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Abstract We study supersymmetric AdS3 × M4 solutions
of N = 2 gauged supergravity in seven dimensions coupled
to three vector multiplets with SO(4) ∼ SO(3) × SO(3)

gauge group and M4 being a four-manifold with constant
curvature. The gauged supergravity admits two supersym-
metric AdS7 critical points with SO(4) and SO(3) sym-
metries corresponding to N = (1, 0) superconformal field
theories (SCFTs) in six dimensions. For M4 = �2 × �2

with �2 being a Riemann surface, we obtain a large class
of supersymmetric AdS3 × �2 × �2 solutions preserv-
ing four supercharges and SO(2) × SO(2) symmetry for
one of the �2 being a hyperbolic space H2, and the solu-
tions are dual to N = (2, 0) SCFTs in two dimensions.
For a smaller symmetry SO(2), only AdS3 × H2 × H2

solutions exist. Some of these are also solutions of pure
N = 2 gauged supergravity with SU (2) ∼ SO(3) gauge
group. We numerically study domain walls interpolating
between the two supersymmetric AdS7 vacua and these
geometries. The solutions describe holographic RG flows
across dimensions from N = (1, 0) SCFTs in six dimen-
sions to N = (2, 0) two-dimensional SCFTs in the IR. Simi-
lar solutions for M4 being a Kahler four-cycle with negative
curvature are also given. In addition, unlike M4 = �2 × �2

case, it is possible to twist by SO(3)diag gauge fields result-
ing in two-dimensional N = (1, 0) SCFTs. Some of the
solutions can be uplifted to eleven dimensions and pro-
vide a new class of AdS3 × M4 × S4 solutions in M-
theory.

1 Introduction

One of the most interesting implications of the AdS/CFT
correspondence [1] is the study of holographic RG flows.
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These solutions take the form of a domain wall interpo-
lating between AdS vacua and holographically describe
deformations of a conformal field theory (CFT) in the UV
to another CFT in the IR or in some cases to a non-
conformal field theory dual to a singular geometry, see [2–
4] for example. Of particular interest are RG flows across
dimensions in which a higher dimensional CFT flows to
a lower dimensional CFT. This type of RG flows allows
us to investigate the structure and dynamics of less known
CFTs in higher, especially five and six, dimensions using
the well-understood lower dimensional CFTs. In this paper,
we will consider this type of RG flows in six-dimensional
CFTs to two dimensions. Furthermore, the study along
this direction is much more fruitful and controllable in
the presence of supersymmetry. We are then mainly inter-
ested in RG flows within superconformal field theories
(SCFTs).

Supersymmetric solutions of gauged supergravities play
an important role in studying the aforementioned RG
flows. In general, RG flows across dimensions from a d-
dimensional SCFT to a (d − n)-dimensional SCFT are
obtained by twisted compactification of the former on an
n-dimensional manifold Mn . The twist is needed for the
compactification to preserve some amount of supersym-
metry. This is achieved by turning on some gauge fields
to cancel the spin connection on Mn . In the supergravity
dual, these RG flows are described by domain walls inter-
polating between an AdSd+1 vacuum to an AdSd+1−n ×
Mn geometry. Solutions of this type have been stud-
ied in various dimensions, see [5–26] for an incomplete
list.

In this paper, we are interested in supersymmetric AdS3 ×
M4 solutions of N = 2 gauged supergravity in seven dimen-
sions with SO(4) ∼ SO(3) × SO(3) gauge group. This
gauged supergravity is obtained by coupling three vector
multiplets to pure N = 2 gauged supergravity with SU (2)

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7170-0&domain=pdf
mailto:parinya.ka@hotmail.com
mailto:danai.nuchino@hotmail.com


652 Page 2 of 23 Eur. Phys. J. C (2019) 79 :652

gauge group constructed in [27,28]. The matter-coupled
gauged supergravity has been constructed in [29–31] with
an extension to include a topological mass term for the
three-form field, dual to the two-form in the N = 2 super-
gravity multiplet, given in [32]. This massive gauged super-
gravity admits supersymmetric AdS7 vacua which has been
extensively studied in [33–35]. These vacua are dual to
N = (1, 0) SCFTs in six dimensions, and a number of RG
flows of various types have already been studied [18,33,36].
However, holographic RG flows from N = (1, 0) six-
dimensional SCFTs to two-dimensional SCFTs in the frame-
work of matter-coupled N = 2 gauged supergravity have
not appeared so far. To fill this gap, we will give a large
class of AdS3 × M4 fixed points and the corresponding RG
flows across dimensions within six-dimensional N = (1, 0)

SCFTs.
We will consider a four-manifold M4 with constant cur-

vature of two types, a product of two Riemann surfaces
�2 × �2 and a Kahler four-cycle M4

k . In the first case, the
twists can be performed by using SO(2)R ⊂ SO(3)R with
SO(3)R being the R-symmetry. We will look for solutions
with SO(2) × SO(2), SO(2)diag and SO(2)R symmetries.
In the second case, M4

k has a U (2) ∼ SU (2) × U (1) spin
connection. Therefore, we can perform the twists by turn-
ing on either SO(2)R ⊂ SO(3)R or the full SO(3)R to
cancel the U (1) or the SU (2) parts of the spin connection,
respectively. It should also be noted that a twist by can-
celling the full U (2) spin connection is not possible since
the R-symmetry of N = 2 gauged supergravity is not large
enough.

In general, the two SO(3) ∼ SU (2) factors in the SO(4)

gauge group can have different coupling constants. However,
for a particular case of equal SU (2) coupling constants, the
resulting gauged supergravity can be embedded in eleven-
dimensional supergravity via a truncation on S4 [37]. The
seven-dimensional solutions can accordingly be uplifted to
eleven dimensions giving rise to new AdS3 × M4 × S4 solu-
tions of eleven-dimensional supergravity. Therefore, these
solutions provide a number of new two-dimensional SCFTs
with known M-theory dual. We also consider the uplifted
solutions in this case.

The paper is organized as follow. In Sect. 2, we give a
short review of the matter coupled N = 2 seven-dimensional
gauged supergravity and supersymmetric AdS7 vacua. In
Sects. 3 and 4, we look for supersymmetric AdS3 ×�2 ×�2

and AdS3 × M4
k solutions and numerically study interpolat-

ing solutions between these geometries and the AdS7 fixed
points. We finally give some conclusions and comments
in Sect. 5. Relevant formulae for the truncation of eleven-
dimensional supergravity on S4 giving rise to N = 2 gauged
supergravity with SO(4) gauge group are reviewed in the
appendix.

2 Seven-dimensional N = 2, SO(4) gauged
supergravity and supersymmetric AdS7 vacua

We firstly review N = 2 gauged supergravity in seven dimen-
sions coupled to three vector multiplets with SO(4) gauge
group. Only relevant formulae involving bosonic Lagrangian
and supersymmetry transformations of fermions will be pre-
sented. The detailed construction of general N = 2 seven-
dimensional gauged supergravity can be found in [32], see
also [38] for gaugings in the embedding tensor formalism.

2.1 Seven-dimensional N = 2, SO(4) gauged
supergravity

The seven-dimensional N = 2, SO(4) gauged supergravity
is obtained by coupling the minimal N = 2 supergravity to
three vector multiplets. The supergravity multiplet consists

of the graviton eμ̂
μ, two gravitini ψa

μ, three vectors Ai
μ, two

spin- 1
2 fields χa , a two-form field Bμν and the dilaton σ . Each

vector multiplet contains a vector field Aμ, two gaugini λa ,
and three scalars φi . We will use the convention that curved
and flat space-time indices are denoted by μ, ν and μ̂, ν̂

respectively. Indices i, j = 1, 2, 3 and a, b = 1, 2 label
triplet and doublet of SO(3)R ∼ SU (2)R R-symmetry with
the latter being suppressed throughout this work. The three
vector multiplets will be labeled by indices r, s = 1, 2, 3
which in turn describe the triplet of the matter symmetry
SO(3) under which the three vector multiplets transform.

From both supergravity and vector multiplets, there are in
total six vector fields denoted collectively by AI = (Ai , Ar ).
Indices I, J, . . . = 1, 2, . . . , 6 describe fundamental rep-
resentation of the global symmetry SO(3, 3) and are low-
ered and raised by the SO(3, 3) invariant tensor ηI J =
diag(−1,−1,−1, 1, 1, 1) and its inverse ηI J . The two-form
field will be dualized to a three-form Cμνρ , which admits
a topological mass term required by the existence of AdS7

vacua.
The nine scalar fields φir parametrize SO(3, 3)/SO(3)×

SO(3) coset manifold. They can be described by the coset
representative

L I
A = (L I

i , L I
r ) (1)

with an index A = (i, r) corresponding to representations of
the compact SO(3)× SO(3) local symmetry. The inverse of
L I

A will be denoted by

L A
I = (Li

I , Lr
I ) (2)

with the relation

L j
I L I

i = δij , Ls
I L I

r = δrs . (3)
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Being an element of SO(3, 3), the coset representative also
satisfies the relation

ηI J = −L I
i L J

i + L I
r L J

r . (4)

The bosonic Lagrangian of the N = 2, SO(4) gauged
supergravity in form language can be written as

L = 1

2
R ∗ 1 − 1

2
eσaI J ∗ F I

(2) ∧ F J
(2)

−1

2
e−2σ ∗ H(4) ∧ H(4) − 5

8
∗ dσ ∧ dσ

−1

2
∗ Pir ∧ Pir + 1√

2
H(4) ∧ ω(3)

−4hH(4) ∧ C(3) − V ∗ 1. (5)

The constant h describes the topological mass term for the
three-form C(3) with the field strength H(4) = dC(3). The
gauge field strength is defined by

F I
(2) = d AI

(1) + 1

2
f J K

I AJ
(1) ∧ AK

(1). (6)

The definition of the SO(4) structure constants f I J K

includes the gauge coupling constants

f I J K = (g1εi jk,−g2εrst ) (7)

where g1 and g2 are coupling constants of SO(3)R and
SO(3), respectively.

