stop sector dominantly contribute to the mass
of h2. This yields an increase of the SM-like Higgs boson
mass of several GeV, so that beyond region 3 it agrees with
the experimental value, assuming a theoretical uncertainty of
3 GeV.

An interesting observation is that in the allowed region
of λ the large one-loop corrections change the order of ν̃RμR
and the SM-like Higgs boson. While the large shift of the
SM-like Higgs-boson mass from ∼ 83 GeV at tree level to
∼ 125 GeV at two-loop level are familiar from the MSSM,
the large one-loop corrections to ν̃RμR , with a tree-level mass
of ∼ 147 GeV and a two-loop mass below 100 GeV, empha-
size the importance of accurately taking into account the full
parameter space of the μνSSM.

In the allowed region the doublet component of ν̃RμR
reaches values of approximately 10%, which can be seen
in Fig. 5, where we plot the down- and up-type dou-
blet component HR

d and HR
u , and the ν̃RμR-component of
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Fig. 5 Doublet components
(HR

d , HR
u ) and the right-handed

μ-sneutrino component (̃νR
μR) of

the lightest CP-even mass
eigenstate h1, which are defined
by |UH

1i |2 with i = 1, 2 and
i = 4 respectively

Fig. 6 Effective couplings of
the two light CP-even scalar
mass eigenstates h(2)

1 (red) and

h(2)
2 (blue) to up-type quarks

(solid) and down-type quarks
(dashed), normalized to the SM
prediction

the lightest CP-even scalar mass eigenstates h(2)
1 . Natu-

rally, this mixing will also affect the SM-like Higgs-boson
properties. In this way, scenarios like the one shown here
will be tested by experiments in two different and com-
plementary ways, both caused by the mixing of ν̃RμR and
the SM-like Higgs boson: Firstly, direct searches for addi-
tional Higgs bosons can be applied to ν̃RμR , because it is

directly coupled to SM particles. Secondly, precise mea-
surements of the SM-like Higgs-boson couplings can detect
(or exclude) possible variations from SM predictions. To
illustrate the possible modifications, we show in Fig. 6 the
effective coupling of the two light CP-even scalar mass
eigenstates to up- and down-type quarks normalized to
the SM-prediction which in good approximation can be
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Table 3 The same as in Table 2
for the scan over vR = vi R

tan β λ κ vR Aλ Aκ Aν

9.0 0.08 0.3 [1210, 1270] 1000 − 1000 − 1000

Au,d,e mQ̃ ,̃u,d̃ mẽ M3

−1000 1000 200 2700

v1L/10−5 v2L/10−5 v3L/10−4 Y ν
11/10−7 Y ν

22/10−7 Y ν
33/10−8 M1 M2

1.466 8.520 1.855 2.963 5.337 5.902 175.6 188.0

expressed via the loop-corrected mixing matrix elements
UH(2)
i j and β;

chi dd = UH(2)
i1

cos β
, chi uu = UH(2)

i2

sin β
. (5.3)

In the experimentally allowed region the effective coupling
of the SM-like Higgs boson to up-type quarks shows devi-
ations of roughly 10%. This is of the order of precision
expected by measurements of the SM Higgs boson cou-
plings at the High-Luminosity LHC [151], and (depend-
ing on the center-of-mass energy deployed) an order of
magnitude larger than the uncertainty expected for these
kind of measurements at a possible future e+e− col-
lider like the ILC [152–154]. Comparing to Fig. 4 we
can see that the region where the effective couplings
are closest to one, meaning equal to the SM prediction,
does not coincide with the region where the χ2

red from
HiggsSignals is minimized. This is because the mass
of the SM-like Higgs boson is slightly too small in this
range of λ, so even including a theoretical uncertainty of
3 GeV some signal strength measurements implemented in
HiggsSignals are not accounted for by h2 and χ2

red
becomes worse.

5.2 Scan over vR

In Sect. 5.1 we showed that light right-handed sneutrinos
with masses in the vicinity of the SM-like Higgs boson are
theoretically possible and can induce measurable modifica-
tions of the SM-like Higgs-boson properties. Using data of
direct searches and measurements of the couplings of the
SM-like Higgs boson, the parameter space of these scenar-
ios can be constrained effectively. In this section we present
a scenario that is not excluded by current searches in which
all three of the CP-even right-handed sneutrinos will have
masses below 125 GeV. We chose the parameters appearing
in the mass terms of the ν̃Ri R to be universal, i.e., λ := λi ,
vR := vi R , κ := κi i i , Aλ := Aλ

i , Aν := Aν
i i and Aκ := Aκ

i i i .
As explained at the beginning of Sect. 5, the universality of
κ assures that only one of the ν̃Ri R mixes substantially with
the SM-like Higgs boson, while the other two are practically

decoupled. This makes it easier to control the total admixture
of the doublet components of the ν̃Ri R .

The complete set of free parameters is shown in Table 3. In
this scenario we scan over vR , because they appear linearly
in the Majorana-like mass terms of the ν̃Ri R , so it is a conve-
nient parameter to control their masses. Compared to the scan
over λ in Sect. 5.1 the overall behavior of the SM-like Higgs
boson is aligned more to the SM predictions by decreasing λ.
Consequently, because at tree level the additional contribu-
tion proportional to λλλ2 is smaller, tan β is larger to increase
the quantum corrections to the SM-like Higgs-boson mass.
We also decrease κ to make the masses of the ν̃Ri R smaller.
As before, the parameters in the last row of Table 3 were
fitted to accurately predict the left-handed neutrino masses
and mixings. The fit was done in the point vR = 1226 GeV,
but in this case the neutrino data is described accurately over
the whole range of vR at tree level.

