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Abstract There have been various interpretations of Hawk-
ing radiation proposed based on the perturbative approach,
and all have confirmed Hawking’s original finding. One
major conceptual challenge of Hawking evaporation is
the associated black hole information loss paradox, which
remains unresolved. A key factor to the issue is the end-
stage of the black hole evaporation. Unfortunately by then
the evaporation process becomes non-perturbative. Aspired
to provide a tool for the eventual solution to this problem,
here we introduce a new interpretation of Hawking radia-
tion as the tunneling of instantons. We study instantons of
a massless scalar field in Einstein gravity. We consider a
complex-valued instanton that connects an initial pure black
hole state to a black hole with a scalar field that represents
the Hawking radiation at future null infinity, where its action
depends only on the areal entropy difference. By comparing
it with several independent approaches to Hawking radiation
in the perturbative limit, we conclude that Hawking radiation
may indeed be described by a family of instantons. Since the
instanton approach can describe non-perturbative processes,
we hope that our new interpretation and holistic method may
shed lights on the information loss problem.
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1 Introduction

One of the most challenging issues in black hole physics is the
information loss problem. A black hole evaporates via Hawk-
ing radiation [1]. The evaporation depends only on the prop-
erty of the horizon and hence after the evaporation, it seems
that the original information cannot be recovered [2]. The
problem has been addressed from various points of view, yet
it remains unresolved. One aspect of the problem that may be
agreed by most experts is the preservation of unitarity, which
is also supported by the notion of AdS/CFT correspondence
[3,4]. Many ideas have been proposed to explain the unitar-
ity maybe preserved during the black hole evaporation (e.g.,
[5–7]), but no consensus has been reached yet (e.g., [8,9]). A
conventional interpretation is the black hole complementar-
ity conjecture [5], according to which information is recov-
ered by Hawking radiation through quantum entanglement
[10] without inconsistency. However, some counterexamples
and criticisms have recently been reported by several authors
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[6,7,11–15], but the AMPS firewall conjecture [6,7] is also
challenged [9].

One difficulty is that there exist only limited tools at hand
to deal with the physics of black hole evaporation. If one
only relies on perturbative quantum field theory (e.g., [16–
19]), then the information loss is apparent. This suggests,
under the belief of unitarity, that perturbative methods are
insufficient and so non-perturbative methods [20] or new
symmetry principles [21,22] may have to be invoked to con-
clusively address the information loss paradox. Regarding the
former approach, we recall that one of the most developed
techniques is the Euclidean path-integral approach [23,24].

In many situations, the non-perturbative approach through
the Euclidean path-integral makes use of the concept of
instantons. We note, however, that Hawking radiation as
it was originally derived is a perturbative phenomenon,
while an instanton is a non-perturbative process. So at first
glance the two notions seem incompatible. Nevertheless, we
know that once gravity is taken into account, instantons can
describe phenomena associated with vacuum fluctuations
that are consistent with that deduced from the perturbative
quantum field theory [25–27].

In this paper we will demonstrate that Hawking radiation
is describable by Euclidean instantons. To accomplish this,
we face two challenges.

1. One issue is the complex-valued nature of instantons. As
we will show below, this description requires complex-
valued instantons [28,29]. The Wick-rotation of time
requires that all functions should be complexified. The
meaning of such instantons has not been completely clar-
ified yet. Nevertheless, complex-valued instantons have
been used in quantum cosmology and referred to as fuzzy
instantons [30–34], which have led to satisfactory results.
Thus we take the view that this approach is legitimate.

2. The other is the regularity of the horizon in Euclidean
spacetime. If one chooses the Euclidean time period as
the inverse of the Hawking temperature, then the matter
distribution between the horizon and the infinity would
cause a cusp at the horizon. Unless this cusp is treated
by a proper method, one cannot assign a well-defined
probability for such an instanton. Fortunately, however,
there has been some progress in this issue, and we now
have a good reason to believe that the presence of a cusp
may be appropriately regularized [35–37]. Namely, such
cusp instantons may be regarded as legitimate, which
should contribute to the transition amplitude.

