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Abstract Based on transversality condition of gauge boson
self-energy we have systematically constructed the general
structure of the gauge boson two-point functions using four
linearly independent basis tensors in presence of a nontrivial
background i.e. hot magnetized material medium. The hard
thermal loop approximation has been used for the heat bath
to compute various form factors associated with the gauge
boson’s two point functions both in strong and weak field
approximation. We have also analyzed the dispersion of a
gauge boson (e.g., gluon) using the effective propagator both
in strong and weak magnetic field approximation. The for-
malism is also applicable to QED. The presence of only ther-
mal background leads to a longitudinal (plasmon) mode and
a two fold degenerate transverse mode. In presence of a hot
magnetized background medium the degeneracy of the two
transverse modes is lifted and one gets three quasiparticle
modes. In weak field approximation one gets two transverse
modes and one plasmon mode. On the other hand, in strong
field approximation also one gets the three modes in Low-
est Landau Level. The general structure of two-point function
may be useful for computing the thermo-magnetic correction
of various quantities associated with a gauge boson.

1 Introduction

The propagation of vector gauge bosons in a material medium
in presence of a magnetic field produces many interesting
observational effects. As for example the photons with differ-
ent polarizations have different dispersion properties which
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lead to the Faraday rotation. This has also been observed for
various astrophysical objects [1–4] and in the millisecond
pulsations of solar radio emission [5]. In view of the theo-
retical perspective the general feature is associated with the
propagation of a photon in an externally magnetized mate-
rial medium. The subject of the propagation of photons in
magnetized plasmas has been studied in large extent and
also covered in standard electromagnetic theory [6,7] and
plasma physics [8,9] books. However, in most cases it was
assumed that the medium consists of non-relativistic and non-
degenerate electrons and nucleons. This suggests a modifica-
tion of theoretical tools in which a general formalism based
on quantum field theory proves to be helpful [10]. A quan-
tum field theoretical formalism to calculate Faraday rota-
tion in different kinds of media (hot magnetized one) have
been done in Refs. [11,12]. Also high-intensity laser fields
are used to create ultrarelativistic electron-positron plasmas
which play an important role in various astrophysical situa-
tions. Some properties of such plasma are studied using QED
at finite temperature [13,14].

In the regime of Quantum Chromo Dynamics (QCD),
nuclear matter dissolves into a thermalized color decon-
fined state Quark Gluon Plasma (QGP) under extreme con-
ditions such as very high temperature and/or density. To
probe different characteristics of this novel state, various
high energy Heavy-Ion-Collisions (HIC) experiments are
under way, e.g., RHIC@BNL, LHC@CERN and upcoming
FAIR@GSI. Depending on the impact parameter of the colli-
sion, a relativistic HIC can be central or non-central. In recent
years the non-central HIC is getting more and more attention
in the heavy-ion community because of some distinct fea-
tures which appear due to the non-centrality of the collision.
One of those is the prospect of producing a very strong mag-
netic field in the direction perpendicular to the reaction plane
due to the relatively higher rapidity of the spectator particles
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that are not participating in the collisions. Presently immense
activities are in progress to study the properties of strongly
interacting matter in presence of an external magnetic field,
resulting in the emergence of several novel phenomena [15–
32]. This suggests that there is clearly an increasing demand
to study the effects of intense background magnetic fields on
various aspects and observables of non-central heavy-ion col-
lisions. Also experimental evidences of photon anisotropy,
provided by the PHENIX Collaboration [33], have posed a
challenge for existing theoretical models. This kind of cur-
rent experimental evidences have prompted that a modifi-
cation of the present theoretical tools are much needed by
considering the effects of intense background magnetic field
on various aspects and observables of non-central HIC. In
a field theoretic calculation n-point functions are the basic
quantities to compute the various observables of a system.
With this perspective in very recent works, based on various
symmetries of the system for a nontrivial medium like a hot
magnetized one, the general structure of fermionic 2- and
3-point function [34], and 4-point function [35] were com-
puted. Also the spectral representation of two point function
[34] were obtained for such system. In this paper we consider
gluon that propagates in a hot magnetized QCD plasma for
which we aim at the general structure of the gauge boson
self-energy, the effective propagator and its dispersion prop-
erty. This formalism is also applicable to QED system. The
general propagators for fermion obtained in Ref. [34] and
for the gauge boson obtained here have already been used to
compute the quark-gluon free energy for a hot magnetized
deconfined QCD system in Ref. [36].

This paper has been organized as follows: in Sect. 2 the
general structure of a gauge boson self-energy in a hot mag-
netized medium is discussed progressively. It includes two
parts: a brief review of the general structure in presence of
only thermal medium in Sect. 2.1 and then a generalization
of it to a hot magnetized medium in Sect. 2.2. In Sect. 3 we
discuss the general structure for the gauge boson propaga-
tor using the results of Sect. 2. Section 4 begins with the
domain of applicability depending upon the scales (mass,
temperature and the magnetic field strength) associated with
the system. In Sects. 4.1 and 4.2 we elaborately compute
the various form factors, Debye screening mass, dispersion
relations within strong and weak field approximation, respec-
tively. Finally, we conclude in Sect. 5.

2 General structure of a gauge boson self-energy

In this section we first briefly review the formalism of the
general structure for a gauge boson self-energy by consider-
ing only thermal bath without the presence of any magnetic
field in Sect. 2.1 and it will then be followed by a formalism
for a magnetized hot medium in Sect. 2.2.

2.1 Finite temperature and zero magnetic field case

We begin with the general structure of the gauge boson self-
energy in vacuum, given as

�μν(P) = Vμν�(P2), (1)

where the form factor �(P2) is Lorentz invariant and
depends only on the four scalar P2. The vacuum projection
operator is

Vμν = gμν − PμPν

P2 , (2)

with the metric gμν ≡ (1,−1,−1,−1) and Pμ ≡ (p0, p) =
(p0, p1, p2, p3). The self-energy satisfies the gauge invari-
ance through the transversality condition

Pμ�μν(P) = 0, (3)

and it is also symmetric

�μν(P) = �νμ(P). (4)

The conditions in Eqs. (3) and (4) are sufficient to obtain ten
components of �μν .

The presence of finite temperature (β = 1/T ) or heat
bath breaks the Lorentz (boost) invariance of the system.
In finite temperature one accumulates four-vectors and ten-
sors to form a general covariant structure of the gauge boson
self-energy. Those are Pμ, gμν from vacuum and the four-
velocity uμ of the heat bath, discreetly introduced because
of the medium. With these one can form four symmetric
basis tensors, namely PμPν, Pμuν + uμPν, uμuν and gμν .
These four tensors can be reduced to two independent mutu-
ally orthogonal projection tensors by virtue of the constraints
provided by the transversality condition in Eq. (3). One uses
them to construct manifestly Lorentz-invariant structure of
the gauge boson self-energy and propagator at finite temper-
ature which have been discussed in the literature in details
[37–39]. Nevertheless, we briefly discuss some of the essen-
tial points that would be very useful in constructing those
general structures for a magnetized hot medium.

We now begin by defining Lorentz scalars, vectors and
tensors that characterize the heat bath or hot medium in a
local rest frame:

uμ = (1, 0, 0, 0),

Pμuμ = P · u = p0, (5a)

P̃μ = Pμ − (P · u)uμ = Pμ − p0u
μ, (5b)

g̃μν = gμν − uμuν (5c)

P̃2 = P̃μ P̃μ = P2 − p2
0 = −p2, (5d)

where p = | p|. We note here that one can only construct
two independent Lorentz scalars as given in Eqs. (5a) and
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(5d). One can further redefine four vector uμ by projecting
the vacuum projection tensor upon it as

ūμ = Vμνuν = uμ − (P · u)Pμ

P2 = uμ − p0Pμ

P2 . (6)

which is orthogonal to Pμ. Now one can construct two inde-
pendent and mutually transverse second rank projection ten-
sors in terms of those redefined set of four-vectors and tensor
as

Aμν = g̃μν − P̃μ P̃ν

P̃2
, (7a)

Bμν = 1

ū2 ū
μūν . (7b)

Moreover, sum of these two projection operators lead to the
well known vacuum projection tensor Vμν as

Aμν + Bμν = gμν − PμPν

P2 = Vμν. (8)

So, the general (manifestly) covariant form of the self-energy
tensor can be written as

�μν = �T A
μν + �L B

μν, (9)

where �L and �T are, respectively, the longitudinal and
transverse form factors. Eventually one can obtain these two
form factors as

�L = − P2

p2 �00, (10a)

�T = 1

D − 2
(�μ

μ − �L), (10b)

where D is the space-time dimension of a given theory. The
above Lorentz-invariant form factors would depend on the

two independent Lorentz scalars p0 and p =
√
p2

0 − P2

as defined, respectively, in Eqs. (5a) and (5d) besides the
temperature T = 1/β.

2.2 Finite temperature and finite magnetic field case

The finite temperature breaks the Lorentz (boost) symmetry
whereas the presence of magnetic field breaks the rotational
symmetry in the system. In presence of both finite tempera-
ture (β = 1/T ) and finite magnetic field B, the four-vectors
and tensors available to form the general covariant structure
of the gauge boson self-energy are Pμ, gμν , the electromag-
netic field tensor Fμν and it’s dual F̃μν , and the four velocity
of the heat bath, uμ. As seen in Sect. 2.1 at finite T the heat
bath introduces a preferred direction that breaks the boost
invariance. On the other hand, the presence of the magnetic
field breaks the rotational symmetry in the system because it
introduces an anisotropy in space. For hot magnetized sys-
tem, one can define a new four vector nμ which is associated

with the electromagnetic field tensor Fμν . We define the elec-
tromagnetic field tensor as

Fμν =

⎛
⎜⎜⎝

0 0 0 0
0 0 −B 0
0 B 0 0
0 0 0 0

⎞
⎟⎟⎠ . (11)

In the rest frame of the heat bath, i.e., uμ = (1, 0, 0, 0), nμ

can be defined uniquely as projection of Fμν along uμ,

nμ ≡ 1

2B
εμνρλ u

νFρλ = 1

B
uν F̃μν = (0, 0, 0, 1), (12)

which is in the z-direction. This also establishes a connection
between the heat bath and the magnetic field.