In Fig. 7 we show the resulting light CP-even scalar spec-
trum. In the experimentally allowed region (1213 GeV ≤
vR ≤ 1235 GeV) the lightest mass eigenstates are two almost
degenerate right-handed sneutrinos. The third right-handed
sneutrino is roughly 20 GeV heavier, and it acquires sub-
stantial mixing with the SM-like Higgs boson. Naturally, the
ν̃Ri R increase their masses when vR becomes larger, but also
the SM-like Higgs boson mass increases, because the mixing
with the ν̃R3R gives additional contributions.

The scenario is excluded experimentally for very small
values of vR , because the two lightest mass eigenstates h1,2

become lighter than half the mass of the SM-like Higgs boson
h4, so the decays of h4 into h1,2 opens up. Experimental
searches for the decay of the SM-like Higgs boson into two
lighter scalars that subsequently decay into two b-jets and
a pair of μ-leptons [155] exclude region 1 in Fig. 7. These
additional decay channels of the SM-like Higgs boson are
also the reason why the χ2

red rapidly increases in region 1,
because it suppresses ordinary SM-like decays of h4.

When vR increases above 1235 GeV further constrains
from direct searches for additional Higgs bosons and mea-
surement of the properties of the SM-like Higgs boson
become relevant. χ2

red quickly increases above 2 at vR ∼
1237 GeV. Already at vR ∼ 1235 GeV the scenario is
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Fig. 7 Light CP-even scalar
spectrum in the scan over vR .
Shown are the masses at tree
level (dotted), at the one-loop
level (dashed) and at the partial
two-loop level (solid). We show
in the brackets the dominant
composition of the
loop-corrected mass eigenstates
h(2) in the experimentally
allowed region of vR . The
desired SM-like Higgs-boson
mass is indicated with the
horizontal green band, assuming
a theory uncertainty of 3 GeV.
The red regions are excluded by
direct searches for additional
scalars. In the gray region the
SM-like Higgs-boson mass is
not predicted accurately. On top
we show χ2

red for various
Higgs-boson signal strength
measurements at LHC

excluded by LEP searches [156]. Note, that in the red region
2 the mixing of ν̃R3R with the SM-like Higgs boson enlarges,
while ν̃R3R is kinematically still in reach of being produced at
LEP via the Higgsstrahlung-process. Consequently, the chan-
nel ee → (h3)Z → (bb̄)Z , where h3 is identified with ν̃R3R ,
excludes this interval. Interestingly, in the experimentally
allowed region, where the mass of ν̃R3R is even smaller, LEP
data cannot rule out this scenario. The reasons for this is not
only the smaller mixing of ν̃R3R with the SM-like Higgs boson,
but also that in the mass range below 100 GeV LEP saw a
slight excess over the SM background (see also Sect. 5.4)
[156].

Beyond region 2 the current scenario is experimentally
excluded by the measurement of the SM-like Higgs-boson
mass in the gray region 3 and by the LHC cross section mea-
surement of the process pp → h1 → γ γ in region 4 [157].
This is because in region 3 the cross-over point is reached,
in which the masses of the ν̃Ri R become larger than the SM-
like Higgs-boson mass. Through the interference effects the
SM-like Higgs-boson mass is pushed to lower values beyond

that point. In region 4 the mass eigenstate corresponding to
the SM-like Higgs boson is the lightest one at just about
118 GeV. Even though there are two scalars in the mass range
of the experimentally measured Higgs-boson mass, there is
no contribution to any signal-strength measurement at the
LHC, reflected by the fact that the χ2

red is huge in region 4. The
reason is that these states correspond to the practically sin-
glet like right-handed neutrino states. The third right-handed
sneutrino carrying the doublet admixture taken from the SM-
like Higgs boson has a mass of over 140 GeV. Hence, it also
does not contribute to signal-strength measurements of the
SM-like Higgs boson.

On a side note we briefly discuss the remaining light scalar
h5 in Fig. 7, which is the left-handed τ -sneutrino at roughly
235–240 GeV. The fit to the neutrino oscillation data gener-
ated a hierarchy between the vevs of the left-handed sneutri-
nos, with v3L being the largest. As a result, since dominant
tree-level contributions to the ν̃Ri L -masses scale with inverse
of vi L (see Eq. (2.23)), the ν̃Rτ L is the lightest CP-even left-
handed sneutrino. It is rather invisible to usual searches for
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Table 4 The same as in Table 2
for the scan over λi while
λλλ2 = const

tan β λλλ2 κ v1,3R v2R Aλ Aκ Aν

5 3 · 0.1682 0.5 1000 765 1000 − 1000 − 1000

Au
3 Au

1,2 A(d,e) mQ̃ ,̃u,d̃ mẽ M3

−2000 − 1500 − 1500 1500 200 2700

v1L/10−4 v2L/10−4 v3L/10−4 Y ν
11/10−7 Y ν

22/10−7 Y ν
33/10−7 M1 M2

1.497 6.179 4.946 4.388 1.759 6.258 1228 2814

additional Higgs bosons at colliders, but a dedicated analy-
sis of LHC data was proposed to search for light left-handed
sneutrinos in the framework of the μνSSM [30]. However,
the analysis in Ref. [30] concentrated on τ -sneutrinos as the
LSP, whereas here there are even lighter SUSY particles in the
spectrum. For a detailed discussion of distinct signatures at
the LHC related to left-handed sneutrinos within the μνSSM
we refer to the literature [29–31].