Adopting the above mentioned resolutions, we show that
Hawking radiation can be described in terms of Euclidean
instantons. Our result implies that there may be additional
situations where instantons can play a more useful role than
what we previously thought. If Hawking radiation can be

described by the tunneling of instantons, it can cover not
only the large mass limit, but also the small mass limit when
the quantum effects are no more perturbative. This instanton
approach may therefore provide a holistic methodology to
shed lights on the eventual solution to the information loss
paradox. We hope that this work may further promote this
research direction [38–40].

This paper is organized as follows. In Sect. 2, we con-
struct scalar field instantons that include Hawking radiation.
In Sect. 3, we argue that these instantons cover the particle
tunneling pictures, including Hartle–Hawking picture and
Parikh–Wilczek picture. Finally, in Sect. 4, we summarize
our discussions.

2 Construction of instantons

The scattering amplitude from an in-state (defined at the
past null infinity, say (hin

ab, φ
in)) to an out-state (defined at

the future null infinity, say (hout
ab , φout)) (Fig. 1) is formally

defined by the path-integral,

�
[
hout
ab , φout; hin

ab, φ
in
]

=
∫

DgμνDφ ei S[gμν,φ], (1)

where we sum over all gμν and φ that connects (hin
ab, φ

in) and
(hout

ab , φout). Although this integral is not easy to evaluate in
practice, extrapolating the flat space quantum field theory,
we may assume that it can be evaluated by the analytic con-
tinuation to the Euclidean time t = −iτ [41]:

�0

[
hout
ab , φout; hin

ab, φ
in
]

=
∫

DgμνDφ e−SE[gμν,φ], (2)

which can be further approximated by invoking two assump-
tions. First, we assume a certain spacetime symmetry and
restrict it to the mini-superspace. If the system includes a
black hole, then the spherical symmetry is the simplest ansatz
for the metric. Second, we approximate the path-integral by
using the steepest-descent approximation,

�0

[
hout
ab , φout; hin

ab, φ
in
]

�
∑

on−shell

e−Son−shell
E [gμν,φ], (3)

where we sum over all on-shell solutions, i.e., the instantons,
that connects (hin

ab, φ
in) and (hout

ab , φout).1

Now let us consider the meaning of on-shell solutions.
First, we note that the Euclidean geometry connects the
past null infinity, (hin

ab, φ
in), and the future null infinity,

(hout
ab , φout). For our purpose the initial condition may include

1 Note that we do not specify the exact form of the out-state, because
for a given in-state (hin

ab, φ
in), we can construct various different con-

tributions to the out-state (hout
ab , φout), as we will see in Sect. 2.2. This

flexibility is very important and this is the reason why we can finally
recover the thermal distribution.
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Fig. 1 We want to know the scattering amplitude from the in-state to
the out-state

Fig. 2 The intermediate geometry will be well-approximated by the
maximally extended geometry

the formation of the black hole, e.g., via a thin-shell col-
lapse or a star collapse. While this adds complications to the
problem, it is a classical process and hence as long as we
study quantum effects of a black hole, it may be reasonable
to start with the maximally extended static black hole (i.e.,
Schwarzschild) solution (Fig. 2); and consider instantons on
the solution.

The most trivial manifold for this setup is just the
Lorentzian solution itself, but in this case the on-shell solu-
tions have no quantum effects. The next simplest solution
is the Euclidean Schwarzschild solution that is analytically
continued at a certain time slice �[t] (say, at t = 0, where t
is the conventional Schwarzschild time coordinate). Then we
can paste the Euclidean manifold to the past part as well as to
the future part (Fig. 3). Although two Euclidean manifolds
are apparently disconnected [42], such linkage between the
initial state and the final state is considered consistent [43].