The scalar matrix aI J appearing in the kinetic term of
vector fields is given in term of the coset representative as
follow

aI J = L I
i L J

i + L I
r L J

r . (8)

The Chern-Simons three-form satisfying dω(3) = F I
(2)∧F I

(2)

is defined by

ω(3) = F I
(2) ∧ AI

(1) − 1

6
f I J

K AI
(1) ∧ AJ

(1) ∧ A(1)K . (9)

The scalar potential is given by

V = 1

4
e−σ

(
CirCir − 1

9
C2

)
+ 16h2e4σ

−4
√

2

3
he

3σ
2 C, (10)

where C-functions, or fermion-shift matrices, are defined as

C = − 1√
2
f I J

K Li
I L j

J LKkε
i jk, (11)

Cir = 1√
2
f I J

K L j
I Lk

J LK
rεi jk, (12)

Crsi = f I J
K Lr

I Ls
J LKi . (13)

It should also be noted that indices i, j and r, s are raised
and lowered by δi j and δrs , respectively. Finally, the scalar

kinetic term is defined in term of the vielbein on the
SO(3, 3)/SO(3) × SO(3) coset as

Pir
μ = Lr I

(
δKI ∂μ + f I J

K AJ
μ

)
LK

i . (14)

To find supersymmetric solutions, we need supersymme-
try transformations of fermionic fields ψμ, χ and λr . With
all fermionic fields vanishing, these transformations read

δψμ = 2Dμε −
√

2

30
e− σ

2 Cγμε − 4

5
he2σ γμε

− i

20
e

σ
2 Fi

ρσ σ i (3γμγ ρσ − 5γ ρσ γμ

)
ε

− 1

240
√

2
e−σ Hρσλτ

(
γμγ ρσλτ + 5γ ρσλτ γμ

)
ε,

(15)

δχ = −1

2
γ μ∂μσε +

√
2

30
e− σ

2 Cε − 16

5
e2σ hε

− i

10
e

σ
2 Fi

μνσ
iγ μνε

− 1

60
√

2
e−σ Hμνρσ γ μνρσ ε, (16)

δλr = iγ μPir
μ σ iε − 1

2
e

σ
2 Fr

μνγ
μνε

− i√
2
e− σ

2 Cirσ iε (17)

where σ i are the usual Pauli matrices.
The dressed field strengths Fi and Fr are defined by the

relations

Fi
(2) = L I

i F I
(2) and Fr

(2) = L I
r F I

(2). (18)

The covariant derivative of the supersymmetry parameter ε

is given by

Dμε = ∂με + 1

4
ωμ

ν̂ρ̂γν̂ρ̂ε + 1

2
√

2
Qi

μσ iε (19)

where Qi
μ is defined in term of the composite connection Qi j

μ

as

Qi
μ = i√

2
εi jk Q jk

μ (20)

with

Qi j
μ = L j I

(
δKI ∂μ + f I J

K AJ
μ

)
LK

i . (21)

For convenience, we also give the full bosonic field equa-
tions derived from the Lagrangian given in (5)

d(e−2σ ∗ H(4)) + 8hH(4) − 1√
2
F I

(2) ∧ F I
(2) = 0, (22)

D(eσaI J ∗ F I
(2)) − √

2H(4) ∧ F J
(2)

+ ∗ Pir f I J
K Lr

I LKi = 0, (23)

123



652 Page 4 of 23 Eur. Phys. J. C (2019) 79 :652

D(∗Pir ) − 2eσ L I
i L J

r ∗ F I
(2) ∧ F J

(2)

−
(

1√
2
e−σC jsCrskε

i jk + 4
√

2he
3σ
2 Cir

)
ε(7) = 0,

(24)
5

4
d(∗dσ) − 1

2
eσaI J ∗ F I

(2) ∧ F J
(2)

+e−2σ ∗ H(4) ∧ H(4)

+
[

1

4
e−σ

(
CirCir − 1

9
C2

)

+2
√

2he
3σ
2 C − 64h2e4σ

]
ε(7)

= 0, (25)

Rμν − 5

4
∂μσ∂νσ − aI J e

σ

×
(
F I

μρF
J
ν

ρ − 1

10
gμνF

I
ρσ F

J ρσ

)

−Pir
μ Pir

ν − 2

5
gμνV − 1

6
e−2σ

×
(
HμρσλHν

ρσλ − 3

20
gμνHρσλτ H

ρσλτ

)
= 0. (26)

2.2 Supersymmetric AdS7 critical points

We now give a brief review of supersymmetric AdS7 vacua
found in [33]. There are two supersymmetric N = 2
AdS7 critical points with SO(4) ∼ SO(3) × SO(3) and
SO(3)diag ⊂ SO(3) × SO(3) symmetries. To compute
the scalar potential, we need an explicit parametrization of
SO(3, 3) /SO(3) × SO(3) coset. By defining the following
GL(6,R) matrices

(eI J )K L = δI K δJ L , (27)

we can write non-compact generators of SO(3, 3) as

Yir = ei,r+3 + er+3,i . (28)

Among the nine scalars from SO(3, 3)/SO(3) × SO(3),
there is one SO(3)diag singlet corresponding to the non-
compact generator

Ys = Y11 + Y22 + Y33. (29)

The coset representative is then given by

L = eφYs . (30)

The scalar potential for the dilaton σ and the SO(3)diag sin-
glet scalar φ is readily computed to be

V = 1

32
e−σ

[
(g2

1 + g2
2) (cosh(6φ) − 9 cosh(2φ))

+8g1g2 sinh3(2φ) + 8
[
g2

2 − g2
1 + 64h2e5σ

−32e
5σ
2 h(g1 cosh3 φ + g2 sinh3 φ)

]]
. (31)

This potential admits two supersymmetric AdS7 critical
points

I: σ = φ = 0, V0 = −240h2, (32)

II: σ = 1

5
ln

[
g2

2

g2
2 − 256h2

]
, φ = 1

2
ln

[
g2 − 16h

g2 + 16h

]
,

V0 = − 240g
8
5
2 h

2

(g2 − 256h2)
4
5

. (33)

Critical points I and II have SO(4) and SO(3)diag sym-
metries, respectively. We have also chosen g1 = 16h
to bring the SO(4) critical point to the value σ = 0.
The cosmological constant is denoted by V0. Accord-
ing to the AdS/CFT correspondence, these critical points
correspond to N = (1, 0) SCFTs in six dimensions
with SO(4) and SO(3) symmetries, respectively. A holo-
graphic RG flow interpolating between these two criti-
cal points has already been studied in [33], see also [39]
for more general solutions. In subsequent sections, we
will find supersymmetric AdS3 × M4 solutions to this
N = 2 SO(4) gauged supergravity and RG flow solu-
tions from the above AdS7 vacua to these geometries in
the IR.

3 Supersymmetric AdS3 × �2 × �2 solutions and RG
flows

In this section, we look for supersymmetric solutions of the
form AdS3 × �2

k1
× �2

k2
with �2

ki
for i = 1, 2 being two-

dimensional Riemann surfaces. Constants ki describe the cur-
vature of �2

ki
with values ki = 1, 0,−1 corresponding to a

two-dimensional sphere S2, a flat space R
2 or a hyperbolic

space H2, respectively.
We will choose the ansatz for the seven-dimensional met-

ric of the form

ds2
7 = e2U (r)dx2

1,1 + dr2 + e2V (r)ds2
�2
k1

+ e2W (r)ds2
�2
k2

,

(34)

in which dx2
1,1 = ηαβdxαdxβ , α, β = 0, 1 is the flat metric

on the two-dimensional spacetime. The explicit form of the
metric on �2

ki
can be written as

ds2
�2
ki

= dθ2
i + fki (θi )

2dϕ2
i . (35)

The functions fki (θi ) are defined as

fki (θi ) =

⎧⎪⎨
⎪⎩

sin θi , ki = 1

θi , ki = 0

sinh θi , ki = −1

. (36)
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By using an obvious choice of vielbein

eα̂ = eUdxα, er̂ = dr, eθ̂1 = eV dθ1,

eϕ̂1 = eV fk1(θ1)dϕ1, eθ̂2 = eWdθ2,

eϕ̂2 = eW fk2(θ2)dϕ2, (37)

we can compute the following non-vanishing components of
the spin connection

ωα̂
r̂ = U ′eα̂, ωθ̂1

r̂ = V ′eθ̂1 , ωϕ̂1
r̂ = V ′eϕ̂1 ,

ωθ̂2
r̂ = W ′eθ̂2 ,

ωϕ̂2
r̂ = W ′eϕ̂2 , ωϕ̂1

θ̂1
= e−V

f ′
k1

(θ1)

fk1(θ1)
eϕ̂1 ,

ωϕ̂2
θ̂2

= e−W
f ′
k2

(θ2)

fk2(θ2)
eϕ̂2 . (38)

Throughout the paper, we will use primes to denote deriva-
tives of a function with respect to its argument for example
U ′ = dU/dr and f ′

ki
(θi ) = d fki (θi )/dθi .