5.3 Scan over λi while λλλ2 = λiλi = const.

As already explained at the beginning of this section, there is
no theoretical reason to choose the μνSSM-like parameters
universal w.r.t. the family index. While the tree-level upper
bound on the lightest CP-even scalar mass approximately
depends on the term λλλ2 = λiλi , and not on the individual
λi , this is not the case for the SM-like Higgs-boson mass, as
soon as mixing-effects induced by the right-handed sneutri-
nos are considered. This effects can enter at tree level, or via
radiative corrections proportional to λi . These radiative cor-
rections depend on the masses and the mixing of each of the
right-handed sneutrino. Since it is not the case that all three
ν̃i R are degenerate, the radiative corrections are expected to
depend strongly on the individual values of λi . Also, when
λλλ2 is fixed, the μ-term which is dynamically generated after
EWSB and linearly dependent on λi cannot be constant when
the λi are varied. This can be another source of corrections
to the SM-like Higgs-boson mass that explicitly depend on
the individual values of the λi .

However, the loop corrections proportional to λi are an
order of magnitude smaller than the ones stemming from the
(s)top-sector, partially because quantum contributions to the
SM-like Higgs-boson mass at the one-loop level proportional
to λi depend on the singlet-admixture of the SM-like Higgs
boson which, in turn, cannot be too large to not spoil the
measured signal strengths at the LHC. Nevertheless, we will
give here a rough idea of how large the remnant effect of
non-universal λi on the SM-like Higgs-boson mass can be
while λλλ2 is kept constant. We performed a parameter scan
over all possible values of the λi in a scenario in which ν̃RμR
has a mass between 92 and 115 GeV and mixes substantially

with the SM-like Higgs boson. The free parameters were set
to the values shown in Table 4.

On can see that the scenario is very similar to the one
in Sect. 5.1. When the λi are chosen uniformly we recover
the BP at λ = 0.168 in Fig. 4 which lies in the middle of
the experimentally allowed parameter region. In Fig. 8 we
illustrate the dependence of the SM-like Higgs-boson mass
on the individual values of λi . We show triangle plots [158]
with the values of λ2

i on the axes and with their sum λλλ2 =
const. The colors of the points indicate the mass of the SM-
like Higgs boson at tree level (top left), at one-loop level (top
right), the difference of the SM-like Higgs-boson mass at tree
level and one-loop level (bottom left), and the one-loop mass
of the right-handed μ-sneutrino (bottom right) which is the
lightest CP-even scalar in this scenario. We do not show the
two-loop mass of the SM-like Higgs boson, because the two-
loop corrections supplemented from FeynHiggs are purely
MSSM-like corrections independent of λi , thus not playing
a role in the following discussion. However, the parameters
are chosen such that the corrections beyond the one-loop
level shift the SM-like Higgs-boson mass into the vicinity of
∼ 125 GeV (see below). In the upper right plot one sees that
the one-loop mass of the SM-like Higgs boson is the largest
in the central point in which all λi are equal. The tree-level
mass, on the other hand, shows the opposite behavior and
is the largest in the corners of the upper left plot in which
one of the λi is practically zero. The one-loop mass varies
in the experimentally allowed region by more than 1 GeV.
This demonstrates that for an accurate prediction of the SM-
like Higgs-boson mass it is crucial to include the independent
contributions of all three λi to the radiative corrections, when
mixing effects between the right-handed sneutrinos and the
SM-like Higgs boson are sizable.

Note that the variation of the one-loop mass would be
even larger if we neglect the experimental constrains. In this
scenario, the main exclusion limit is the requirement to have
the SM-like Higgs-boson mass above 123 GeV at two-loop.
In the corners of the plots, the mass of ν̃RμR , shown in the
lower right plot, increases to values very close to the SM-
like Higgs-boson mass. This increases the mixing between
both scalars which, in turn, reduces the radiative one-loop
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Fig. 8 SM-like Higgs-boson mass at tree level m(0)

hSM = m
h(0)

1
(top

left), and at one-loop level m(1)

hSM = m
h(1)

2
(top right), and their differ-

ence �m(1−0)

hSM = m(1)

hSM −m(0)

hSM (bottom left), and the one-loop mass of

ν̃μR (bottom right) for fixed λλλ2 but varying λi , indicated by the colors

(and sizes for better visibility). Crossed points are excluded by either
HiggsBounds, HiggsSignals with χ2

red ≥ 150/101 = 1.485 for
the 13 TeV data set, or because the SM-like Higgs boson mass includ-
ing the two-loop corrections is smaller than 123 GeV or larger than 127
GeV

corrections to the SM-like Higgs boson. Practically speak-
ing, parts of the loop-corrections “are lost” to ν̃RμR . This is
why the difference between the tree-level and the one-loop

mass of the SM-like Higgs boson, shown in the lower left
plot of Fig. 8, is the smallest when the mass of ν̃RμR is the
largest.
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We also emphasize that the variation of the difference
between tree-level and one-loop mass, as a measure for the
size of genuine one-loop corrections, is more than twice as
large as the variation of the one-loop mass of the SM-like
Higgs boson. One can see a compensation of lower tree-level
mass, but larger loop corrections in the center of the plots,
leading to a more stable one-loop mass of the SM-like Higgs
boson. This is due to the fact that the loop-corrected mass
eigenstate of the SM-like Higgs boson is the physical state,
whose properties are constrained by the experimental mea-
surements. Therefore, the singlet-admixture cannot be very
large at loop-level, and the parameter dependence of the SM-
like Higgs-boson mass induced by this admixture necessarily
cannot be too large. The tree-level state, on the other hand,
is not physical and can have larger mixing with ν̃RμR , lead-
ing to a stronger dependence on parameters related to the
sneutrinos, like λi in this case. Thus, even though the overall
dependence of the SM-like Higgs-boson mass on parame-
ters beyond the MSSM can be very large at tree level, the
dependence will be diminished at loop-level in the parame-
ter space that fulfills experimental constraints on the SM-like
Higgs-boson properties.

