
Eur. Phys. J. C (2019) 79:656
https://doi.org/10.1140/epjc/s10052-019-7149-x

Regular Article - Theoretical Physics

Ghosts in metric-affine higher order curvature gravity

Jose Beltrán Jiménez1,a, Adria Delhom2,b

1 Departamento de Física Fundamental and IUFFyM, Universidad de Salamanca, 37008 Salamanca, Spain
2 Departament de Física Teòrica and IFIC, Centro Mixto Universitat de València - CSIC., Universitat de València, Burjassot 46100, València, Spain

Received: 15 April 2019 / Accepted: 16 July 2019 / Published online: 7 August 2019
© The Author(s) 2019

Abstract We disprove the widespread belief that higher
order curvature theories of gravity in the metric-affine for-
malism are generally ghost-free. This is clarified by consid-
ering a sub-class of theories constructed only with the Ricci
tensor and showing that the non-projectively invariant sector
propagates ghost-like degrees of freedom. We also explain
how these pathologies can be avoided either by imposing a
projective symmetry or additional constraints in the grav-
ity sector. Our results put forward that higher order cur-
vature gravity theories generally remain pathological in the
metric-affine (and hybrid) formalisms and highlight the key
importance of the projective symmetry and/or additional con-
straints for their physical viability and, by extension, of gen-
eral metric-affine theories.

1 Introduction

Higher order curvature theories of gravity in the metric for-
malism exhibit pathologies caused by the higher order nature
of their field equations, thus introducing Ostrogradski ghosts
[1,2]. This general statement is true for arbitrary higher order
curvature gravity, but there are special theories that bypass
the presence of these instabilities. On one hand, Lovelock
theories are built out of non-linear combinations of the cur-
vature with a special structure that guarantees having second
order field equations. On the other hand, f (R) theories do
give rise to fourth order field equations, but the Ostrogradski
instability is avoided because the corresponding Hessian is
degenerate. It is much more illuminating to analyse these the-
ories in the Einstein frame where the healthy additional scalar
field is apparent. The same happens for the functional exten-
sions of the Gauss-Bonnet f (G): No Ostrogradski instabil-
ities are present there, although now a bit less trivially and
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the additional scalar field has Horndeski-type of interactions
(see e.g. [3]).

It is broadly believed that the metric-affine formalism (also
referred to as first-order or Palatini) avoids the pathologies
associated to higher order curvature theories. The generally
invoked reason is that the independence between the metric
and the affine connection leads to second order field equa-
tions, so that one could naively expect to avoid Ostrogradski
instabilities. The aim of this Letter is to clarify the incorrect-
ness of this argument and to demonstrate the persistence of
ghosts even in the metric-affine formalism and that care must
be taken for higher order curvature theories regardless the
employed formalism. Let us emphasise that, very much like
having higher order field equations do not necessarily mean
the presence of Ostrogradski instabilities as in the examples
mentioned above, having second order field equations does
not guarantee their absence. This is clear by noticing that any
higher order theory can be recast in a second order form by
introducing appropriate auxiliary fields.

As a simplified proxy for higher order curvature gravity,
we will consider actions depending only on the Ricci tensor,
thus called Ricci-Based Gravity (RBG) theories. The moti-
vation for this restriction is twofold: Firstly, the presence of
ghosts can be readily shown, thus proving that higher order
curvature theories are generically prone to instabilities. Sec-
ondly, these theories have received considerable attention,
with some prevailing examples like the Eddington-inspired-
Born-Infeld theory [4], with its numerous extensions [5–7]
(see also [8]) and the Ricci-square theories [9–15]. Although
sometimes not explicitly stated, most of the literature on RBG
further assumes projective symmetry in the gravity sector by
imposing that only the symmetric part of the Ricci tensor
contributes to the action. It is well-understood that these sym-
metric RBG theories do not propagate additional degrees of
freedom (dof’s) associated to the connection, and this fact
can be traced back to the action having a projective symme-
try. As a matter of fact, these theories are arguably nothing
but General Relativity (GR) in disguise, since they admit an
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Einstein frame. This frame is achieved after integrating out
the non-dynamical connection, whose effect is then to gener-
ate new interactions in the matter sector (see [8,16]). These
matter interactions have in turn been used to place stringent
constraints to symmetric RBG theories [17,18].