To find supersymmetric AdS3×�2
k1

×�2
k2

solutions which
admit non-vanishing Killing spinors, we perform a twist by
turning on gauge fields along �2

k1
× �2

k2
. In the following

discussions, we will consider various possible twists with
different unbroken symmetries.

3.1 AdS3 vacua with SO(2) × SO(2) symmetry

We first consider solutions with SO(2) × SO(2) symmetry.
To perform the twist, we turn on the following SO(2) ×
SO(2) gauge fields on �2

k1
× �2

k2

A3
(1) = − p11

k1
e−V

f ′
k1

(θ1)

fk1(θ1)
eϕ̂1 − p12

k2
e−W

f ′
k2

(θ2)

fk2(θ2)
eϕ̂2 , (39)

A6
(1) = − p21

k1
e−V

f ′
k1

(θ1)

fk1(θ1)
eϕ̂1 − p22

k2
e−W

f ′
k2

(θ2)

fk2(θ2)
eϕ̂2 , (40)

where pi j are constants magnetic charges.
There is one SO(2)×SO(2) singlet scalar from SO(3, 3)/

SO(3) × SO(3) coset corresponding to the non-compact
generator Y33. We then parametrize the coset representative
by

L = eφY33 (41)

with φ depending only on the radial coordinate r . By com-
puting the composite connection Qi j

μ along �2
k1

× �2
k2

, we
can cancel the spin connections by imposing the following
twist conditions

g1 p11 = k1 and g1 p12 = k2 (42)

together with the projection conditions

γ
θ̂1ϕ̂1

ε = γ
θ̂2ϕ̂2

ε = iσ 3ε. (43)

Note that only the gauge field A3
(1) enters the twist proce-

dure since A3
(1) is the gauge field of SO(2)R ⊂ SO(3)R

under which the gravitini and supersymmetry parameters are
charged.

From the gauge fields given in (39) and (40), we can
straightforwardly compute the corresponding two-form field
strengths

F3
(2) = e−2V p11e

θ̂1 ∧ eϕ̂1 + e−2W p12e
θ̂2 ∧ eϕ̂2 , (44)

F6
(2) = e−2V p21e

θ̂1 ∧ eϕ̂1 + e−2W p22e
θ̂2 ∧ eϕ̂2 . (45)

It should also be noted that these field strengths give non-
vanishing F I

(2) ∧ F I
(2) term. This term is present in the field

equation of the three-form fied C(3) as can be seen from Eq.
(22). Therefore, we need to turn on the three-form field with
the corresponding four-form field strength given by

H(4) = 1

8
√

2h
e−2(V+W )(p21 p22 − p11 p12)

eθ̂1 ∧ eϕ̂1 ∧ eθ̂2 ∧ eϕ̂2 . (46)

This is very similar to the solutions of maximal SO(5)

gauged supergravity considered in [8].
By imposing an additional projector

γrε = ε (47)

required by δχ = 0 and δλr = 0 conditions, we find the
following BPS equations

U ′ = 1

5
e

σ
2

[(
g1e

−σ cosh φ + 4he
3σ
2

)

+ 3

8h
e− 3σ

2 −2(V+W )(p11 p12 − p21 p22)

−e−2V (p11 cosh φ + p21 sinh φ)

−e−2W (p12 cosh φ + p22 sinh φ)
]
, (48)

V ′ = 1

5
e

σ
2

[(
g1e

−σ cosh φ + 4he
3σ
2

)

− 1

4h
e− 3σ

2 −2(V+W )(p11 p12 − p21 p22)

+4e−2V (p11 cosh φ + p21 sinh φ)

−e−2W (p12 cosh φ + p22 sinh φ)
]
, (49)

W ′ = 1

5
e

σ
2

[(
g1e

−σ cosh φ + 4he
3σ
2

)

− 1

4h
e− 3σ

2 −2(V+W )(p11 p12 − p21 p22)

−e−2V (p11 cosh φ + p21 sinh φ)

+4e−2W (p12 cosh φ + p22 sinh φ)
]
, (50)

σ ′ = 2

5
e

σ
2

[(
g1e

−σ cosh φ − 16he
3σ
2

)

− 1

4h
e− 3σ

2 −2(V+W )(p11 p12 − p21 p22)
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−e−2V (p11 cosh φ + p21 sinh φ)

−e−2W (p12 cosh φ + p22 sinh φ)
]
, (51)

φ′ = −e
σ
2

[
e−2V (p11 sinh φ + p21 cosh φ)

+e−2W (p12 sinh φ + p22 cosh φ)
]

−g1e
− σ

2 sinh φ. (52)

It can be verified that these BPS equations satisfy all the
field equations. At large r , we have U ∼ V ∼ W ∼ r and

φ ∼ σ ∼ e− 4r
L with the AdS7 radius given by L = 1

4h ,
and the terms involving gauge fields and the three-form field
are highly suppressed. We find the SO(4) AdS7 fixed point
from these BPS equations in this limit. The solutions are then
symptotically locally AdS7 as r → ∞.

We now look for supersymmetric AdS3 solutions satisfy-
ing V ′ = W ′ = σ ′ = φ′ = 0 and U ′ = 1

L AdS3
in the limit

r → −∞. We find a class of AdS3 fixed point solutions

e
5
2 σ = g1Zeφ

4h(p21(p12 − 3p22) + p11(p12 + p22))
, (53)

eφ =
√

p21(p12 − 3p22) + p11(p12 + p22)

p11(p12 − p22) − p21(p12 + 3p22)
, (54)

e2V = p21 − p11 − (p11 + p21)e2φ

8heφ+ 3
2 σ

, (55)

e2W = p22 − p12 − (p12 + p22)e2φ

8heφ+ 3
2 σ

, (56)

L AdS3 = 8heσ+2V+2W

p11 p12 − p21 p22 + 32h2e2V+2W+3σ
(57)

where

Z = (p12(p2
11 + p2

21) − 2p11 p21 p22)(−2p12 p21 p22 + p11(p2
12 + p2

22))

(p2
11(3p

2
12 + p2

22) + p2
21(p

2
12 + 3p2

22) − 8p11 p12 p21 p22)
.

(58)

Note that the coupling constant g2 does not appear in the
above equations, so the solutions can be uplifted to eleven
dimensions by setting g2 = g1.

To obtain real solutions, we require that e2V > 0, e2W >

0, eσ > 0, and eφ > 0. It turns out that AdS3 solutions
are possible only for one of the two ki is equal to −1 with
the seven-dimensional spacetime given by AdS3 ×H2 ×H2,
AdS3 ×H2 ×R

2 and AdS3 ×H2 ×S2. Since the charges p11

and p12 are fixed by the twist conditions (42), there are only
two parameters p21 and p22 characterizing the solutions. For
g1 = 16h and h = 1, regions in the parameter space (p21,
p22) for good AdS3 vacua to exist are shown in Fig. 1. Note
that these regions are precisely the same as supersymmetric
AdS3 × �2 × �2 solutions of maximal seven-dimensional
SO(5) gauged supergravity in [8].

These AdS3 fixed points preserve four supercharges due
to the two projectors in (43) and correspond to N = (2, 0)

SCFTs in two dimensions with SO(2) × SO(2) symmetry.
On the other hand, the entire RG flow solutions interpolating
between the AdS7 fixed point and these AdS3 geometries
preserve only two supercharges due to an extra projector in
(47). Examples of these RG flows from the AdS7 fixed point
to AdS3 ×H2 ×H2, AdS3 ×H2 ×R

2 and AdS3 ×H2 × S2

with h = 1 and different values of p21 and p22 are shown in
Figs. 2, 3 and 4, respectively.

These solutions can be uplifted to eleven dimensions using
the truncation ansatz given in [37]. By using the formulae
reviewed in the appendix together with the S3 coordinates

μα = (cos ψ cos α, cos ψ sin α, sin ψ cos β, sin ψ sin β)

(59)

and the SL(4,R)/SO(4) matrix

T̃−1
αβ = diag(eφ, eφ, e−φ, e−φ), (60)

we find the eleven-dimensional metric

dŝ2
11 = �

1
3

[
e2Udx2

1,1 + dr2 + e2V ds2
�2
k1

+ e2Wds2
�2
k2

]

+ 2

g2 �− 2
3

×
[
e−2σ cos2 ξ+e

σ
2 sin2 ξ(eφ cos2 ψ+e−φ sin2 ψ)

]
dξ2

+ 1

2g2 �− 2
3 e

σ
2 cos2 ξ

×
[
(eφ sin2 ψ + e−φ cos2 ψ)dψ2

+eφ cos2 ψ(dα − gA12)2

+e−φ sin2 ψ(dβ − gA34)2
]

(61)

with A12 = A3
(1) + A6

(1), A
34 = A3

(1) − A6
(1) and

� = e2σ sin2 ξ

+e− σ
2 cos2 ξ

(
e−φ cos2 ψ + eφ sin2 ψ

)
. (62)

From the metric, we see that the SO(2) × SO(2) symmetry
corresponds to the isometry along the α and β directions.