Now we consider solutions with non-trivial field config-
urations on the manifold in Fig. 3. If we assume that the
initial quantum state (in-state) is a vacuum, then at the on-
shell level there should be no particles present in the past
region. However, there exists a nonzero probability to find a
non-vanishing field configuration in the future region (upper
of Fig. 3).

At this juncture we have a couple of questions:

1. Since the solution is in general complex-valued, can one
be sure that the solution satisfies the classicality, i.e., real-
ity, condition at future null infinity?

2. Is the probability for each instanton solution consistent
with Hawking’s result?

Below we answer these questions,. We first define our model
in Sect. 2.1, where we consider Einstein gravity with a mass-
less scalar field. Then in Sect. 2.2, we answer the first question
and clarify that there exists a continuous family of non-trivial
instanton solutions that are real at future null infinity. Finally,
in Sect. 2.3, we answer the second question by showing that
such classicalized instantons indeed correspond to the Hawk-
ing radiation.

2.1 Model

We consider Einstein gravity with a massless scalar field,

S =
∫

dx4√−g

[
1

16π
R − 1

2
(∇φ)2

]

+
∫

∂M

K − Ko

8π

√−hdx3, (4)

where R is the Ricci scalar, K is the Gibbons–Hawking
boundary term, and Ko is the corresponding boundary term
for the periodically identified flat space [44]. Note that there
is no potential term and so φ is a free scalar field. Since the
Einstein equation gives R = 8π(∇φ)2, the volume integra-
tion of the on-shell action vanishes. Therefore for any field
configuration, the on-shell Euclidean action becomes

SE = −
∫

∂M

K − Ko

8π

√+hdx3

+ (contribution at horizon) . (5)

Note that the probability of a process mediated by this instan-
ton is P ∼ e−2B , where

B = SE(solution) − SE(background). (6)

2.2 Two Wick rotations and the classicality of outgoing
modes

Let us construct an instanton solution as shown in Fig. 3.
Namely, the initial state is a pure black hole, and the final
state is a black hole plus a scalar field.

Initially the spacetime is Schwarzschild,

ds2 = −
(

1 − 2M

R

)
dt2

+
(

1 − 2M

R

)−1

dR2 + R2d	2 , (7)
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Fig. 3 A constant t hypersurface will be analytically continued to the
Euclidean manifold. The past (lower) part has no scalar field and the
future (upper) part has a non-trivial scalar field solution. As we magnify
around the symmetric point (Einstein–Rosen bridge), we can approx-
imate that any solution is a superposition of in-going and out-going
modes. We can choose a condition that there are only out-going modes.

As we impose the reality condition at (III), the solution is complex-
valued for (I) and (II). Since the out-going pulse has energy δM , the
green colored region should have mass M ′ = M − δM . To cancel out
the boundary term at infinity, we define the Euclidean time period as
τT = 8πM . Therefore, the horizon becomes a cusp singularity

where −∞ < t ≤ 0 on the physical side (i.e., the right-hand
side of the spacetime in Fig. 3). This is analytically continued
to the Euclidean Schwarzschild solution at t = 0,

ds2
E =

(
1 − 2M

R

)
dτ 2 +

(
1 − 2M

R

)−1

dR2 + R2d	2 ,

(8)

where τ = i t + const., and it is periodic with the period
τT = 8πM . As shown in Fig. 3, half of this solution is
matched to the initial Lorentzian Schwarzschild. For the sake
of convenience, we put τ = i t − τT/2 (equivalently, t =
−i(τ+τT/2)). So its range is −τT/2 ≤ τ ≤ 0, and it matches
to the unphysical side (i.e., the left-hand side in Fig. 3) of the
same initial Lorentzian Schwarzschild solution at τ = 0.