In this Letter we clarify what happens when the projec-
tive symmetry is explicitly broken. We show how these the-
ories relate to the so-called Non-symmetric Gravity Theo-
ries (NGT) introduced by Moffat1 [19] where the metric car-
ries an antisymmetric part. These NGTs have been shown to
exhibit certain pathologies [23–25] that are then inherited by
the general RBG. Moreover, we analyse in a more illuminat-
ing and manifest manner the presence of ghosts and Ostro-
gradski instabilities in RBG, what possess a serious draw-
back and signals the importance of the projective symmetry
as a guide in the search for physically acceptable theories
within a metric-affine approach. After properly identifying
the ghosts in RBG, we show that constraining the connection
to be torsion-free restores stability, with one extra massive
vector field. Finally, we briefly discuss how the pathologies
also transcend to the hybrid framework, thus showing the
generic pathological nature of higher order curvature theo-
ries in any formalism, unless additional symmetries and/or
restrictions are incorporated.

2 Ricci-based metric-affine theories

The RBG theories are described by

S[gμν, �] = 1

2

∫
d4x

√−g F
(
gμν,Rμν(�)

)
+Sm[gμν,�], (1)

where F is any analytic scalar function depending on the
inverse metric gμν and the Ricci tensor Rμν of the connec-
tion �α

μβ . The matter sector is assumed to be a collection of
minimally coupled fields represented by �. Unlike previous
studies where only the symmetric part of the Ricci tensor
was considered [4–7,9–15], we allow for its antisymmetric
component as well, which explicitly breaks the projective
symmetry.2 An important result of this Letter is that there
are good reasons to respect projective symmetry and only
include the symmetric part of the Ricci because those theo-
ries do not exhibit additional dof’s, while an explicit breaking
of projective symmetry by including the antisymmetric part
leads to new pathologies associated to the connection.

1 Einstein had already considered non-symmetric metrics in an attempt
to unify gravity and electromagnetism [20–22].
2 Under a projective transformation δζ �α

μβ = ζμδα
β , the Riemann ten-

sor changes as δζRα
βμν = 2δα

β∂[μζν] so that R(μν) remains invariant
but Rμν does not. The projective symmetry of RBG actions is therefore
ensured by not including R[μν].

The metric and connection field equations are

∂ F

∂gμν
− 1

2
Fgμν = Tμν, (2)

∇λ

[√−qqμν
] − δ

μ
λ ∇ρ

[√−qqρν
]

= √−q
[
T μ

λαqαν + T α
αλqμν − δ

μ
λ T

α
αβqβν

]
, (3)

where Tμν = − 2√−g
δSm
δgμν

is the usual stress-energy ten-

sor, T α
μν = 2�α [μν] is the torsion and we have defined√−qqμν ≡ √−g ∂ F

∂Rνμ
. Since we are assuming that mat-

ter fields do not couple to the connection, the corresponding
hypermomentum sourcing the connection equation vanishes.
Including a non-vanishing hypermomentum will not change
our conclusions so we will not consider it here for simplic-
ity.3 Although we could work directly with Eqs. (2) and (3)
in order to understand the number and properties of the dof’s,
we will do it in a much more transparent manner by going to
an Einstein-like frame.

3 Non-symmetric gravity frame

In this section we will show the relation of (1) with the NGT
[19]. We start by performing a Legendre transformation of
the action (1) as follows

S = 1

2

∫
d4x

√−g

[
F(�μν) + ∂ F

∂�μν

(
Rμν − �μν

)]
(4)

where �μν is an auxiliary field whose equations of motion
Rμν = �μν can be used to show that (1) and (4) are on-shell
equivalent. We can now perform the field redefinition

√−qqμν = √−g
∂ F

∂�μν

(5)

that gives �μν = �μν(q̂, ĝ), and allows us to express the
action as

S = 1

2

∫
d4x

[√−qqμνRμν(�) + U(q̂, ĝ)
]

+Sm[gμν,�], (6)

where we have defined the potential

U(q̂, ĝ) = √−g

[
F − ∂ F

∂�μν

�μν

]
�=�(q̂,ĝ)

