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Abstract In this work, we assume that the observed state
�(1620) is a s-wave �K̄ or � K̄ bound state. Based on
this molecule picture, we establish the Bethe–Salpeter equa-
tions for �(1620) in the ladder and instantaneous approxi-
mations. We solve the Bethe–Salpeter equations for the �K̄
and � K̄ systems numerically and find that the �(1620)

can be explained as �K̄ and � K̄ bound states with J P =
1/2−, respectively. Then we calculate the decay widths of
�(1620) → �π in these two different molecule pictures
systems, respectively.

1 Introduction

The advent of the LHCb, Belle, BESIII, and other facilities
and their unexpectedly successful contributions to hadron
physics have stimulated of hadron studies. With the obser-
vations of some states which do not agree well with the
theoretical predictions in the constituent quark model (like
�(1405), �(1620), X , Y , Z states, and pentaquark states
(Pc(4380) and Pc(4450) states)) [1], it is important to study
these unusual states, both to probe the limitations of the quark
model and to discover the unrevealed aspects of the quantum
chromodynamics (QCD) description of structures of hadron
resonances.

Up to now lots of nucleons and S = ±1 hyperon res-
onances have been discovered and their quantum numbers
have also been measured. In the charmed baryon sector,
there have been also lots of significant progresses made in
the experimental studies by the LHCb, Belle, BESIII and
other collaborations. For � states, only the spin-parity quan-
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tum numbers of the ground octet state �(1320), the decu-
plet state �(1530), and the excited state �(1820) have been
determined, but for other known � resonances, their spin-
parity numbers are incomplete. For example, the �(1690)

and �(1620) states are cataloged in the Particle Data Group
(PDG) with only one-star and three-star [1], respectively. If
�(1620) has J P as 1/2−, it will be similar to the �(1405)

state, which has been postulated as a meson–baryon molec-
ular state or a pentaquark candidate [2]. Determining the
masses and quantum numbers of the � resonances is vital
for us to understand their structures.

The �(1620) was observed through the �(1620) →
�π decay in the 1970’s [3,4]. Although the mass and
the width measurements in the two experiments are con-
sistent, they both have large statistical uncertainties. Tak-
ing into account the experimental errors of all experi-
ments, the resonance mass is found to be in the range
1600–1645 MeV and the width in the range 14–55 MeV
[1]. Recently, the Belle Collaboration reported the observa-
tion of �(1620) via its decay to �−π+ happened in the
�+

c → �−π+π+ decay based on a 980 fb−1 data sam-
ple [5]. The mass and width are measured to be 1610.4 ±
6.0(stat)+5.9

−3.5(syst) MeV and 59.9±4.8(stat)+2.8
−3.0(syst) MeV,

respectively.
On the theoretical side, it has been shown that it is very

difficult to accommodate the �(1620) in the quark models
[6,7]. Since the constituent quark models have predicted the
first excited states of � to be around 1800 MeV, it is diffi-
cult to explain the structure of the �(1620) in this context.
Instead, it implies that this state could be a candidate of a new
class of exotic hadrons. The meson–baryon scattering in the
strangeness S = −2 sector was also studied in different uni-
tary coupled-channel approaches constrained by QCD chi-
ral symmetry [8–10]. In all these chiral unitary approaches,
the �(1620) is dynamically generated with a relatively large
decay width, and couples strongly to the �π and �K̄ chan-
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nels but very weakly to � K̄ and �η. In addition, the poles
of �(1620) are below the threshold of �K̄ .

The purpose of this paper is to study the possibilities that
the �(1620) is a �K̄ or � K̄ bound state with quantum num-
bers J P = 1/2− in the Bethe–Salpeter equation approach. We
will also calculate the decay widths of �(1620) → �π in
these two pictures. The Bethe–Salpeter equation is a formally
exact equation to describe the relativistic bound state [11,12],
and has been applied in many theoretical studies concerning
heavy mesons and heavy baryons [13–18]. In this paper, we
will study the s-wave baryon–meson molecular bound state
with the kernel introduced by the vector meson exchange
interactions.

This paper is organized as follows. In the next section,
we will briefly review the Bethe–Salpeter equation for the
bound state of a meson and a baryon. In Sect. 3, we will
discuss the normalization condition of the Bethe–Salpeter
wave function. In Sect. 5, the decay of �(1620) → �π

will be calculated. The numerical results will be presented in
Sect. 4. In the last section, we will give a summary.