Now we consider another Euclidean Schwarzschild solu-
tion but with a non-trivial scalar field configuration, with the
range of the Euclidean time 0 ≤ τ ≤ τT/2, which is even-
tually analytically continued to the Lorenztian solution for

t > 0 at τ = τT/2 where t = −i(τ − τT/2). These two
Euclidean solutions are disconnected, but the same formula
Eq. (6) can be consistently interpreted as having connected
at infinity (r → ∞), where the action SE(background)

corresponds to the first pure Schwarzschild instanton and
SE(solution) to the second one with a non-trivial field con-
figuration.

To obtain this instanton, we first consider its analytic con-
tinued solution in the Lorentzian regime. The solution of the
Klein–Gordon equation can be expressed as

φ =
∑
�,m

a�m
f�(t, r)

R
Y�m(θ, ϕ), (9)

where R is the conventional Schwarzschild coordinate and r
is the tortoise coordinate,

r = R + 2M log

∣∣∣∣
R

2M
− 1

∣∣∣∣ , (10)
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and hence −∞ < r < ∞. The corresponding Klein–Gordon
equation for each mode becomes

∂2 f�
∂t2 − ∂2 f�

∂r2 +
(

1 − 2M

R

)

(
�(� + 1)

R2 + 2M

R3

)
f� = 0. (11)

There is a potential barrier, but it disappears for R → 2M
(r → −∞) as well as for R → ∞ (r → ∞).

Since we are interested in describing Hawking radiation,
we focus on the field configurations in the near horizon limit
(R → 2M) in the Euclidean solution. Thus in the regions
of the Lorentzian solution close to the matching surface, the
waves are also confined to the near horizon limit. In this limit
the equation is well approximated by

∂2 f�
∂t2 − ∂2 f�

∂r2 = 0. (12)

Since the equation is insensitive up to �, to avoid unnecessary
complications, we further focus on the � = 0 modes, i.e.,
spherically symmetric configurations. In addition, since we
are interested in the radiation that is emitted to the future null
infinity, we consider waves propagating near the black hole
(or future) horizon. Therefore,

φ = f (t, r)

R(r)
= 1√

2π

∫ ∞

−∞
dω

R(r)
aout
ω e−iω(t−r) . (13)

Now we match this to the Euclidean solution through the
time slice at t = 0. With t = −i(τ − τT/2), the above gives

φ = 1√
2π

∫ ∞

−∞
dω

R(r)
aout
ω eωτT /2e−ωτ+iωr . (14)

This is matched to the Lorentzian solution at τ = 0 to the
unphysical, t < 0, region of the solution.

φ = 1√
2π

∫ ∞

−∞
dω

R(r)
ain
ω e−iω(t−r) ; ain

ω = aout
ω eωτT /2.

(15)

Now since t runs backward in time on the unphysical side
of the solution, this describes waves propagating out of the
black hole in the past direction. Thus seeing from the physical
side, they are the negative energy waves that compensate the
energy carried out by waves propagating along and outside
the black hole horizon.

Keeping the above discussion in mind, now we impose
the physical requirements. First, we demand the asymptotic
classicality, namely the out-going mode should contain only
real particles. Second, we impose the energy conservation
law. Thus if there is an out-going energy flux, then the black
hole mass (Misner–Sharp mass) should be smaller than the
ADM mass at infinity.

The reality condition implies

aout∗
ω = aout−ω. (16)

Note that this implies that the solution in the Euclidean time,
Eq. (14), is complex:

φ∗ �= φ for real τ . (17)

As discussed in the Introduction, we take the view that
complex-valued instantons are legitimate solutions that con-
tribute to the transition amplitude.

To track the energy carried by the radiation, we express
the field as

φ(t, r) = 1√
2πR(r)

∫ ∞

0

dω√
2ω[

Aωe
−iω(t−r) + A∗

ωe
iω(t−r)

]
, (18)

where Aω = √
2ωaout

ω . Since the Hamiltonian, H , around
the horizon is

H = δM ∝
∫ ∞

0
dωω|Aω|2 , (19)

the number of out-going particles is Nω ∝ |Aω|2. Hence, the
Misner–Sharp mass at the horizon should be M ′ = M − δM
due to the energy conservation.