. (7)

3 Including non-minimal couplings in the Ricci-Based theories can be
straightforwardly implemented by adding a dependence on Rμν in the
matter sector. It is easy to see that the only differences will be that Eq.
(5) will depend on the matter fields and U in (8) will exhibit a more
general dependence on the matter fields. A detailed development for
the projective invariant case can be found in [16].
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We notice now that the metric gμν enters as an auxiliary
field for minimally coupled matter fields. The field equations
∂U

∂gμν = √−gTμν can then be algebraically solved to obtain
gμν in terms of qμν and the matter energy-momentum tensor
Tμν . This solution can be used to integrate gμν out in (6) to
obtain

S = 1

2

∫
d4x

[√−qqμνRμν(�)

+U(q̂, T̂ )
]

+ Sm[ĝ(q̂, T̂ ),�]. (8)

It is worth making some comments before proceeding in
order to appreciate the crucial differences between the pro-
jective and non-projective invariant theories. In theories with
projective symmetry, the metric qμν is symmetric and the
q - sector exactly reproduces the first order formulation of
GR. Hence, the connection is given by the Levi–Civita con-
nection of qμν , while the matter sector receives new inter-
actions as a consequence of integrating out the space-time
metric gμν . The importance of enjoying the projective sym-
metry lies in that it ensures no new propagating dof’s asso-
ciated to the gravitational sector, and forces the connec-
tion to be an auxiliary field that acts as a classical source,
generating new matter interactions after being integrated
out. We have thus the Einstein frame of these projectively
invariant theories (see e.g. [8,16] for a more detailed expla-
nation and also [26] where it was already recognised the
appearance of new matter interactions within metric-affine
gravities).

The explicit breaking of projective symmetry crucially
changes the situation since it translates into the propagation
of new dof’s that, generally, render the theories unstable. Let
us illustrate this by considering vacuum configurations, so
the action is given by

S = 1

2

∫
d4x

[√−q M2
Plq

μνRμν(�) + U(q̂)
]
, (9)

where we have restored the Planck mass MPl for convenience.
It is then apparent that the vacuum version of these theories
reproduces the NGT [19] with a potential U . Former analysis
of NGT theories showed that the antisymmetric part of the
metric carries a pathological 2-form field that jeopardises
their physical viability [23,24]. The instabilities can be seen
by considering the antisymmetric sector perturbatively up to

quadratic order so that qμν = q̄μν +
√

2
MPl

(Bμν +αBμα Bα
ν +

βB2q̄μν), with q̄μν an arbitrary symmetric metric, Bμν a 2-
form field that encodes q[μν], and where the parameters α

and β reflect the possibility of field redefinitions at quadratic
order. When expanding around such a background at second
order in Bμν we have [24]:

S(2) =
∫

d4x
√−q̄

[
1

2
M2

Pl R(q̄) − 1

12
H2 − 1

4
m2 B2

−
√

2MPl

3
Bμν∂[μ�ν] + 1

4

(
1 − 2α + 4β

)
R(q̄)B2

+ αRμν(q̄)Bμα Bν
α − Rμναβ(q̄)Bμα Bνβ

]
(10)

where H2 is the usual 2-form field kinetic term, m2 the mass
generated by U , and �μ is the projective mode of the connec-
tion. It has been argued that the mass can cure some patholo-
gies associated to the curvature couplings in NGT [24], but
some instabilities persist [25].

In order to show the ghostly nature of the projective mode,
we will first consider a maximally symmetric background
with Rμναβ(q̄) = 
(q̄μα q̄νβ − q̄μβ q̄να) and a frozen q̄μν

so the non-minimal couplings simply amount to a change in
the mass m2 → m̃2(
). Around a flat background, 
 = 0,
the mass remains m2. Then, we can diagonalise the action

with the field redefinition Bμν = B̃μν − 2
√

2MPl
3m̃2 ∂[μ�ν]. Since

this redefinition has the form of a gauge transformation, the
kinetic term of the 2-form remains unaffected and the action
reads

S(2)
flat =

∫
d4x

√−q̄

(
− 1

12
H2− 1

4
m̃2 B̃2+ 1

4
∂[μ�̃ν]∂ [μ�̃ν]

)

(11)

where we have introduced the canonically normalised field

�̃μ = 2
√

2MPl
3m̃ �μ. The wrong sign for the kinetic term of

the projective mode clearly shows the presence of a massless
spin-1 ghost in the projective sector that signals the presence
of a fatal instability.