2 The Bethe–Salpeter formalism for the �(1620)

In this section, we will review the general formalism of the
Bethe–Salpeter equation and derive the Bethe–Salpeter equa-
tion for the system composed of a baryon (� or �) and a
pseudoscalar meson (K̄ ). Then we will derive the normal-
ization condition for the Bethe–Salpeter wave function in
the next section. Firstly, we define the Bethe–Salpeter wave
function for the bound state |P〉 of a baryon (� or �) and a
pseudoscalar meson (K̄ ) as the following:

χ (x1, x2, P) = 〈0|Tψ(x1)φ(x2)|P〉, (1)

where ψ(x1) and φ(x2) are the field operators of the baryon
(� or �) and pseudoscalar meson (K̄ ) at space coordinates
x1 and x2, respectively, P denotes the total momentum of
the bound state with mass M and velocity v. In momentum
space, the Bethe–Salpeter wave function can be defined as

χP (x1, x2, P) = e−i P X
∫

d4 p

(2π)4 e
−i pxχP (p), (2)

where p represents the relative momentum of the two con-
stituents and p = λ2 p1 − λ1 p2 (or p1 = λ1P + p,
p2 = λ2P − p). The relative coordinate x and the center-of-
mass coordinate X are defined by

X = λ1x1 + λ2x2, x = x1 − x2, (3)

or inversely,

x1 = X + λ2x, x2 = X − λ1x, (4)

where λ1 = mψ/(mψ +mφ) and λ2 = mφ/(mψ +mφ) with
mψ and mφ being the masses of the baryon (� or �) and the
pseudoscalar meson (K̄ ), respectively.

The Bethe–Salpeter equation for the bound state can be
written in the following form:

χP (p) = Sψ(p1)

∫
d4q

(2π)4 K (P, p, q)χP (q)Sφ̄ (p2), (5)

where Sψ(p1) and Sφ̄(p2) are the propagators of the baryon

(� or �) and the pseudoscalar meson (K̄ ), respectively,
and K (P, p, q) is the kernel which contains two-particle-
irreducible diagrams. For convenience, we define pl(= p ·v)

and pμ
t (= pμ − plvμ) to be the longitudinal and transverse

projections of the relative momentum (p) along the bound
state momentum (P). Then, the propagator of � ( or �) has
the form

Sψ(λ1P+p)= i [(λ1M+pl) v/ + p/t+m1]

(λ1M+pl+ω1−iε) (λ1M+pl−ω1+iε)
.

(6)

and the propagator of the K̄ meson can be expressed as

SK̄ (λ2P−p)= i

(λ2M−pl+ω2−iε)(λ2M−pl−ω2+iε)
,

(7)

where ω1(2) =
√
m2

1(2) + p2
t (in which we have defined p2

t =
−pt · pt ).

In general, for a baryon and a pseudoscalar meson bound
state, considering v/u(v, s) = u(v, s) (u(v, s) is the spinor of
the bound state with helicity s), χP (p) can be written as

χP (p) = (
g1 + g2γ5 + g3γ5 p/t + g4 p/t

+g5σμνε
μναβ ptαvβ

)
, (8)

where gi (i = 1, . . ., 5) are Lorentz-scalar functions. Fur-
thermore, each term in the expansion of χP (p) transforms
exactly in the way that χP (p) transforms under P-parity and
Lorentz transformations, which can help us simplify the form
of χP (p), it is easy to prove that χP (p) can be simplified as

χP (p) = [ f1(p) + f2(p)p/t ]u(v, s), (9)

in which f1(p) and f2(p) are two independent Lorentz-scalar
function of p.

As discussed in the introduction, we will study the s-wave
bound state of the �K̄ and � K̄ systems. The isospin field

doublets ψ = (
ψ0, ψ−)T

and φ = (−φ+, φ0
)T

have the
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following expansions in momentum space:

ψ1(x) =
∫

d3 p

(2π)3
√

2E±
ψ

(
aψ−e−i px + a†

ψ+e
ipx

)
,

ψ2(x) =
∫

d3 p

(2π)3
√

2E0
ψ

(
aψ0e−i px + a†

ψ̄0e
ipx

)
,

φ1(x) =
∫

d3 p

(2π)3
√

2E±
φ

(
aφ+e−i px + a†

φ−e
ipx

)
,

φ2(x) =
∫

d3 p

(2π)3
√

2E0
φ

(
aφ0e−i px + a†

φ̄0e
ipx

)
.