Now for a hot magnetized case one has Lorentz vec-
tors, Pμ, uμ and nμ along with metric tensor gμν , from
which one can form seven symmetric basis tensors, namely
PμPν, Pμnν + nμPν, nμnν , Pμuν + uμPν , uμuν , uμnν +
nμuν and gμν . These seven tensors reduce to four because
of constraints provided by the gauge invariance condition in
Eq. (3). Below we obtain the four basis tensors.1

We first form the transverse four momentum and the trans-
verse metric tensor as

Pμ
⊥ = Pμ − (P · u)uμ + (P · n)nμ

= Pμ − p0u
μ + p3nμ = Pμ − Pμ

�
, (13a)

gμν
⊥ = gμν − uμuν + nμnν = gμν − gμν

�
, (13b)

where

Pμ
�

= p0u
μ − p3nμ, (14a)

P2
�

= Pμ
�
P�

μ = p2
0 − p2

3, (14b)

gμν
�

= uμuν − nμnν, (14c)

Pμ
⊥ P⊥

μ = P2⊥ = P2 − p2
0 + p2

3 = P2 − P2
�

= −p2⊥,

(14d)

where P2 = P2
�

+ P2⊥ = P2
�

− p2⊥, P2
�

= p2
0 − p2

3 and
p2⊥ = p2

1 + p2
2. We further note that the three independent

Lorentz scalars are p0, p3 = P · n and P2⊥.
We take Bμν in Eq. (7b) as one of projection tensors in

hot magnetized system. Now Aμν Aμν = 2 indicates that it
is a combination of two mutually orthogonal projection ten-
sors, which yields two degenerate transverse modes for gauge
boson in heat bath. Projection of Aμν along magnetic field
direction nμ is n̄μ = Aμνnν . So we can construct another
second rank tensor orthogonal to both Pμ and Bμν as,

Qμν = n̄μn̄ν

n̄2 . (15)

1 We note here that a set of four different basis tensors were used in
Refs. [40–42].
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We, now, construct the third projection tensor Rμν , with a
constraint such that the sum of Rμν , Bμν and Qμν gives the
vacuum projection operator Vμν as

Rμν = Vμν − Bμν − Qμν = Aμν − Qμν

= gμν
⊥ − Pμ

⊥ Pν⊥
P2⊥

. (16)

It can be checked easily that all the projection tensors satisfy
the following properties,

PμZ
μν = 0, (17a)

ZμλZν
λ = Zμν, (17b)

Zμν Zμν = 1. (17c)

where Z = B, R, Q. The three projection tensors are orthog-
onal to each other:

ZμνYμν = 0, (18a)

where Z �= Y and Y = B, R, Q.
Now we construct the fourth tensor as

Nμν = ūμn̄ν + ūν n̄μ

√
ū2

√
n̄2

, (19)

which satisfies the following properties

NμρNρν = Bμ
ν + Qμ

ν , (20)

BμρNρν + NμρBρν = Nμ
ν ,

QμρNρν + NμρQρν = Nμ
ν , (21)

RμρNρν = NμρRρν = 0. (22)

Now, one can write a general covariant structure of gauge
boson self-energy as

�μν = bBμν + cRμν + dQμν + aNμν, (23)

where b, c, d and a are four Lorentz-invariant form factors
associated with the four basis tensors. Note that Eq. (23) can
also be expressed as

�μν = bBμν + cAμν + (d − c)Qμν + aNμν (24)

This particular decomposition of the self-energy in terms
of four tensor basis is exactly same that has been used in
Refs. [43,44] which, however were then applied for different
perspectives.

The (00) components of the constituent tensors are given
by

B00 = ū2, (25a)

R00 = 0, (25b)

Q00 = 0, (25c)

N00 = 0, (25d)

�00 = bB00 = bū2. (25e)

Using these information, we obtain the form factors as

b = Bμν�μν, (26a)

c = Rμν�μν, (26b)

d = Qμν�μν, (26c)

a = 1

2
Nμν�μν. (26d)

In absence of the magnetic field by comparing with the known
general form of finite temperature self-energy in Eq. (9), as

�T Aμν + �L Bμν = b0Bμν + c0Rμν + d0Qμν + a0Nμν,

(27)

one can write

b0 = �L , (28a)

c0 = d0 = �T , (28b)

a0 = 0 (28c)

where we used the fact that Rμν + Qμν = Aμν .

3 General form of gauge boson propagator in a hot
magnetized medium

In covariant gauge the inverse of the gauge boson propagator
in vacuum reads as

(D0)−1
uv = P2gμν − ξ − 1

ξ
PμPν, (29)

where ξ is the gauge parameter. From Eq. (16) one can write

PμPν = P2[gμν − (Bμν + Rμν + Qμν)]. (30)

and using in Eq. (29), we get

(D0)−1
uv = P2

ξ
gμν + P2 ξ − 1

ξ
(Bμν + Rμν + Qμν). (31)

The inverse of the general gauge boson propagator following
Dyson–Schwinger equation reads as

D−1
uv = (D0)−1

uv − �μν. (32)

From Eqs. (31) and (23) we can now readily get

D−1
uv = P2

ξ
gμν + (P2

m − b)Bμν + (P2
m − c)Rμν

+(P2
m − d)Qμν − aNμν, (33)

where

P2
m = P2 ξ − 1

ξ
. (34)

The inverse of Eq. (33) can be written as

Dμρ = αPμPρ + βBμρ + γ Rμρ + δQμρ + σNμρ. (35)
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along with

gν
μ = Dμρ

(
Dρν

)−1

= α
P2

ξ
PμP

ν +
[
βP2

ξ
+ β(P2

m − b) − σa

]
Bν

μ

+
[
δP2

ξ
+ δ(P2

m − d) − σa

]
Qν

μ

+
[
γ P2

ξ
+ γ (P2

m − c)

]
Rν

μ

+
[
−βa + σ(P2

m − d) + σ P2

ξ

]
ūμn̄ν

√
ū2

√
n̄2

+
[
−δa + σ(P2

m − b) + σ P2

ξ

]

× n̄μūν

√
ū2

√
n̄2

. (36)

Now using the explicit forms of Bν
μ, Rν

μ, Qν
μ and N ν

μ and
equating different coefficients from both sides yield the fol-
lowing conditions:

α = ξ

P4 ,

βP2

ξ
+ β(P2

m − b) − σa = 1,

δP2

ξ
+ δ(P2

m − d) − σa = 1,

γ P2

ξ
+ γ (P2

m − c) = 1,

−βa + σ(P2
m − d) + σ P2

ξ
= 0,

−δa + σ(P2
m − b) + σ P2

ξ
= 0. (37)

Solving this we get

α = ξ

P4 ,

β = P2 − d

(P2 − b)(P2 − d) − a2 ,

γ = 1

P2 − c
,

δ = P2 − b

(P2 − b)(P2 − d) − a2 ,

σ = a

(P2 − b)(P2 − d) − a2 . (38)

Now the general covariant structure of the gauge boson prop-
agator in covariant gauge can finally be obtained as

Dμν = ξ PμPν

P4 + (P2 − d)Bμν

(P2 − b)(P2 − d) − a2 + Rμν

P2 − c

+ (P2 − b)Qμν

(P2 − b)(P2 − d) − a2

+ aNμν

(P2 − b)(P2 − d) − a2 . (39)

We recall that the breaking of boost invariance due to finite
temperature leads to two modes (degenerate transverse mode
and plasmino). Now, the breaking of the rotational invari-
ance in presence of magnetic field lifts the degeneracy of
the transverse modes which introduces an additional mode
in the hot medium. These three dispersive modes of gauge
boson can be seen from the poles of Eq. (39). The poles
(P2 − b)(P2 − d) − a2 = 0, lead to two dispersive modes.
We call one mode n+ with energy ωn+ and the other one n−
with energy ωn− . The pole P2 − c = 0 leads to the third dis-
persive mode c with energy ωc. We will discuss about these
dispersive modes in details later for both strong and weak
field approximation.

When we turn off the magnetic field, the general structure
of the propagator in a non-magnetized thermal bath can be
obtained by putting b0 = �L , c0 = d0 = �T and a0 = 0 as

Dμρ = ξ PμPρ

P4 + Bμρ

P2 − �L
+ Aμρ

P2 − �T
(40)

which agrees with the known result [37–39,45].

4 Form factors

Before computing the various form factors associated with
the general structure we note the following points:

1. The magnetic field generated during the non-central HIC
is time dependent but is believed to decrease rapidly with
time [20,46]. It would be extremely complicated to work
with a time dependent magnetic field. Instead we work by
considering a constant background magnetic field along
with some limiting conditions so that the effect of mag-
netic field can be incorporated analytically. We note here
that incorporation of magnetic field to the heat bath intro-
duces another scale in the system. Beside the fermion
mass m f and the temperature T , the additional scale is
the strength of magnetic field B. Below we would discuss
the different domains of scales:
a) Strong Field Approximation: At the time of the col-
lision, the value of the magnetic field B is estimated
upto the order of |eB| ∼ 15m2

π (where e is the elec-
tronic charge, mπ is the mass of a pion), which is very
high compared to the temperature T and m f in the LHC
at CERN [47]. Also in the dense sector, neutron stars
(NS), or more specifically magnetars are known to pos-
sess strong enough magnetic field [48–50]. The effect of
this strong enough magnetic field can be incorporated via
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θ
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z

k

p

φ

θp

Fig. 1 Choice of reference frame for computing the various form fac-
tors associated with the general structure of gauge boson 2-point func-
tions. The magnetic field is along z-direction

a simplified Lowest Landau Level (LLL) approximation
in which fermions are basically confined within the LLL.
In the Sect. 4.1 we will work on strong field approxima-
tion with a scale hierarchy, m f < T <

√|eB|, where the
loop momentum K ∼ T within HTL approximation.
b) Weak Field Approximation: Furthermore, it is
believed that the magnetic field generated in heavy-ion
collisions decreases rapidly with time. This provides us
a simplified situation where one can work in weak field
approximation with a scale hierarchy,

√|eB| < m f < T
which will be discussed in details in Sect. 4.2.