5.4 CMS and LEP excess at ∼ 96 GeV

Searches for the SM Higgs boson at LEP can nowadays be
used to constrain the parameter space of models with addi-
tional scalar particles with masses below the SM-like Higgs-
boson mass. Interestingly, an excess over the SM background
was observed at a mass of 95-98 GeV in the Higgsstrahlung
production channel with an associated decay of the Higgs
boson to a pair of b-quarks [156]. Assuming that this excess
can be explained by an additional Higgs boson, the signal
strength, i.e, the cross section times branching ratio to b-
quarks normalized to the SM prediction for a SM-like Higgs
boson at the same mass, was extracted in Ref. [159] to be

μLEP = 0.117 ± 0.057. (5.4)

At about the same mass, CMS observed an excess over the
SM background in the pp production with associated decay
to diphotons in the 8 TeV and the 13 TeV data [160,161].
For the CMS excess, the signal strength was reported in
Refs. [161,162] to be

μCMS = 0.6 ± 0.2. (5.5)

In a previous publication, we showed that it is possible to
accommodate both excesses simultaneously at the 1σ level
in the μνSSM with just one right-handed neutrino [99]. We
described how a right-handed sneutrino at ∼ 96 GeV can
acquire substantial couplings to SM particles via its mixing

with the SM-like Higgs boson.7 However, we did not include
an accurate prediction of the properties of the neutrinos in our
analysis in the μνSSM with one generation of right-handed
neutrinos, because in that case at least one neutrino mass has
to be generated via quantum corrections. On the contrary, in
the μνSSM with three generations of right-handed neutrinos,
we can describe the mass differences and mixings of the
neutrinos at tree level, which is of course much more feasible.

The values of the free parameters to fit the excesses are
shown in Table 5. The scalar used to fit the excesses is
the right-handed τ -sneutrino ν̃Rτ R . This is assured by setting
κ333 	 κ111,222, so that ν̃Rτ R has a smaller mass than the
other two right-handed sneutrinos. Then, v3R and Aκ

333 are
used to tune the mass of ν̃Rτ R to be at ∼ 95–98 GeV. A suffi-
ciently large mixing of ν̃Rτ R with the SM-like Higgs boson is
achieved with a large value of λ3 ∼ 0.54, while λ1,2 = 0.01
are very small to avoid that the effective μ-term becomes
very large. Alternatively, one could have used smaller values
for v1,2R , but then the other two CP-even sneutrinos ν̃Re,μ R
would have been very light as well, potentially carrying away
some of the mixing between the SM-like Higgs boson and
the right-handed sneutrinos.8 Since λ3 is large, the SM-like
Higgs boson receives additional contribution to the tree-level
mass. This is why tan β is set to a small value, and, besides
Au

3 = − 650 GeV, the soft trilinear parameters Au,d,e can
be set to zero. Apart from that, tan β shall not be much larger
than one to not suppress the coupling of ν̃Rτ R to t-quarks,
which scales with the inverse of sin β (see Eq. (5.3)). Finally,
we choose a range for Aλ

3 in which the mixing between ν̃Rτ R
and the SM-like Higgs boson is sufficiently large. We will
show results for small ranges of the parameters λ3, v3R , Aλ

3
and Aκ

333. While v3R and Aκ
333 are mainly correlated to the

mass of ν̃Rτ R , λ3 and Aλ
3 affect the doublet composition of ν̃3R .

This certainly is not an exhaustive parameter scan covering
the complete parameter space, but the scan gives an idea of
how the excesses can be accommodated within the μνSSM,
and it resembles the solution we found in the μνSSM with
just one right-handed neutrino [99].

In Fig. 9 we show the results for the signal strength of
the LEP excess μLEP (top) and of the CMS excess μCMS

(bottom). In both plots the colors of the points indicate the
SM-like Higgs-boson mass, while the mass of ν̃Rτ R is shown
on the horizontal axis. The signal strengths were calculated in
the narrow-width approximation, and the branching ratio and
cross section ratios w.r.t. the SM where calculated using the
effective coupling approximation as explained in Ref. [99].
One can immediately see that it is rather easy to achieve

7 Similar solutions were published in supersymmetric [159,163,164]
and non-supersymmetric [165–168] models with extended Higgs sec-
tors. See Refs. [169,170] for a review.
8 A scenario in which several right-handed sneutrinos give rise to the
observed excesses is beyond the scope of our paper.

123



Eur. Phys. J. C (2019) 79 :667 Page 25 of 38 667

Table 5 Parameters of the scan to fit the LEP and the CMS excesses. Dimensionful parameters are given in GeV. If the family index is omitted the
parameter has a universal value independent of the index

tan β λ1,2 λ3 κ111,222 κ333 v1,2R v3R Aλ
1,2 Aλ

3

1.945 0.01 [0.538, 0.542] 0.3 0.05 1200 [884, 888] 1000 [806, 814]
Aν
i i Aκ

111,222 Aκ
333 Au

3 Au
1,2 Ad,e mQ̃ ,̃u,d̃ ,̃e M1 M2 M3

− 1000 − 300 [− 124,− 100] − 650 0 0 1000 400 800 2700

Fig. 9 Values for μLEP (top)
and for μCMS (bottom) for each
parameter point versus the mass
of ν̃R

τ R . The colors indicate the
mass of the SM-like Higgs
boson

123



667 Page 26 of 38 Eur. Phys. J. C (2019) 79 :667

Fig. 10 Correlation of both
signal strengths, with the colors
encoding the mass of ν̃R

τ R

the experimental value of μLEP, whereas the largest values
for μCMS reached in our scan are just below the lower limit
of μCMS = 0.4, i.e., 1σ below the central value. This is
due to the fact that the main decay channel of ν̃Rτ R is the
decay to a pair of bottom quarks, and it is harder to achieve
a substantial branching ratio to diphotons required for the
CMS excess. Nevertheless, both excesses are fitted at the 1σ

level considering the experimental uncertainties, while fit-
ting the neutrino data and being in agreement with the exper-
imental constraints on the SM-like Higgs boson, which we
again checked with HiggsSignals assuming a theoretical
uncertainty of the SM-like Higgs-boson mass of 3 GeV.