3.2 AdS3 vacua with SO(2)diag symmetry

We now consider AdS3 solutions with SO(2)diag ⊂ SO(2)×
SO(2) ⊂ SO(3) × SO(3) symmetry. In this case, there are
three SO(2)diag singlets from the nine scalars in SO(3, 3)/

SO(3) × SO(3) coset. These correspond to non-compact
generators

Ŷ1 = Y11 + Y22, Ŷ2 = Y33, Ŷ3 = Y12 − Y21. (63)

The coset representative takes the form of

L = eφ1Ŷ1eφ2Ŷ2eφ3Ŷ3 . (64)
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Fig. 1 Regions (blue) in the parameter space (p21, p22) where good AdS3 vacua exist. From left to right, these are the cases of (k1 = k2 = −1),
(k1 = −1, k2 = 0) and (k1 = −k2 = −1), respectively. The orange regions correspond to interchanging k1 and k2

(a) (b)

(c) (d)

Fig. 2 RG flows from SO(4) N = (1, 0) SCFT in six dimensions to two-dimensional N = (2, 0) SCFTs with SO(2) × SO(2) symmetry dual to
AdS3 × H2 × H2 solutions for (p21, p22) = ( 1

12 ,− 1
2 ), ( 1

12 ,− 1
7 ), ( 1

3 ,− 1
7 ), (− 1

4 , 1
3 ) (blue, yellow, green, red)
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(a) (b)

(c) (d)

Fig. 3 RG flows from SO(4) N = (1, 0) SCFT in six dimensions to two-dimensional N = (2, 0) SCFTs with SO(2) × SO(2) symmetry dual to
AdS3 × H2 × R

2 solutions for (p21, p22) = ( 1
16 ,− 1

4 ), ( 1
8 ,− 1

10 ), ( 1
4 ,− 1

10 ), (− 1
2 , 1

3 ) (blue, yellow, green, red)

The ansatz for SO(2)diag gauge fields is obtained from that
of SO(2)× SO(2) given in (39) and (40) by setting g2A6 =
g1A3 or, equivalently,

g2 p21 = g1 p11 and g2 p22 = g1 p12. (65)

We will also simplify the notation by redefining the charges
p1 = p11 and p2 = p12. In this case, the four-form field
strength is given by

H(4) = p1 p2

8
√

2hg2
2

e−2(V+W )(g2
1 − g2

2)

×eθ̂1 ∧ eϕ̂1 ∧ eθ̂2 ∧ eϕ̂2 , (66)

and the twist conditions read

g1 p1 = k1 and g1 p2 = k2. (67)

Using the projection conditions (43) and (47), we obtain
the corresponding BPS equations. It turns out that com-
patibility between these BPS equations and field equations
requires either φ1 = 0 or φ3 = 0. Furthermore, setting

φ3 = 0 gives the same BPS equations as setting φ1 = 0
with φ3 and φ1 interchanged. We will then consider only the
φ3 = 0 case with the following BPS equations

U ′ = 1

10
e

σ
2

[
cosh 2φ1(g1e

−σ cosh φ2

+g2e
−σ sinh φ2) + 8he

3σ
2

−2p1e
−2V

(
cosh φ2 + g1

g2
sinh φ2

)

−2p2e
−2W

(
cosh φ2 + g1

g2
sinh φ2

)

+g1e
−σ cosh φ2 − g2e

−σ sinh φ2

− 3

4hg2
2

e− 3σ
2 −2(V+W )(g2

1 − g2
2)p1 p2

]
, (68)

V ′ = 1

10
e

σ
2

[
cosh 2φ1(g1e

−σ cosh φ2

+g2e
−σ sinh φ2) + 8he

3σ
2
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(a) (b)

(c) (d)

Fig. 4 RG flows from SO(4) N = (1, 0) SCFT in six dimensions to two-dimensional N = (2, 0) SCFTs with SO(2) × SO(2) symmetry dual to
AdS3 × H2 × S2 solutions for (p21, p22) = ( 1

14 ,−2), ( 1
9 ,−5), ( 1

6 ,−2), (− 1
3 , 9) (blue, yellow, green, red)

+8p1e
−2V

(
cosh φ2 + g1

g2
sinh φ2

)

−2p2e
−2W

(
cosh φ2 + g1

g2
sinh φ2

)

+g1e
−σ cosh φ2 − g2e

−σ sinh φ2

+ 1

2hg2
2

e− 3σ
2 −2(V+W )(g2

1 − g2
2)p1 p2

]
, (69)

W ′ = 1

10
e

σ
2

[
cosh 2φ1(g1e

−σ cosh φ2 + g2e
−σ sinh φ2)

+8he
3σ
2 − 2p1e

−2V
(

cosh φ2 + g1

g2
sinh φ2

)

+8p2e
−2W

(
cosh φ2 + g1

g2
sinh φ2

)

+g1e
−σ cosh φ2 − g2e

−σ sinh φ2

+ 1

2hg2
2

e− 3σ
2 −2(V+W )(g2

1 − g2
2)p1 p2

]
, (70)

σ ′ = 1

5
e

σ
2

[
cosh 2φ1(g1e

−σ cosh φ2 + g2e
−σ sinh φ2)

−32he
3σ
2 − 2p1e

−2V
(

cosh φ2 + g1

g2
sinh φ2

)

−2p2e
−2W

(
cosh φ2 + g1

g2
sinh φ2

)

+g1e
−σ cosh φ2 − g2e

−σ sinh φ2

+ 1

2hg2
2

e− 3σ
2 −2(V+W )(g2

1 − g2
2)p1 p2

]
, (71)

φ′
1 = −1

2
e− σ

2 sinh 2φ1(g1 cosh φ2 + g2 sinh φ2), (72)

φ′
2 = 1

2
e

σ
2

[
e−σ [g2 cosh φ2 − g1 sinh φ2

− cosh 2φ1(g2 cosh φ2 + g1 sinh φ2)]

−2p1e
−2V

(
sinh φ2 + g1

g2
cosh φ2

)

−2p2e
−2W

(
sinh φ2 + g1

g2
cosh φ2

)]
. (73)
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In this case, solutions to the BPS equations are asymptotic
to the two supersymmetric AdS7 vacua with SO(4) and
SO(3)diag symmetries at large r . Furthermore, unlike the
previous case, all charge parameters are fixed by the twist
conditions, and there exist only AdS3 × H2 × H2 solutions.

We now look for AdS3 fixed points. The solutions also
preserve four supercharges and correspond to N = (2, 0)

SCFTs in two dimensions as in the previous case. We begin
with a class of AdS3 fixed points for φ1 = 0

σ = 2

5
φ2 + 2

5
ln

[
g1g2

2

12h(g2
2 + 2g1g2 − 3g2

1)

]
, (74)

φ2 = 1

2
ln

[
3g2

1 − 2g1g2 − g2
2

3g2
1 + 2g1g2 − g2

2

]
, (75)

V = W = 1

10
ln

[
27(g1 − g2)

4(g1 + g2)
4

16h2g8
1g

6
2(g2

2 − 9g2
1)

]
, (76)

L AdS3 =
[

8(9g4
1g2 − 10g2

1g
3
2 + g5

2)2

3hg4
1(g2

2 − 3g2
1)5

] 1
5

(77)

with g2 > 3g1 or g2 < −3g1 for AdS3 vacua to exist. An
example of RG flows from the SO(4) AdS7 critical point to
this AdS3 × H2 × H2 fixed point for g2 = 4g1 and h = 1 is
shown in Fig. 5 with φ1 set to zero along the flow.

Another class of AdS3 × H2 × H2 solutions with φ1 
= 0
is given by

σ = 2

5
ln

[
g1g2

12h
√

(g2 + g1)(g2 − g1)

]
,

φ1 = φ2 = 1

2
ln

[
g2 − g1

g2 + g1

]
,

V = W = 1

10
ln

[
27(g2

1 − g2
2)4

16h2g8
1g

8
2

]
,

L AdS3 =
[

8(g2
1 − g2

2)2

3hg4
1g

4
2

] 1
5

(78)

with the condition g2 > g1. Examples of RG flow solutions
from the SO(4) and SO(3) AdS7 vacua to these AdS3 ×
H2 ×H2 fixed points are respectively shown in Figs. 6 and 7
for g2 = 4g1 and h = 1. Note that φ1 and φ2 have the same
value at both the SO(3) AdS7 and AdS3 fixed points.