2.3 Probabilities

Now we proceed to compute the probability of the process
mediated by the instanton. Based on Eq. (5), since there is
no contribution from the volume integration, the probabil-
ity interpretation is the same as that of the thermal thin-shell
instanton [48,49]. The only contributions are from the bound-
ary terms; one from the boundary at infinity and the other at
the horizon.

Regarding the boundary term at infinity, since we con-
sider matching the two disconnected instantons at infinity,
naturally they cancel each other. Thus the only possible con-
tribution is from the horizon. If there were no cusp, there
would be no contribution from the horizon either. But in our
case we do have a cusp because of the difference between
the period associated with the black hole in the out state and
the period fixed at infinity. Thus we expect to have some
contribution from the cusp singularity after some proper reg-
ularization [45]. To regularize the cusp, we can apply the
same procedure used for thin-shell instantons [35–37]. We
obtain

2B = A
4

− A′

4
= 4π

(
M2 − M ′2) , (20)

where A and M are the areal radius and mass of the ini-
tial black hole, respectively, while the primed (′) quantities
denote those for the final black hole. One can calculate the
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probability for the same process by using the Hamiltonian
approach [50,51] and can obtain the same result [42]. Hence,
we obtain a transition probability that depends only on the
area change.

To evaluate the probability, we first consider an emission
of a single quantum with energy ω of the order of O(M−1).
For a large black hole with M 
 1, we have M ′ = M − ω

with ω � M . In this limit, we have

2B = 8πMω . (21)

Thus the exponent is perfectly consistent with Hawking radi-
ation, with the Hawking temperature identified as TH =
(8πM)−1. Following the usual procedure [52], the total par-
tition function may be evaluated as

Z = Z0

(
1 + i

2
	T Ke−2B

)
, (22)

where 	 is the volume, T is the time, K is deter-
mined from the perturbations around the instanton, and
Z0 = e−2SE(background)[detS′′

E(background)]−1/2. As usual
this gives the decay rate,

� = 2 lim
	,T →∞

[
Im log Z

	T

]
� Ke−2B . (23)

Summing over all possible numbers of quanta (ω, 2ω, 3ω,
…),

Z = Z0

(
1 + i

2
	T K

∞∑
n=1

e−2nB

)
, (24)

we then readily recover the Planck distribution with T =
1/8πM as we advertised [53].

2.4 Analogy to the Bogoliubov transformation

Our approach is not the same as the canonical approach based
on the Bogoliubov transformation [1,54]. However, we can
appreciate their analogy through the following argument.

The scalar field corresponds to particles for ω > 0 and
antiparticles for ω < 0. Then before the Wick-rotation, the
solution looks like

φ(t, r) = 1√
2πR(r)

×
∫ ∞

0
dω

(
aωe

−iω(t−r) + a−ωe
iω(t−r)

)
. (25)

Note that the coordinate time of the left side of the Penrose
diagram flows oppositely. In order to identify this with the
causal time, one can substitute t → −t , and hence,

φ(t, r) = 1√
2πR(r)

×
∫ ∞

0
dω

(
a−ωe

−iω(t+r) + aωe
iω(t+r)

)
. (26)

Now we identify this with the in-state of the Bogoliubov
transformation, where a−ω corresponds the particle modes
and aω corresponds the antiparticle modes. In order to avoid
the confusion, we redefine the mode functions such that

φ(t, r) = 1√
2πR(r)

×
∫ ∞

0
dω

(
b̃ωe

−iω(t+r) + b̃−ωe
iω(t+r)

)
, (27)

by identifying a−ω = b̃ω and aω = b̃−ω.
After the Wick-rotation, the field becomes

φ(t, r) = 1√
2πR(r)

×
∫ ∞

0
dω

(
bωe

−iω(t−r) + b∗
ωe

iω(t−r)
)

. (28)

From the investigations of the previous subsection, we obtain
a linear transformation between (b̃ω, b̃−ω) and (bω, b∗