In Fig. 10 we show the correlation of both signal strengths,
with the colors encoding the mass of ν̃Rτ R . The strong corre-
lation one can see has its origin in the fact that both signal
strengths increase with the amount of doublet-component of
ν̃Rτ R . In principle, one could achieve a further enhancement of
μCMS and a suppression of μLEP by suppressing the down-
type doublet component of ν̃Rτ R . Then, the branching ratio to
bottom quarks becomes smaller, and the diphoton branching
ratio increases because of the smaller total decay width due
to the reduction of the decay width to bottom quarks. How-
ever, finding such points is difficult, because the dominant
terms mixing the right-handed sneutrinos ν̃Ri R with the dou-
blet fields HR

d and HR
u scale equally with λi , Aλ

i , κi jk and
vi R at tree level, as can be seen in Eqs. (A.4) and (A.5). The
only difference are the factors vd and vu in each equation,
respectively, which cannot be exploited too much, because,
as mentioned before, tan β should not be too far from one.
This is why an extensive scan of the vast parameter space of

the μνSSM would be necessary to find parameter points in
which μCMS is further enhanced without increasing μLEP too
much, which however lies beyond the scope of this paper.

Instead, we will focus on the rest of the spectrum, which
heavily depends on the values of the neutrino Yukawa cou-
plings Y ν

i j and the vevs of the left-handed sneutrinos vi L ,
once the remaining parameters are fixed to the values listed in
Table 5. As an example, we show in Table 6 two possible sets
of parameters that accommodate accurate neutrino masses
and mixings in the parameter scan of this section. In contrast
to the other scenarios we presented before, here we will make
use of non-zero values of the non-diagonal elements of Y ν

i j
in one of the BPs. Naturally, this simplifies the accommoda-
tion of neutrino properties in agreement with experimental
data, because there are six more free parameters that can
be adjusted. The price to pay is that there is usually more
than one set of parameters of Y ν

i j and vi L that give accurate
predictions for the neutrino sector. The reason for showing
two distinct scenarios is that in the μνSSM the scalar sector
is deeply related to the neutrino sector. Thus, different sets
of parameters predict fundamentally different scalar spectra,
and since there is no theoretical argument that the neutrino
Yukawa couplings have to be diagonal, we used the additional
freedom to present a point in which, on top of the explanation
of the LEP and the CMS excesses, there are a several other
light particles possibly in reach of future colliders.

In both BPs the lightest BSM particle is the right-handed
τ -neutrino. This is because κ333 has to be small to decrease
the mass of the corresponding sneutrino ν̃Rτ R . Consequently,
also the Majorana mass term for the neutrino will be small and
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Table 6 Parameter sets BP1
and BP2 used to fit the neutrino
oscillation data accurately in the
scan reproducing the LEP and
the CMS excesses. In the last
four rows we list the masses of
the six lightest non-SM particles
(in addition to ν̃R

τ R at
∼ 96 GeV) for each BP.
Dimensionful parameters are
given in GeV

Y ν
11 Y ν

12 Y ν
13 Y ν

21 Y ν
22 Y ν

23

BP1 8.109 · 10−8 0 0 0 1.154 · 10−7 0

BP2 7.088 · 10−8 1.181 · 10−8 −3.404 · 10−9 1.902 · 10−8 1.238 · 10−7 1.783 · 10−8

Y ν
31 Y ν

32 Y ν
33 v1L v2L v3L

BP1 0 0 8.855 · 10−7 1.890 · 10−5 2.601 · 10−4 1.871 · 10−4

BP2 −2.103 · 10−9 6.923 · 10−9 1.383 · 10−8 1.792 · 10−6 2.072 · 10−4 3.673 · 10−4

mλ4 (ντ R) mA1 (̃ν
I
τ R) mH+

1
(μ̃L ) mA2 (̃ν

I
μL ) mh3 (̃ν

R
μL ) mλ5 (H̃d,u)

BP1 78 97–109 283 285 285 323–326

mλ4 (ντ R) mh1 (̃ν
R
τ L ) mA1 (̃ν

I
τ L ) mH+

1
(̃τL ) mA2 (̃ν

I
τ R) mλ5 (H̃d,u)

BP2 78 79 79 98 97–109 323–32

mντ R is small. However, its mass is still above half the SM-
like Higgs-boson mass, so the decay of the SM-like Higgs
boson into ντ R is forbidden. The striking difference between
both BPs is the mass scale of the left-handed τ -sneutrinos
and sleptons. In BP2 the Yukawa coupling Y ν