Moreover, with a suitable set of boundary conditions, there
exists an RG flow from SO(4) AdS7 to SO(3) AdS7 fixed
points and then to AdS3 × H2 × H2 critical point as shown
in Fig. 8. All AdS3 vacua and RG flows in this case can-
not be uplifted to eleven dimensions since the existence of
these solutions require g1 
= g2. Therefore, the correspond-
ing holographic interpretation is rather limited.

3.3 AdS3 vacua with SO(2)R symmetry

We now move on to AdS3 solutions with SO(2)R ⊂ SO(3)R
symmetry. There are three SO(2)R singlet scalars from
SO(3, 3)/SO(3) × SO(3) coset. These correspond to non-
compact generators Y31, Y32 and Y33. Therefore, the coset
representative can be written as

L = eφ1Y31eφ2Y32eφ3Y33 . (79)

To perform the twist, we take the following ansatz for the
SO(2)R gauge field

A3
(1) = − p1

k1
e−V

f ′
k1

(θ1)

fk1(θ1)
eϕ̂1 − p2

k2
e−W

f ′
k2

(θ2)

fk2(θ2)
eϕ̂2 . (80)

The four-form field strength in this case is given by

H(4) = − 1

8
√

2h
e−2(V+W ) p1 p2e

θ̂1 ∧ eϕ̂1 ∧ eθ̂2 ∧ eϕ̂2 . (81)

We can now repeat the same procedure as in the previous
two cases to find the corresponding BPS equations. In this
case, it turns out that compatibility between the BPS equa-
tions and second-order field equations allows only one of the
φi , i = 1, 2, 3, to be non-vanishing. We have verified that
any of the φi leads to the same set of BPS equations. We will
choose φ1 = φ2 = 0 and φ3 
= 0 for definiteness. With this
choice, the BPS equations are given by

U ′ = 1

5
e

σ
2

[
g1e

−σ + 4he
3σ
2 − e−2V p1 − e−2W p2

+ 3

8h
e−2(V+W ) p1 p2

]
, (82)

V ′ = 1

5
e

σ
2

[
g1e

−σ + 4he
3σ
2

+4e−2V p1 − e−2W p2 − 1

4h
e−2(V+W ) p1 p2

]
, (83)

W ′ = 1

5
e

σ
2

[
g1e

−σ + 4he
3σ
2 − e−2V p1

+4e−2W p2 − 1

4h
e−2(V+W ) p1 p2

]
, (84)

σ ′ = 2

5
e

σ
2

[
g1e

−σ − 16he
3σ
2 − e−2V p1 − e−2W p2

− 1

4h
e−2(V+W ) p1 p2

]
, (85)

φ′
3 = −e− σ

2

[
g1 + eσ (e−2V p1 + e−2W p2)

]
sinh φ3. (86)

For these equations, there exist AdS3 fixed points only for
k1 = k2 = −1. The resulting AdS3 × H2 × H2 solution is
given by

φ3 = 0, σ = 2

5
ln

[ g1

12h

]
,
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(a) (b)

(c) (d)

25

15

10

5

25

15

10

5

Fig. 5 An RG flow from SO(4) N = (1, 0) SCFT in six dimensions to two-dimensional N = (2, 0) SCFT with SO(2)diag symmetry dual to
AdS3 × H2 × H2 solution

V = W = 1

10
ln

[
27

16h2g8
1

]
,

L AdS3 =
[

8

3hg4
1

] 1
5

. (87)

This solution again preserves four supercharges and corre-
sponds to N = (2, 0) SCFT in two dimensions. An example
of RG flow solutions from N = (1, 0) six-dimensional SCFT
to this fixed point for h = 1 and φ3 = 0 is shown in Fig. 9.
Note that the AdS3 fixed point and the RG flow are also solu-
tions of pure N = 2 gauged supergravity with SU (2) gauge
group.

As in the case of AdS3 solutions with SO(2) × SO(2)

symmetry, the above solutions can be uplifted to eleven
dimensions by setting g2 = g1. The eleven-dimensional met-
ric can be obtained from (61) by setting φ = 0 and A6

(1) = 0,

or equivalently A12 = A34 ≡ A3. The result is given by

dŝ2
11 = �

1
3

[
e2Udx2

1,1 + dr2 + e2V ds2
�2
k1

+ e2Wds2
�2
k2

]

+ 2

g2 �− 2
3

(
e−2σ cos2 ξ + e

σ
2 sin2 ξ

)
dξ2

+ 1

2g2 �− 2
3 e

σ
2 cos2 ξ

[
dψ2 + cos2 ψ(dα − gA3)2

+ sin2 ψ(dβ − gA3)2
]

(88)

with

� = e2σ sin2 ξ + e− σ
2 cos2 ξ. (89)

It should also be pointed out that the seven-dimensional solu-
tion in this case has recently been discussed in the context of
massive type IIA theory in [40].

4 Supersymmetric AdS3 × M4
k solutions and RG flows

In this section, we repeat the same analysis for M4 being a
Kahler four-cycle and look for solutions of the form AdS3 ×
M4

k . For the constant k = 1, 0,−1, the Kahler four-cycle
is given by a two-dimensional complex space CP2, a four-
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dimensional flat space R
4, or a two-dimensional complex

hyperbolic space CH2, respectively. The Kahler four-cycle
hasU (2) ∼ SU (2)×U (1) spin connection. We can perform
a twist by using either SO(2)R ∼ U (1)R or SO(3)R ∼
SU (2)R gauge fields to cancel the U (1) or SU (2) parts of
the spin connection.

4.1 AdS3 vacua with SO(2) × SO(2) symmetry

We begin with AdS3 vacua with SO(2) × SO(2) symme-
try and take the following ansatz for the seven-dimensional
metric

σ φ φ

(a) (b) (c)

(e)(d)

Fig. 6 An RG flow from SO(4) N = (1, 0) SCFT in six dimensions to two-dimensional N = (2, 0) SCFT with SO(2)diag symmetry dual to
AdS3 × H2 × H2 solution

σ φ φ

(a) (b) (c)

(e)(d)

Fig. 7 An RG flow from SO(3) N = (1, 0) SCFT in six dimensions to two-dimensional N = (2, 0) SCFT with SO(2)diag symmetry dual to
AdS3 × H2 × H2 solution
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σ φ φ

(a) (b) (c)

(e)(d)

Fig. 8 An RG flow from SO(4) N = (1, 0) SCFT to SO(3) N = (1, 0) SCFT in six dimensions and then to two-dimensional N = (2, 0) SCFT
with SO(2)diag symmetry dual to AdS3 × H2 × H2 solution

σ

(a) (b) (c)

Fig. 9 An RG flow from SO(4) N = (1, 0) SCFT in six dimensions to two-dimensional N = (2, 0) SCFT with SO(2)R symmetry dual to
AdS3 × H2 × H2 solution

ds2
7 = e2U (r)dx2

1,1 + dr2 + e2V (r)ds2
M4

k
. (90)

The metric on the Kahler four-cycle M4
k is given by

ds2
M4

k
= dϕ2

f 2
k (ϕ)

+ ϕ2

fk(ϕ)
(τ 2

1 + τ 2
2 ) + ϕ2

f 2
k (ϕ)

τ 2
3 (91)

with ϕ ∈ [0, π
2 ] and the function fk(ϕ) defined by

fk(ϕ) = 1 + kϕ2. (92)

τi , i = 1, 2, 3, are SU (2) left-invariant one-forms satisfying
dτi = 1

2εi jkτ j ∧ τk . Their explicit form is given by

τ1 = − sin χdθ + cos χ sin θdψ,

τ2 = cos χdθ + sin χ sin θdψ,

τ3 = dχ + cos θdψ. (93)

The ranges of the coordinates are θ ∈ [0, π ], ψ ∈ [0, 2π ],
and χ ∈ [0, 4π ].

By choosing the following choice of vielbein

eα̂ = eUdxα, e1̂ = eV
ϕ√
fk(ϕ)

τ1,

e2̂ = eV
ϕ√
fk(ϕ)

τ2,

er̂ = dr, e3̂ = eV
ϕ

fk(ϕ)
τ3,

e4̂ = eV
1

fk(ϕ)
dϕ, (94)
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we find non-vanishing components of the spin connection

ωα̂
r̂ = U ′eα̂, ωî

r̂ = V ′eî , i = 1, 2, 3,

ω4̂
r̂ = V ′e4̂,

ω1̂
4̂ = ω2̂

3̂ = 1√
fk(ϕ)

τ1,

ω1̂
2̂ = (2kϕ2 + 1)

fk(ϕ)
τ3,

ω2̂
4̂ = ω3̂

1̂ = 1√
fk(ϕ)

τ2,

ω4̂
3̂ = (kϕ2 − 1)

fk(ϕ)
τ3 . (95)

We can now perform the twist by turning on SO(2) ×
SO(2) gauge fields with the following ansatz

A3
(1) = p1

3ϕ2

√
fk(ϕ)

τ3 and

A6
(1) = p2

3ϕ2

√
fk(ϕ)

τ3 . (96)

The associated two-form field strengths are given by

F3
(2) = 3e−2V p1 J(2) and F6

(2) = 3e−2V p2 J(2) (97)

where J(2) is the Kahler structure defined by

J(2) = e1̂ ∧ e2̂ − e3̂ ∧ e4̂. (98)