(10)

The isospin quantum number of �(1620) is 1/2, so the
flavor wave function of �K̄ and � K̄ systems can be written
as

|P〉 1
2 , 1

2
= |�0 K̄ 0〉, (11)

|P〉 1
2 , 1

2
=

√
2

3
|�+K−〉 − 1√

3
|�0K 0〉. (12)

Projecting the bound states on the field operators ψ1(x),
ψ2(x), φ1(x), and φ2(x), then we have

〈0|Tψi (x1)φ j (x2)|P〉I,I3 = Ci j
(I,I3)

χ I
P (x1, x2) , (13)

where χ I
P is the common Bethe–Salpeter wave function for

the bound state with isospin I . The isospin coefficient Ci j
(I,I3)

is

C22
( 1

2 ,− 1
2 )

= 1, (14)

for the �K̄ system, and the isospin coefficients are

C11
( 1

2 ,− 1
2 )

=
√

2

3
, C22

( 1
2 ,− 1

2 )
= −

√
1

3
, (15)

for the � K̄ system.
Then the Bethe–Salpeter equation for the bound state can

be written as

Ci j
(I,I3)

χ I
P (p)

= Sψ(λ1P + p)
∫

d4q

(2π)4 K
i j,lk (P, p, q)

×Clk
(I,I3)

χ I
P (q)Sφ(λ2P − p), (16)

where i( j) and l(k) refer to the components of the ψ(φ) field
doublets. Then, the Bethe–Salpeter equation for the I = 1/2
�K̄ molecule can be written as

χP (p) = S�(λ1P + p)

×
∫

d4q

(2π)4 K
22,22χP (q)SK̄ (λ2P − p), (17)

and for the I = 1/2 � K̄ molecule the Bethe–Salpeter equation
can be write as

χP (p) = S�(λ1P + p)∫
d4q

(2π)4

(
K 11,11 − 1√

2
K 11,22

)

χP (q)SK̄ (λ2P − p). (18)

In the Bethe–Salpeter equation approach, the interactions
between � and K̄ mesons are due to the light vector-meson
(ω and φ) exchanges. There is no ρ-exchange contribution,
because of the isospin conservation. For the � K̄ interaction
we will consider the exchanges of vector mesons ρ, ω and
φ. The pseudoscalar meson exchanges are forbidden because
the K meson is also a pseudoscalar meson. The Lagrangians
for the vertices of the strange K meson and one-strange
baryon with vector mesons are [19,20]:

LKKρ = igK Kρ K̄ρμ · τ∂μK + c.c.,

LKKω = igK Kω K̄ωμ∂μK + c.c.,

LKKφ = igK Kφ K̄φμ∂φK + c.c.,

LBBρ = −gBBρ B̄

[
γ ν − κBBρ

2mB
σνρ∂ρ

]
ρν · τ B,

LBBω = −gBBω B̄

[
γ ν − κBBω

2mB
σνρ∂ρ

]
ωνB,

LBBφ = −gBBφ B̄

[
γ ν − κBBφ

2m�

σνρ∂ρ

]
φνB,

(19)

where c.c. is the complex conjugate of the first term, τ is the
Pauli spin matrix. The coupling constants are constrained
by the SU (3) symmetry, gKKρ = gKKω = gρππ/2 and
gKKφ = gρππ/

√
2. The ρππ coupling is determined by

gρππ = Mρ/(
√

2 fπ ) ≈ 6.1. g��ω = 2
3gNNρ(5α − 2)

and g��φ = −
√

2
3 gNNρ(2α + 1), where we take the value

α = 1.15 based on the ω coupling constant given in Ref. [21].
g��ρ = g��ω = 2αgNNρ and g��φ = −√

2(2α−1)gNNρ .
gNNρ is chosen as gρππ/2 as in Refs. [19,20], Under SU (3)

symmetry, the κBBV (B = �,�) can be obtained with
the relations f��ω = 5

6 fN Nω − 1
2 fN Nρ , f��φ = − 1

3
√

2
,

fN Nω − 1√
2
fN Nρ , f��ρ = f��ω = ( fN Nω + fN Nρ)/2, and

f��φ = (− fN Nω + fN Nρ)/
√

2, where fBBV is defined as
fBBρ = gBBρκBBρ , and κBBρ = 6.1 and fN Nω = 0 [19].