33 is the small-
est diagonal element of Y ν , and the vev corresponding to the
third family of left-handed sneutrinos v3L is the largest of the
three. This reduces the masses of the left-handed CP-even
and CP-odd τ -sneutrino (see Eq. (2.23)) and the τ -slepton to
values below the SM-like Higgs-boson mass. In BP1, on the
other hand,v2L is the largest of the three left-handed vevs, and
therefore the left-handed μ-sneutrinos and μ-slepton are the
lightest left-handed sfermions, although still more than twice
as heavy as the SM-like Higgs boson. In this way, the phe-
nomenology of both BPs is distinct, even though the proper-
ties of the right-handed τ -sneutrino, which is the particle used
to fit the excesses, are not affected by the left-handed sector.
This is because its branching ratios are dominantly given by
the mixing-effects with the SM-like Higgs boson, which is
not suppressed by the small neutrino Yukawa couplings Y ν

i j .
Nonetheless, BP2 can give rise to additional interesting

signal at colliders. A dedicated analysis of the collider phe-
nomenology of light left-handed τ -sneutrinos/sleptons at the
LHC can be found in Refs. [29,30], where it was shown that
there are no direct bounds from LEP/LHC searches that can
be used to set lower limits on the masses of these particles in
the framework of the μνSSM. This analysis made use of the
fact that the charged τ̃L can be produced, and thus provide
a source for the left-handed sneutrinos, since it decays into
lighter ν̃Rτ L or ν̃Iτ L . An important feature is that the subse-

quent decays of ν̃
R,I
τ L can be prompt or displaced. However,

in Refs. [29,30] it is assumed that the left-handed sneutrino
is the LSP. This is not the case here, since the right-handed τ -
neutrino is even lighter. Signals at colliders from the lightest
BSM particle ντ R are not expected, because it is a gauge sin-
glet, thus cannot be produced directly. In principle, it can be

produced indirectly via the decay of the sfermions. However,
the spectrum is very compressed, such that a pair production
of ντ R from the decays of ν̃τ R at ∼ 96 GeV or the SM-
like Higgs boson at ∼ 125 GeV is kinematically forbidden,
and the production of a pair of a right- and a left-handed
τ -neutrino is suppressed by the size of Y ν

33.

6 Conclusion and outlook

The μνSSM is a simple SUSY extension of the SM that
is capable of describing neutrino physics in agreement with
experimental data. As in other SUSY models, higher-order
corrections are crucial to reach a theoretical uncertainty at the
same level of the (anticipated) experimental accuracy. So far,
higher-order corrections in the μνSSM had been restricted to
DR calculations, which suffer from the disadvantage that they
cannot be directly connected to (possibly future observed)
new BSM particles. More recently we had evaluated the cor-
rections to the neutral scalar masses and mixings, but restrict-
ing ourselves to one generation of heavy neutrinos [99].

In this paper we have presented the complete one-loop
renormalization of the neutral scalar sector of the μνSSM
with three generation of right-handed neutrinos in a mixed
on-shell/DR scheme. In this way, for the first time, it is pos-
sible to evaluate the masses and mixings in the neutral scalar
sector with high precision, while simultaneously describe
correctly the experimental neutrino data, such as mass differ-
ences and mixing angles. An on-shell (OS) renormalization
has been chosen for parameters that can be directly identified
with (potentially) observable states, whereas a DR renormal-
ization has been chosen for the remaining parameters. We
provide details on the full set renormalization parameters,
which were implemented into a FeynArts model file (that
can be provided by the authors upon request).

We have performed the calculation of the masses of the
neutral scalars in the μνSSM with three generations of heavy
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neutrinos, taking into account the full set of one-loop correc-
tions as described above. These corrections have been sup-
plemented by contributions to the neutral Higgs-boson sector
of the MSSM at and beyond the two-loop level as provided
by FeynHiggs. These corrections are crucial to obtain a
reliable prediction of the mass of an SM-like Higgs boson
around ∼ 125 GeV.

The masses of the neutral scalar bosons have been evalu-
ated in a set of scenarios that exemplify the relevant depen-
dences on the underlying μνSSM parameters. The scenarios
are in agreement with all available searches for additional
Higgs bosons (via the code HiggsBounds), as well with
the properties of the SM-like Higgs boson as measured at the
LHC (via the codeHiggsSignals), while at the same time
reproducing correctly the measured values of neutrino mass
differences and mixing angles. In a first scenario we varied
the assumed to be universal parameter λ. We find that large
one-loop corrections for the right-handed sneutrinos arise,
that are crucial to accurately account for possible mixing
effects between them and the SM-like Higgs boson. In a sec-
ond scenario we have varied the assumed to be universal vev
of the right-handed sneutrinos. Here we find that all three
CP-even right-handed sneutrinos can have masses below
∼ 125 GeV, without being excluded by cross-section limits
from direct searches for additional Higgs bosons. In our third
scenario we deviate from the intergenerational universality
assumptions. We take λλλ2 := λiλi to be constant, but vary
instead the individual λi . We find that the non-universality
of the λi has an important impact on the predictions of the
neutral scalar masses. It has been shown that in the experi-
mentally allowed parameter space the non-universality of the
λi can account for deviations of the SM-like Higgs-boson
mass of ∼ 1 GeV, emphasizing the importance to consider
the full set of μνSSM parameters at the one-loop level.

As a final example we have discussed how the μνSSM can
describe two excesses in the searches for light Higgs bosons
in the vicinity of ∼ 96 GeV. These are a ∼ 3 σ excess in the
diphoton final state as reported by CMS and a ∼ 2 σ excess in
the bb̄ final state as published by LEP. We demonstrated that
the μνSSM can account at the ∼ 1 σ level for both excesses,
while being in agreement with all available Higgs-boson
searches and measurements, as well as the available neutrino
data. We are eagerly awaiting updated experimental analyses
from ATLAS and CMS to confirm or refute these excesses.