After showing how the projective mode propagates a ghost
around maximally symmetric and fixed backgrounds, let
us show how the couplings to the curvature when q̄μν is
unleashed in (10) present additional pathologies, which have
also been discussed for NGT in [24]. The nature of these
pathologies can be interpreted as Ostrogradski instabilities
[2] associated to having higher order equations of motion.4

One way of understanding the instabilities is by noticing
that, after diagonalising, the field strength of the projective
mode will couple to the curvature. An alternative procedure is
recalling that a massive 2-form field can be dualised to a mas-
sive vector field in 4 dimensions. The dualisation is such that
the field strength of the 2-form is dualised to a vector field as
Hαβγ = 1

6εαβγμ Aμ, while the 2-form field becomes the dual
of the field strength Fαβ = 2∂[α Aβ], i.e., Bμν = 1

2εμναβ Fαβ .
Thus, the couplings to the curvature of the 2-form will give
rise to non-minimal interactions for the vector field with the

4 The Ostrogradski instabilities have not been properly identified within
NGT and represent yet another problem for NGT besides the patholog-
ical asymptotic behaviour diagnosed in [24].
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schematic form ∼ RF F in the dual representation.5 Either
way, we see the appearance of couplings between curvature
and field strengths. Unless these couplings precisely corre-
spond to the Horndeski vector-tensor interactions [27], it is
well-known that they lead to higher order field equations and,
consequently, prone to Ostrogradski instabilities. It is inter-
esting to note that one can in fact reach the healthy Horndeski
interaction by means of a field redefinition at quadratic order
(with an appropriate choice of α and β). However, even in
this case, pathologies around important cosmological and
astrophysical backgrounds arise [28]. Furthermore, the non-
existence of healthy higher dimension operators involving
curvatures and Fμν in 4 space-time dimensions [27,29] sig-
nals that higher order terms in Bμν will reintroduce the Ostro-
gradski instabilities. Let us note that, while the ghost around
maximally symmetric backgrounds can be easily cured by
adding �μν�

μν (permitted if we allow for a more general
framework beyond RBG), the ghosts associated to the non-
minimal couplings are more difficult to evade, if possible at
all.

Our discussion clearly shows the presence of five propa-
gating fields contained in the connection (the three dof’s of
the massive 2-form plus the two polarisations of the projec-
tive mode), in sharp contrast to the projectively invariant case
where there are no new propagating modes. It is precisely
these fields, arising from the explicit breaking of projective
symmetry, that root the pathologies present in general RBG
theories. Notice that the higher order nature of the equations
makes the 2-form field propagate more than the expected
three modes and these additional modes are in turn carry the
Ostrogradski instability.

Finally, let us emphasise that these instabilities arise
already in the gravitational sector without including matter.
However, as explained above, new interactions in the mat-
ter sector will be generated after integrating out gμν , and in
particular, matter couplings to Bμν that could introduce yet
additional pathologies. Similarly, had we considered direct
couplings of the connection to matter, the same conclusion
would be reached for vacuum configurations [30].

4 Exorcising the ghosts: Torsion-free theories

So far we have seen how the projective symmetry is of
paramount importance to avoid ghost-like instabilities in
RBG. We will show now how to avoid such instabilities
without imposing projective symmetry, but rather constrain-
ing the theory to be torsion-free. This can be easily imple-

5 The same conclusion is reached by introducing Stueckelberg fields
bμ and taking the appropriate decoupling limit. Then, the Stueckelberg
fields feature analogous non-minimal couplings for their field strength
[30], giving a third view on the problem.

mented by adding suitable Lagrange multiplier fields enforc-
ing T α

μν = 0 so the connection field equations are

∇λ

[√−g f (μν)
]

