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Abstract We give a large class of supersymmetric domain
walls in maximal seven-dimensional gauged supergrav-
ity with various types of gauge groups. Gaugings are
described by components of the embedding tensor trans-
forming in representations 15 and 40 of the global symmetry
SL(5). The embedding tensor in 15 representation leads to
CSO(p, q, 5 − p − q) gauge groups while gaugings in 40
representation describesCSO(p, q, 4−p−q) gauge groups.
These gaugings admit half-supersymmetric domain walls
as vacuum solutions. On the other hand, gaugings involv-
ing both 15 and 40 components lead to 1

4 -supersymmetric
domain walls. In this case, the gauge groups under consider-
ation are SO(2, 1) � R4 and CSO(2, 0, 2) ∼ SO(2) � R4.
All of the domain wall solutions are analytically obtained.
For SO(5) gauge group, the gauged supergravity admits an
N = 4 supersymmetric AdS7 vacuum dual to N = (2, 0)

SCFT in six dimensions. The corresponding domain walls
can be interpreted as holographic RG flows from the N =
(2, 0) SCFT to non-conformal N = (2, 0) field theories in
the IR. The solutions can be uplifted to eleven dimensions
by using a truncation ansatz on S4. Furthermore, the gauged
supergravity with CSO(4, 0, 1) ∼ SO(4)�R4 gauge group
can be embedded in type IIA theory via a truncation on S3.
The uplifted domain walls, describing NS5-branes of type
IIA theory, are also given.

1 Introduction

Supersymmetric p-branes have played an important role
throughout the development of string/M-theory. These
extended objects can be effectively described by using
(p + 2)-dimensional gauged supergravity (possibly includ-
ing massive deformations in higher dimensions) in which

a e-mail: parinya.ka@hotmail.com
b e-mail: danai.nuchino@hotmail.com

they become domain walls. The latter are of particular inter-
est in the DW/QFT correspondence [1–3], a generalization
of the AdS/CFT correspondence [4], and in cosmology, see
for example [5–7]. In addition, classifications of supersym-
metric domain walls can give some insight to the underlying
structure of M-theory [8] through the algebraic structure E11

[9].
In ten dimensions, there is only one massive type IIA

supergravity and hence only one possible domain wall [10].
In nine and eight dimensions, half-supersymmetric domain
walls have been studied in [11,12] and [13,14] using max-
imal gauged supergravities. In this paper, we will consider
supersymmetric domain walls within maximal gauged super-
gravity in seven dimensions. General discussions about this
type of solutions and examples of domain walls in N = 4
gauged supergravity with SO(5) gauge group have already
been given in previous works [15–19]. However, as pointed
out in [18], a systematic study of these domain walls and
explicit solutions in other gauge groups have not appeared
so far. Similar solutions in lower-dimensional gauged super-
gravities can also be found in [20–25].

We will give a large number of supersymmetric domain
wall solutions in maximal N = 4 gauged supergravity with
various gauge groups. The first N = 4 gauged supergrav-
ity with SO(5) gauge group has been constructed for a long
time in [26,27]. It can be obtained from a consistent trunca-
tion of eleven-dimensional supergravity on a four-sphere S4

[28–30]. The most general deformations of the N = 4 super-
gravity are obtained by using the embedding tensor formal-
ism. These gaugings have been constructed in [31]. There
are two components of the embedding tensor transforming
in 15 and 40 representations of the global SL(5) symme-
try. As shown in [18], each of these components leads to
half-supersymmetric domain walls. In addition, the 15 and
40 parts give rise to domain walls supporting respectively
tensor and vector multiplets on their world-volumes. Unlike
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higher-dimensional analogues, when both representations of
the embedding tensor are present simultaneously, the domain
walls are only 1

4 -supersymmetric. In this paper, we will ana-
lytically give solutions for domain walls of all these types.

For gaugings in 15 representation, we will consider
CSO(p, q, 5 − p − q) ∼ SO(p, q) � R(p+q)(5−p−q)

gauge groups. For SO(5) gauge group with known eleven-
dimensional origin, solutions to N = 4 gauged supergrav-
ity can be embedded in M-theory. Furthermore, this gauged
supergravity also admits a maximally supersymmetric AdS7

vacuum which is, according to the AdS/CFT correspondence,
dual to N = (2, 0) superconformal field theory (SCFT) in six
dimensions. The domain walls with an AdS7 asymptotic can
be interpreted as holographic RG flows from the N = (2, 0)

SCFT to non-conformal field theories in the IR. We consider
this type of domain walls in the context of the AdS/CFT cor-
respondence and carry out their uplift to eleven dimensions.
In addition, the gauging from 15 representation with gauge
group CSO(4, 0, 1) can be obtained from a truncation of
type IIA supergravity on S3 [32]. We also give uplifted solu-
tions of the domain walls from this gauge group in type IIA
theory.

For gaugings in 40 representation, the gauge groups under
consideration are CSO(p, q, 4− p−q) ⊂ SL(4) ⊂ SL(5).
The existence of a higher-dimensional origin of the SO(4)

gauge group from a truncation of type IIB theory on S3 has
been pointed out in [1], and, recently, the corresponding trun-
cation ansatz has been constructed in the framework of excep-
tional field theories in [33]. Finally, for gaugings with the
embedding tensor from both 15 and 40 representations, we
consider non-semisimple SO(2, 1) � R4 and SO(2) � R4

gauge groups which give rise to 1
4 -supersymmetric domain

walls.
The paper is organized as follow. In Sect. 2, we give

a review of the maximal gauged supergravity in seven
dimensions using the embedding tensor formalism. Half-
supersymmetric domain walls for gauge groups CSO
(p, q, 5 − p − q) are given in Sect. 3. For SO(5) gauge
group, admitting a supersymmetric AdS7 vacuum, we con-
sider holographic RG flows from N = (2, 0) six-dimensional
SCFT to non-conformal field theories in the IR and study an
uplift to eleven dimensions of these solutions. Uplifted solu-
tions to type IIA theory of domain walls in CSO(4, 0, 1)

gauge group are also given. We then perform a similar analy-
sis forCSO(p, q, 4− p−q), SO(2, 1)�R4 and SO(2)�R4

gauge groups in Sects. 4 and 5. Conclusions and comments on
the results are given in Sect. 6. Consistent reduction ansatze
for M-theory on S4 and type IIA theory on S3 which are
useful to the discussion in the main text are reviewed in the
appendix.

2 Maximal gauged supergravity in seven dimensions

In this section, we give a brief review of N = 4 gauged super-
gravity in seven dimensions in the embedding tensor formal-
ism. This section closely follows the original construction
given in [31] to which the reader is referred for more detail.

The maximal N = 4 supersymmetry consists of only the
supergravity multiplet with the field content given by

(eμ̂
μ, ψa

μ, AMN
μ , BMμν, χ

abc,VM
A). (1)

Curved and flat space-time indices are denoted by μ, ν, . . .

and μ̂, ν̂, . . ., respectively. Space-time signature is (−+++
+ + +). Lower and upper M, N = 1, 2, . . . , 5 indices
describe the fundamental and anti-fundamental represen-
tations 5 and 5̄ of SL(5) global symmetry, respectively.
According to this convention, the ten vector fields AMN =
A[MN ] transform as 10 under SL(5) while the two-forms
BMμν transform in 5 representation. There are 14 scalars
living in SL(5)/SO(5) coset and described by the coset rep-
resentative VM

A, A = 1, 2, . . . , 5.
Fermionic fields, on the other hand, transform under the

local SO(5) ∼ USp(4) R-symmetry. Indices a, b, . . . =
1, 2, 3, 4 correspond to spinor representation of SO(5) or
equivalently the fundamental representation of USp(4). The
gravitini transform as 4 underUSp(4) while the spin- 1

2 fields
χabc transform as 16. The latter are subject to the conditions

χabc = χ [ab]c and �abχ
abc = χ [abc] = 0. (2)

�ab = �[ab] is USp(4) symplectic form with the inverse
�ab = (�ab)

∗ satisfying �ab�
cb = δca . Raising and lower-

ing of USp(4) indices a, b, . . . by �ab and �ab are related
to complex conjugation for example

(V a)∗ = �abV
b and (Va)

∗ = �abVb. (3)

All fermions are symplectic Majorana spinors subject to the
conditions

ψ̄T
μa = �abCψb

μ and χ̄T
abc = �ad�be�c f Cχde f (4)

where C denotes the charge conjugation matrix obeying

C = CT = −C−1 = −C†. (5)

The Dirac conjugate on a spinor � is defined by � = �†γ 0.
We will denote space-time gamma matrices by γ μ as opposed
to 	μ in the convention of [31].