2. We would consider m f = 5 MeV for two light quark
flavors u and d.

3. We choose a frame of reference as shown in Fig. 1 in
which one considers the external momentum of the vector
boson in xz plane2 with 0 < θp < π/2. So one can write

Pμ = (p0, p sin θp, 0, p cos θp), (41)

and then loop momenta

Kμ = (k0, k sin θ cos φ, k sin θ sin φ, k cos θ). (42)

4.1 Gauge boson in strongly magnetized medium

4.1.1 One-loop gluon self-energy

When the external magnetic field is very strong, eB → ∞,
it pushes all the Landau levels (n ≥ 1) to infinity compared
to the Lowest Landau Level (LLL) with n = 0. For LLL
approximation in the strong field limit the fermion propagator
reduces to a simplified form as

2 However, one can consider a general frame of reference Pμ =
(p0, p1, p2, p3) and the result would be independent of the choice of
reference frame. Because p⊥ and p3 are not in same footing due to
the anisotropy caused by the external magnetic field along z direction.
But there is no distinction between p1 and p2. So, for simplicity of the
calculation, we made a particular choice for the reference frame here.

Fig. 2 Gluon polarization tensor in the limit of strong field approxi-
mation

i Ssm(K ) = ie−k2⊥/|q f B| /K � + m f

K 2
�

− m2
f

(1 − iγ1γ2), (43)

where K is the fermionic four momentum and we have used
the properties of generalized Laguerre polynomial, Ln ≡ L0

n
and Lα−1 = 0. In strong field approximation or in LLL, eB 

k2⊥, an effective dimensional reduction from (3+1) to (1+1)

takes place.
Now in the strong field limit the self-energy (Fig. 2) can

be computed as

�s
μν(P)

=
∑
f

ig2

2

∫
d4K

(2π)4Tr
[
γμS

s
m(K )γνS

s
m(Q)

]

=
∑
f

ig2

2

∫
d2k⊥
(2π)2 exp

(
−k2⊥ − q2⊥

|q f B|

)

×
∫

d2K�

(2π)2 Tr

[
γμ

/K � + m f

K 2
�

− m2
f

(1 − iγ1γ2)γν

× /Q
�
+ m f

Q2
�
− m2

f

(1 − iγ1γ2)

]
, (44)

where ‘s’ indicates that the quantities are to be calculated
in the strong field approximation and Tr represents only the
Dirac trace. We have suppressed the color indices for conve-
nience. Now one can notice that the longitudinal and trans-
verse parts are completely separated and the Gaussian inte-
gration over the transverse momenta can be done trivially,
which leads to

�s
μν(P) =

∑
f

i e−p2⊥/2|q f B| g2|q f B|
2π

×
∫

d2K�

(2π)2

Ss
μν

(K 2
�

− m2
f )(Q

2
�
− m2

f )

= −
∑
f

e−p2⊥/2|q f B| g2|q f B|
2π

T
∑
k0
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×
∫

dk3

2π

Ss
μν

(K 2
�

− m2
f )(Q

2
�
− m2

f )
, (45)

with the tensor structure Ss
μν that originates from the Dirac

trace is

Ss
μν = K �

μQ
�

ν + Q�

μK
�

ν − g�

μν

(
(K · Q)� − m2

f

)
, (46)

where the Lorentz indices μ and ν are restricted to longitudi-
nal values because of dimensional reduction to (1+1) dimen-
sion and forbids to take any transverse values. Now we use
Eqs. (14a) and (14c) to rewrite Sμν as

Ss
μν = (k0uμ − k3nμ)(q0uν − q3nν)

+(q0uμ − q3nμ)(k0uν − k3nν)

−(uμuν − nμnν)
(
(k · q)� − m2

f

)

= uμuν

(
k0q0 + k3q3 + m2

f

)

+nμnν

(
k0q0 + k3q3 − m2

f

)

− (uμnν + nμuν

)
(k0q3 + k3q0) . (47)

4.1.2 Form factors and Debye mass

First we evaluate the form factors in Eqs. (26a), (26b), (26c)
and (26d) in strong field approximation as

c = Rμν(�g
μν + �s

μν) = cYM + cs

= CAg2T 2

3

1

2

[
p2

0

p2 − P2

p2 TP (p0, p)

]
where cs = 0,

(48a)

b = Bμν(�g
μν + �s

μν) = bYM + uμuν

ū2 �s
μν

= bYM + bs = CAg2T 2

3ū2 [1 − TP (p0, p)]

−
∑
f

e−p2⊥/2|q f B| g2|q f B|
2π ū2 T

×
∑
k0

∫
dk3

2π

k0q0 + k3q3 + m2
f

(K 2
�

− m2
f )(Q

2
�
− m2

f )
, (48b)

d = dYM + Qμν�s
μν = dYM + ds (48c)

= CAg2T 2

3

1

2

[
p2

0

p2 − P2

p2 TP (p0, p)

]

+
∑
f

e−p2⊥/2|q f B| g2|q f B|
2π

p2⊥
p2 T

×
∑
k0

∫
dk3

2π

k0q0 + k3q3 − m2
f

(K 2
�

− m2
f )(Q

2
�
− m2

f )
, (48d)

a = 1

2
Nμν(�g

μν + �s
μν)

= 1

2
Nμν�s

μν = as, where aYM = 0, (48e)

where �
g
μν is the Yang–Mills (YM) contribution from ghost

and gluon loop which remain unaffected in presence of mag-
netic field and can be written as

�g
μν(P) = −Ncg2T 2

3

∫
d�

2π

(
p0 K̂μ K̂ν

K̂ · P − gμ0gν0

)
. (49)

Now, combining Eq. (48b) and the Hard Thermal Loop
(HTL) approximation [51] one can have

bs ≈ −
∑
f

e−p2⊥/2|q f B| g2|q f B|
2π ū2 T

∑
k0

∫
dk3

2π

×
⎡
⎣ 1

(K 2
�

− m2
f )

+
2
(
k2

3 + m2
f

)

(K 2
�

− m2
f )(Q

2
�
− m2

f )

⎤
⎦

=
∑
f

e−p2⊥/2|q f B| g2|q f B|
2π ū2

∫
dk3

2π

×
[
−nF (Ek3)

Ek3

+
{
nF (Ek3)

Ek3

+ p3k3

Ek3

∂nF (Ek3)

∂k3

×
(

p3k3/Ek3

p2
0 − p2

3(k3/Ek3)
2

)}]

=
∑
f

e−p2⊥/2|q f B| g2|q f B|
2π ū2

∫
dk3

2π

p3k3

Ek3

∂nF (Ek3)

∂Ek3

×
(

p3k3/Ek3

p2
0 − p2

3(k3/Ek3)
2

)
. (50)

Using Eqs. (48b), (50) in Eq. (25e) one also can directly
calculate the Debye screening mass in QCD as

(m2
D)s = ū2b

∣∣∣
p0=0, p→0

= m2
D +

∑
f

(δm2
D, f )s

= m2
D −

∑
f

g2|q f B|
2π

∫
dk3

2π

∂nF (Ek3)

∂Ek3

= g2NcT 2

3
+
∑
f

g2|q f B|
2πT

×
∫ ∞

−∞
dk3

2π
nF (Ek3)(1 − nF (Ek3)). (51)

which reduces to the expression of QED Debye mass calcu-
lated in Refs. [52,53] without QCD factors where three dis-
tinct scales (m2

f , T 2 and eB) were clearly evident for massive
quarks.

Now using Eq. (51) in Eq. (50) along with Ek3 ∼ k3, the
form factor b can be expressed in terms of mD as
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b = CAg2T 2

3ū2 [1 − TP (p0, p)]

−
∑
f

e−p2⊥/2|q f B|
(

δmD, f

ū

)2 p2
3

p2
0 − p2

3

. (52)

The form factor d then becomes

d ≈ CAg2T 2

3

1

2

[
p2

0

p2 − P2

p2 TP (p0, p)

]

+
∑
f

e−p2⊥/2|q f B|
(

δmD, f

ū

)2 p2
3

p2
0 − p2

3

. (53)

where the expression for (�
μ
μ)s is given in Eq. (B2) in

Appendix B.
The form factor ds can be calculated as

ds = Qμν�s
μν,

≈ −
∑
f

i e−p2⊥/2|q f B| g2|q f B|
2π

p2⊥
p2

×
∫

d2K�

(2π)2

[ (
k2

0 + k2
3 − m2

f

)

(K 2
�

− m2
f )(Q

2
�
− m2

f )

]
, nn (54)

≈
∑
f

e−p2⊥/2|q f B| δm2
D, f

p2⊥
p2

p2
3

p2
0 − p2

3

(55)

for k3 ∼ Ek3 . Now using (55) in (48d), the form factor d can
be written as

d ≈ CAg2T 2

3

1

2

[
p2

0

p2 − P2

p2 TP (p0, p)

]

+
∑
f

e−p2⊥/2|q f B| δm2
D, f

p2⊥
p2

p2
3

p2
0 − p2

3

, (56)

where p3 = p cos θp and p⊥ = p sin θp as given in Eq. (41).
Also

2a = Nμν�s
μν =

∑
f

i e−p2⊥/2|q f B| g2|q f B|
2π

√
ū2

√
n̄2

×
∫

d2K�

(2π)2

[−2 ū·n
ū2

(
k2

0 + k2
3 + m2

f

)+ 4k0k3

(K 2
�

− m2
f )(Q

2
�
− m2

f )

]

=
∑
f

e−p2⊥/2|q f B| g2|q f B|
2π

√
ū2

√
n̄2

×
∫

dk3

2π

[
−2

ū · n
ū2

∂nF (Ek3)

∂Ek3

p2
3k

2
3/E2

k3(
p2

0 − p2
3k

2
3/E2

k3

)

+2∂nF (Ek3)

∂Ek3

p0 p3k2
3/E2

k3(
p2

0 − p2
3k

2
3/E2

k3

)
]

≈
∑
f

2 e−p2⊥/2|q f B|
√
n̄2

√
ū2

δm2
D, f

p0 p3

p2
0 − p2

3

, (57)

where n̄2 = −p2⊥/p2 = − sin2 θp and ū2 = −p2/P2.
Also in the strong field approximation, |eB| > T 2 >

m2
f , one can neglect the quark mass m f , to get an analytic

expression of Debye mass as

(m2
D)s = g2NcT 2

3

+
∑
f

g2|q f B|
2πT

∫ ∞

−∞
dk3

2π
nF (k3) (1 − nF (k3))

= g2NcT 2

3
+
∑
f

g2|q f B|
4π2

= m2
D +

∑
f

(δm2
D, f )s

= m2
D + (δm2

D)s, (58)

which agrees with that obtained in Ref. [53].