To implement the twist, we impose the following projectors
on the Killing spinors

γ1̂2̂ε = −γ3̂4̂ε = iσ 3ε (99)

together with the twist condition

g1 p1 = k. (100)

As in the previous cases, we need to turn on the three-form
field with the field strength

H(4) = 9

8
√

2h
e−4V (p2

1 − p2
2)e

1̂ ∧ e2̂ ∧ e3̂ ∧ e4̂. (101)

With all these and the γr projector (47), we can derive the
following BPS equations

U ′ = 1

5
e

σ
2

[
(g1e

−σ cosh φ + 4he− 5σ
2 )

−6e−2V (p1 cosh φ + p2 sinh φ)

+ 27

8h
e− 3σ

2 −4V (p2
1 − p2

2)
]
, (102)

V ′ = 1

5
e

σ
2

[
(g1e

−σ cosh φ + 4he− 5σ
2 )

+9e−2V (p1 cosh φ + p2 sinh φ)

− 9

4h
e− 3σ

2 −4V (p2
1 − p2

2)
]
, (103)

σ ′ = 2

5
e

σ
2

[
(g1e

−σ cosh φ − 16he− 5σ
2 )

−6e−2V (p1 cosh φ + p2 sinh φ)

− 9

4h
e− 3σ

2 −4V (p2
1 − p2

2)
]
, (104)

φ′ = −g1e
− σ

2 sinh φ

−6e
σ
2 −2V (p1 sinh φ + p2 cosh φ) (105)

with φ being the SO(2) × SO(2) singlet scalar in (41).
The BPS equations admit an AdS3 × CH2 fixed point

given by

σ = 2

5
ln

⎡
⎣ g1 p2

1

12h
√
p4

1 − 10p2
1 p

2
2 + 9p4

2

⎤
⎦ ,

φ = 1

2
ln

[
p2

1 + 2p1 p2 − 3p2
2

p2
1 − 2p1 p2 − 3p2

2

]
,

V = 1

10
ln

[
38(p2

1 − p2
2)

4

16h2g3
1(9p1 p2

2 − p3
1)

]
,

L AdS3 =
[

8(p5
1 − 10p3

1 p
2
2 + 9p1 p4

2)
2

3hg4
1(p2

1 − 3p2
2)5

] 1
5

. (106)

The AdS3 solution preserves four supercharges and exists
for

− 1

48h
< p2 <

1

48h
(107)

with g1 = 16h, k = −1, and h > 0. The AdS3 ×CH2 fixed
point is dual to an N = (2, 0) two-dimensional SCFT.

Examples of RG flows interpolating between this AdS3

fixed point and the SO(4) AdS7 critical point for h = 1 and
different values of p2 are shown in Fig. 10.

As in the �2 ×�2 case, the AdS3 ×CH2 fixed point and
the associated RG flows can be uplifted to eleven dimensions
by setting g2 = g1. The eleven-dimensional metric can be
obtained from (61) by replacing e2V ds2

�2
k1

+ e2Wds2
�2
k2

by

e2V ds2
M4

k
and using the gauge fields in (96). We will not

repeat it here.

4.2 AdS3 vacua with SO(2)diag symmetry

We next consider solutions with smaller residual symme-
try SO(2)diag ⊂ SO(2) × SO(2) by imposing the condi-
tion g2 p2 = g1 p1. There are three SO(2)diag singlet scalars
with the coset representative given by (64). As in the previ-
ous section, compatibility between BPS equations and field
equations requires φ1 = 0 or φ3 = 0, and these two cases
are equivalent. We will consider the case of φ3 = 0 with the
following BPS equations
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(a) (b) (c)

σ φ

Fig. 10 RG flows from SO(4) N = (1, 0) SCFT in six dimensions to two-dimensional N = (2, 0) SCFT with SO(2) × SO(2) symmetry dual
to AdS3 × CH2 solution. The blue, orange, green and red curves refer to p2 = − 1

64 ,− 1
80 ,− 1

120 , 1
580 , respectively

U ′ = 1

5
e

σ
2

[ (
g1e

−σ cosh2 φ1 cosh φ2

+g2e
−σ sinh2 φ1 sinh φ2 + 4he

3σ
2

)

−6e−2V
(

cosh φ2 + g1

g2
sinh φ2

)
p1

− 27

8hg2
2

e− 3σ
2 −4V (g2

1 − g2
2)p2

1

]
, (108)

V ′ = 1

5
e

σ
2

[ (
g1e

−σ cosh2 φ1 cosh φ2

+g2e
−σ sinh2 φ1 sinh φ2 + 4he

3σ
2

)

+9e−2V
(

cosh φ2 + g1

g2
sinh φ2

)
p1

+ 9

4hg2
2

e− 3σ
2 −4V (g2

1 − g2
2)p2

1

]
, (109)

σ ′ = 2

5
e

σ
2

[ (
g1e

−σ cosh2 φ1 cosh φ2

+g2e
−σ sinh2 φ1 sinh φ2 − 16he

3σ
2

)

−6e−2V
(

cosh φ2 + g1

g2
sinh φ2

)
p1

+ 9

4hg2
2

e− 3σ
2 −4V (g2

1 − g2
2)p2

1

]
, (110)

φ′
1 = −e− σ

2 cosh φ1 sinh φ1(g1 cosh φ2 + g2 sinh φ2),

(111)

φ′
2 = −e

σ
2

[ (
g1e

−σ cosh2 φ1 sinh φ2

+g2e
−σ sinh2 φ1 cosh φ2

)

+6e−2V
(

sinh φ2 + g1

g2
cosh φ2

)
p1

]
. (112)

There exist two classes of AdS3 ×CH2 fixed points pre-
serving four supercharges and corresponding to N = (2, 0)

SCFTs in two dimensions with SO(2)diag symmetry. With
k = −1, the first class of AdS3 ×CH2 fixed points is given
by

φ1 = 0,

σ = 2

5
φ2 + 2

5
ln

[
g1g2

2

12h(g2
2 + 2g1g2 − 3g2

1)

]
,

φ2 = 1

2
ln

[
3g2

1 − 2g1g2 − g2
2

3g2
1 + 2g1g2 − g2

2

]
,

V = 1

10
ln

[
38(g2

1 − g2
2)4

16h2g8
1g

6
2(g2

2 − 9g2
1)

]
,

L AdS3 =
[

8(9g4
1g2 − 10g2

1g
3
2 + g5

2)2

3hg4
1(g2

2 − 3g2
1)5

] 1
5

(113)

with g2 > 3g1 or g2 < −3g1 for AdS3 vacua to exist.
An RG flow solution from the SO(4) AdS7 critical point to
AdS3 ×CH2 fixed point for φ1 = 0, g2 = 4g1 and h = 1 is
shown in Fig. 11.

Another class of AdS3 × CH2 fixed points is given by

σ = 2

5
ln

[
g1g2

12h
√

(g2 + g1)(g2 − g1)

]
,

φ1 = φ2 = 1

2
ln

[
g2 − g1

g2 + g1

]
,

V = 1

5
ln

[
34(g2

1 − g2
2)2

4hg4
1g

4
2

]
,

L AdS3 =
[

8(g2
1 − g2

2)2

3hg4
1g

4
2

] 1
5

. (114)

To obtain good AdS3 vacua, we require that g2 > g1. Var-
ious RG flows from N = (1, 0) six-dimensional SCFTs
with SO(4) and SO(3) symmetries to these fixed points for
g2 = 4g1 and h = 1 are shown in Figs. 12, 13 and 14.

As in the case of M4 = �2 × �2, all of these AdS3 fixed
points and RG flows cannot be uplifted to eleven dimensions
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σ φ

(a) (b) (c)

Fig. 11 An RG flow from SO(4) N = (1, 0) SCFT in six dimensions to two-dimensional N = (2, 0) SCFT with SO(2)diag symmetry dual to
AdS3 × CH2 solution

σ φ

φ

(a)

(c) (d)

(b)

Fig. 12 An RG flow from SO(4) N = (1, 0) SCFT in six dimensions to two-dimensional N = (2, 0) SCFT with SO(2)diag symmetry dual to
AdS3 × CH2 solution

using the truncation given in [37], so we do not have a clear
holographic interpretation in this case.

4.3 AdS3 vacua with SO(2)R symmetry

By setting p2 = 0 in the SO(2) × SO(2) case, we obtain
solutions with SO(2)R ⊂ SO(3)R symmetry. As in the pre-
vious case, the three SO(2)R singlet scalars need to vanish in

order for AdS3 fixed points to exist. We will accordingly set
all vector multiplet scalars to zero for brevity. The resulting
BPS equations are given by

U ′ = 1

5
e

σ
2

[
g1e

−σ + 4he
3σ
2 − 6e−2V p1 + 27

8h
e−4V p2

1

]
, (115)

V ′ = 1

5
e

σ
2

[
g1e

−σ + 4he
3σ
2 + 9e−2V p1 − 9

4h
e−4V p2

1

]
, (116)
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σ φ

φ

(a) (b)

(c) (d)

Fig. 13 An RG flow from SO(3) N = (1, 0) SCFT in six dimensions to two-dimensional N = (2, 0) SCFT with SO(2)diag symmetry dual to
AdS3 × CH2 solution

σ ′ = 2

5
e

σ
2

[
g1e

−σ − 14he
3σ
2 − 6e−2V p1 − 9

4h
e−4V p2

1

]
. (117)

After imposing the twist condition (100), we obtain an AdS3

solution for k = −1 given by

σ = 2

5
ln

[ g1

12h

]
, V = 1

10
ln

[
38

16h2g8
1

]
,

L AdS3 =
[

8

3hg4
1

] 1
5

. (118)

An RG flow from SO(4) AdS7 to this fixed point for h = 1
is shown in Fig. 15.