Further explorations of the scalar sector of the μνSSM are
necessary to cover the wealth of (possible) phenomenology
that this model offers. This includes further studies drop-
ping the (artificial) intergenerational universality assump-
tions, where in this paper we have taken only the first step. It
furthermore includes the evaluation of the charged scalar sec-
tor at the one-loop level and beyond, which is expected to be
important for the phenomenology at the LHC. Also studies

going beyond the LHC searches may become relevant, such
as analyses of the possibility of a first order phase transition,
leading to gravitational waves created in the early universe.
We leave these studies for future work.
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A Mass matrices

Here we give the entries of the following scalar mass matri-
ces.

A.1 CP-even scalars

In the interaction basis ϕT = (HR
d , HR

u , ν̃Ri R, ν̃Rj L) the mass

matrix for the CP-even scalars m2
ϕ is defined by:

m2
HR
d HR

d
= m2

Hd
+ 1

8

(
g2

1 + g2
2

) (
3v2

d + vi Lvi L − v2
u

)

+ 1

2

(
v2
uλiλi + (vi Rλi )

2
)

, (A.1)

m2
HR
u HR

u
= m2

Hu
+ 1

8

(
g2

1 + g2
2

) (
3v2

u − v2
d − vi Lvi L

)

+ 1

2
λiλiv

2
d − vdY

ν
j iλiv j L

+1

2
(vi Rλi )

2 +1

2
Y ν
j i Y

ν
kiv j LvkL+1

2
Y ν
i j Y

ν
ikv j RvkR,

(A.2)

m2
HR
u HR

d
= −1

4

(
g2

1 + g2
2

)
vdvu + vdvuλiλi

− 1√
2
T λ
i vi R − vuY

ν
j iλiv j L − 1

2
κi jkλiv j RvkR,

(A.3)
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m2
ν̃Ri R H

R
d

= −vuκi jkλ jvkR

− 1

2
v j Rλ jvkLY

ν
ki + vdv j Rλ jλi

− 1

2
v j LY

ν
jkvkRλi − 1√

2
vuT

λ
i , (A.4)

m2
ν̃Ri R HR

u
= 1√

2
v j L T

ν
j i + vuY

ν
j i Y

ν
jkvkR

− vdκi jkλ jvkR + Y ν
l jκi jkvkRvl L

+ vuv j Rλ jλi − 1√
2
vdT

λ
i , (A.5)

m2
ν̃Ri R ν̃Rj R

=
(
m2

ṽR

)
i j

+ 1

2
v2
uY

ν
ki Y

ν
k j − vdvuκi jkλk

+ √
2vkRT

κ
i jk + vuY

ν
lkκi jkvl L + 1

2
vkLY

ν
kivl LY

ν
l j

+ 2κiklκ jkmvl RvmR + κi jkκklmvl RvmR

− 1

2
vdvkLY

ν
k jλi − 1

2
vdvkLY

ν
kiλ j

+ 1

2

(
v2
d + v2

u

)
λiλ j , (A.6)

m2
ν̃Ri L H

R
d

=
(
m2

Hd L̃

)
i
+ 1

4

(
g2

1 + g2
2

)
vdvi L − 1

2
v2
uY

ν
i jλ j

− 1

2
v j Rλ jvkRY

ν
ik, (A.7)

m2
ν̃Ri L HR

u
= −1

4

(
g2

1 + g2
2

)
vuvi L − vdvuY

ν
i jλ j

+ 1√
2
v j RT

ν
i j + vuY

ν
i j Y

ν
k jvkL + 1

2
Y ν
i jκ jklvkRvl R,

(A.8)

m2
ν̃Ri R ν̃Rj L

= vuY
ν
jkκiklvl R + 1

2
vkLY

ν
kivl RY

ν
jl

− 1

2
vdvkRλkY

ν
j i + 1

2
vkLY

ν
klvl RY

ν
j i ,

− 1

2
vdvkRY

ν
jkλi + 1√

2
vuT

ν
j i , (A.9)

m2
ν̃Ri L ν̃Rj L

=
(
m2

L̃

)
i j

+ 1

8
δi j

(
g2

1 + g2
2

) (
v2
d − v2

u + vkLvkL

)

+ 1

4

(
g2

1 + g2
2

)
vi Lv j L

+ 1

2
v2
uY

ν
ikY

ν
jk + 1

2
vkRY

ν
jkvl RY

ν
il . (A.10)

A.2 CP-odd scalars

In the interaction basis σ T = (HI
d , HI

u , ν̃Ii R, ν̃Ij L) the mass

matrix for the CP-odd scalars m2
σ is defined by:

m2
HI
d HI

d
= m2

Hd
+ 1

8

(
g2

1 + g2
2

) (
v2
d + vi Lvi L − v2

u

)

+ 1

2

(
v2
uλiλi + (vi Rλi )

2
)

, (A.11)

m2
HI
u HI

u
= m2

Hu
+ 1

8

(
g2

1 + g2
2

) (
v2
u − v2

d − vi Lvi L

)

+ 1

2
v2
dλiλi − vdY

ν
j iλiv j L + 1

2
(vi Rλi )