The SL(5)/SO(5) coset representative VM
A transform

under the global SL(5) and local SO(5) ∼ USp(4) by
left and right multiplications, respectively. Accordingly, the
index A can be described by an anti-symmetric pair of
USp(4) fundamental indices, and VM

A can be written as
VM

ab subject to the condition

VM
ab�ab = 0. (6)
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The inverse of VM
ab will be denoted by Vab

M . We then have
the following relations

VM
abVab

N = δNM and Vab
MVM

cd = δcdab − 1

4
�ab�

cd

(7)

with δcdab = δ
[c
a δ

d]
b . It should be noted that the SL(5)/SO(5)

coset can also be described by a unimodular symmetric
matrix MMN defined by

MMN = VM
abVN

cd�ac�bd (8)

with its inverse given by MMN = Vab
MVcd

N�ac�bd .
The most general gaugings of N = 4 supergravity

can be efficiently described by using the embedding tensor

MN ,P

Q . This tensor describes an embedding of a gauge
group G0 in the global symmetry group SL(5) via the covari-
ant derivative

Dμ = ∇μ − gAMN
μ 
MN ,P

Qt P Q (9)

with ∇μ being the space-time covariant derivative includ-
ing (possibly) composite SO(5) connections. t P Q are SL(5)

generators and g is the gauge coupling constant.
The covariant derivative implies that the embedding ten-

sor lives in the product representation between the conjugate
representation of the vector fields and the adjoint represen-
tation of SL(5)

10 ⊗ 24 = 10 + 15 + 40 + 175. (10)

Among the resulting irreducible representations, supersym-
metry allows only the embedding tensor in 15 and 40. These
representations will be denoted respectively by YMN and
ZMN ,P with YMN = Y(MN ), ZMN ,P = Z [MN ],P and
Z [MN ,P] = 0. In terms of YMN and ZMN ,P , the embedding
tensor can be written as


MN ,P
Q = δ

Q
[MYN ]P − 2εMN PRS Z

RS,Q . (11)

In order to define a viable gauging, the embedding ten-
sor needs to satsisfy the so-called quadratic constraint to
ensure that the gauge generators XMN = 
MN ,P

Qt P Q form
a closed subalgebra of SL(5)

[
XMN , XPQ

] = −(XMN )PQ
RS XRS . (12)

In the fundamental representation 5 of SL(5), gauge gener-
ators (XMN )P

Q can be written as

(XMN )P
Q = 
MN ,P

Q = δ
Q
[MYN ]P − 2εMN PRS Z

RS,Q

(13)

while in the 10 representation, these generators are given by

(XMN )PQ
RS = 2XMN ,[P [Rδ

S]
Q]. (14)

In terms of YMN and ZMN ,P , the quadratic constraint (12)
reads

YMQZ
QN ,P + 2εMRSTU Z RS,N ZTU,P = 0. (15)

It should also be noted that this constraint implies that the
embedding tensor is gauge invariant

(XMN )PQ
TU
TU,R

S + (XMN )R
T
PQ,T

S

−(XMN )T
S
PQ,R

T = 0 . (16)

The introduction of the minimal coupling (9) usually breaks
the original supersymmetry. To restore supersymmetry, mod-
ifications to the Lagrangian and supersymmetry transforma-
tions are needed. In addition to the introduction of fermionic
mass-like terms and scalar potential, gaugings also lead to
hierarchies of non-abelian vector and tensor fields of differ-
ent ranks. In this paper, we are interested only in domain wall
solutions with only the metric and scalars non-vanishing. We
will set all vector and tensor fields to zero from now on. It is
straightforward to verify that for all solutions under consid-
eration here, this is indeed a consistent truncation.

The bosonic Lagrangian with only the metric and scalar
fields reads

e−1L = 1

2
R − 1

2
Pμab

cd Pμ
cd

ab − V, (17)

and the supersymmetry transformations of ψa
μ and χabc are

given by

δψa
μ = Dμεa − gγμA

ab
1 �bcε

c, (18)

δχabc = 2�cd Pμde
abγ μεe + gAd,abc

2 �deε
e. (19)

The covariant derivative of εa is defined as

Dμεa = ∂μεa + 1

4
ωμ

ν̂ρ̂γν̂ρ̂εa − Qμb
aεb. (20)

The vielbein on the SL(5)/SO(5) coset Pμab
cd and the

SO(5) ∼ USp(4) composite connection Qμa
b are obtained

from the relation

Vab
M∂μVM

cd = Pμab
cd + 2Qμ[a [cδd]

b] . (21)

A1 and A2 tensors are given in terms of scalar fields and the
embedding tensor

Aab
1 = − 1

4
√

2

(
1

4
B�ab + 1

5
Cab

)
, (22)

Ad,abc
2 = 1

2
√

2

[
�ec� f d(Cab

ef − Bab
e f )

+1

4

(
Cab�cd + 1

5
�abCcd + 4

5
�c[aCb]d

) ]

(23)

in which B and C tensors are defined by

B =
√

2

5
�ac�bdYab,cd , (24)
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Bab
cd = √

2

[
�ae�b f δ

gh
cd

−1

5

(
δabcd − 1

4
�ab�cd

)
�eg� f h

]
Yef,gh, (25)

Cab = 8�cd Z
(ac)[bd], (26)

Cab
cd = 8

(
−�ce�d f δ

ab
gh + �g(cδ

ab
d)e� f h

)
Z (e f )[gh] (27)

with

Yab,cd = Vab
MVcd

NYMN , (28)

Z (ac)[e f ] = √
2VM

abVN
cdVP

ef �bd Z
MN ,P . (29)

Finally, the scalar potential is given by

V = −15Aab
1 A1ab + 1

8
Aa,bcd

2 A2a,bcd

= −15|A1|2 + 1

8
|A2|2. (30)

It should also be noted that the Lagrangian (17) can be written
in a USp(4) invariant form as

e−1L = 1

2
R + 1

8
(∂μMMN )(DμMMN ) − V (31)

with the scalar potential given by

V = g2

64

[
2MMNYN PMPQYQM − (MMNYMN )2

]

+g2ZMN ,P ZQR,S (MMQMN RMPS

−MMQMN PMRS
)
. (32)

3 Supersymmetric domain walls from gaugings in 15
representation

In this section, we consider gauge groups arising from the
embedding tensor in 15 representation. It is readily seen from
(15) that setting ZMN ,P = 0 trivially satisfies the quadratic
constraint. Therefore, any symmetric tensor YMN leads to an
admissible gauge group. The SL(5) symmetry can be used
to fix the form of YMN to be

YMN = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
r

),

p + q + r = 5. (33)

The corresponding gauge generators are given by

(XMN )P
Q = δ

Q
[MYN ]P (34)

which give rise to the gauge group

CSO(p, q, r) ∼ SO(p, q) � R(p+q)r . (35)

In order to find supersymmetric solutions, we restrict our-
selves to a subset of scalars invariant under a certain sym-
metry group H0 ⊂ G0 following the approach introduced

in [34]. The metric takes the form of standard domain wall
ansatz

ds2
7 = e2A(r)ηαβdx

αdxβ + dr2 (36)

where α, β = 0, 1, . . . , 5 and A(r) is a warp factor depend-
ing only on the radial coordinate r .

Non-compact generators of SL(5) are given by 5×5 sym-
metric traceless matrices. To obtain an explicit parametriza-
tion of the coset representative VM

A, it is useful to introduce
GL(5) matrices

(eMN )K
L = δMK δLN . (37)

To convert the SO(5) vector indices A, B, . . . = 1, 2, . . . , 5
to a pair of anti-symmetric USp(4) indices a, b, . . . =
1, 2, 3, 4, we use a convenient choice of SO(5) gamma matri-
ces given by

	1 = −σ2 ⊗ σ2, 	2 = I2 ⊗ σ1, 	3 = I2 ⊗ σ3,

	4 = σ1 ⊗ σ2, 	5 = σ3 ⊗ σ2 (38)

whereσi are the usual Pauli matrices.	A satisfy the following
relations

{	A, 	B} = 2δABI4, (	A)ab = −(	A)ba,

�ab(	A)ab = 0, ((	A)ab)∗ = �ac�bd(	A)cd . (39)

The symplectic form of USp(4) is taken to be

�ab = �ab = I2 ⊗ iσ2. (40)

The coset representative of the form VM
ab and the inverse

Vab
M are then obtained by using the relations

VM
ab = 1

2
VM

A(	A)ab and Vab
M = 1

2
VA

M (	A)ab.

(41)

We are now in a position to set up BPS equations and look for
domain wall solutions with different unbroken symmetries.

3.1 SO(4) symmetric domain walls

We begin with a simple solution with SO(4) symmetry. The
gauge groups that contain SO(4) as a subgroup are SO(5),
SO(4, 1) andCSO(4, 0, 1). To incorporate all of these gauge
groups within a single framework, we write the embedding
tensor in the form

YMN = diag(1, 1, 1, 1, κ) (42)

with κ = 1, 0,−1 corresponding to SO(5), CSO(4,0,1), and
SO(4,1) gauge groups, respectively. There is one SO(4) sin-
glet scalar corresponding to the non-compact generator

Ŷ = e11 + e22 + e33 + e44 − 4e55. (43)

The coset representative can be written as

V = eφŶ . (44)
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The scalar potential for this SO(4) invariant scalar is given
by

V = −g2

64
e−4φ(8 + 8κe10φ − κ2e20φ). (45)

It can be verified that, for κ = 1, this potential admits two
AdS7 critical points at φ = 0 and φ = 1

10 ln 2. These criti-
cal points have already been studied in [27]. The first critical
point has SO(5) symmetry and preserves all supersymmetry.
Upon uplifting, this vacuum corresponds to AdS7 × S4 solu-
tions of eleven-dimensional supergravity. The cosmological
constant and AdS7 radius are given by

V0 = −15

64
g2 and L =

√

−15

V0
= 8

g
. (46)

The second critical point is SO(4) symmetric and breaks all
supersymmetry. This non-supersymmetric AdS7 vacuum is
unstable [27].