4.1.3 Dispersion

As discussed after Eq. (39), the dispersion relations for gluon
in strong field approximation with LLL read as

P2 − c = 0, (59a)

(P2 − b)(P2 − d) − a2 = (P2 − ω+
n )(P2 − ω−

n ) = 0,

(59b)

with

ωn+ = b + d +
√

(b − d)2 + 4a2

2
, (60a)

ωn− = b + d −
√

(b − d)2 + 4a2

2
, (60b)

where the form factors are given, respectively, in Eqs. (48a),
(52), (56) and (57).

The solutions of above three dispersion relations are
named as c-mode, n+-mode and n−-mode with energies ωc,
ωn+ and ωn− , respectively. The dispersion plot for the three
modes of gluon in strong field approximation is shown in
Fig. 3 for |eB| = 20m2

π , T = 0.2 GeV and for three prop-
agation angles θp = 0, π/4 and π/2. We have used both
magnetic field and temperature dependent coupling constant
[36] for the purpose. As found cs = 0 in Eq. (48a) which
implies that the c-mode is unaffected by the magnetic field
and propagates like HTL transverse mode irrespective of the
propagation angle as shown in Fig. 3. The reason for which
could be understood in the following way: in strong field
approximation there is an effective dimensional reduction
from (3+1) to (1 + 1) dimension in LLL. Fermions at LLL
can move only along the direction of external magnetic field.
The electric field corresponding to the cmode is always trans-
verse to the external magnetic field irrespective of the prop-
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Fig. 3 The plot of dispersion of the three modes (n−, c and n+ modes) of a gauge boson in strong field approximation for propagation angles
θp = 0, π/4 and π/2 at eB = 20m2

π and T = 0.2 GeV. ω = p represents the light cone

agation angle of gluon. Thus, the fermions are not affected
by the gluon excitation [40] and the quark loop contribution
(cs) becomes zero.

Now we note that at θp = 0 the form factor a = 0 as
it is proportional to sin θp cos θp. In this case both n− and
c modes are degenerate as the form factors coincide with
the HTL �T without the quark loop contribution. This is
because quark loop contribution in the form factor d in Eq.
(56) is proportional to sin2 θp cos2 θp. This makes n− and c
mode to coincide with the HTL transverse dispersive mode.
This can be seen from the left panel of Fig. 3. It could also
be understood in the following way: when gluon propagates
along the direction of external magnetic field, i.e., θp = 0, the
two transverse modes become rotationally symmetric about
the external magnetic field and become degenerate which is
shown in the left panel of Fig. 3. The electric fields corre-
sponding to the n− and c modes are perpendicular to the
external magnetic field. Thus two transverse electric fields
can not excite the fermions whose movement are restricted
to the direction of external magnetic field in LLL [40]. This
makes the quark loop contribution zero as noted earlier. In
addition to the two transverse modes n− and c, there is also
a longitudinal excitation n+ at θp = 0. At any intermediate
angle of propagation, e.g, θp = π/4, the degeneracy of the
transverse modes is lifted as shown in the middle panel of
Fig. 3. Here both the transverse and longitudinal modes can
excite the fermions as the corresponding electric fields are
not orthogonal to the external magnetic field. As the prop-
agation angle increases, the pole position corresponding to
the n− mode shifts from transverse channel and approaches
the longitudinal channel [40]. At θp = π/2, the form factor
a in Eq. (57) and the quark contribution of the form factor d
in Eq. (56) also vanish because of their θp dependence. Thus,
the n− mode merges with HTL longitudinal mode whereas
the n+ mode merges with c mode. This is reflected in the
right panel of Fig. 3.

4.2 Gauge boson in weakly magnetized hot medium

4.2.1 One-loop gluon self-energy

The fermion propagator in a weak magnetic field, i.e.,√|eB| < (K ∼ T ) and m f , can be written up to O[(eB)2]
as

i Sw
m (K ) = i

/K + m f

K 2 − m2
f

+i (q f B)

(
γ5 {(K · n)/u − (K · u)/n} + iγ1γ2m f

)

(K 2 − m2
f )

2

+i 2(q f B)2

×
[

{(K · u)/u − (K · n)/n} − /K

(K 2 − m2
f )

3
− k2⊥( /K + m f )

(K 2 − m2
f )

4

]

+O
[
(eB)3

]

= S0 + S1 + S2 + O[(eB)3], (61)

where S0 is the continuum free field propagator in absence of
B whereas S1 and S2 are, respectively,O[(eB)] andO[(eB)2]
correction terms in presence of B. The contribution to the
gluon self-energy due to the quark loop can be written from
the Feynman diagram Fig. 4 as

�w,q
μν (P) =

∑
f

ig2

2

∫
d4K

(2π)4Tr[γμS
w
m (K )γνS

w
m (Q)]. (62)

We have suppressed the color indices here also for conve-
nience. Using Eq. (61) the self-energy in weak field approx-
imation upto an O[(eB)2] and also adding pure YM contri-
bution, total gluon self-energy in weak field approximation
can be decomposed as
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Fig. 4 The order of (eB)2 correction to the gluon polarization tensor
(δ�a

μν) in weak field approximation

Fig. 5 The order of (eB)2 correction to the gluon polarization tensor
(δ�b

μν) in weak field approximation

�w
μν(P) = �g

μν(P) + �0
μν(P)+ δ�a

μν(P)

+2δ�b
μν(P) +O[(eB)3], (63)

where the first term �
g
μν is the YM contribution which is

given in Eq. (49). The last three terms in Eq. (63) appear from
the expansion of quark loop contribution to the gluon self-
energy. The term �0

μν , containing two S0 , is the leading order
perturbative term in absence of B whereas the remaining
two terms are (eB)2 order corrections as shown in Figs. 4
and 5. However, we note that O[(eB)] vanishes according
to Furry’s theorem since the expectation value of any odd
number of electromagnetic currents must vanish due to the
charge conjugation symmetry.

Now the second and third terms in Eq. (63) can be written
as

�0
μν(P) =

∑
f

ig2

2

∫
d4K

(2π)4Tr
[
γμS0(K )γνS0(Q)

]

=
∑
f

ig2

2

∫
d4K

(2π)4

[
8KμKν − 4K 2gμν

]

× 1

(K 2 − m2
f )(Q

2 − m2
f )

, (64)

δ�a
μν(P) =

∑
f

ig2

2

∫
d4K

(2π)4Tr
[
γμS1(K )γνS1(Q)

]
,

=
∑
f

ig2

2
(q f B)2

×
∫

d4K

(2π)4

Uμν

(K 2 − m2
f )

2(Q2 − m2
f )

2
, (65)

where in the numerator we have neglected the mass of the
quark and the external momentum P due to HTL approxi-
mation. The tensor structure of the self-energy correction in
weak field approximation comes out to be

Uμν = 4(K · u)(Q · u)(2nμnν + gμν)

+4(K · n)(Q · n)(2uμuν − gμν)

−4[(K · u)(Q · n) + (K · n)(Q · u)]
×(uμnν + uνnμ) + 4m2

f gμν

+8m2
f (g1μg1ν + g2μg2ν). (66)

The third term in Eq. (63) can be written as

δ�b
μν(P)

=
∑
f

ig2

2

∫
d4K

(2π)4Tr[γμS2(K )γνS0(Q)]

=
∑
f

ig2(q f B)2
∫

d4K

(2π)4

×
[

Xμν

(K 2−m2
f )

3(Q2−m2
f )

− (K 2
�
−m2

f )Wμν

(K 2−m2
f )

4(Q2−m2
f )

]

(67)

where

Xμν = 4[(K · u)(uμQν + uνQμ)

− (K · n)(nμQν + nνQμ)

+ {(K · n)(Q · n) − (K · u)(Q · u) + m2
f }gμν],

(68a)

Wμν = 4(KμQν + QμKμ) − 4(K · Q − m2
f )gμν. (68b)

4.2.2 Computation of form factors and Debye mass of
O
[
(eB)0

]
term

In this subsection, we calculate the O
[
(eB)0

]
terms in the

form factors b, c, d in the weak magnetic field limit which
are denoted by b0, c0, d0, respectively.

The form factor b0 in absence of magnetic field can be
written from Eq. (25e) as
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b0(p0, p) = 1

ū2 [�g
00(P) + �0

00(P)]. (69)

where

�0
00(P) =

∑
f

ig2

2

∫
d4K

(2π)4

[
8k2

0 − 4K 2
]

× 1

(K 2 − m2
f )(Q

2 − m2
f )

. (70)

Using the hard thermal loop (HTL) approximation [38] and
performing the frequency sum, one can write

�0
00(P) = −2g2N f

∫
k2dk

2π2

dnF (k)

dk

×
∫

d�

4π

(
1 − p0

P · K̂
)

, (71)

for m f = 0 .
Now the QCD Debye mass in the absence of the magnetic

field can directly be obtained using Eq. (25e) as

m2
D = �0

00

∣∣∣p0=0
p→0

= ū2b0

∣∣∣p0=0
p→0

= Ncg2T 2

3

−2g2
∫

k2dk

2π2

dnF (k)

dk
= g2T 2

3

(
Nc + N f

2

)
.