ω) such
that
(
bω

b∗
ω

)
=

(
0 e−ωτT/2

e+ωτT/2 0

)(
b̃ω

b̃−ω

)
. (29)

The reality condition after the Wick-rotation requires that
bω = b∗

ω, i.e., a−ω = e−ωτTa∗
ω. By using this relation, we

can present the equivalent transformation such that
(
bω

b∗
ω

)
= Q

(
b̃ω

b̃∗
ω

)
≡

(
0 e−ωτT/2

e−ωτT/2 0

)(
b̃ω

b̃∗
ω

)
. (30)

Now let us find an analogy with the usual Bogoliubov
transformation. If there is no mixing between different fre-
quencies, then the Bogoliubov transformation from the in-
going modes to the out-going modes will be
(
bω

b∗
ω

)
= U

(
b̃ω

b̃∗
ω

)
=

(
αω β∗

ω

βω α∗
ω

)(
b̃ω

b̃∗
ω

)
(31)

with the normalization condition |αω|2 − |βω|2 = 1. This
transformation matrix should include all contributions from
different paths and will be approximated by (Fig. 4)

U � I + Q, (32)

where I is the identity matrix (which represents the trivial
classical mode propagation) and Q is the contribution from
the Euclidean path-integral that is approximated by instan-
tons. Then, the Bogoliubov matrix becomes

U = 1√
N

(
1 e−ωτT/2

e−ωτT/2 1

)
, (33)

where N = 1 − e−ωτT is the normalization factor. Finally,
we obtain the Hawking-like relation such that

|βω|2 = |tω|2 e−ωτT

1 − e−ωτT
, (34)
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Fig. 4 As we sum over all instantons, I (Schwarzschild without scalar fields) corresponds the trivial process. There can be various instantons, but
we only select instantons that has out-going modes, e.g., Q. If we sum I and Q, one can recover the Bogoliubov matrix at least in the heuristic level

where tω is the transmission coefficient for the modes that
propagate in large r region.

This is of course not a bona fide quantum field theoret-
ical derivation, since we did not regard all coefficients as
real operators. Rather, we heuristically identify the relation
between mode coefficients. However, it is worthwhile to see
that our results interestingly reproduce that of Hawking radi-
ation.

3 Hawking radiation revisited

Our result reveals that instanton approach can indeed recapit-
ulate the Hawking radiation with a thermal spectrum. Tradi-
tionally, there have been at least three approaches to Hawking
radiation.

First, one can derive Hawking radiation by using the
Bogoliubov transformation, which we have checked and
demonstrated the consistency between the two approaches
in the previous subsection, at least heuristically.

Second, one can derive the evaporation of a black hole by
using the renormalized energy–momentum tensor [54]. In
order to obtain the renormalized energy–momentum tensor,
one needs to invoke a regularization method. The simplest
example of exact solution was obtained in 2-dimensions [55],
which may be extended to higher dimensional cases using the
S-wave approximation [56,57]. It has been shown that the
Euclidean approach may reproduce the approximate forms
of the regularized energy–momentum tensors [58].

Third, one can derive it by using the concept of tunneling
[59,60]. One can interpret Hawking emission as the tunneling
of a particle with energy ω, where the decay rate � ∼ e−ω/T

and the temperature T can be estimated. In this tunneling

approach, one obtains the Boltzmann distribution. After sum-
ming over all quanta, one recovers the Planck distribution
[53].

In this section we further discuss this tunneling picture [59,
60], since the tunneling approach has a direct correspondence
to the instanton picture.

3.1 Hartle–Hawking method

Although the original derivation by Hawking used the
Bogoliubov transformation method [1], soon an explanation
based on the pair-creation of particles was given by Hartle
and Hawking [59]. They considered the path-integral of a
particle that starts from inside the black hole, goes backward
in time, reaches outside the event horizon, and then goes for-
ward in time to the asymptotic future infinity (left of Fig. 5).
Although such a trajectory is not allowed in classical physics,
it is possible in quantum mechanics.