In order to setup the corresponding BPS equations, we
impose a projector

γrε
a = εa (47)

and obtain the following BPS equations from δψa
α = 0 and

δχabc = 0 conditions

A′ = g

40
e−2φ(4 + κe10φ), (48)

φ′ = g

20
e−2φ(1 − κe10φ). (49)

The condition δψa
r = 0 gives the usual solution for the

Killing spinors

εa = e
A
2 εa0 (50)

with the constant spinors εa0 satisfying γrε
a
0 = εa0 . The solu-

tion is then half-supersymmetric.
The above BPS equations can be readily solved to obtain

the solution

A = 2φ − 1

4
ln(1 − κe10φ), (51)

e5φ = 1√
κ

tanh

[√
κ

4
(gρ + C)

]
(52)

with the new radial coordinate ρ defined by dρ
dr = e3φ . The

integration constant C can be removed by shifting the coor-
dinate ρ. We have also neglected an additive integration con-
stant for A since it can be absorbed by rescaling the coordi-
nates xα .

Note that for κ = −1, the solution for φ can be written as

e5φ = tan

[
1

4
(gρ + C)

]
. (53)

For κ = 0, we find

e5φ = 1

4
(gρ + C). (54)

3.2 SO(3) × SO(2) symmetric domain walls

We now consider another residual symmetry SO(3)×SO(2)

which is possible only for SO(5) and SO(3, 2) gauge groups.
In this case, we write the embedding tensor as

YMN = diag(1, 1, 1, σ, σ ) (55)

with σ = 1 and σ = −1 corresponding to SO(5) and
SO(3, 2), respectively.

The only one SO(3) × SO(2) singlet scalar corresponds
to the non-compact generator

Ỹ = 2e11 + 2e22 + 2e33 − 3e44 − 3e55. (56)

With the coset representative

V = eφỸ , (57)

we find the scalar potential

V = − 3

64
g2e−8φ(1 + 4σe10φ) (58)

which admits an AdS7 critical point at φ = 0 for σ = 1.
The BPS equations are given by

φ′ = − 1

20
ge−4φ(σe10φ − 1), (59)

A′ = 1

40
ge−4φ(3 + 2σe10φ). (60)

By defining a new radial coordinate ρ by the relation dρ
dr =

eφ , we obtain the solution

A = 3

2
φ − 1

4
ln(1 − σe10φ), (61)

e5φ = 1√
σ

tanh

[√
σ

4
(gρ + C)

]
. (62)

This solution is very similar to the SO(4) symmetric solution.

3.3 SO(3) symmetric domain walls

When the residual symmetry of the solutions is smaller, we
find more interesting solutions. We now consider domain
wall solutions with SO(3) symmetry. There are many gauge
groups containing SO(3) subgroup with the embedding ten-
sor given by

YMN = diag(1, 1, 1, σ, κ). (63)

There are three scalar singlets under SO(3) symmetry gen-
erated by gauge generators XMN , M, N = 1, 2, 3. These
singlets correspond to the following non-compact generators
of SL(5)

Ŷ1 = 2e1,1 + 2e2,2 + 2e3,3 − 3e4,4 − 3e5,5,

Ŷ2 = e4,5 + e5,4,

Ŷ3 = e4,4 − e5,5. (64)
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Using the parametrization of the coset representative

V = eφ1Ŷ1+φ2Ŷ2+φ3Ŷ3 , (65)

we obtain the scalar potential

V = −g2

64
[3e−8φ1 + 6e2φ1 [(κ + σ) cosh 2φ2 cosh 2φ3

+(κ − σ) sinh 2φ3]
+1

4
e12φ1 [κ2 + 10κσ + σ 2 − (3κ2 − 2κσ + 3σ 2)

× cosh 4φ3 − (κ + σ)2 cosh 4φ2(1 + cosh 4φ3)

−4(κ2 − σ 2) cosh 2φ2 sinh 4φ3]]. (66)

This potential admits two AdS7 critical point for κ = σ =
1. The first one is at φ1 = φ2 = φ3 = 0 corresponding to
the N = 4 supersymmetric AdS7 with SO(5) symmetry.
Another critical point is non-supersymmetric and given by

φ1 = 1

20
ln 2, φ2 = 1

4
ln 2,

φ3 = 0, V0 = − 5g2

16 × 22/5
. (67)

It should also be noted that for φ2 = 5φ1, the residual sym-
metry is enhanced to SO(4). As a check, we can compute all
scalar masses at this critical point. The result is

m2L2 = (12, 0×4,−12×9), L = 2
11
5
√

3

g
(68)

which contains the value m2L2 that violates the BF bound
m2L2 = −9. Therefore, this critical point is unstable as
already shown in [27]. The four Goldstone bosons corre-
sponding to the broken generators Xa4 − Xa5, a = 1, 2, 3
and X45.

Using the same procedure as in the previous cases, we find
the following BPS equation

A′ = g

40
e−4φ1 [3 + e10φ1 [(κ + σ) cosh 2φ2 cosh 2φ3

+(κ − σ) sinh 2φ3]], (69)

φ′
1 = g

40
e−4φ1 [2 − e10φ1 [(κ + σ) cosh 2φ2 cosh 2φ3

−(κ − σ) sinh 2φ3]], (70)

φ′
2 = −g

8
e6φ1(κ + σ) sinh 2φ2 sech2φ3, (71)

φ′
3 = −g

8
e6φ1 [(κ − σ) cosh 2φ3

+(κ + σ) cosh 2φ2 sinh 2φ3] . (72)

To find explicit solutions, it is useful to separately discuss
various possible values of κ and σ .

3.3.1 Domain walls in CSO(3, 0, 2) gauge group

We begin with the simplest case for σ = κ = 0 correspond-
ing to a non-semisimple CSO(3, 0, 2) gauge group. In this

case, we find φ′
2 = φ′

3 = 0. Furthermore, it can be checked
that ∂V

∂φ2
= ∂V

∂φ3
= 0 at φ2 = φ3 = 0. Therefore, scalars φ2

and φ3 can be consistently truncated out.
After setting φ2 = φ3 = 0, we find a domain wall solution

φ1 = 1

4
ln

[gr
5

+ C
]

and A = 3

8
ln

[gr
5

+ C
]
. (73)

3.3.2 Domain walls in CSO(4, 0, 1) and CSO(3, 1, 1)

gauge groups

For κ = 0 and σ 	= 0, the gauge group is eitherCSO(4, 0, 1)

orCSO(3, 1, 1) depending on the value of σ = 1 or σ = −1.
Using a new radial coordinate ρ defined by dρ

dr = e6φ1 , a
domain wall solution to the BPS equations can be found

φ2 = 1

4
ln

[
g2ρ2 + (C2 − 8)2

g2ρ2 + C2
2

]

, (74)

φ3 = 1

4
ln

[
e2φ2 − e4φ2+C3 + eC3 + 1

e2φ2 + e4φ2+C3 − eC3 − 1

]
, (75)

φ1 = 1

10
ln

[
2(eC1 − e4φ2+C1 − 1)

σ
√

(e4φ2 − 1)(1 + 2eC3+e2C3−e4φ2+2C3)

]

,

(76)

A = −φ1 − ln(e4φ2 − 1) + ln(eC1 − e4φ2+C1 − 1). (77)

3.3.3 Domain walls in SO(4, 1) gauge group

In this case, σ = −κ = 1, we find that φ′
2 = 0. It can also

be checked that φ2 can be consistently truncated out. Note
also that the corresponding non-compact generator Ŷ2 is one
of the non-compact generators of SO(4, 1), namely X45. φ2

is then identified with a Goldstone boson of the symmetry
breaking SO(4, 1) → SO(4) → SO(3) at the vacuum.

Taking φ2 = 0 and redefining the radial coordinate r to ρ

via dρ
dr = e6φ1 , we obtain a domain wall solution

e2φ3 = tan
[gρ

4
+ C3

]
, (78)

φ1 = −1

5
φ3 + 1

10
ln[C1(1 + e4φ3) − 1], (79)

A = 1

5
φ3 − 1

4
ln(1 + e4φ3)

+ 3

20
ln[C1(1 + e4φ3) − 1]. (80)

3.3.4 Domain walls in SO(5) and SO(3, 2) gauge groups

We now look at the last possibility κ = σ = ±1 correspond-
ing to SO(5) and SO(3, 2) gauge groups. In term of the new
radial coordinate ρ as defined in the previous cases, we find
a domain wall solution

φ2 = 1

4
ln

[
1 + egσρ + 4egσρ+2C3 − 2e

1
2 gσρ

1 + egσρ + 4egσρ+2C3 + 2e
1
2 gσρ

]

, (81)
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φ3 = 1

4
ln

[
e2φ2 + e4φ2+C3 − eC3

e2φ2 − e4φ2+C3 + eC3

]
, (82)

φ1 = 1

10
ln[σ [1 + C1(e

4φ2 − 1)]
√
e8φ2+2C3 + e2C3 − e4φ2 − 2e4φ2+2C3 ], (83)

A = −φ1 + 1

4
ln(e4φ2 − 1) − 1

4
ln[1 + C1(e

4φ2 − 1)].
(84)

3.4 SO(2) × SO(2) symmetric domain walls

We consider another truncation to SO(2) × SO(2) invariant
scalars corresponding to SL(5) non-compact generators

Ỹ1 = e11 + e22 − 2e55, (85)

Ỹ2 = e33 + e44 − 2e55. (86)

In this case, the embedding tensor takes the form of

YMN = diag(1, 1, σ, σ, κ) (87)

which encodes various possible gauge groups depending on
the values of σ and κ . These gauge groups are SO(5) (σ =
κ = 1), SO(4, 1) (σ = −κ = 1), SO(3, 2) (σ = −κ =
−1), CSO(4, 0, 1) (σ = 1, κ = 0) and CSO(2, 2, 1) (σ =
−1, κ = 0).