From the above observations, at the tree level, in the t-
channel we have the following kernel for the Bethe–Salpeter
equation in the so-called ladder approximation:
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K (P, p, q) = cI g��V gKKV

(
γ α + iκ��V

2m�

σαβkβ

)

×(p2 + q2)
μ�αμ(k,mV ), (20)

wheremV represents the mass of the exchanged vector meson
(ρ, ω and φ), and cI is the isospin coefficient: c1/2 = 1−√

2,
1, 1 for ρ, ω, φ mesons, respectively.

In order to describe the phenomena in the real world, we
should include a form factor at each interacting vertex of

hadrons to include the finite-size effects of these hadrons.
For the meson-exchange case, the form factor is assumed to
take the following form [22]:

F(k) = �2 − m2

�2 − k2 , (21)

where �, m and k represent the cutoff parameter, the mass of
the exchanged meson and the momentum of the exchanged
meson, respectively.

Substituting Eqs. (6), (7), (9), and (21) into Eq. (5) and
using the so-called covariant instantaneous approximation
[13], pl = ql , we obtain

[ f1(p) + f2(p)p/t ] = icI g��V gKKV [(λ1M + pl)v/ + p/t + m1]
[(λ1M + pl)2 − ω2

1 + iε][(λ2M − pl)2 − ω2
2 + iε]

×
∫

d4q

(2π)4

2(λ2M − pl)v/ − p/t − q/t − (p/t − q/t )(p2
t − q2

t )/m
2
V

−(pt − qt )2 − m2
V

F2(k,mV )[ f1(q) + f2(q)q/t ]. (22)

Then we obtain the following coupled integral equations for
f1(p) and f2(p):

f1(p) = ig��V gKKV

(λ1M + pl + ω1 − iε)(λ1M + pl − ω1 + iε)(λ2M − pl + ω2 − iε)(λ2M − pl − ω2 + iε)

×
∫

d4q

(2π)4

{
2(λ1M + pl)(λ2M − pl) + p2

t + pt · qt + (p2
t − pt · qt )(p2

t − q2
t )/m

2
V

−(pt − qt )2 − m2
V

f1(q)

+m1[pt · qt + q2
t + (pt · qt − q2

t )(p
2
t − q2

t )/m
2
V ]

−(pt − qt )2 − m2
V

f2(q)

}
F2(k,mV ), (23)

f2(p)p
2
t = −ig��V gKKV

(λ1M + pl + ω1 − iε)(λ1M + pl − ω1 + iε)(λ2M − pl + ω2 − iε)(λ2M − pl − ω2 + iε)

×
∫

d4q

(2π)4

{
m1[p2

t + pt · qt + (p2
t − pt · qt )(p2

t − q2
t )/m

2
V ]

−(pt − qt )2 − m2
V

f1(q)

+−2(λ1M + pl)(λ2M − pl)pt · qt − p2
t [pt · qt + q2

t + (pt · qt − q2
t )(p

2
t − q2

t )/m
2
V ]

−(pt − qt )2 − m2
V

f2(q)

}
F2(k,mV ). (24)

We notice that in Eqs. (23) and (24) there are poles in pl at
−λ1M − ω1 + iε, −λ1M + ω1 − iε, λ2M + ω2 − iε and
λ2M−ω2+iε. By choosing the appropriate contour, we inte-
grate over pl on both sides of Eqs. (23) and (24) and obtain
the following coupled integral equations for f̃1(pt ) and
f̃2(pt )

f̃1(pt ) = g��V gKKV

2ω1(M + ω1 + ω2)(M + ω1 − ω2)

∫
d3qt
(2π)3

[
pt · qt + q2

t + (pt · qt − q2
t )(p

2
t − q2

t )/m
2
V

−(pt − qt )2 − m2
V

m1 f̃2(qt )

+−2ω1(M + ω1) + p2
t + pt · qt + (p2

t − pt · qt )(p2
t − q2

t )/m
2
V

−(pt − qt )2 − m2
V

f̃1(qt )