4.4 AdS3 vacua with SO(3)diag symmetry

For Kahler four-cycles with SU (2) × U (1) spin con-
nection, we can also perform the twist by identifying
SO(3) ∼ SU (2) ⊂ SU (2) × U (1) with the gauge sym-
metry SO(3)diag ⊂ SO(3) × SO(3). In this case, we will

use the metric on M4
k in the form

ds2
M4

k
= dϕ2 + fk(ϕ)2(τ 2

1 + τ 2
2 + τ 2

3 ) (119)

with τi being the SU (2) left-invariant one-forms given in
(93) and fk(ϕ) defined in (36).

With the seven-dimensional vielbein

eα̂ = eUdxα, er̂ = dr,

eî = eV fk(ϕ)τi , i = 1, 2, 3, e4̂ = eV dϕ, (120)

we can compute the following non-vanishing components of
the spin connection

ωα̂
r̂ = U ′eα̂, ωî

r̂ = V ′eî , ω4̂
r̂ = V ′e4̂,

ωî
4̂ = f ′

k(ϕ)τi , ωî
ĵ = εi jkτk . (121)

We then turn on the SO(3)diag gauge fields as follow

Ai
(1) = g2

g1
Ai+3

(1) = p

k
( f ′

k(ϕ) + 1)τi ,

i = 1, 2, 3 (122)
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σ φ

φ

(a) (b)

(d)(c)

Fig. 14 An RG flow from SO(4) N = (1, 0) SCFT to SO(3) N = (1, 0) SCFT in six dimensions and eventually to two-dimensional N = (2, 0)

SCFT with SO(2)diag symmetry dual to AdS3 × CH2 solution

(a) (b)

σ

Fig. 15 An RG flow from SO(4) N = (1, 0) SCFT in six dimensions to two-dimensional N = (2, 0) SCFT with SO(2)R symmetry dual to
AdS3 × CH2 solution
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with the two-form field strengths given by

F1
(2) = g2

g1
F4

(2) = e−2V p (e1̂ ∧ e4̂ + e2̂ ∧ e3̂), (123)

F2
(2) = g2

g1
F5

(2) = e−2V p (e1̂ ∧ e3̂ + e2̂ ∧ e4̂), (124)

F3
(2) = g2

g1
F6

(2) = e−2V p (e1̂ ∧ e2̂ + e3̂ ∧ e4̂). (125)

As in the previous cases, we also need a non-vanishing four-
form field strength

H(4) = 3

8
√

2hg2
2

e−4V (g2
1 − g2

2)p2e1̂ ∧ e2̂ ∧ e3̂ ∧ e4̂ (126)

together with the twist condition

g1 p = k (127)

and the following projectors

γrε = −γ1̂2̂3̂4̂ε = ε and γî ĵε = iεi jkσ
kε. (128)

It should be noted that the second condition in (128) consists
of only two independent projectors since γ1̂3̂ projector can
be obtained from the product of those coming from γ1̂2̂ and
γ2̂3̂. Therefore, the resulting AdS3 fixed points preserve two
supercharges corresponding to N = (1, 0) superconformal
symmetry in two dimensions.

With all these and the coset representative for the
SO(3)diag singlet scalar in (30), we find the following BPS
equations

U ′ = 1

5
e

σ
2

[
(g1e

−σ cosh3 φ + g2e
−σ sinh3 φ + 4he

3σ
2 )

− 9p2

8hg2
2

e− 3σ
2 −4V (g2

1 − g2
2)

−6pe−2V
(

cosh φ + g1

g2
sinh φ

)]
, (129)

V ′ = 1

5
e

σ
2

[
(g1e

−σ cosh3 φ + g2e
−σ sinh3 φ + 4he

3σ
2 )

+ 3p2

4hg2
2

e− 3σ
2 −4V (g2

1 − g2
2)

+9pe−2V
(

cosh φ + g1

g2
sinh φ

)]
, (130)

σ ′ = 2

5
e

σ
2

[
(g1e

−σ cosh3 φ + g2e
−σ sinh3 φ − 16he

3σ
2 )

+ 3p2

4hg2
2

e− 3σ
2 −4V (g2

1 − g2
2)

−6pe−2V
(

cosh φ + g1

g2
sinh φ

)]
, (131)

φ′ = − 1

2g2
e− σ

2 (g1 cosh φ + g2 sinh φ)(g2 sinh 2φ + 4peσ−2V ).

(132)

We now look for AdS3 fixed points for the case of g2 = g1

that can be embedded in eleven dimensions. Setting g2 = g1

in the above equations, we find the following AdS3 × CH2

fixed point

σ = 2

5
ln

[
3

3
4 g1

16h

]
, φ = 1

4
ln 3,

V = 1

5
ln

[
18

hg4
1

]
, L AdS3 =

[
64

27hg4
1

] 1
5

. (133)

An RG flow interpolating between the SO(4) AdS7 vacuum
and this AdS3 × CH2 fixed point is shown in Fig. 16.

We can also uplift this solution to eleven dimensions by
first choosing the S3 coordinates

μα = (cos ψμ̂a, sin ψ), a, b, . . . = 1, 2, 3 (134)

with μ̂a being coordinates on S2 satisfying μ̂aμ̂a = 1. After
using the SL(4,R)/SO(4) matrix

T̃−1
αβ = diag(eφ, eφ, eφ, e−3φ) = (δabe

φ, e−3φ), (135)

we find the eleven-dimensional metric

dŝ2
11 = �

1
3

[
e2Udx2

1,1 + dr2

+e2V [dϕ2 + fk(ϕ)2(τ 2
1 + τ 2

2 + τ 2
3 )]

]

+ 2

g2 �− 2
3 e−2σ

×
[
cos2 ξ + e

5
2 σ sin2 ξ(eφ cos2 ψ + e−3φ sin2 ψ)

]
dξ2

+ 1

g2 �− 2
3 e

σ
2 sin ξ sin ψ cos ψ(eφ − e−3φ)dξdψ

+ 1

2g2 �− 2
3 e

σ
2 cos2 ξ

×
[
(e−3φ cos2 ψ + eφ sin2 ψ)dψ2 + eφ cos2 ψDμ̂a Dμ̂a

]
(136)

with � given by

� = e− σ
2 cos2 ξ(e−φ cos2 ψ + e3φ sin2 ψ) + e2σ sin2 ξ

(137)

and Dμ̂a = dμ̂a + gAabμ̂b. The gauge fields Aab are given
by

A12 = 2A3
(1), A13 = −2A2

(1), A23 = −2A1
(1). (138)

For g2 
= g1, we find the following AdS3 fixed points

σ = 2

5
ln

[
3g1g2

28h
√

(g2 + g1)(g2 − g1)

]
,

φ = 1

2
ln

[
g2 − g1

g2 + g1

]
, (139)
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(a) (b) (c)

σ φ

Fig. 16 An RG flow from SO(4) N = (1, 0) SCFT in six dimensions to two-dimensional N = (1, 0) SCFT with SO(3)diag symmetry dual to
AdS3 × CH2 solution for g1 = g2

σ φ

(a) (b) (c)

Fig. 17 An RG flow from SO(4) N = (1, 0) SCFT in six dimensions to two-dimensional N = (1, 0) SCFT with SO(3)diag symmetry dual to
AdS3 × CH2 solution

φσ

(a) (b) (c)

Fig. 18 An RG flow from SO(3) N = (1, 0) SCFT in six dimensions to two-dimensional N = (1, 0) SCFT with SO(3)diag symmetry dual to
AdS3 × CH2 solution

σ φ

(a) (b) (c)

Fig. 19 An RG flow from SO(4) N = (1, 0) SCFT to SO(3) N = (1, 0) SCFT in six dimensions and to two-dimensional N = (1, 0) SCFT with
SO(3)diag symmetry dual to AdS3 × CH2 solution

123



Eur. Phys. J. C (2019) 79 :652 Page 21 of 23 652

V = 1

10
ln
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3087(g2

1 − g2
2)4

16h2g8
1g
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]
,

L AdS3 =
[

24(g2
1 − g2

2)2

7g4
1g

4
2h

] 1
5

. (140)

These are AdS3×CH2 solutions with the condition g2 > g1.
Finally, we can numerically find RG flow solutions connect-
ing these fixed points to AdS7 vacua with SO(4) and SO(3)

symmetries. Examples of these solutions for g2 = 1.1g1 and
h = 1 are given in Figs. 17, 18 and 19.