With the parametrization of the coset representative

V = eφ1Ỹ1+φ2Ỹ2 , (88)

we find the scalar potential

V = − 1

64
g2e−2(φ1+φ2)[8σ − κ2e10(φ1+φ2)

+4κ(e4φ1+6φ2 + σe6φ1+4φ2)]. (89)

For SO(5) gauge group, there are two AdS7 critical points
at φ1 = φ2 = 0 and φ1 = φ2 = 1

10 ln 2. The former is, as in
other cases, the N = 4 supersymmetric one while the latter
is a non-supersymmetric critical point. Note also that this
non-supersymmetric AdS7 has SO(4) symmetry since the
SO(2)× SO(2) symmetry is enhanced to SO(4) when φ1 =
φ2. This critical point is unstable as previously mentioned.

The BPS equations in this case read

A′ = g

40
[2e−2φ1 + 2σe−2φ2 + κe4(φ1+φ2)], (90)

φ′
1 = g

20
[3e−2φ1 − κe4(φ1+φ2) − 2σe−2φ2 ], (91)

φ′
2 = g

20
[3σe−2φ2 − 2e−2φ1 − κe4(φ1+φ2)]. (92)

Defining a new radial coordinate ρ by dρ
dr = e−2φ1 , we find

a domain wall solution

φ2 = −3

2
φ1 − 1

4
ln

[
κ − κeC2− gρ

2

]
, (93)

φ1 = − 1

10
ln

[
κ − κeC1− gρ

2

]
− 1

5
ln

[
σ − σeC2− gρ

2

]
,

(94)

A = gρ

8
+ 1

10
ln

[
1 − eC1− gρ

2

]
+ 1

20
ln

[
1 − eC2− gρ

2

]
.

(95)

3.5 Uplift to eleven dimensions and holographic RG flows

For SO(5) gauge group, the seven-dimensional gauged
supergravity can be obtained from a consistent truncation
of eleven-dimensional supergravity on S4. Therefore, the
domain wall solutions obtained previously can be uplifted to
solutions of eleven-dimensional supergravity. Furthermore,
these solutions are asymptotic to the N = 4 supersymmet-
ric AdS7 vacuum corresponding to N = (2, 0) SCFT in six
dimensions. According to the AdS/CFT correspondence, the
domain walls can then be interpreted as holographic RG flows
from six-dimensional N = (2, 0) SCFT to non-conformal
field theories in the IR, see for example [35,36]. We will
consider this type of solutions including the uplift to eleven
dimensions.

3.5.1 RG flow preserving SO(4) symmetry

We first consider a simple solution with SO(4) symmetry.
For SO(5) gauge group, the domain wall solution reads

φ = 1

5
ln

[
1 − e

1
2 (C−gρ)

1 + e
1
2 (C−gρ)

]

, (96)

A = 2φ − 1

4
ln

(
1 − e10φ

)
, (97)

with dρ
dr = e3φ .

As ρ → ∞, we find φ → 0 and ρ ∼ r with an asymptotic
behavior

φ ∼ e− 1
2 gr ∼ e− 4r

L and

A ∼ 1

8
gr ∼ r

L
, L = 8

g
(98)

which indicates that the solution approaches the supersym-
metric N = 4 AdS7 critical point. The scalar φ is dual to
an operator of dimension � = 4. Indeed, all scalars of the
N = 4 gauged supergravity are dual to operators of dimen-
sion four since they have the same mass with m2L2 = −8.

As gρ → C , the solution is singular with the following
behavior

φ ∼ 1

5
ln(gρ − C) and A ∼ 2φ ∼ 2

5
ln(gρ − C). (99)

We can now check that the scalar potential is bounded above
with V → −∞ as φ → −∞. This implies that the singu-
larity is physically acceptable according to the criterion of
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[37]. In addition, we can use the truncation ansatz, reviewed
in the appendix, to uplift this solution to eleven dimensions.

With the parametrization of the SL(5)/SO(5) coset

MMN = diag(e−8φ, e2φ, e2φ, e2φ, e2φ) (100)

and the coordinates on S4

μM = (μ0, μi ) = (cos ξ, sin ξμ̂i ), i = 1, 2, 3, 4 (101)

with μ̂i being coordinates on S3 satisfying μ̂i μ̂i = 1, we find
the eleven-dimensional metric and four-form field strength
tensor

dŝ2
11 = �

1
3 (e2Adx2

1,5 + dr2) + 16

g2 �− 2
3 [e−8φ sin2 ξdξ2

+e2φ(cos2 ξdξ2 + sin2 ξd�2
(3))], (102)

F̂(4) = 64

g3 �−2 sin4 ξ(U sin ξdξ − 10e6φφ′ cos ξdr) ∧ ε(3)

(103)

with d�2
(3) being the metric on a unit S3 and

� = e8φ cos2 ξ + e−2φ sin2 ξ,

ε(3) = 1

3!εi jkl μ̂
i dμ̂ j ∧ dμ̂k ∧ dμ̂l ,

U = (e16φ − 4e6φ) cos2 ξ − (e6φ + 2e−4φ) sin2 ξ. (104)

We see that the internal S4 is deformed in such a way that an
S3 inside the S4 is unchanged. The isometry of this S3 is the
SO(4) residual symmetry of the seven-dimensional solution.

With the uplifted solution, we can look at the behavior of

the metric component ĝ00 = e2A�
1
3 near the IR singularity.

A straightforward computation gives

ĝ00 ∼ e
10
3 φ → 0 (105)

which means the singularity is physical according to the cri-
terion given in [38]. This solution then describes an RG flow
from six-dimensional N = (2, 0) SCFT to a non-conformal
field theory in the IR. With the appearance of the normal-
izable mode in (98), the flow is driven by a vacuum expec-
tation value of an operator of dimension � = 4 that breaks
conformal symmetry and preserves only SO(4) ⊂ SO(5) R-
symmetry. It should be noted that this holographic RG flow
has also been studied in [39] in the context of a truncation to
half-maximal N = 2 gauged supergravity.

3.5.2 RG flow preserving SO(3) × SO(2) symmetry

In this case, the flow solution reads

φ = 1

5
ln

[
1 − e− 1

2 (gρ−C)

1 + e− 1
2 (gρ−C)

]

, (106)

A = 3

2
φ − 1

4
ln(1 − e10φ), (107)

with dρ
dr = eφ .

As r → ∞, we find

φ ∼ e− 4r
L (108)

as in the previous case. As gρ → C , the solution becomes

φ ∼ 1

5
ln(gρ − C) and A ∼ 3

2
φ ∼ 3

10
ln(gρ − C).

(109)

Near the singularity, we find that the scalar potential is
bounded above V → −∞.

The uplifted solution can be obtained by using the S4

coordinates

μM = (sin ξμ̂a, cos ξ cos α, cos ξ sin α), a = 1, 2, 3

(110)

with μ̂aμ̂a = 1 and the scalar matrix

MMN = diag(e4φ, e4φ, e4φ, e−6φ, e−6φ). (111)

We find the eleven-dimensional solution

dŝ2
11 = �

1
3 (e2Adx2

1,5 + dr2) + 16

g2 [e−6φ cos2 ξdα2

+ (e4φ cos2 ξ + e−6φ sin2 ξ)dξ2

+ e4φ sin2 ξdμ̂adμ̂a], (112)

F̂(4) = 64

3g3U sin3 ξ cos ξ�−2(sin ξdξ

+ 2e2φ cos ξφ′dr) ∧ dα ∧ ε(2) (113)

where

ε(2) = 1

2
εabcμ̂

adμ̂b ∧ dμ̂c. (114)

We can see that the unbroken SO(3) × SO(2) symme-
try corresponds to the isometry of the S2, with the metric
d�2

(2) = dμ̂adμ̂a , inside the S4 and the isometry of the S1

parametrized by the coordinate α.
From the eleven-dimensional metric, we find

ĝ00 ∼ e
5
3 φ → 0. (115)

The singularity is accordingly physical [38], and the full solu-
tion describes an RG flow from N = (2, 0) SCFT to a non-
conformal field theory with SO(3) × SO(2) symmetry.

3.5.3 RG flow preserving SO(2) × SO(2) symmetry

The flow solution is given by

φ1 = − 1

10
ln(1 − eC1− gρ

2 ) − 1

5
ln(1 − eC2− gρ

2 ), (116)

φ2 = −3

2
φ1 − 1

4
ln(1 − eC1− gρ

2 ), (117)

A = 1

8
gρ + 1

20
ln(1 − eC1− gρ

2 ) + 1

10
ln(1 − eC2− gρ

2 )

(118)

123



Eur. Phys. J. C (2019) 79 :648 Page 9 of 18 648

with dρ
dr = e−2φ1 .

We can perform an uplift by using

MMN = diag(e−4(φ1+φ2), e2φ1 , e2φ1 , e2φ2 , e2φ2),

μM = (cos ξ, sin ξ cos ψ cos α, sin ξ cos ψ sin α,

sin ξ sin ψ cos β, sin ξ sin ψ sin β). (119)

The corresponding eleven-dimensional metric is given by

dŝ2
11 = �

1
3 (e2Adx2

1,5 + dr2)

+16

g2 �− 2
3 [e−4(φ1+φ2) sin2 ξdξ2

+e2φ1(cos2 ξ cos2 ψdξ2 + sin2 ξ sin2 ψdψ2

+ sin2 ξ cos2 ψdα2

−2 cos ξ cos ψ sin ξ sin ψdξdψ)

+e2φ2(cos2 ξ sin2 ψdξ2

+ cos2 ψ sin2 ξdψ2 + sin2 ξ sin2 ψdβ2

+2 cos ξ cos ψ sin ξ sin ψdξdψ)] (120)

where

� = e4(φ1+φ2) cos2 ξ + e−2φ1 sin2 ξ cos2 ψ

+e−2φ2 sin2 ξ sin2 ψ. (121)

The four-form field strength is much more complicated than
the previous cases. We refrain from giving its explicit form
here. The unbroken symmetry SO(2) × SO(2) corresponds
to the isometry of S1 × S1 parametrized by coordinates α

and β.
As r → ∞, the solution becomes

φ1 ∼ φ2 ∼ e− 4r
L (122)

which again implies that φ1 and φ2 are dual to operators of
dimension � = 4 in the dual N = (2, 0) SCFT. There are
two possibilities for the IR behaviors.