]
F2(kt )

− g��V gKKV

2ω2(M + ω1 − ω2)(M − ω1 − ω2)

∫
d3qt
(2π)3

[
pt · qt + q2

t + (pt · qt − q2
t )(p

2
t − q2

t )/m
2
V

−(pt − qt )2 − m2
V

m1 f̃2(qt )

+2ω2(M − ω2) + p2
t + pt · qt + (p2

t − pt · qt )(p2
t − q2

t )/m
2
V

−(pt − qt )2 − m2
V

f̃1(qt )

]
F2(kt ), (25)
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f̃2(pt )p
2
t N = −g��V gKKV

2ω1(M + ω1 + ω2)(M + ω1 − ω2)

×
∫

d3qt
(2π)3

[
p2
t + pt · qt + (p2

t − pt · qt )(p2
t − q2

t )/m
2
V

−(pt − qt )2 − m2
V

m1 f̃1(qt )

+2ω1(M + ω1)pt · qt − p2
t [pt · qt + q2

t + (pt · qt − q2
t )(p

2
t − q2

t )/m
2
V ]

−(pt − qt )2 − m2
V

f̃2(qt )

]
F2(kt )

+ g��V gKKV

2ω2(M + ω1 − ω2)(M − ω1 − ω2)

×
∫

d3qt
(2π)3

[
p2
t + pt · qt + (p2

t − pt · qt )(p2
t − q2

t )/m
2
V

−(pt − qt )2 − m2
V

m1 f̃1(qt )

+−2ω2(M − ω2)pt · qt − p2
t [pt · qt + q2

t + (pt · qt − q2
t )(p

2
t − q2

t )/m
2
V ]

−(pt − qt )2 − m2
V

f̃2(qt )

]
F2(kt ), (26)

where f̃1(2)(pt ) ≡ ∫
dpl f1(2)(p).

After reducing the above coupled integral equations for
f̃1(pt ) and f̃2(pt ) to one dimensional integral equations, we
obtain the following equations:

f̃1(|pt |)= A11(|pt |, |qt |) f̃1(|qt |)+A12(|pt |, |qt |) f̃2(|qt |),
f̃2(|pt |)= A21(|pt |, |qt |) f̃1(|qt |)+A22(|pt |, |qt |) f̃2(|qt |),

(27)

where Ai j (|pt |, |qt |) (i, j = 1, 2) are of the following forms:

A11(|pt |, |qt |)
= −g��V gKKV |qt |

8m2
V |pt |ω1ω2(M + ω1 − ω2)[M2 − (ω1 + ω2)2]

×
{

4|pt ||qt |(�2 − m2
V )

[�2 + (|pt | − |qt |)2][�2 + (|pt | + |qt |)2]

×
{

8ω1ω2M
2m2

V + �2(m2
V

−|pt |2 + |qt |2)[M(ω1 − ω2) + (ω1 + ω2)
2]

+(ω1 + ω2)
2[(|pt | − |qt |)2 + m2

V (3|pt |2
+|qt |2 − 4ω1ω2)]
+M(ω1 − ω2)[(|pt |2 − |qt |2)2 + m2

V (3|pt |2

+|qt |2 + 4ω1ω2)]
}

+
{

8ω1ω2M
2m2

V + (ω1 + ω2)
2[m4

V

+(|pt |2 − |qt |2)2 + 2m2
V (p2

t + q2
t − 2ω1ω2)]

+M(ω1 − ω2)[m4
V + (|pt |2

−|qt |2)2 + 2m2
V (p2

t + q2
t − 2ω1ω2)]

}

ln
�2 + (|pt | + |qt |)2

�2+(|pt | − |qt |)2 −
{

8ω1ω2M
2m2

V + (ω1 + ω2)
2

[m4
V + (|pt |2 − |qt |2)2 + 2m2

V (p2
t + q2

t − 2ω1ω2)]
+M(ω1 − ω2)[m4

V + (|pt |2 − |qt |2)2 + 2m2
V (p2

t + q2
t

−2ω1ω2)]
}

ln
m2

V + (|pt | + |qt |)2

m2
V + (|pt | + |qt |)2

}
, (28)