5 Conclusions

We have studied supersymmetric AdS3 × M4 solutions
of N = 2 seven-dimensional gauged supergravity with
SO(4) ∼ SU (2)×SU (2) gauge group. For M4 being a prod-
uct of two Riemann surfaces, we have found a large class of
AdS3 × H2 ×�2 solutions with SO(2)× SO(2) symmetry
for �2 = S2,R2, H2 similar to the corresponding solutions
in maximal SO(5) gauged supergravity studied in [8]. Fur-
thermore, there exist a number of AdS3 ×H2 ×H2 solutions
with SO(2)diag and SO(2)R symmetries. In the latter case, all
scalars from vector multiplets vanish, so the AdS3×H2×H2

solution can be interpreted as a solution of pure N = 2
gauged supergravity with SU (2) gauge group. We have also
numerically given various holographic RG flows from super-
symmetric AdS7 vacua with SO(4) and SO(3) symmetries
to these AdS3 fixed points. The solutions decribe RG flows
across dimensions from N = (1, 0) SCFTs in six dimensions
to two-dimensional N = (2, 0) SCFTs in the IR.

For M4 being a Kahler four-cycle, the AdS3 solu-
tions only exist for the Kahler four-cycles with negative
curvature. In this case, the spin connection on M4 is a
U (2) ∼ SU (2) × U (1) connection. There are two pos-
sibilities for performing the twists, along the U (1) and
SU (2) ∼ SO(3) parts. For a twist by U (1) ∼ SO(2)R ⊂
SO(3)R , we have found AdS3 × CH2 fixed points with
SO(2) × SO(2), SO(2)diag and SO(2)R symmetries. The
solutions preserve four supercharges and correspond to
N = (2, 0) two-dimensional SCFTs. For a twist along
the SU (2) ∼ SO(3) part, we have performed the twist
by turning on the SO(3)diag gauge fields. Unlike the pre-
vious cases, the AdS3 fixed points in this case preserve
only two supercharges. The solutions are accordingly dual
to N = (1, 0) two-dimensional SCFTs. We have studied RG
flows from supersymmetric AdS7 vacua to these geometries
as well.

All of these solutions provide a large class of AdS3 ×
M4 solutions and RG flows across dimensions from six-
dimensional SCFTs to two-dimensional SCFTs. The solu-
tions might be useful in the holographic study of supersym-

metric deformations of N = (1, 0) SCFTs in six dimen-
sions to two dimensions. For equal SU (2) gauge coupling
constants, the SO(4) gauged supergravity can be embedded
in eleven-dimensional supergravity. We have also given the
uplifted eleven-dimensional metric. These solutions with a
clear M-theory origin should be of particular interest in the
study of wrapped M5-branes on four-manifolds.

For solutions with different SU (2) coupling constants,
there is no known embedding in string/M theory. Therefore,
in this case, the holographic interpretation as RG flows in the
dual N = (1, 0) SCFTs should be done with some caveats. It
would be interesting to look for the embedding of these solu-
tions in ten or eleven dimensions. This could give rise to the
full holographic duals of the effective theories on 5-branes
wrapped on four-manifolds. Similar solutions in N = 2
gauged supergravity with other gauge groups also deserve
further study. Finally, it should be noted that the RG flows
across dimensions given here can be interpreted as super-
symmetric black strings in asymptotically AdS7 space. Our
solutions should be useful in the study of black string entropy
using twisted indices of N = (1, 0) SCFTs along the line of
[41].
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A Truncation ansatz of eleven-dimensional
supergravity on S4

In this appendix, we review relevant formulae for embedding
solutions of N = 2 seven-dimensional gauged supergrav-
ity in eleven-dimensional supergravity. Since the AdS3 ×
M4 solutions involve all types of seven-dimensional fields
namely scalar, vector and three-form fields, the eleven-
dimensional four-form field strength is very complicated.
Accordingly, we omit an explicit form of the four-form in
each case for brevity. It can however be computed by using
the formula given in [37] and the mapping between seven-
and eleven-dimensional fields given here.

The truncation of eleven-dimensional supergravity on S4

leading to N = 2 SO(4) seven-dimensional gauged super-
gravity is described by the metric ansatz
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dŝ2
11 = �

1
3 ds2

7 + 2

g2 �− 2
3 X3

×
[
X cos2 ξ + X−4 sin2 ξ T̃−1

αβ μαμβ
]
dξ2

− 1

g2 �− 2
3 X−1T̃−1

αβ sin ξμαdξDμβ

+ 1

2g2 �− 2
3 X−1T̃−1

αβ cos2 ξDμαDμβ (141)

with the following definitions

Dμα = dμα + gAαβ

(1)μ
β and

� = cos2 ξ XT̃αβμαμβ + X−4 sin2 ξ. (142)

μα , α = 1, 2, 3, 4, are coordinates on S3 satisfying μαμα =
1.

Together with the four-form ansatz given in [37], the
Lagrangian for the resulting N = 2 gauged supergravity,
after multiplied by 1

2 , reads

L7 = 1

2
R ∗ 1 − 1

8
X−2T̃−1

αγ T̃−1
βδ ∗ Fαβ

(2) ∧ Fγ δ

(2)

−1

8
T̃−1

αβ ∗ DT̃βγ ∧ T̃−1
γ δ DT̃δα − 1

4
X4 ∗ F(4) ∧ F(4)

+ 1

16
εαβγ δA(3) ∧ Fαβ

(2) ∧ Fγ δ

(2) − 5

2
X−2 ∗ dX ∧ dX

−1

4
gF(4) ∧ A(3) − V ∗ 1 (143)

with the scalar potential given by

V = 1

4
g2

[
X−8 − 2X−3T̃αα + 2X2

(
T̃αβ T̃αβ − 1

2
T̃ 2

αα

)]
.

(144)

A symmetric scalar matrix T̃αβ , α, β = 1, 2, 3, 4 with unit
determinant describes nine scalars in SL(4,R)/SO(4) coset.
This is equivalent to SO(3, 3)/SO(3) × SO(3) coset due
to the isomorphisms SO(3, 3) ∼ SL(4,R) and SO(4) ∼
SO(3) × SO(3).

In term of the SL(4,R)/SO(4) coset representative Vα
R

with SO(4) indices R, S, . . . = 1, 2, 3, 4, we have the rela-
tion

T̃−1
αβ = Vα

RVβ
SδRS . (145)

The SO(3, 3)/SO(3) × SO(3) coset representative L I
A is

related to that of SL(4,R)/SO(4) by the relation

L I
A = 1

4
�

αβ
I ηA

RSVα
RVβ

S (146)

in which � I and ηA are chirally projected gamma matrices
of SO(3, 3) satisfying the relations

(� I )αβ(� J )αβ = −4ηI J and

(� I )αβ(�I )γ δ = −2εαβγ δ (147)

and � Iαβ = (�i
αβ,−�i+3

αβ ), i = 1, 2, 3, see more detail in

[32]. Note also that ηA
RS also satisfy similar relations which

we will not repeat them here. We use the following choice of
� I

αβ

�1 = −iσ2 ⊗ σ1, �2 = −iσ2 ⊗ σ3, �
3 = iI2 ⊗ σ2,

�4 = iσ1 ⊗ σ2, �5 = −iσ2 ⊗ I2, �
6 = iσ3 ⊗ σ2. (148)

All these ingredients lead to the following identification
of the fields and parameters in seven and eleven dimensions

g2 = g1 = 16h = 2g, X = e− σ
2 ,

C(3) = 1√
2
A(3), Aαβ

(1) = �
αβ
I AI

(1). (149)

With this identification, it can also be easily verified that the
scalar matrix for the gauge kinetic terms also match

aI J = 1

4
T̃−1

αγ T̃−1
βδ �

αβ
I �

γδ

J . (150)

For convenience, we explicitly give the SL(4,R)/SO(4)

coset representative Vα
R and SO(4) gauge fields Aαβ as fol-

low.

• SO(3)diag singlet scalar:

Vα
R = diag(e

φ
2 , e

φ
2 , e

φ
2 , e− 3φ

2 ), (151)

A12 = A3 + A6 = 2A3,

A13 = −A2 − A5 = −2A2,

A23 = −A1 − A4 = −2A1. (152)

We have used the relation Ai = g2
g1
Ai+3 with g2 = g1.

• SO(2) × SO(2) singlet scalar:

Vα
R = diag(e

φ
2 , e

φ
2 , e− φ

2 , e− φ
2 ), (153)

A12 = A3 + A6, A34 = A3 − A6. (154)

• SO(2)diag singlet scalars:

Vα
R =

⎛
⎜⎜⎜⎜⎝

e
φ2
2 0 0 0 0

0 e
φ2
2 0 0

0 0 eφ1− φ2
2 cosh φ3 eφ1− φ2

2 sinh φ3

0 0 e−φ1− φ2
2 sinh φ3 e−φ1− φ2

2 cosh φ3

⎞
⎟⎟⎟⎟⎠ ,

(155)

A12 = 2A3. (156)

123
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In all cases, it can be verified using the relation (146) that the
above Vα

R give precisely L I
A in the main text.
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