2

+ 1

2
Y ν
j i Y

ν
kiv j LvkL + 1

2
Y ν
i j Y

ν
ikv j RvkR, (A.12)

m2
HI
u HI

d
= 1

2
κi jkλiv j RvkR + 1√

2
vi RT

λ
i , (A.13)

m2
ν̃Ii R H

I
d

= vuκi jkλ jvkR + 1

2
v j Rλ jvkLY

ν
ki

− 1

2
v j LY

ν
jkvkRλi − 1√

2
vuT

λ
i , (A.14)

m2
ν̃Ii R HI

u
= 1√

2
v j L T

ν
j i + vdκi jkλ jvkR

− Y ν
l jκi jkvkRvl L − 1√

2
vdT

λ
i , (A.15)

m2
ν̃Ii R ν̃Ij R

=
(
m2

ν̃

)
i j

+ 1

2
v2
uY

ν
ki Y

ν
k j + vdvuκi jkλk

− √
2vkRT

κ
i jk − vuY

ν
lkκi jkvl L + 1

2
vkLY

ν
kivl LY

ν
l j

+ κikmκ jklvl RvmR − κi jkκklmvl RvmR

−1

2
vdvkLY

ν
k jλi−

1

2
vdvkLY

ν
kiλ j+1

2

(
v2
d+v2

u

)
λiλ j ,

(A.16)

m2
ν̃Ii L H

I
d

=
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m2
ν̃Ii L HI

u
= − 1√

2
v j RT

ν
i j − 1

2
Y ν
i jκ jklvkRvl R, (A.18)
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A.3 Charged scalars

In the gauge eigenstate basis CT = (H−
d

∗
, H+

u , ẽ∗
i L , ẽ∗

j R)

the entries of m2
H+ are given by:

m2
H−
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d
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+ 1

8
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(
v2
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)
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8
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2
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2
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2
Y e
i j Y

e
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2
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ν
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2
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ẽi L ẽ∗
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e
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2
vuvkRλkY

e
i j . (A.30)

B Explicit expressions for counterterms

In this section we will state the one-loop counterterms that
were calculated diagrammatically in the DR scheme and
checked against master formulas for the one-loop beta func-
tions and anomalous dimensions of soft SUSY breaking
parameters [121,122,124], superpotential parameters [123,
124], vacuum expectation values [171] and wave-functions
with kinetic mixing [125,126]. The master formulas were
evaluated using the mathematica package SARAH [172].

B.1 Field renormalization counterterms

We list the field renormalization counterterms defined in
Eq. (3.25) in the DR scheme in the interaction basis
(Hd , Hu, ν̃1R, ν̃2R, ν̃3R, ν̃1L , ν̃2L , ν̃3L):

δZ11 = − �

16π2

(
λiλi + Y e

i j Y
e
i j + 3

(
Yd
i Y

d
i

))
, (B.1)

δZ1,5+i = �

16π2 λ j Y
ν
i j , (B.2)

δZ22 = − �

16π2

(
λiλi + Y ν

i j Y
ν
i j + 3

(
Yu
i Y

u
i

))
, (B.3)

δZ2+i,2+ j = − �

8π2

(
λiλ j + κiklκ jkl + Y ν

ki Y
ν
k j

)
, (B.4)

δZ5+i,5+ j = − �

16π2

(
Y e
kiY

e
k j + Y ν

ikY
ν
jk

)
, (B.5)

where the indices run from 1 to 3. We checked that the coeffi-
cients of the divergent part of the field renormalization coun-
terterms are equal to the one-loop anomalous dimensions of
the corresponding superfields γ

(1)
i j , neglecting the terms pro-

portional to the gauge couplings g1 and g2, and divided by
the loop factor 16π2, i.e.,

δZi j = γ
(1)
i j �

16π2

∣∣∣∣∣

g1,g2→0

, (B.6)

which is the same relation that holds in the (N)MSSM.

B.2 Parameter counterterms

B.2.1 Renormalization conditions

In the following we list the renormalization conditions for
the counterterms of the parameter used to renormalize the
neutral scalar potential:

δg2 = g2

2

(
δM2

W

M2
W

− δv2

v2

)
, (B.7)
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where

δZe =
[

1

2

(
∂�T

γ γ

∂p2 (0)

)
+ sw

cwM2
Z

�T
γ Z (0)

]
, (B.24)

with �T
γ γ (0) the transverse part of the photon self-energy

and �T
γ Z the transverse part of the mixed photon-Z boson

self-energy, and
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B.2.2 Explicit form

We list the explicit form of the counterterms of the free
parameters renormalized in the DR scheme:
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The counterterms in Eqs. (B.30)–(B.39) were calculated dia-
grammatically using our FeynArts model file and after-
wards checked to fulfill the one-loop relation

δX = β
(1)
X �

32π2 , (B.43)

where δX stands for one of the counterterms just mentioned,
and β

(1)
X is the one-loop coefficient of the beta function of

the parameter X , which could be obtained by the help of the
mathematica package SARAH [172].

On the contrary, the counterterms of the soft masses stated
in Eqs. (B.40)–(B.42) are the ones derived from the one-
loop beta function we obtained with SARAH, which were
then numerically checked to be equal to the counterterms for
(m2

Hd L̃
)i and (m2

L̃
)i j we calculated diagrammatically in the

CP-odd scalar sector.
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Table 7 Values for parameters of the standard model in GeV

mOS
t mMS

t (mt ) mMS
b (mb) mτ

172.5 167.48 4.16 1.7792

MW MZ v

80.385 91.1875 246.2196

C Standard model values

Table 7 summarizes the values for the SM-like parameters
we chose in our calculation.
The value for v corresponds to a value for the Fermi constant
of GF = 1.166 38 × 10−5 GeV−2. The values for the gauge
boson masses define the cosine of the weak mixing angle to
be cw = 0.881 535. Note that since the SM leptons mix with
the Higgsinos and gauginos in the μνSSM, the lepton masses
are not the real phyiscal input parameters. However, the mix-
ing is tiny, so there will always be three mass eigenstates in
the charged fermion sector corresponding to the three stan-
dard model leptons, having approximately the masses me,
mμ and mτ . This is why we use the measured values for
these masses, such as mτ in Table 7, and then calculate the
real input parameters, which are the Yukawa couplings

Y e
1 =

√
2me

vd
, Y e

2 =
√

2mμ

vd
, Y e

3 =
√

2mτ

vd
. (C.1)
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