A12(|pt |, |qt |)
= −g��V gKKVm1|qt |

8m2
V |pt |ω1ω2(M + ω1 − ω2)[M2 − (ω1 + ω2)2]

×
{

4|pt ||qt |(�2 − m2
V )

[�2 + (|pt | − |qt |)2][�2 + (|pt | + |qt |)2]
+[m4

V + (|pt |2 − |qt |2)2 + 2m2
V (|pt |2 + |qt |2)]

× ln
�2 + (|pt | + |qt |)2

�2 + (|pt | − |qt |)2

−[m4
V + (|pt |2 − |qt |2)2 + 2m2

V (|pt |2 + |qt |2)]

× ln
m2

V + (|pt | + |qt |)2

m2
V + (|pt | − |qt |)2

}
, (29)
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A21(|pt |, |qt |) = −g��V gKKVm1|qt |[M(ω1 − ω2) + (ω1 + ω2)
2]

8m2
V |pt |3ω1ω2(M + ω1 − ω2)[M2 − (ω1 + ω2)2]

×
{

4|pt ||qt |(�2 − m2
V )[(|pt |2 − |qt |2)2 + �2(m2

V − |pt |2 + |qt |2) + m2
V (2|pt | + |qt |2)]

[�2 + (|pt | − |qt |)2][�2 + (|pt | + |qt |)2]
−[m4

V + (|pt |2−|qt |2)2+2m2
V (|pt |2 + |qt |2)] ln

�2 + (|pt | + |qt |)2

�2 + (|pt | − |qt |)2 + [m4
V + (|pt |2 − |qt |2)2 + 2m2

V (|pt |2 + |qt |2)]

ln
m2

V + (|pt | + |qt |)2

m2
V + (|pt | − |qt |)2

}
, (30)

A22(|pt |, |qt |)
= −g��V gKKV |qt |

8m2
V |pt |3ω1ω2(M + ω1 − ω2)[M2 − (ω1 + ω2)2]

×
{

4|pt ||qt |(�2 − m2
V )

[�2 + (|pt | − |qt |)2][�2 + (|pt | + |qt |)2]
×

{
4ω1ω2M

2m2
V (|pt |2 + |qt |2)

+4ω1ω2�
2M2m2

V

+(ω1 + ω2)
2[(|pt |3 − |pt ||qt |2)2

+m2
V (|pt |4 − 2ω1ω2|pt |2

−2ω1ω2|qt |2 + 3|pt |2|qt |2)]
+�2(ω1 + ω2)

2[|pt |4 − |pt |2|qt |2
+m2

V (|pt |2 − 2ω1ω2)]
+M�2(ω1 − ω2)[|pt |4
−|pt |2|qt |2 + m2

V (|pt |2 + 2ω1ω2)]
+M(ω1 − ω2)[(|pt |3 − |pt ||qt |2)2

+m2
V (|pt |4 + 2ω1ω2|pt |2 + 2ω1ω2|qt |2

+3|pt |2|qt |2)]
}

+
{
(ω1 + ω2)

2[(|pt |3

−|pt ||qt |2)2 + m4
V (|pt |2 − 2ω1ω2) + 2m2

V (|pt |2
+|qt |2)(|pt |2 − ω1ω2)]
+Mω1 − ω2[(|pt |3 − |pt ||qt |2)2

+2m2
V (|pt |2 + |qt |2)(|pt |2 + ω1ω2)

+m4
V (|pt |2 + ω1ω2)]

+4ω1ω2M
2m2

V (m2
V + |pt |2 + |qt |2)

}

× ln
�2 + (|pt | + |qt |)2

�2 + (|pt | − |qt |)2 −
{
(ω1 + ω2)

2[(|pt |3

−|pt ||qt |2)2 + m4
V (|pt |2 − 2ω1ω2)

+2m2
V (|pt |2 + |qt |2)(|pt |2 − ω1ω2)]

+Mω1 − ω2[(|pt |3 − |pt ||qt |2)2

+2m2
V (|pt |2 + |qt |2)(|pt |2 + ω1ω2))]

+m4
V (|pt |2 + ω1ω2)] + 4ω1ω2M

2m2
V (m2

V + |pt |2

+|qt |2)
}

ln
�2 + (|pt | + |qt |)2

�2 + (|pt | − |qt |)2 . (31)