− ∇ρ

[√−g f ρ(μ
]
δ
ν)
λ = 0, (12)

where we have introduced f μν ≡ ∂ f/∂Rμν . Let us decom-
pose it as

√−g f μν = √−hhμν + √−h Bμν with hμν ≡
f (μν) and Bμν ≡ f [μν] the symmetric and antisymmetric
parts respectively. Since the torsion is constrained to vanish,
we can conveniently decompose the connection in terms of
the Levi–Civita of hμν and a disformation part Lα

μν as

�α
μν = �̄α

μν(h) + Lα
μν. (13)

Using this decomposition in the connection Eq. (12), its trace
and its contraction with hμν , defined as the inverse of hμν ,
lead to

∇̄λBλν = 1 − D

1 + D
L̃ν, (14)

Lμ = 2

(2 − D)(1 + D)
L̃αhαμ, (15)

where Lμ ≡ Lα
μα and L̃ν ≡ Lν

αβhαβ are the two traces of
the disformation tensor, which are in turn dynamically related
by (15). Equation (14) however implies the transversality
constraint

∇̄ν L̃ν = 0. (16)

When inserting the above relations into the connection Eq.
(12), we arrive at

2hα(μLν)
λα = Lλhμν + (2 − D)Lαhα(μδν)

λ. (17)

We need to recall now the definition of the non-metricity
tensor Qλ

μν ≡ −∇λhμν = −2hα(μLν)
λα which also gives

the relation Lμ = − 1
2 hαβ Qμ

αβ ≡ − 1
2 Q̃μ. These relations

allow us to express (17) as

Qλ
μν = 1

2

[
Q̃λhμν + (2 − D)Q̃αhα(μδ

ν)
λ

]
. (18)

We have then solved for the full connection as the Levi–
Civita of hμν plus a disformation part determined by the
above non-metricity tensor. We see that the non-metricity is
fully determined by its trace so that there is only one addi-
tional vector field associated to the connection. Furthermore,
from the constraint (16) we conclude that this vector field
propagates 3 degrees of freedom, corresponding to a Proca
field. The resolution of the problem will then be completed
by considering the Einstein equations, which allow to alge-
braically solve for hμν in terms of the matter fields (possibly
including the vector Q̃μ). A particular case was considered
in [31,32] for f ∝ R + c1R[μν]R[μν], where it was shown
that this action exactly reproduces the Proca Lagrangian for
the connection sector. In the more general case under con-
sideration here, there will be more involved interactions for
the Proca field, as it was also found in [33].
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We can gain some clearer intuition by reformulating these
theories in the Einstein frame. For that, let us rewrite our
original action as follows:

S =1

2

∫
dDx

√−g
[

f (�, A) + ∂ f

∂�μν

(
R(μν) − �μν

)

+ ∂ f

∂ Aμν

(
R[μν] − Aμν

) + 1√−g
λα

μνT α
μν

]
(19)

where �μν and Aμν are two symmetric and antisymmetric
auxiliary fields respectively and λα

μν is a Lagrange multi-
plier field enforcing T α

μν = 0. We can again perform field
redefinitions analogous to those in Sect. 3, and integrate out
the space-time metric gμν . After doing that, (19) becomes

S =1

2

∫
dDx

[√−hhμνR(μν) + √−h BμνR[μν]

+ √−hU(h, B, T ) + λα
μνT α

μν

]
. (20)

The connection equations for this action are formally the
same as (12), so we can simply take the solution for the
connection, essentially the splitting (13) with the solution
(18), and insert it into the action. Since the solution for the
connection satisfies

R(μν) = Rμν(h) + (D − 2)(D − 1)

16
Q̃μ Q̃ν

− (D − 1)

4
hμν∇̄α Q̃α (21)

R[μν] = −1

2
∂[μ Q̃ν], (22)

our final action can be expressed as

S = 1

2

∫
dDx

√−h
[

R(h) + (D − 2)(D − 1)

16
Q̃2

− 1

2
Bμν∂[μ Q̃ν] + U(h, B, T )

]
,

(23)

where we have dropped the boundary term ∇̄μ Q̃μ. Notice
that this form of the action reproduces (14) as

∇̄μ Bμν = − (D − 2)(D − 1)