Hartle and Hawking calculated the decay rate by taking
the following logical steps (right of Fig. 5).

• Step 1: For a black hole formed by gravitational collapse,
the tunneling process can be described by the analytic
continuation of the static black hole solution.

• Step 2: The process to be computed is the tunneling in
the left diagram in Fig. 5. The emission probability can
be calculated from the propagator, i.e., the path-integral,
of the particle. One then invokes the Euclidean analytic
continuation to find out an equivalent integration.

• Step 3: In order to calculate the path-integral or the prop-
agator, one can rely on the following three properties.

1. The path-integral is analytic up to the analytic contin-
uation over the Euclidean time. Hence, the dominant
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Fig. 5 Summarization of the Hartle–Hawking picture. Left: particle
tunneling from inside to outside. Right: an equivalent path according to
Hartle and Hawking. Path (1) is along the constant r surface, that does
not contribute to the propagator, due to the time-translational invari-

ance. Path (2) relies on the Euclidean analytic continuation. Due to the
time-reversal symmetry, Path (3) can be interpreted to contribute to the
absorption process

contribution only depends on the initial point and the
final point (large dots in the Left diagram in Fig. 5).

2. The path-integral has the time-translation symmetry
for a given r . Therefore, Path (1) in Fig. 5 does not
contribute to the propagator.

3. The path-integral has the time-reversal symmetry.
Hence, Path (3) in Fig. 5 is equivalent to the absorp-
tion probability for a given particle.

• Step 4: Hartle and Hawking chose the equivalent path as
that indicated in the Right diagram in Fig. 5. Therefore,
the probability is contributed by two parts: the Boltzmann
factor from the Euclidean time evolution (a half period of
the Euclidean manifold) and the absorption probability
of the particle.

However, this approach has several problems. First, the
Euclidean analytic continuation cannot form a Euclidean
manifold with the signatures (+,+,+,+); rather, it forms
(+,+,−,−). Since there is no well-defined manifold for
such a signature, it is not easy to impose back-reactions;
Hartle and Hawking’s description therefore only holds either
for emissions with negligible energy ω � M , or for a per-
fect thermal equilibrium system with negligible black hole
mass decrease [61]. One therefore needs find an equivalent
steepest-descent method that is applicable to the Euclidean
manifold that include processes with non-negligible emis-
sion energy ω. Note that it is conceptually easy to see that
the Hartle–Hawking approach is analytically equivalent to
the instanton approach (Fig. 6), while the latter approach
only invokes the Euclidean manifold that satisfies the energy
conservation consistently.

3.2 Parikh–Wilczek method

Parikh and Wilczek [60] developed a more direct description
of this process without using the Euclidean analytic continu-
ation. In this approach the Hawking evaporation is treated as
the tunnelling of a particle from inside to outside the horizon
(left of Fig. 7). When we consider tunneling of particles with
energy ω, the decay rate is

� ∼ e−2ImS ∼ e−ω/T (35)

where T is the temperature and S is the Lorentzian action
of the particle. Such a tunneling between two null geodesics
(one inside and the other outside the event horizon) is not
allowed classically. Quantum mechanically, however, the
action of the particle can acquire an imaginary part such that

ImS = Im
∫ rout

rin

prdr � ω
τT

2
, (36)

where τT = 1/T is the period of the Euclidean time.
It is interesting to compare this with the instanton pic-

ture. The dominant contribution of the tunneling between
two null geodesics is equivalent to the tunneling between
the left side and the right side of the Einstein–Rosen bridge
(middle of Fig. 7). These two geodesics can be connected by
the Euclidean manifold (right of Fig. 7).