(72)

Using Eq. (72) in Eq. (71), we get

�0
00(P) = N f g2T 2

6

∫
d�

4π

(
1 − p0

p0 − p · k̂

)

= N f g2T 2

6

(
1 − p0

2p
log

p0 + p

p0 − p

)
, (73)

where we use p =
√
p2

1 + p2
3 as p lies in xz plane as shown

Fig. 1. The form factor in Eq. (69) becomes

b0(p0, p) = m2
D

ū2

(
1 − p0

2p
log

p0 + p

p0 − p

)
, (74)

which agrees with the HTL longitudinal form factor
�L(p0, p) [38]. Similarly, we will calculate here the coeffi-
cients c0 and d0 explicitly.

c0(p0, p) = Rμν[�g
μν(P) + �0

μν(P)]
= (�g)μμ(P) + (�0)μμ(P)

+ 1

p2⊥
[(p2

0 − p2⊥){�g
00(P) + �0

00(P)}

+ p2{�g
33(P) + �0

33(P)}
−2p0 p3{�g

03(P) + �0
03(P)}], (75)

and

d0(p0, p) = Qμν[�g
μν(P) + �0

μν(P)]

= − p2

p2⊥

[
{�g

33(P) + �0
33(P)}

−2p0 p3

p2 {�g
03(P) + �0

03(P)}

+ p2
0 p

2
3

p4 {�g
00(P) + �0

00(P)}
]
. (76)

Now from Eq. (49), we can write

�
g
00(P) = Nc g2T 2

3

(
1 − p0

2p
log

p0 + p

p0 − p

)
, (77)

�
g
03(P) = Nc g2T 2

3

p0 p3

p2

(
1 − p0

2p
log

p0 + p

p0 − p

)
, (78)

�
g
33(P) = Nc g2T 2

3

3p2
3 − p2

p2

p2
0

2p2

(
1 − p0

2p
log

p0 + p

p0 − p

)

+Nc g2T 2

3

p2
3 − p2

2p2

p0

2p
log

p0 + p

p0 − p
. (79)

We note that 00 component from the quark contribution �0
00

is already calculated in Eq. (73) and one needs to calculate the
remaining two components of �0

μν(P) which are as follows:

�0
03(P) =

∑
f

ig2

2

∫
d4K

(2π)4

8k0k3

K 2Q2

= −N f g2T 2

6

∫
d�

4π

p0k̂3

P · K̂
= N f g2T 2

6

p0 p3

p2

(
1 − p0

2p
log

p0 + p

p0 − p

)
, (80)

and

�0
33(P) =

∑
f

ig2

2

∫
d4K

(2π)4

8k2
3 + 4K 2

(K 2 − m2
f )(Q

2 − m2
f )

= −N f g2T 2

6

∫
d�

4π

p0k̂2
3

P · K̂
= N f g2T 2

6

3p2
3 − p2

p2

p2
0

2p2

(
1 − p0

2p
log

p0 + p

p0 − p

)

+N f g2T 2

6

p2
3 − p2

2p2

p0

2p
log

p0 + p

p0 − p
. (81)

Using the results from Eqs. (73), (77)–(81), c0(p0, p) and
d0(p0, p) become

c0(p0, p) = d0(p0, p)

= m2
D

2p2

[
p2

0 −
(
p2

0 − p2
) p0

2p
log

p0 + p

p0 − p

]
,

(82)

which agrees with the HTL transverse form factor �T (p0, p)
[38].
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This implies that the zero magnetic field contribution of
the fourth form factor a should vanish. Below we obtain the
same from Eqs. (26d) and (64) as,

a0 = 1

2
Nμν

[
�g

μν + �0
μν

]

= 1

2
√
ū2

√
n̄2

[
uμnν + nμuν − 2

ū · n
ū2 ūμūν

]

×
[
�g

μν + �0
μν

]

= 1

2
√
ū2

√
n̄2

[
− 2

ū · n
ū2

[
�

g
00+�0

00

]
+2
[
�

g
03+�0

03

]]

= 0 (83)

4.2.3 Computation of form factors and Debye mass of
O
[
(eB)2

]
terms

In this subsection, we calculate the O
[
(eB)2

]
coefficients of

b, c, d, a which are denoted by b2, c2, d2, a2, respectively.
The form factor b2, i.e., O(eB)2 term of the coefficient b,
has been computed in Eq. (E13) of appendix E1 as

b2 = 1

ū2 [δ�a
00(P)+2δ�b

00(P)]

= δm2
D

ū2 +
∑
f

g2(q f B)2

ū2π2

×
[(

gk + πm f − 4T

32m2
f T

)
(A0 − A2)

+
(
fk + 8T − πm f

128m2
f T

)(
5A0

3
− A2

)]
. (84)

and also the Debye screening mass of O(eB)2 as obtained in
Eq. (E8) of appendix E1 as

δm2
D = −

∑
f

g2

3π2 (q f B)2

⎡
⎣
(

∂

∂(m2
f )

)2

+m2
f

(
∂

∂(m2
f )

)3
⎤
⎦

× m2
f

∞∑
l=1

(−1)l+1
[
K2

(
m f l

T

)
− K0

(
m f l

T

)]

= g2

12π2T 2

∑
f

(q f B)2
∞∑
l=1

(−1)l+1l2K0

(
m f l

T

)
.

(85)

We obtain O(eB)2 term of the coefficient c in Eq. (E15) of
appendix E2 as

c2 = Rμν(δ�a
μν + 2δ�b

μν)

= −
∑
f

4g2(q f B)2

3π2 gk

+
∑
f

g2(q f B)2

2π2

(
gk + πm f − 4T

32m2
f T

)

×
[
−7

3

p2
0

p2⊥
+
(

2 + 3

2

p2
0

p2⊥

)
A0

+
(

3

2
+ 5

2

p2
0

p2⊥
+ 3

2

p2
3

p2⊥

)
A2 − 3p0 p3

p2⊥
A1

−5

2

(
1 − p2

3

p2⊥

)
A4 − 5p0 p3

p2⊥
A3

]
. (86)

We calculate the O(eB)2 term of the coefficient d in
appendix E3 as

d2 = Qμν(δ�a
μν + 2δ�b

μν) = F1 + F2, (87)

where expressions for F1 and F2 can be found in Eqs. (E18)
and (E19), respectively.

The O(eB)2 term of the coefficient a is calculated in
appendix E4 as

a2 = Nμν(δ�a
μν + 2δ�b

μν) = G1 + G2, (88)

where G1 and G2 are given in Eqs. (E21) and (E22) respec-
tively.

4.2.4 Dispersion

In weak field approximation the dispersion relation can now
be written as

P2 − c = P2 − �T − c2 = 0, (89a)

(P2 − b)(P2 − d) − a2

= (P2 − �L − b2)(P
2 − �T − d2) − a2

2

=
⎛
⎝P2 −

b0+b2+d0+d2+
√

(b0+b2−d0−d2)
2+4a2

2

2

⎞
⎠

×
⎛
⎝P2 −

b0+b2+d0+d2−
√

(b0+b2−d0−d2)
2+4a2

2

2

⎞
⎠

= 0 (89b)

which give rise to c, n+ and n− dispersive modes with ener-
gies ωc, ωn+ and ωn− respectively.

In this section, we consider that the magnetic field is the
smallest scale and calculate all the quantities up toO[(eB)2].
Within this approximation, Eq. (89b) can be approximated
as

(P2 − b0 − b2)(P
2 − d0 − d2) = 0, (90)
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Fig. 6 Gluon dispersion curves
for θp = π/3 but with varying
magnetic field strength
eB = m2

π/2, m2
π/10 and m2

π/

800(∼ 0) for N f = 2

as there is no contribution of O[(eB)2] from a2 and it only
starts contributing O[(eB)4] onwards. Thus a2 can safely
be neglected in the weak field approximation. Now one can
write the dispersion relation in weak field approximation as

P2 − b = 0,

P2 − c = 0,

P2 − d = 0, (91)

where the respective dispersive modes are denoted by b-,c-,
d-mode.

We note that the dispersion relations are scaled by plasma
frequency of non-magnetized medium, ωp = mD/

√
3 where

m2
D is given in Eq. (72). As seen that there are three distinct

modes when a gluon propagates in hot magnetized mate-
rial medium. The magnetized plasmon mode with energy
ωb appears due to the form factor b whereas two transverse
modes with energy ωc and ωd are, respectively, due to the
form factors c and d. The presence of magnetic field lifts the
degeneracy of the transverse mode found only in a thermal
medium.

Now, the dispersion curves for gluon are displayed in
Fig. 6 when it propagates at an angle θp = π/3 with the direc-
tion of the magnetic field. We have chosen three different val-

ues of magnetic field |eB| = m2
π/2, m2

π/10 and m2
π/800(∼

0); mπ is the pion mass. For a given magnetic field strength,
say |eB| = m2

π/2, one finds two modes (viz., b and d
mode) with vanishing plasma frequency and one mode (viz.,
c mode) with finite plasma frequency. The zero plasma fre-
quency for b and d modes could be the artefact of the weak
field approximation used in the series expanded version of
the Schwinger propagator, i.e. Eq. (61) where the propagator
is expanded in a series of eB by considering eB as the low-
est scale. This expansion constrains the arbitrariness of the
value of p as it is valid only when p �

√
eB. Hence in the

limit p → 0 with finite value of eB (however small), as p
then becomes the lowest scale and Eq. (61) is not valid. For d
mode with a very small magnetic field, the dispersion curve
for d at p = 0 jumps to zero abruptly. This is because, taking
p → 0 limit before taking eB → 0 again violates the con-
dition p �

√
eB and leaves behind a zero frequency mode.