As gρ → 2C1, we have

φ1 ∼ φ2 ∼ − 1

10
ln(gρ − 2C1), (123)

A = −1

2
φ1 ∼ 1

20
ln(gρ − 2C1). (124)

Near the singularity, the scalar potential is unbounded above
V → ∞. The eleven-dimensional metric gives

ĝ00 ∼ e
5
3 φ1 → ∞. (125)

This singularity is then unphysical.
As gρ → 2C2, we have

φ1 ∼ −1

5
ln(gρ − 2C2), (126)

φ2 ∼ −3

2
φ1 ∼ 3

10
ln(gρ − 2C2), (127)

A ∼ −1

2
φ1 ∼ 1

10
ln(gρ − 2C2). (128)

Near the singularity, we find V → −∞ and

ĝ00 ∼ constant. (129)

In this case, the singularity is physical, and the solution
describes an RG flow from N = (2, 0) SCFT to a non-
conformal field theory in the IR with SO(2) × SO(2) sym-
metry.

3.5.4 RG flow preserving SO(3) symmetry

In this case, the solution is more complicated. We will con-
sider only a truncation of the full solution here. Making a
consistent truncation by setting φ3 = 0, we obtain a simple
solution to the truncated BPS equations

A = 1

5
φ2 − 1

4
ln(1 − e4φ2) + 3

20
ln[1 + C1(e

4φ2 − 1)],
(130)

φ1 = −1

5
φ2 + 1

10
ln[1 + C1(e

4φ2 − 1)], (131)

φ2 = 1

2
ln

[
1 − e

1
2 (C−gρ)

1 + e
1
2 (C−gρ)

]

(132)

with dρ
dr = e6φ1 .

Near the AdS7 critical point in the UV as r → ∞, we
find, as in the previous cases,

φ1 ∼ φ2 ∼ e− 4r
L , (133)

and, near the IR singularity as gρ → C , the solution becomes

φ2 ∼ 1

2
ln(gρ − C), (134)

φ1 ∼ −1

5
φ2 ∼ − 1

10
ln(gρ − C), (135)

A ∼ 1

5
φ2 ∼ 1

10
ln(gρ − C). (136)

In this case, the scalar potential diverges near the singular-
ity V → ∞, and the component of the eleven-dimensional
metric gives

ĝ00 ∼ e− 2
3 φ2 → ∞. (137)

The singularity is then unphysical, and we will not give the
corresponding eleven-dimensional solution in this case. It
can be verified that a truncation with φ2 = 0 also gives
similar result.

It should also be noted that in all of the above RG flows,
there are only deformations by vacuum expectation values
of the operators in agreement with the field theory results on
the absence of deformations by turning on scalar operators
corresponding, in the present case, to a non-normalizable

mode e− 2r
L , see [40] for example.
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3.6 Uplifted solutions to type IIA supergravity

We now consider the uplift of the domain wall solutions in
CSO(4, 0, 1) gauge group to type IIA theory [31]. Relevant
parts of the truncation ansatz are reviewed in the appendix.

We first decompose the SL(5)/SO(5) coset in term of the
SL(4)/SO(4) submanifold via

V = ebi t
i Ṽeφ0t0 , (138)

where Ṽ is the coset representative of SL(4)/SO(4) ⊂
SL(5)/SO(5) coset. t0 and t i correspond to the SO(1, 1)

and four nilpotent generators in the decomposition SL(5) →
SL(4)×SO(1, 1), respectively. With the coset representative
(138), the scalar matrix MMN takes the form of

MMN =
(
e−2φ0M̃i j + e8φ0bib j e8φ0bi

e8φ0b j e8φ0

)
(139)

with M̃ = ṼṼT . Relations between seven-dimensional
fields and ten-dimensional ones are given in the appendix.

In all of the solutions considered here, we have bi = χi =
0, so only the ten-dimensional metric, dilaton and three-form
field strength are non-vanishing. The resulting solutions then,
as expected for domain walls in seven dimensions, describe
NS5-branes in the transverse space with different symme-
tries.

3.6.1 Solution with SO(4) symmetry

In this case, we simply have M̃i j = δi j and

dŝ2
10 = e

3
2 φ0(e2Adx2

1,5 + dr2) + 16

g2 e
− 5

2 φ0d�2
(3),

F̂(3) = 128

g3 ε(3), ϕ̂ = 5φ0. (140)

The solutions for φ0 and A are given by

φ0 = 1

2
ln

[gr
10

+ C
]

and A = ln
[gr

10
+ C

]
. (141)

These are obtained from solving the BPS equations in (48)
and (49) by renaming φ to φ0 and setting κ = 0. We identify
the resulting ten-dimensional solution with the “near hori-
zon” geometry of NS5-branes in the transverse space R

4.

3.6.2 Solution with SO(3) symmetry

In this case, we parametrize the SL(4)/SO(4) coset using

M̃i j = diag(e2φ, e2φ, e2φ, e−6φ). (142)

Solutions for scalars φ0 and φ can be obtained from the
SO(3) symmetric domain wall given in section 3.3 by setting
φ2 = 0 and using the relations

φ0 = −1

4
(3φ1 + φ3) and φ = 1

4
(5φ1 − φ3). (143)

With κ = 0 and σ = 1, the domain wall solution is given by

A = 1

5
φ3 + 3

20
ln(C1 + e4φ3), (144)

φ1 = −1

5
φ3 + 1

10
ln(C1 + e4φ3), (145)

2gC
3
5 r = 5e

16
5 φ3

2F1

(
3

5
,

4

5
,

9

5
,−e4φ3

C1

)
. (146)

In this solution, 2F1 is the hypergeometric function.
We now choose a specific form of the S3 coordinates

μi = (sin ξμ̂a, cos ξ), a = 1, 2, 3 (147)

with μ̂a being the coordinates on S2 subject to the condition
μ̂aμ̂a = 1. With all these, we find the ten-dimensional fields

dŝ2
10 = e

3
2 φ0�

1
4 (e2Adx2

1,5 + dr2)

+16

g2 e
− 5

2 φ0�− 3
4 [(e−6φ sin2 ξ + e2φ cos2 ξ)dξ2

+ sin2 ξe2φdμ̂adμ̂a], e2ϕ̂ = �−1e10φ0 , (148)

F̂(3) = 64

g3 �−2 sin3 ξ(U sin ξdξ + 8e4φ cos ξφ′dr) ∧ ε(2)

(149)

in which

� = e6φ cos2 ξ + e−2φ sin2 ξ, ε(2)=1

2
εabcμ̂

adμ̂b ∧ dμ̂c,

U = e12φ cos2 ξ − e−4φ sin2 ξ−e4φ(sin2 ξ+3 cos2 ξ).

(150)

The unbroken SO(3) symmetry corresponds to the isometry
of S2 ⊂ S3.

3.6.3 Solution with SO(2) × SO(2) symmetry

For SO(2)× SO(2) symmetric solutions, we use the follow-
ing parametrization of SL(4)/SO(4) coset

M̃i j = diag(e2φ, e2φ, e−2φ, e−2φ). (151)

In this case, the solutions for φ0 and φ can be obtained from
the BPS equations given in Sect. 3.4 by setting σ = 1, κ = 0
and using the relations

φ0 = −1

2
(φ1 + φ2) and φ = 1

2
(φ1 − φ2). (152)

The resulting seven-dimensional domain wall is given by

A = 1

20
gρ + 1

10
ln(C1 + e

1
2 gρ), (153)

φ1 = C2 − 1

10
gρ + 3

10
ln(C1 + e

1
2 gρ), (154)

φ2 = C2 + 3

20
gρ − 1

5
ln(C1 + e

1
2 gρ) (155)

with dρ
dr = e−2φ2 .
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Choosing the coordinates on S3 to be

μi = (cos ξ cos α, cos ξ sin α, sin ξ cos β, sin ξ sin β),

(156)

we find

dŝ2
10 = �

1
4 e

3
2 φ0(e2Adx2

1,5 + dr2)

+16

g2 �− 3
4 e− 5

2 φ0 [(e2φ sin2 ξ + e−2φ cos2 ξ)dξ2

+e2φ cos2 ξdα2 + e−2φ sin2 ξdβ2], (157)

e2ϕ̂ = �−1e10φ0 ,

F̂(3) = 128

g3 �−2 cos ξ sin ξdα ∧ dξ ∧ dβ (158)

with

� = e−2φ cos2 ξ + e2φ sin2 ξ. (159)

In this case, the SO(2) × SO(2) symmetry corresponds to
the isometry of S1 × S1 parametrized by coordinates α and
β.