4
Q̃ν, (24)

which recuperates the constraint ∇̄α Q̃α = 0. On the other
hand, the equation for Bμν yields

∂[μ Q̃ν] = 2
∂U

∂ Bμν
(25)

which gives the (non-linear) relation between the field
strength of Q̃μ and the 2-form Bμν , also involving the mat-
ter fields. This is a reflection of the fact that our final action
(23) is the first order form of a massive vector field with self-
interactions and couplings to the matter fields. We can easily

reproduce the result in [31,32] for f ∝ R + c1R[μν]R[μν].
In that case, the metric hμν is directly gμν , while the effective
potential reduces to U ∝ B2 so that (23) exactly reproduces
the first order form of a free Proca field Q̃μ. The same result
was found in [33] for theories built with the Ricci-squared
scalar, and we have reached here the same conclusion for a
general RBG with vanishing torsion in a more explicit form.

5 Hybrid theories

In order to give a more complete discussion of RBG, we will
finally consider them within the hybrid framework [34,35],
described by the action

Shybrid =
∫

dDx
√−g f (Rμν, Rμν) (26)

where Rμν = Rμν(�) and Rμν = Rμν(g) are the Ricci
tensors of the affine connection and the Levi–Civita con-
nection of gμν respectively. The general pathologies exhib-
ited by these theories can be straightforwardly identified by
going to their bimetric formulation (see [36] for a discus-
sion on pathologies of hybrid theories). Having a non-linear
dependence with Rμν(g) already introduces ghosts, so we
will restrict the metric sector to the Einstein–Hilbert term
and will focus on actions of the form

Shybrid =
∫

dDx
√−g

[
1

2
R(g) + f (Rμν)

]
(27)

that will suffice to illustrate the problems with these theories.
We can then follow the same procedure as above for the affine
sector by writing the hybrid action in the bimetric form

Shybrid =
∫

dD x

[√−g

2
R(g)+

√−q

2
qμνRμν(�)+U(q, g)

]
,

(28)

which resembles (6), but it presents some crucial differences
that make it even more pathological. If we take the decoupling
limit of the g-sector (technically by sending the correspond-
ing Planck mass to infinity), we would still have the NGT
sector with the same problems. However, the hybrid theories
are generally pathological even if the projective symmetry is
imposed on the affine sector so that qμν is a symmetric metric.
In that case, the action (28) describes a bimetric theory with
an interaction potential given by U(g, q) (see also [8]). As
it is well-known, only a very specific tuning of the potential
allows to remove the Boulware–Deser ghost [37] of these the-
ories [38–40] and, consequently, Ricci-based hybrid theories
are even more prone to instabilities than their metric-affine
formulation. The bi-metric construction fails for theories of
the type f (R,R) so our conclusion does not apply to them
(see however [36] for pathologies of those theories as well).
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6 Discussion

We have shown that general RBG theories suffer from ghost-
like instabilities in the additional dof’s associated to the
connection and which arise from the explicit breaking of
projective symmetry. Having the projective symmetry then
proves to be crucial for the viability of RBG, in which case
the theories reduce to GR with some new matter interac-
tions. Additionally, we have shown that the projective sym-
metry is not required if the connection is constrained to
be torsion-free and the theory then contains one additional
massive vector field. We have extended our discussion to
the hybrid framework where, even with a projective sym-
metry, the theories typically propagate a Boulware–Deser
ghost.

It is worth emphasising that, although we have only con-
sidered RBGs, our results extend to general metric-affine
theories, since including more geometrical objects in the
action will typically introduce even more potentially unsta-
ble propagating modes. Let us stress however that there
will be non-pathological higher order curvature theories,
like e.g. theories for which the metric and metric-affine for-
malisms are equivalent [41,42], but the results presented in
this Letter clarify that resorting to the metric-affine formal-
ism for higher order curvature theories does not, in gen-
eral, guarantee the absence of ghosts, thus sharing analo-
gous pathologies with the metric approach. In this respect,
one needs to be cautious when considering higher order cur-
vature theories in the metric-affine formalism (by impos-
ing symmetries and/or constraints), similarly to the metric
framework where only judicious combinations of curvatures
like the Lovelock terms lead to physically sensible theo-
ries.
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