However, the situation is different while taking eB → 0
limit first though, as in that case considering eB = 0, one
gets back two HTL dispersive modes for gluon propagation.
In Fig. 7 we have also displayed the dispersion of gluon when
it propagates at an angle θp = π/6.
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Fig. 7 Gluon dispersion curves
for θp = π/6 but with varying
magnetic field strength
eB = m2

π/4, m2
π/10 and m2

π/

800(∼ 0) for N f = 2

5 Conclusion

In this article, we have constructed the general structure of
two point functions (self-energy and propagator) of a gauge
boson when it travels through a magnetized thermal medium.
The Lorentz (boost) invariance is broken due to the presence
of heat bath whereas rotational invariance is broken due to
the presence of a background magnetic field. Based on gauge
invariance and symmetry properties of the gauge boson self-
energy, the general Lorentz structure of gauge boson two
point functions is obtained by using four linearly indepen-
dent basis tensors. We used the effective two point functions
to study the dispersion spectra of a gluon in hot magnetized
medium. In strong field approximation, one finds three modes
which in limiting cases (propagation angle π/2) merge with
the thermal modes. On the other hand in weak field approx-
imation one also finds three distinct modes, viz., one mag-
netized plasmon, two transverse mode. The calculation for
photon can trivially be obtained from this calculation. We
further note that the effective propagator obtained here can
conveniently be used to study various quantities in QED and
QCD plasma. We, finally, note that in a following calculation
[36], various thermodynamic quantities are computed using

the general structure of the gauge boson here and fermions
in Ref. [34] of a magnetized hot QCD plasma.
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Appendix A: Notation for frequency sum integral

In imaginary time formalism an integral over loop momen-
tum can be replaced by a frequency sum and an integral over
three momentum as
∫

d4K

(2π)4 ≡
∑∫

K

≡
(
eγE�2

4π

)ε

iT
∑

k0=2nπ iT

×
∫

d3−2εk

(2π)3−2ε
, (A1)

∫
d4K

(2π)4 ≡
∑∫

{K }
≡
(
eγE�2

4π

)ε

iT
∑

k0=(2n+1)π iT

×
∫

d3−2εk

(2π)3−2ε
, (A2)

where the loop integral is over Minkowski momentum K .
Now, the first one is for boson whereas the second one is
for fermion. The integral over spatial momentum, in dimen-
sional regularization, is generalized to d = 3 − 2ε spatial
dimensions and � is an arbitrary momentum scale. The fac-
tor (eγE /4π)ε is introduced so that, after minimal subtraction
of the poles in ε due to ultraviolet divergences, � coincides
with the renormalization scale of the MS renormalization
scheme.

Appendix B: Calculation of
(
�

μ
μ

)s in strong field approx-
imation

Now combining Eqs. (45 ) and (47) and then contracting with
gμν one can obtain (�

μ
μ)s as

(�μ
μ)s = −

∑
f

e−p2⊥/2|q f B| g2|q f B|
2π

T
∑
k0

×
∫

dk3

2π

2m2
f

(K 2
�

− m2
f )(Q

2
�
− m2

f )
. (B1)

We note that the sum integration after Eq. (B1) is infrared
divergent for m f = 0 in the limit k3 → 0. Below we extract
the finite part of it using HTL approximation and the method
used in Ref. [54] as

(�μ
μ)s ≈

∑
f

2m2
f e

−p2⊥/2|q f B| g2|q f B|
2π

∫
dk3

2π

×
[

1

2E2
k3

{
nF (Ek3)

Ek3

+ p3
k3

Ek3

∂nF (Ek3)

∂Ek3

× p3k3/Ek3

p2
0 − p2

3(k3/Ek3)
2

}]

≈
∑
f

2m2
f e

−p2⊥/2|q f B| g2|q f B|
2π

∫
dk3

2π

×
[

− ∂

∂(m2
f )

nF (Ek3)

Ek3

(
1 − p2

0

p2
0 − p2

3

)

+nF (Ek3)

2E3
k3

p2
0

p2
0 − p2

3

]

=
∑
f

2m2
f e

−p2⊥/2|q f B| g2|q f B|
4π2

×
[

− 1

2m2
f

(
p2

3

p2
0 − p2

3

)

+
(

1

2m2
f

− π

8m f T
+ 7ζ(3)

8π2T 2

)
p2

0

p2
0 − p2

3

]
, (B2)

where we have used Eq. (D10) and the following integrals
∫ ∞

−∞
dk3

nF (Ek3)

Ek3

= − log
m f

πT
− γE ,

− ∂

∂(m2
f )

∫ ∞

−∞
dk3

nF (Ek3)

Ek3

= 1

2m2
f

,

∫ ∞

−∞
dk3

nF (Ek3)

2E3
k3

= 1

2m2
f

− π

8m f T

+ 7ζ(3)

8π2T 2 . (B3)

Now, using Eq. (56) we have

d =
∑
f

2m2
f e

−p2⊥/2|q f B| g2|q f B|
4π2

×
[
− 1

2m2
f

(
p2

3

p2
0 − p2

3

)

+
(

1

2m2
f

− π

8m f T
+ 7ζ(3)

8π2T 2

)
p2

0

p2
0 − p2

3

]

+
∑
f

e−p2⊥/2|q f B|
(

δmD, f

ū

)2 p2
3

p2
0 − p2

3

. (B4)

Appendix C: Simplification using HTL approximation

Now, based on HTL approximation we simplify the terms in
Eq. (E1) as

∂

∂
(
m2

f

) 1

(K 2 − m2
f )

2(Q2 − m2
f )

= 2

(K 2 − m2
f )

3(Q2 − m2
f )

+ 1

(K 2 − m2
f )

2(Q2 − m2
f )

2

� 3

(K 2 − m2
f )

3(Q2 − m2
f )

, (C1a)
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∂

∂
(
m2

f

) 1

(K 2 − m2
f )

3(Q2 − m2
f )

= 3

(K 2 − m2
f )

4(Q2 − m2
f )

+ 1

(K 2 − m2
f )

3(Q2 − m2
f )

2

� 4

(K 2 − m2
f )

4(Q2 − m2
f )

, (C1b)

∂

∂
(
m2

f

) 1

(K 2 − m2
f )

n(Q2 − m2
f )

≈ ∂

∂
(
k2
) 1

(K 2 − m2
f )

n(Q2 − m2
f )

= 1

2k

∂

∂k

1

(K 2 − m2
f )

n(Q2 − m2
f )

, (C1c)

∫
d4K

(2π)4

1

(K 2 − m2
f )

2(Q2 − m2
f )

= −2
∫

d4K

(2π)4

k2

(K 2 − m2
f )

3(Q2 − m2
f )

= 16

5

∫
d4K

(2π)4

k4

(K 2 − m2
f )

4(Q2 − m2
f )

, (C1d)

∫
d4K

(2π)4

1

(K 2 − m2
f )

3(Q2 − m2
f )

= −8

3

∫
d4K

(2π)4

k2

(K 2 − m2
f )

4(Q2 − m2
f )

. (C1e)

Appendix D: Frequency sum

i
∫

d4K

(2π)4

1

(K 2 − m2
f )(Q

2 − m2
f )

=
∫

k2 dk

2π2

∫
d�

4π

1

2E2
k

×
[
nF (Ek)

Ek
+ ∂nF (Ek)

∂k

p · k̂
p0 − p · k̂ k/Ek

]

=
∫

k2 dk

2π2

∫
d�

4π

1

2E2
k

×
[
nF (Ek)

Ek
+ ∂nF (Ek)

∂Ek

p · k̂
p0Ek/k − p · k̂

]

≈
∫

k2 dk

2π2

∫
d�

4π

1

2E2
k

×
[
nF (Ek)

Ek
+ ∂nF (Ek)

∂Ek

p · k̂
p0 − p · k̂

]

=
∫

k2 dk

2π2

∫
d�

4π

×
[

1

2E2
k

nF (Ek)

Ek
− 1

2E2
k

∂nF (Ek)

∂Ek

+ 1

2E2
k

∂nF (Ek)

∂Ek

p0

p0 − p · k̂

]

=
∫

k2 dk

2π2

∫
d�

4π

×
[
− ∂

∂
(
E2
k

) nF (Ek)

Ek
+ 1

Ek

∂nF (Ek)

∂
(
E2
k

) p0

P · K̂

]

=
∫

k2 dk

2π2

∫
d�

4π

×
⎡
⎣− ∂

∂
(
m2

f

) nF (Ek)

Ek
+ 1

Ek

∂nF (Ek)

∂
(
m2

f

) p0

P · K̂

⎤
⎦

=
∫

k2 dk

2π2

∫
d�

4π

×
⎡
⎣− ∂

∂
(
m2

f

) nF (Ek)

Ek
+ ∂

∂
(
m2

f

) nF (Ek)

Ek

p0

P · K̂

+nF (Ek)

2E3
k

p0

P · K̂

⎤
⎦

= − ∂

∂
(
m2

f

)
∫

k2 dk

2π2

nF (Ek)

Ek

∫
d�

4π

×
[

1 − p0

P · K̂
]

+
∫

k2dk

2π2

∫
d�

4π

nF (Ek)

2E3
k

p0

P · K̂
(D1)

Let us take m f = yT and k = xT .