4 Supersymmetric domain walls from gaugings in 40
representation

In this section, we consider gaugings with the embedding ten-
sor in 40 representation [31]. Setting YMN = 0, the quadratic
constraint reads

εMRSTU Z RS,N ZTU,P = 0. (160)

This condition can be solved by the following tensor

ZMN ,P = v[MwN ]P (161)

with wMN = w(MN ). The SL(5) symmetry can be used to
fix vM = δM5 . It is useful to split the index M = (i, 5).

If, in addition, we set w55 = wi5 = 0, the remaining
SL(4) symmetry, under which the vector vM = δM5 is invari-
ant, can be used to diagonalize wi j . Accordingly, wi j can be
written as

wi j = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
r

). (162)

The resulting gauge generators take the form of

(Xi j )k
l = 2εi jkmwml (163)

which gives rise to CSO(p, q, r) gauge group with p+ q +
r = 4.

In these gaugings, following [31], it is convenient to
parametrize the SL(5)/SO(5) coset representative in term
of SL(4)/SO(4) submanifold as given in (139). After set-
ting YMN = 0 and using the inverse matrix MMN of the

form,

MMN =
(
e2φ0M̃i j −e2φ0bi

−e2φ0b j e−8φ0 + e2φ0bkbk

)
(164)

with M̃i j being the inverse of M̃i j and bi = M̃i j b j , we can
rewrite the scalar Lagrangian as

e−1Lscalar = −8∂μφ0∂
μφ0 + 1

8
∂μM̃i j∂

μM̃i j

−1

4
e10φ0M̃i j∂μbi∂

μb j − V (165)

in which the scalar potential is given by

V = g2

4
e14φ0biw

i jM̃ jkw
klbl

+g2

4
e4φ0 [2M̃i jw

jkM̃klw
li − (M̃i jw

i j )2]. (166)

It should be noted that the nilpotent scalars bi appear quadrat-
ically in the Lagrangian, so setting them to zero is a mani-
festly consistent truncation.

4.1 SO(4) symmetric domain walls

We firstly consider domain walls with the largest possible
unbroken symmetry, SO(4) ⊂ CSO(p, q, 4 − p − q). The
only gauge group containing SO(4) as a subgroup is SO(4).

The embedding tensor is simply wi j = δi j , and there are
no SO(4) singlet scalars from SL(4)/SO(4). We then take
the coset representative to be Ṽ = I4. The scalar potential
takes a particularly simple form

V = −2g2e4φ0 . (167)

The Killing spinor still takes the fom (50), but unlike the pre-
vious cases, the appropriate projector for this type of gaug-
ings is given by

(	5)
a
bε

b
0 = −γrε

a
0 . (168)

The appearance of 	5 rather than other 	A with A =
1, 2, 3, 4 is due to the specific form of vM = δM5 in the
embedding tensor ZMN ,P .

It is now straightforward to derive the corresponding BPS
equations

A′ = 2g

5
e−2φ0 , (169)

φ′
0 = g

5
e−2φ0 . (170)

We can readily find the solution

φ0 = 1

2
ln

[
2gr

5
+ C

]
, (171)

A = ln

[
2gr

5
+ C

]
. (172)
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4.2 SO(3) symmetric domain walls

We now look for more complicated solutions with SO(3)

symmetry. Gauge groups with an SO(3) subgroup are
SO(4), SO(3, 1) and CSO(3, 0, 1). We describe them all
at once by taking the symmetric matrix wi j in the form

wi j = diag(1, 1, 1, κ) (173)

with κ = 1,−1, 0, respectively.
For simplicity, we truncate scalars bi out and consider only

φ0 and SL(4)/SO(4) scalars. With an explicit form of the
SL(4)/SO(4) coset representative

Ṽ = diag(eφ, eφ, eφ, e−3φ), (174)

we obtain the scalar potential

V = −g2

4
e−4(φ0+3φ)(3e16φ + 6κe8φ + κ2). (175)

Using the projector in (168), we can derive the following set
of BPS equations

A′ = g

10
e−2(φ0+3φ)(3e8φ + κ), (176)

φ′
0 = g

20
e−2(φ0+3φ)(3e8φ + κ), (177)

φ′ = −g

4
e−2(φ0+3φ)(e8φ − κ). (178)

The solutions for A and φ0 are given by

A = 2

5
φ − 1

5
ln(e8φ − κ), (179)

φ0 = 1

5
φ − 1

10
ln(e8φ − κ) + C0. (180)

The solution for φ(r) is given by

φ = − 5

16
ln

[
2

5
(e−2C0gr − C)

]
(181)

for κ = 0 and

4grκ(e8φ − κ)
1
5 = 5e2C+ 32

5 φ

[
4 − 3(1 − κe8φ)

1
5

× 2F1

(
1

5
,

4

5
,

9

5
, κe8φ

) ]
(182)

for κ = ±1.

4.3 SO(2) × SO(2) symmetric domain walls

Possible domain wall solutions with SO(2)×SO(2) symme-
try can be obtained from SO(4) and SO(2, 2) gauge groups.
These gauge groups are described by the component of the
embedding tensor in the form of

wi j = diag(1, 1, σ, σ ), σ = ±1. (183)

With the parametrization for the SL(4)/SO(4) coset repre-
sentative

Ṽ = diag(eφ, eφ, e−φ, e−φ), (184)

the scalar potential and the BPS equations are given by

V = −2g2σe−4φ0 (185)

and

A′ = 1

5
ge−2φ0−2φ(e4φ + σ), (186)

φ′
0 = 1

10
ge−2φ0−2φ(e4φ + σ), (187)

φ′ = 1

2
ge−2φ0−2φ(e4φ − σ). (188)

The domain wall solution can be straightforwardly obtained

A = 2φ0, (189)

φ0 = 1

5
φ − 1

10
ln(e4φ − σ) + C0, (190)

6grσ(e4φ − σ)
1
5 = 5e2C0+ 12

5 φ

[
3 − 2

(
1 − σe4φ

) 1
5

× 2F1

(
1

5
,

3

5
,

8

5
, σe4φ

)]
. (191)

4.4 SO(2) symmetric domain walls

As a final example for domain wall solutions from gaugings
in 40 representation, we consider SO(2) symmetric solu-
tions. We again truncate out scalar fields bi and parametrize
the SL(4)/SO(4) coset representative as

Ṽ = eφ1Y1+φ2Y2+φ3Y3 (192)

in whichYi , i = 1, 2, 3 are non-compact generators commut-
ing with the SO(2) symmetry generated by X12. The explicit
form of these generators is given by

Y1 = e11 + e22 − e33 − e44, (193)

Y2 = e34 + e43, (194)

Y3 = e33 − e44. (195)

There are many gauge groups admitting an SO(2) subgroup.
They are uniformly characterized by the following compo-
nent of the embedding tensor

wi j = diag(1, 1, σ, κ). (196)

The scalar potential is computed to be

V = −g2

16
e−4(φ0+φ1+φ3)[8e4φ1+2φ3 [κ − σ

+(κ + σ) cosh 2φ2]
−[κ − σ + (κ + σ) cosh 2φ2]2 − 8e4φ1+6φ3

×[κ − σ − (κ + σ) cosh 2φ2]
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+e4φ3 [κ2 + 10κσ + σ 2 − (κ + σ)2 cosh 4φ2]
+e8φ3 [κ − σ − (κ + σ) cosh 2φ2]2]. (197)

It should be noted that the scalar potential for CSO(2, 0, 2)

gauge group with σ = κ = 0 vanish identically. This leads
to a Minkowski vacuum.

In this case, the BPS equations are much more complicated
than those obtiained in the previous cases

A′ = 1

10
ge−2(φ0+φ1)[2e4φ1 − (κ − σ) sinh 2φ3

+(κ + σ) cosh 2φ3 cosh 2φ2], (198)

φ′
0 = 1

20
ge−2(φ0+φ1)[2e4φ1 − (κ − σ) sinh 2φ3

+(κ + σ) cosh 2φ2 cosh 2φ3], (199)

φ′
1 = −1

4
ge−2(φ0+φ1)[2e4φ1 + (κ − σ) sinh 2φ3

−(κ + σ) cosh 2φ2 cosh 2φ3], (200)

φ′
2 = −1

2
ge−2(φ0+φ1)(κ + σ) sinh 2φ2 sech 2φ3, (201)

φ′
3 = 1

2
ge−2(φ0+φ1)[(κ − σ) cosh 2φ3

−(κ + σ) cosh 2φ2 sinh 2φ3]. (202)

We are not able to completely solve these equations for arbi-
trary values of the parameters κ and σ . However, the solutions
can be separately found for various values of κ and σ .

4.4.1 Domain walls from CSO(2, 0, 2) gauge group

The simplest case is CSO(2, 0, 2) gauge group correspond-
ing to σ = κ = 0. In this case, φ′

2 = φ′
3 = 0 and the

remaining BPS equations simplify considerably

A′ = 1

5
ge−2φ0+φ1 , φ′

0 = 1

10
ge−2φ0+φ1 ,

φ′
1 = −1

2
ge−2φ0+φ1 . (203)

Scalars φ2 and φ3 can be consistently truncated out, and the
solution for the remaining fields can be readily found

A = −1

5
φ1, φ0 = −1

5
φ1 + C0,

φ1 = − 5

12
ln

[
6

5
(e−2C0gr − C)

]
. (204)

4.4.2 Domain walls from SO(3, 1) gauge group

In this case, σ = −κ = 1, and the BPS equations give
φ′

2 = 0. Similar to the previous case, φ2 does not appear in
any BPS equations. After truncating out φ2, we find a domain
wall solution

φ1 = 1

2
φ3 − 1

4
ln[1 + C1(1 + e4φ3)], (205)

φ0 = C0 + 1

10
φ3 − 1

10
ln(1 + e4φ3)

+ 1

20
ln[1 + C1(1 + e4φ3)], (206)

φ3 = 1

2
ln tan(C3 − gρ), (207)

A = 2φ0 (208)

with ρ defined by dρ
dr = e−2φ0−2φ1 .