We emphasize that our analysis in terms of instantons is
consistent with but very different from the Parikh–Wilczek
method, which deals with the tunneling of a particle through
the black hole horizon and the tunneling rate is given by com-
puting the action of the particle that acquires an imaginary
part when crossing the horizon. In contrast, we deal with a

Fig. 6 Left: the calculation
trick by Hartle and Hawking.
Right: due to analyticity, we can
choose different path. Then this
will give the same results of the
instanton approach
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Fig. 7 Left: the Parikh–Wilczek method describes tunneling from inside to outside the event horizon. Middle: the important contribution is
tunneling from left (white dot) to right side (black dot) of the whole causal structure. Right: two particles can be connected by the Euclidean
manifold outside the horizon

scalar field and construct complex instantons that describe
the tunneling of a black hole with no scalar field to a black
hole with an outgoing scalar field at future null infinity as
Hawking radiation. The physical pictures between the two
interpretations are therefore also very different.

4 Discussion

In this paper, we derived Hawking radiation using the instan-
ton approach. We interpret the Hawking radiation process as
the sum over all possible paths of instantons with certain
physical constraints such as the energy conservation and the
asymptotic classicality. The probability so obtained is consis-
tent with Hawking’s result. It is thus reasonable to think that
the black hole evaporation can be regarded as the sum of all
possible trajectories of a series of instantons. Even though
we discussed 4-dimensional massless scalar field cases, it
should be very easy to extend it to other dimensions and
other fields.

Our result is going one step further from Hartle–Hawking
and Parikh–Wilczek. First of all, our approach used a scalar
field rather than particle trajectories, where the previous tun-
neling descriptions have been limited to the particle-level
approaches. In addition, it is important to reemphasize that
the instanton method is applicable to much broader areas than
Hawking radiation. For example, if we increase the ampli-
tude of the field value, then the instanton is no more Hawking
radiation but becomes a kind of non-perturbative effects. In
other words, not only can it cover perturbative effects (Hawk-
ing radiation) but also non-perturbative effects that may even
explain, for example, the transition to a trivial geometry [24].
Although in that case their transition probabilities are sup-
pressed, they have nevertheless non-zero probabilities.

These non-perturbative effects may in principle be invoked
to resolve the information loss problem, especially in the
ω � M limit. The present paper reasonably indicates that

the existence of non-perturbative channels are indeed very
generic for various gravity models, since they manifest them-
selves even in the case of a free scalar field. It is not so
surprising that these instantons can provide us insights into
the information loss paradox. Since instantons are related to
the quantum gravitational wave function, such a formulation
can cover not only perturbative phenomena but also non-
perturbative phenomena [20]. If one takes into account all
non-perturbative effects that allow for the transition toward
a trivial geometry, then the entire wave function is no more
semi-classical and one should be able to see new features of
the information loss problem beyond what has been consid-
ered. In addition, non-perturbative contributions should dom-
inate the late stage of the black hole evolution; then, instan-
tons may provide important clues toward the understanding
of the late stage black hole evaporation. This, however, is
beyond the scope of the present paper and we postpone the
more detailed discussion of it to a future publication.

In this work there are several directions that need to be
improved. We considered instantons only near the horizon;
also, we assumed that the metric back-reactions are negli-
gible. These assumptions are reasonable for ω � M , but if
ω � M , it becomes more complicated. The probability inter-
pretation should be the same since there is no contribution
from the volume integration of the action; however, the real-
ity condition for both the field and the metric at infinity is not
clear. This should be confirmed by more detailed numerical
investigations. In addition, it may be possible to apply our
instanton method to investigate the radiation for an accel-
erating observer [62], the acoustic radiation in a supersonic
fluid [63], or the radiation from a moving mirror [64]. This
is an interesting and challenging topic for future investiga-
tions. Furthermore, if one extends our description beyond the
steepest-descent approximation, one may be able to obtain
more exact descriptions about quantum gravitational behav-
iors around black holes.
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Although the Euclidean approach has several limitations,
we believe that this is the right way of thinking and we hope
that this instanton approach would shed lights on the infor-
mation loss problem.
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