∂

∂
(
m2

f

)
∫

k2 dk
nF
(√

k2 + m2
f

)
√
k2 + m2

f

= ∂

∂
(
y2
)
∫

x2 dx
nF
(√

x2 + y2
)

√
x2 + y2

(D2)

The integrals can be represented by the well-known functions
as,

fn+1(y) = 1

�(n + 1)

∫ ∞

0

dx xn√
x2 + y2

nF

(√
x2 + y2

)

(D3)

which satisfy the following recursion relation,

∂ fn+1

∂y2 = − fn−1

2n
(D4)
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In the regime of HTL perturbation theory and weak magnetic
field, one can use high temperature expansion for f1 as,

f1 = −1

2
ln (y/π) − 1

2
γE (D5)

So,
∂

∂
(
m2

f

)
∫

k2 dk

2π2

nF (Ek)

Ek

= 1

8π2

[
ln

m f

πT
+ γE

]
(D6)

×
∞∫

0

dk k2

2π2

nF (Ek)

2E3
k

∫
d�

4π

p0

P · K̂

= − 1

8π2

[
1 + γE − m f π

4T
+ ln

m f

πT

]

×
∫

d�

4π

p0

P · K̂ , (D7)

∫
d4K

(2π)4

1

(K 2 − m2
f )(Q

2 − m2
f )

= − 1

8π2

[
ln

m f

πT
+ γE

] ∫ d�

4π

[
1 − p0

P · K̂
]

− 1

8π2

[
1 + γE − m f π

4T
+ ln

m f

πT

] ∫ d�

4π

p0

P · K̂
= − 1

8π2

[
ln

m f

πT
+ γE

]

+ 1

8π2

[mπ

4T
− 1
] ∫ d�

4π

p0

P · K̂
= 1

8π2

×
[
− ln

m f

πT
− γE +

(m f π

4T
− 1
) ∫ d�

4π

p0

P · K̂
]

.

(D8)

i
∫

d4K

(2π)4

k0kc

(K 2 − m2
f )(Q

2 − m2
f )

= −
∫

k2dk

2π2 kc
∂nF (Ek)

∂(m2
f )

∫
d�

4π

(
1 − p0

P · K̂
)

, (D9)

i
∫

d2K�

(2π)2

1

(K 2
�

− m2
f )(Q

2
�
− m2

f )

=
∫ ∞

−∞
dk3

2π

×
[

∂

∂(m2
f )

nF (Ek3)

Ek3

p2
3

p2
0 − p2

3

+ nF (Ek3)

2E3
k3

p2
0

p2
0 − p2

3

]
,

(D10)

i
∫

d2K�

(2π)2

k0k3

(K 2
�

− m2
f )(Q

2
�
− m2

f )

=
∫ ∞

−∞
dk3

2π

p0 p3k2
3

2E2
k3

∂nF (Ek3)

∂Ek3

1

p2
0 − p2

3k
2
3/E2

k3

. (D11)

Appendix E: Calculation of the form factors in weak field
approximation

1. Calculation of the form factor b2

b2 = 1

ū2 [δ�a
00(P) + 2δ�b

00(P)]

=
∑
f

2ig2(q f B)2

ū2

∫
d4K

(2π)4

×
[ K 2 + (1 + c2)k2 + m2

f

(K 2 − m2
f )

2(Q2 − m2
f )

2

+ 8(K 2 + k2)

(K 2 − m2
f )

3(Q2 − m2
f )

−8(K 2 + k2)(K 2 + (1 − c2)k2 − m2
f )

(K 2 − m2
f )

4(Q2 − m2
f )

]
, (E1)

where we write k3 as ck with c = cos θ . Using Eqs. (C1a),
(C1b), (C1c), and (C1d) obtained in appendix C within HTL
approximation, Eq. (E1) becomes

b2 =
∑
f

2ig2(q f B)2

ū2

×
⎡
⎢⎣
(

∂

∂
(
m2

f

) + m2
f

2

∂2

∂
(
m2

f

)2

)

×
∫

d4K

(2π)4

(1 − c2)

(K 2 − m2
f )(Q

2 − m2
f )

+
⎛
⎜⎝
m2

f

3

∂2

∂
(
m2

f

)2

⎞
⎟⎠

×
∫

d4K

(2π)4

1

(K 2 − m2
f )(Q

2 − m2
f )

⎤
⎥⎦

= 4i(e2B)2

ū2

×
⎡
⎢⎣

⎛
⎜⎝ ∂

∂
(
m2

f

) + 5m2
f

6

∂2

∂
(
m2

f

)2

⎞
⎟⎠

×
∫

d4K

(2π)4

1

(K 2 − m2
f )(Q

2 − m2
f )

−
⎛
⎜⎝ ∂

∂m2
f

+ m2
f

2

∂2

∂
(
m2

f

)2

⎞
⎟⎠
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×
∫

d4K

(2π)4

c2

(K 2 − m2
f )(Q

2 − m2
f )

⎤
⎥⎦ . (E2)

After performing the frequency sum as given in Appendix D,
we obtain

b2 =
∑
f

g2(q f B)2

ū2π2

×
⎡
⎢⎣

⎛
⎜⎝ ∂2

∂
(
m2

f

)2 + 5m2
f

6

∂3

∂
(
m2

f

)3

⎞
⎟⎠

×
∫

k2dk
nF (Ek)

Ek

∫
d�

4π

[
p0

P · K̂ − 1

]

+
⎛
⎜⎝ ∂

∂
(
m2

f

) + 5m2
f

6

∂2

∂
(
m2

f

)2

⎞
⎟⎠

×
∫

k2dk
nF (Ek)

2E3
k

∫
d�

4π

p0

P · K̂

−
⎛
⎜⎝ ∂2

∂
(
m2

f

)2 + m2
f

2

∂3

∂
(
m2

f

)3

⎞
⎟⎠

×
∫

k2dk
nF (Ek)

Ek

∫
d�

4π
c2
[

p0

P · K̂ − 1

]

−
⎛
⎜⎝ ∂

∂
(
m2

f

) + m2
f

2

∂2

∂
(
m2

f

)2

⎞
⎟⎠

∫
k2dk

nF (Ek)

2E3
k

∫
d�

4π
c2 p0

P · K̂

⎤
⎥⎦

= 3

2

δm2
D

ū2

∫
d�

4π
(1 − c2)

[
1 − p0

P · K̂
]

+
∑
f

g2(q f B)2

ū2π2

×

⎧
⎪⎨
⎪⎩

⎛
⎜⎝ ∂

∂
(
m2

f

) + m2
f

∂2

∂
(
m2

f

)2

⎞
⎟⎠

×
∫

k2dk
nF (Ek)

2E3
k

∫
d�

4π
(1 − c2)

p0

P · K̂

+m2
f

2

∂3

∂
(
m2

f

)3

×
∫

k2dk
nF (Ek)

Ek

∫
d�

4π

(
1

3
− c2

)

×
[

1 − p0

P · K̂
]

− m2
f

2

∂2

∂
(
m2

f

)2

×
∫

k2dk
nF (Ek)

2E3
k

∫
d�

4π

(
1

3
− c2

)
p0

P · K̂

⎫
⎪⎬
⎪⎭

, (E3)

where in the second line we have rearranged the terms after
using the expression of δm2

D a obtained following Eq. (25e)
as

δm2
D = ū2b2|p0=0,p→0 =

[
δ�a

00(P)+2δ�b
00(P)

]
p0=0,p→0

= −
∑
f

g2(q f B)2

π2

⎡
⎢⎣2

3

∂2

∂
(
m2

f

)2 + 2

3
m2

f
∂3

∂
(
m2

f

)3

⎤
⎥⎦

×
∫

k2dk
nF (Ek)

Ek

= −
∑
f

2g2

3π2 (q f B)2

⎡
⎢⎣ ∂2

∂
(
m2

f

)2 + m2
f

∂3

∂
(
m2

f

)3

⎤
⎥⎦

×
∫

k2dk
nF (Ek)

Ek
. (E4)

There are two types of integrations that appear in Eqs. (E3)
and (E4), namely,

I1 =
∫

k2dk
nF (Ek)

Ek
, (E5a)

I2 =
∫

k2dk
nF (Ek)

E3
k

. (E5b)

Equation (E5a) can be evaluated in terms of Bessel function
as done in Ref. [52] and can be obtained as

I1 =
∞∑
l=1

(−1)l+1

∞∫

0

k2dk√
k2 + m2

f

e−
(√

k2+m2
f

)
l

T

=
∞∑
l=1

(−1)l+1
m2

f

2

[
K2

(
m f l

T

)
− K0

(
m f l

T

)]
. (E6)

The second integral in Eq. (E5b) can be evaluated using the
procedure described in Ref. [54] and can be obtained at small
quark mass as

I2 = −1

2

[
1 + γE − πm f

4T
+ log

m f

πT

]
. (E7)

Now, using the Eq. (E6), Eq. (E4) can be written as

δm2
D = −

∑
f

g2

3π2 (q f B)2
[

∂2

∂
(
m2

f

)2 + m2
f

∂3

∂
(
m2

f

)3

]

× m2
f

∞∑
l=1

(−1)l+1
[
K2

(
m f l

T

)
− K0

(
m f l

T

)]
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=
∑
f

g2

12π2T 2 (q f B)2
∞∑
l=1

(−1)l+1l2K0

(
m f l

T

)
,

(E8)

which agrees with Ref. [52].
Now, we can calculate all the k-integrations that appear in

Eq. (E3) using the Eqs. (E6) and (E7) as
⎛
⎜⎝ ∂

∂
(
m2

f

) + m2
f

∂2

∂
(
m2

f

)2

⎞
⎟⎠
∫

k2dk
nF (Ek)

2E3
k

= π

64Tm f
,

m2
f

2

∂2

∂
(
m2

f

)2

∫
k2dk

nF (Ek)

2E3
k

= 8T − πm f

128Tm2
f

,

m2
f

2

∂3

∂
(
m2

f

)3

∫
k2dk

nF (Ek)

Ek
= fk

= −
∞∑
l=1

(−1)l+1 l2

16T 2 K2

(
m f l

T

)
,

∂2

∂
(
m2

f

)2

∫
k2 dk

nF
Ek

= gk

=
∞∑
l=1

(−1)l+1 l

4m f T
K1

(
m f l

T

)
. (E9)