4.4.3 Domain walls from CSO(3, 0, 1) and CSO(2, 1, 1)

gauge groups

In this case, we set κ = 0 and σ = ±1 corresponding
CSO(3, 0, 1) and CSO(2, 1, 1) gauge groups, respectively.
All scalar fields are now non-vanishing. The domain wall
solution is given by

A = 2φ0, (209)

φ0 = 1

20
ln

[
1

4
gρ(C0 − g2ρ2e4C1

−4e4C1+C3g2ρ2 − 4e4C1+2C3g2ρ2)

]
, (210)

φ1 = C1 − 5φ0 − 1

4
ln(1 − e4φ2)

+1

4
ln(1 + 2eC3 + e2C3 − e2C3+4φ2), (211)

φ2 = 1

4
ln

[
4(1 + eC3)2 + (1 + 2eC3)2g2ρ2

4e2C3 + (1 + 2eC3)2g2ρ2

]
, (212)

φ3 = 1

4
ln

[
(e2φ2 − 1)(1 + eC3 + eC3+2φ2)

1 + eC3 + e2φ2 − eC3+4φ2

]
(213)

with dρ
dr = e−2φ0−2φ1 . In this solution, we have shifted the

coordinate ρ to ρ + C
gσ with C being an integration constant

in φ2 solution.

4.4.4 Domain walls from SO(4) and SO(2, 2) gauge
groups

In this case, we set κ = σ = ±1 corresponding to SO(4)

and SO(2, 2) gauge groups. The domain wall solution can
be found as in the previous case

A = 2φ0, (214)

φ0 = C0 + 1

10
ln[1 + 4e2C3 − e−2gσρ]

+ 1

40
(4σ + e20C1 + 4e20C1+2C3)gρ

− σ

160
e20C1−2gσρ(16e4(C3+gσρ)

+8e2C3+4gσρ + e4gσρ − 1), (215)
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φ1 = 5C1 − 1

2
ln(1 − e4φ2)

+1

4
ln[e2C3 − e4φ2 − 2e2C3+4φ2 + e2C3+8φ2 ], (216)

φ2 = 1

4
ln

[
1 − 2egσρ + e2gσρ + 4e2C3+2gσρ

1 + 2egσρ + e2gσρ + 4e2C3+2gσρ

]
, (217)

φ3 = 1

4
ln

[
e2φ2 + eC3+4φ2 − eC3

e2φ2 + eC3 − eC3+4φ2

]
(218)

with dρ
dr = e−2φ0−2φ1 .

5 Supersymmetric domain walls from gaugings in 15
and 40 representations

We now consider gaugings with both components of the
embedding tensor in15 and40 representations non-vanishing.
Following [31], we will choose a particular basis such that
nonvanishing components of the embedding tensor are given
by

Yxy, Zxα,β = Zx(α,β), Zαβ,γ (219)

in which the ranges of indices are given by x = 1, . . . , t and
α = t + 1, . . . , 5 for t ≡ rankYMN . We will also choose Yxy
in the form

Yxy = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

) (220)

with p+q = t . Tensors Yxy , Zxα,β and Zαβ,γ need to satisfy
the quadratic constraint which is explicitly given by

Yxy Z
yα,β + 2εxMN PQ Z

MN ,αZ PQ,β = 0. (221)

We will look for domain wall solutions in SO(2, 1)�R4 and
SO(2) � R4 gauge groups. The corresponding embedding
tensors for these gauge groups have already been given in
[31]. We also emphasize that in the case of gaugings in 15
and 40 representations, domain walls are 1

4 -BPS, preserv-
ing only eight supercharges. All gaugings in this case can
be obtained from Scherk–Schwarz reduction of the maximal
gauged supergravity in eight dimensions.

5.1 1
4 -BPS domain wall from SO(2, 1) � R4 gauge group

We begin with the t = 3 case in which Yxy can be cho-
sen to be diag(1, 1,±1) [31]. The component Zαβ,γ of the
embedding tensor is not constrained by the quadratic con-
straint. Accordingly, Zαβ,γ does not affect the form of the
gauge algebra and can be parametrized by an arbitrary two-
component vector vα as Zαβ,γ = εαβvγ . For simplicity, we
will set vα = 0. On the other hand, the quadratic constraint
imposes the following condition on Zxα,β

εxyz Z
yα,γ εγ δZ

zδ,β = 1

8
Yxu Z

uα,β (222)

which implies that the 2×2 matrices (�x )α
β = −16εαγ Zxγ,β

satisfy the algebra

[�x , �y] = 2εxyuYuz�
z . (223)

In terms of �x , Zxα,β component of the embedding tensor
takes the form

Zxα,β = − 1

16
εαγ (�x )γ

β
. (224)

As pointed out in [31], a real, nonvanishing solution for Zxα,β

is possible only for Yxy generating a non-compact SO(2, 1)

group. In this case, we take Yxy = diag(1, 1,−1) and choose
the explicit form for �x in terms of Pauli matrices as follow

�1 = σ1, �2 = σ3, �3 = iσ2. (225)

The corresponding gauge generators are given by

XM
N =

(
λz(t z)x

y Q(4)β
x

02×3
1
2λz(�z)α

β

)

(226)

with λz ∈ R. It should be noted that the SO(2, 1) subgroup is
embedded diagonally. The nilpotent generators Q(4)α

x trans-
form as 4 under SO(2, 1) and are obtained from projecting
the tensor product 3 ⊗ 2 = 2 + 4 to representation 4. The
resulting gauge group is then given by SO(2, 1) � R4.

We will consider solutions that are invariant under the
maximal compact subgroup SO(2) ⊂ SO(2, 1). Among the
fourteen scalars in SL(5)/SO(5) coset, there are four sin-
glets corresponding to the following non-compact generators

Y1 = 2e1,1 + 2e2,2 + 2e3,3 − 3e4,4 − 3e5,5,

Y2 = e1,1 + e2,2 − 2e3,3,

Y3 = e1,4 + e2,5 + e4,1 + e5,2,

Y4 = e1,5 − e2,4 − e4,2 + e5,1. (227)

With the SL(5)/SO(5) coset representative

V = eφ0Y1+φ1Y2+φ2Y3+φ3Y4 , (228)

we obtain the scalar potential

V = g2

64
e−2(4φ0−φ1)[6 cosh 2φ2 cosh 2φ3 + e6φ1 ] (229)

which does not admit any critical points.
Contrary to the previous cases, finding the BPS equations

in this case requires two projection conditions on the Killing
spinors. In more detail, A1 and A2 tensors consist of two
parts, one from YMN and the other from ZMN ,P . The latter
comes with an extra SO(5) gamma matrices 	A while the
former does not. To obtain a consistent set of BPS equations,
we impose the following projectors

γrε
a
0 = −(	3)

a
bε

b
0 = εa0 (230)
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which reduce the number of supersymmetry to 1
4 of the orig-

inal amount or eight supercharges.
Following the same procedure as in the previous cases, we

obtain the BPS equations

A′ = g

40
e−2(2φ0+φ1)(3 cosh 2φ2 cosh 2φ3 − e6φ1), (231)

φ′
0 = g

240
e−2(φ0+φ1)(15sech2φ2sech2φ3

−3 cosh 2φ2 cosh 2φ3 − 4e6φ1), (232)

φ′
1 = g

48
e−2(φ0+φ1)(3sech2φ2sech2φ3

+3 cosh 2φ2 cosh 2φ3 + 4e6φ1), (233)

φ′
2 = −3g

16
e−2(2φ0+φ1) sinh 2φ2sech2φ3, (234)

φ′
3 = −3g

16
e−2(2φ0+φ1) cosh 2φ2 sinh 2φ3. (235)

Introducing a new radial coordinate ρ via dρ
dr = e−4φ0−2φ1 ,

we can find a domain wall solution to these equations

φ0 = C0 + 2

45
(e3φ1 − 3) ln(1 − e4φ2 )

− 1

60
ln(e2C3 − e4φ2 + e8φ2+2C3 − 2e4φ2+2C3 )

− 2

45
ln

(
1 + e4φ2

+2
√
e4φ2 − e2C3 − e8φ2+2C3 + 2e4φ2+2C3

)

+ 1

6
ln(1 + e4φ2 ), (236)

φ1 = C1 − 5φ0 − ln(1 − e4φ2 ) + ln(1 + e4φ2 ), (237)

φ2 = 1

4
ln

[
1 + 4e2C3 − 2e

3
8 gρ + e

3
4 gρ

1 + 4e2C3 + 2e
3
8 gρ + e

3
4 gρ

]

, (238)

φ3 = 1

4
ln

[
e2φ2 − eC3 + e4φ2+C3

e2φ2 + eC3 − e4φ2+C3

]
, (239)

A = 1

15
(e6φ1 − 3) ln(1 − e4φ2 )

+ 1

10
ln(e2C3 − e4φ2 + e2C3+8φ2 − 2e2C3+4φ2 )

− 1

15
e6φ1 ln

(
2
√
e4φ2 − e2C3 − e8φ2+2C3 + 2e2C3+4φ2 + e4φ2 + 1

)
.