Next, we have to evaluate all the angular integrals of Eq.
(E3). The results are given below,
∫

d�

4π
(1 − c2)

[
1 − p0

P · K̂
]

= 2

3
− A0 + A2,

∫
d�

4π
(1 − c2)

p0

P · K̂ = A0 − A2,

∫
d�

4π

(
1

3
− c2

)[
1 − p0

P · K̂
]

= − A0

3
+ A2,

∫
d�

4π

(
1

3
− c2

)
p0

P · K̂ = A0

3
− A2, (E10)

where An is defined as

An =
∫

d�

4π

p0cn

P · K̂ . (E11)

A0 and A2 can now be evaluated as

A0 =
∫

d�

4π

p0

P · K̂ = p0

2p
log

(
p0 + p

p0 − p

)
,

A2 =
∫

d�

4π

c2 p0

P · K̂
= p2

0

2p2

(
1 − 3p2

3

p2

)(
1 − p0

2p
log

p0 + p

p0 − p

)

+1

2

(
1 − p2

3

p2

)
p0

2p
log

p0 + p

p0 − p
. (E12)

Incorporating all these we finally obtain

b2 = δm2
D

ū2 +
∑
f

g2(q f B)2

ū2π2

×
[(

gk + πm f − 4T

32m2
f T

)
(A0 − A2)

+
(
fk + 8T − πm f

128m2
f T

)(
5A0

3
− A2

)]
. (E13)

2. Calculation of the form factor c2

In this appendix we calculate the O(eB)2 term of the coeffi-
cient c as

c2 = Rμν(δ�a
μν + 2δ�b

μν)

=
∑
f

ig2(q f B)2

2

∫
d4K

(2π)4

×
[

4k2
0 − 4k2

3 − 4m2
f

(K 2 − m2
f )

2(Q2 − m2
f )

2
+

4(4k2
3 − 4k2

0 + 4m2
f )

(K 2 − m2
f )

3(Q2 − m2
f )

−
4(k2

0 − k2
3 − m2

f )(8k
2⊥ − 4K 2 + 4m2

f + 8(k · p)2⊥/p2⊥
(K 2 − m2

f )
4(Q2 − m2

f )

]

=
∑
f

2ig2(q f B)2
∫

d4K

(2π)4

×
[

1

(K 2 − m2
f )

2(Q2 − m2
f )

− k2(1 − cos2 θ) cos2 φ

(K 2 − m2
f )

3(Q2 − m2
f )

−7k2(1 − cos2 θ)(1 + cos2 φ)

(K 2 − m2
f )

3(Q2 − m2
f )

− 8k4 sin4 θ(1 + cos2 φ)

(K 2 − m2
f )

4(Q2 − m2
f )

]
. (E14)

Now, applying HTL approximations, Eq. (E14) can be sim-
plified as

c2 =
∑
f

2ig2(q f B)2
∫

d4K

(2π)4

×
[

1

2
+ 1

4
(1 − cos2 θ) cos2 φ + 7

4
sin2 θ(1 + cos2 φ)

−5

4
sin4 θ(1 + cos2 φ)

]

× ∂

∂(m2
f )

1

(K 2 − m2
f )(Q

2 − m2
f )

=
∑
f

2ig2(q f B)2
∫

d4K

(2π)4

×
[

1

2
+ 2 sin2 θ cos2 φ + 7

4
sin2 θ
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−5

4
sin4 θ(1 + cos2 φ)

]

× ∂

∂(m2
f )

1

(K 2 − m2
f )(Q

2 − m2
f )

= −
∑
f

4g2(q f B)2

3π2 gk

+g2(q f B)2

2π2

(
gk + πm f − 4T

32m2
f T

)

×
[
−7

3

p2
0

p2⊥
+
(

2 + 3

2

p2
0

p2⊥

)
A0

+
(

3

2
+ 5

2

p2
0

p2⊥
+ 3

2

p2
3

p2⊥

)
A2 − 3p0 p3

p2⊥
A1

−5

2

(
1 − p2

3

p2⊥

)
A4 − 5p0 p3

p2⊥
A3

]
. (E15)

where gk is given in Eq. (E9) and A1, A3 and A4 are obtained
using Eq. (E11) as

A1 =
∫

d�

4π

cp0

P · K̂ = − p0 p3

p2

[
1 − p0

2p
log

(
p0 + p

p0 − p

)]
,

A3 =
∫

d�

4π

c3 p0

P · K̂ = p0

2p

p3

p

(
1 − 5

3

p2
3

p2

)

−3

2

p0

p

p3

p

(
1 − p2

0

p2 − p2
3

p2 + 5

3

p2
0

p2

p2
3

p2

)

×
(

1 − p0

2p
log

p0 + p

p0 − p

)
,

A4 =
∫

d�

4π

c4 p0

P · K̂

= 3

8

(
1 − p2

3

p2

)2

− p2
0

8p2

(
1 − 5p2

3

p2

)2

+ 5

3

p2
0

p2

p4
3

p4

−3

8

⎧
⎨
⎩

(
1 − p2

0

p2

)2

− 2p2
3

p2

(
1 − 3p2

0

p2

)2

+ p4
3

p4

(
1 − 5p2

0

p2

)2

+ 8p4
0

p4

p2
3

p2

(
1 − 5p2

3

3p2

)⎫⎬
⎭

×
(

1 − p0

2p
log

p0 + p

p0 − p

)
. (E16)

3. Calculation of the form factor d2

In this appendix we compute the form factor d2 as

d2 = Qμν(δ�a
μν + 2δ�b

μν)

= −
∑
f

2ig(q f B)2 p2

p2⊥

∫
d4K

(2π)4

×
⎡
⎢⎣
k2

0 + k2
3 − m2

f − 4p0 p3
p2 k0k3 + p2

0 p
2
3

p4 (k2
0 + k2

3 + m2
f )

(K 2 − m2
f )

2(Q2 − m2
f )

2

+4

⎛
⎜⎝
k2

3 + k2
0 − m2

f − 4p0 p3

p2 k0k3 + p2
0 p

2
3

p4 (k2
0 + k2

3 + m2
f )

(K 2 − m2
f )

3(Q2 − m2
f )

−
(k2

0 − k2
3 −m2

f )(2k
2
3 +K 2−m2

f − 4p0 p3

p2 k0k3+ p2
0 p

2
3

p4 (2k2
0 −K 2+m2

f ))

(K 2−m2
f )

4(Q2−m2
f )

⎞
⎟⎠

⎤
⎥⎦

=
∑
f

2g2(q f B)2 p2

p2⊥

∫
k2dk

2π2

×
⎡
⎢⎣
{

1

4
−
(

3

2
+ p2

0 p
2
3

p4

)
c2 + 5

4
c4

}

∂

∂
(
m2

f

) + m2
f
p2

0 p
2
3

2p4 (5 − c2)
∂2

∂
(
m2

f

)2

⎤
⎥⎦

×
⎧
⎨
⎩

∂

∂
(
m2

f

) nF
Ek

(
1 − p0

P · K
)

− nF
2E3

k

p0

P · K

⎫
⎬
⎭

−
∑
f

ig2(q f B)2 p0 p3

3p2⊥

∫
d4K

(2π)4

×
⎡
⎢⎣− ∂2

∂
(
m2

f

)2 + k2(1 − c2)
∂3

∂
(
m2

f

)3

⎤
⎥⎦ k0kc

(K 2 − m2
f )(Q

2 − m2
f )

= F1 + F2, (E17)

where

F1 = −
∑
f

g2(q f B)2 p2

π2 p2⊥

×
[
−gk

{
− p2

0 p
2
3

3p4 − A0

4
+
(

3

2
+ p2

0 p
2
3

p4

)
A2− 5

4
A4

}

+
(

π

32m f T
− 1

8m2
f

)

×
{
A0

4
−
(

3

2
+ p2

0 p
2
3

p4

)
A2 + 5

4
A4

}

− fk
p2

0 p
2
3

p4

(
14

3
− 5A0 + A2

)

+ p2
0 p

2
3

p4

8T − πm f

128Tm2
f

(5A0 − A2)

]
, (E18)

F2 = −
∑
f

2ig2(q f B)2 p2

p2⊥

2

3

p0 p3

p2

×
∫

d4K

(2π)4

⎛
⎜⎝− ∂2

∂
(
m2

f

)2 + k2
(

1 − c2
) ∂3

∂
(
m2

f

)3

⎞
⎟⎠

× k0kc

(K 2 − m2
f )(Q

2 − m2
f )
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= −
∑
f

g2(q f B)2

6π2m f T

p0 p3

p2⊥

1

1 + cosh
m f
T

×
(

3A1

2
− A3

)
. (E19)

4. Calculation of the form factor a2

2a2 = Nμν(δ�a
μν + 2δ�b

μν)

=
∑
f

ig2(q f B)2

2

×
∫

d4K

(2π)4

NμνUμν

(K 2 − m2
f )

2(Q2 − m2
f )

2
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∫

d4K

(2π)4

×
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f )

]

=
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f
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√
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√
n̄2
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∂
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− 1

6
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√
ū2

√
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×
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1
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2
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3

∂3
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]
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f )

=
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√
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√
n̄2
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k2dk

2π2

∫
d�
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p0 p3
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×
[
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∂
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− 1
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(5 − 3c2)m2

f
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2

]

×
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(
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(
1 − p0

P · K̂
)

= G1 + G2, (E20)

where

G1 =
∑
f

4g2(q f B)2
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}
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ū2

√
n̄2
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{(
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(

2
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f
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3
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∂(m2
f )

2

}
nF
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√
ū2
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. (E21)

G2 = −
∑
f

8g2(q f B)2

√
ū2

√
n̄2

∫
k2dk

2π2

∫
d�

4π

×
[
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6

∂2

∂(m2
f )

2
− k3(c − c3)

3

∂3

∂(m2
f )

3

]

×∂nF (Ek)
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(
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=
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√
ū2

√
n̄26π2m f T
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)

×
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. (E22)
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