(240)

5.2 1
4 -BPS domain wall from SO(2) � R4 gauge group

In this case, we have t = 2 and Yxy = δxy , x, y = 1, 2.
The quadratic constraint allows only the component Zαβ,γ

to be non-vanishing. This component can be parametrized by
a 3 × 3 traceless matrix Zα

β , with Zα
α = 0, as

Zαβ,γ = 1

8
εαβδZδ

γ . (241)

The corresponding gauge generators read

XM
N =

(
λtx y Qx

β

03×2 λZα
β

)
(242)

with λ ∈ R. tx y = iσ2 generates the compact SO(2) sub-
group, and Qx

α ∈ R in general generate six translations
R6 resulting in SO(2) � R6 gauge group. As pointed out
in [31], the number of independent translations is reduced if
there exist non-trivial solutions for Q satisfying

t Q − QZ = 0. (243)

We will consider the compact case with TrZ2 = −2. In this
case, the gauged supergravity admits a half-supersymmetric
(N = 2) Minkowski vacuum, and the gauge group is reduced
to SO(2) � R4 ∼ CSO(2, 0, 2). The A1 tensor, related to
the gravitino mass matrix, is given by

Aab
1 = − 1

20
e−6φ0 cosh(2φ2) cosh(2φ3)(δ

a
1δb3 − δa3δb1) (244)

which has only two zero eigenvalues indicating the super-
symmetry breaking N = 4 → N = 2.

For definiteness, we take an explicit form of Zα
β to be

Zα
β =

⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ . (245)

There are four SO(2) singlet scalars corresponding to the
following SL(5) non-compact generators

Y 1 = 3e1,1 + 3e2,2 − 2e3,3 − 2e4,4 − 2e5,5,

Y 2 = e4,4 + e5,5 − 2e3,3,

Y 3 = e1,4 + e2,5 + e4,1 + e5,2,

Y 4 = e1,5 − e2,4 − e4,2 + e5,1. (246)

Using the parametrization of the SL(5)/SO(5) coset repre-
sentative in the form

V = eφ0Y 1+φ1Y 2+φ2Y 3+φ3Y 4 , (247)

we find that the scalar potential vanishes identically. This is
in agreement with CSO(2, 0, 2) gauge group considered in
the previous section.

With the projector (230), we can derive the following BPS
equations

A′ = g

10
e−6φ0 cosh 2φ2 cosh 2φ3, (248)

φ′
0 = g

60
e−6φ0 (cosh 2φ2 cosh 2φ3

+5sech2φ2sech2φ3) , (249)

φ′
1 = g

12
e−6φ0 (cosh 2φ2 cosh 2φ3

−sech2φ2sech2φ3) , (250)

φ′
2 = −g

4
e−6φ0 sinh 2φ2sech2φ3, (251)

φ′
3 = −g

4
e−6φ0 cosh 2φ2 sinh 2φ3. (252)
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By using a new radial coordinate ρ defined by dρ
dr = e−6φ0 ,

we find a domain wall solution to the above equations

φ0 = C0 − 1

5
ln(1 − e4φ2) + 1

6
ln(1 + e4φ2)

+ 1

60
ln[e2C3 − e4φ2 + e2C3+8φ2 − 2e2C3+4φ2 ], (253)

φ1 = C1 − 1

6
ln(1 + e4φ2)

+ 1

12
ln[e2C3 − e4φ2 + e2C3+8φ2 − 2e2C3+4φ2 ], (254)

φ2 = 1

4
ln

[
1 + 4e2C3 − 2e

1
2 gρ + egρ

1 + 4e2C3 + 2e
1
2 gρ + egρ

]

, (255)

φ3 = 1

4
ln

[
e2φ2 + e4φ2+C3 − eC3

e2φ2 − e4φ2+C3 + eC3

]
, (256)

A = −1

5
ln(1 − e4φ2)

+ 1

10
ln[e2C3 − e4φ2 + e2C3+8φ2 − 2e2C3+4φ2 ]. (257)

6 Conclusions and discussions

We have studied supersymmetric domain walls in N =
4 gauged supergravity in seven dimensions with various
gauge groups. There are both half-supersymmetric and 1

4 -
supersymmetric solutions depending on which components
of the embedding tensor in the 15 and 40 representations of
the global symmetry SL(5) lead to the gauging.

For SO(5) gauge group, the gauged supergravity admits
a supersymmetric AdS7 vacuum and can be embedded in
eleven-dimensional supergravity. Accordingly, there exist
domain walls that are asymptotic to the AdS7 vacuum and
can be interpreted as RG flows from N = (2, 0) SCFT, dual
to the AdS7, to non-conformal field theories in the IR. The
resulting solutions can be uplifted to eleven dimensions. Fur-
thermore, solutions from CSO(4, 0, 1) gauged supergravity
can be embedded in type IIA theory via a consistent S3 trun-
cation. These solutions with clear higher-dimensional origins
would be useful in the study of the AdS/CFT correspondence
and various dynamical aspects of M5-branes and NS5-branes
in different transverse spaces.

There are a number of future directions to pursue. First
of all, it is interesting to look for domain walls from
CSO(1, 0, 4) and CSO(1, 0, 3) gauge groups that would
presumably involve many non-vanishing scalars. These are
called elementary domain walls in [18]. With the trunca-
tion ansatz given in [33], it would be of particular interest
to uplift the solutions from SO(4) gauged supergravity to
type IIB theory and study the field theory on the world-
volume of NS5- and D5-branes. Using the solutions from
SO(5) andCSO(4, 0, 1) gauged supergravities given here to
holographically study field theories on M5-branes and NS5-

branes also deserves further investigation along the line of
[41–43]. Finally, finding supersymmetric domain walls with
non-vanishing vector and tensor fields as in half-maximal
gauged supergravity studied in [44–46] is worth consider-
ing.
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A Truncation ansatze

In this appendix, we collect some useful formulae for trunca-
tions of eleven-dimensional supergravity on S4 and type IIA
theory on S3. The former leads to SO(5) gauged supergrav-
ity while the latter gives CSO(4, 0, 1) gauged supergravity
in seven dimensions. The complete S4 truncation has been
constructed in [29,30], but we will use the convention of [32].
Apart from some notational changes, this appendix closely
follows [32] to which the reader is referred for more detail.
Since the seven-dimensional solutions considered here do
not involve vector and tensor fields, we will only give the
truncation ansatze with only seven-dimensional metric and
scalars non-vanishing for brevity.

A.1 Eleven-dimensional supergravity on S4

The ansatz for the eleven-dimensional metric is given by

dŝ2
11 = �

1
3 ds2

7 + 1

ĝ2 �− 2
3 T−1

MNdμMdμN (258)

with the coordinates μM , M = 1, 2, 3, 4, 5, on S4 satsify-
ing μMμM = 1. TMN is a unimodular 5 × 5 symmetric
matrix describing scalar fields in the SL(5)/SO(5) coset.
The warped factor is given by

� = TMNμMμN . (259)

The ansatz for the four-form field strength reads

F̂(4) = 1

ĝ3 �−2
[

−Uε(4) + 1

3!εM1...M5μ
MμN T M1MdT M2N

∧dμM3 ∧ dμM4 ∧ dμM5

]
(260)
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with the following definitions

U = 2TMNTN PμMμP − �TMM , (261)

ε(4) = 1

4!εM1...M5μ
M1dμM2 ∧ dμM3 ∧ dμM4 ∧ dμM5 .

(262)

After multiplied by 1
2 , the seven-dimensional Lagrangian can

be written as

e−1LS4 = 1

2
R + 1

8
∂μT

−1
MN ∂μTMN

−1

4
ĝ2[2TMNTMN − (TMM )2]. (263)

Comparing with (31) and setting YMN = δMN , ZMN ,P = 0,
we find the following identification

TMN = MMN and ĝ = 1

4
g. (264)

A.2 Type IIA supergravity on S3

By taking a limit in which the four-sphere S4 degenerates to
R × S3 followed by a standard Kaluza-Klein reduction on
S1, a consistent truncation of type IIA supergravity on S3 has
been obtained in [32]. To present this ansatz, we will split the
index M as M = (i, 5), i = 1, 2, 3, 4. The SL(5)/SO(5)

coset is decomposed under the SL(4)/SO(4) submanifold
as

T−1
MN =

(
�− 1

4 M−1
i j + �χiχ j �χi

�χ j �

)

(265)

where Mi j is a unimodular 4×4 symmetric matrix describing
the SL(4)/SO(4) coset.

The ten-dimensional metric, dilaton and various form field
strength tensors are given by

dŝ2
10 = �

3
16 �

1
4 ds2

7 + 1

ĝ2 �− 5
16 �− 3

4 M−1
i j dμi dμ j , (266)

e2ϕ̂ = �−1�
5
4 , F̂(2) = dχi ∧ dμi ,

F̂(3) = 1

ĝ3 �−2
[

−Uε(3)

+1

2
εi1i2i3i4 Mi1 jμ

jμkdMi2k ∧ dμi3 ∧ dμi4

]
,

(267)

F̂(4) = 1

ĝ3 �−1Mi jμ
j dχi ∧ ε(3) (268)

with

ε(3) = 1

3!εi jklμ
i dμ j ∧ dμk ∧ dμl , (269)

U = 2Mi j M jkμ
iμk − �Mii . (270)

Using the relation (264) and comparing the SL(5)/SO(5)

coset given in (139) with (265), we find the relations

� = e8φ0 , χi = bi , M−1
i j = M̃i j . (271)

In this case, μi is the coordinates on S3 satisfying μiμi = 1.
The gauge coupling ĝ is related to g by ĝ = 1

4g as in the S4

truncation of eleven-dimensional supergravity.
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