3 The normalization condition for the bound state

The normalization condition for a baryon and a pseudoscalar
meson bound state is given by [12]

i

(2π)4

∫
d4 pd4χ̄P (p)

∂

∂P0
[I (p, q, P)

+K (p, q, P)] χP (q) = 2P0, (32)

where I (p, q, P) is the inverse of the four-point propagator
defined as follows:

I (p, q, P) = δ(4)(p − q)[S�(λ1P + p)]−1

×[SK (λ2P − p)]−1. (33)

After some algebra, the normalization condition in Eq. (32)
can be written in the following form as in Refs. [23–25]:

−
∫

d4 p

(2π)4

{
Tr[αP (p)βP (p)S�(p1)(λ1ε/)S�(p1)SK (p2)]

+Tr[αP (p)βP (p)(2λ2 p2 · ε)S�(p1)SK (p2)SK (p2)]
}

= 2P0, (34)

where ε = (1, 0), αP (p) and βP (p) are the transverse projec-
tions of the Bethe–Salpeter wave functions given as follows:

αP (p) = −i S�(p1)
−1χP (p)SK (p2)

−1,

βP (p) = −i SK (p2)
−1χ̄P (p)S�(p2)

−1.
(35)

Substituting Eq. (5) into above equations, then, one can
derive the parametric forms of αP (p) and βP (p) as

αP (p) = [h̃1(pt ) + p/t h̃2(pt )]u(v, s),

βP (p) = ū(v, s)[h̃1(pt ) + p/t h̃2(pt )],
(36)
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with

h̃1(pt )

=
∫

d3qt
(2π)3

p2
t + pt · qt + (p2

t − pt · qt )(p2
t − q2

t )/m2
V

(pt − qt )2 + m2
V

f̃2(qt ),

h̃2(pt )

= −
∫

d3qt
(2π)3

p2
t + pt · qt + (p2

t − pt · qt )(p2
t − q2

t )/m2
V

p2
t [(pt − qt )2 + m2

V ] f̃1(qt ).

(37)

After substituting Eqs. (36) and (37) into Eq. (34), we have

i
∫

d4 p

(2π)4

{{
h̃2

1(pt )λ1(λ1M + pl )[(λ1M + pl )
2 − p2

t + 3m2
1]

−6h̃1(pt )h̃2(pt )p
2
t m1λ1(λ1M + pl )

−h̃2
2(pt )p

2
t λ1(λ1M + pl )[(λ1M + pl )

2

−p2
t + 3m2

1]
}
/
{

2m1[(λ1M + pl )
2

−ω2
1]2[(λ2M − pl )

2 − ω2
2]

}

+2λ2(λ2M − pl )
{
h̃2

1(pt )[(λ1M + pl )
2

−p2
t + m2

1] − 4h̃1(pt )h̃2(pt )p
2
t m1

−h̃2
2(pt )p

2
t [(λ1M + pl )

2 − p2
t + m2

1]
}
/
{

2m1[(λ1M + pl )
2

−ω2
1][(λ2M − pl )

2 − ω2
2]2

}}
= 2P0. (38)

4 Numerical results for the Bethe–Salpeter wave
functions

In this part, we will solve the Bethe–Salpeter equation numer-
ically and try to search for possible solutions of the �K̄
and � K̄ bound states. It can be seen from Eq. (27) that
there is only one free parameter in our model, the cutoff �,
which contains the information about the nonpoint interac-
tions due to the structure of hadrons at the interaction vertices.
Although the value of � cannot be exactly determined and
depends on the specific process, it should be typically the
scale of low energy physics, which is about 1 GeV. In this
work, we treat the cutoff in the form factors as a parameter
varying in a much wider range 0.8–4.8 GeV.

To find out the possible molecule bound states, one only
needs to solve the homogeneous Bethe–Salpeter equations.
One numerical solution of the homogeneous Bethe–Salpeter
equation corresponds to a possible bound state. The integra-
tion region in each integral will be discretized into n pieces,
with n being sufficiently large. In this way, the integral equa-
tion will be converted into an n×n nmatrix equation, and the
scalar wave functions of each equation will now be regarded

as an n-dimensional vector. Then, the two coupled integral
equations can be illustrated as(

f̃1(|pt |)
f̃2(|pt |)

)
=

(
A11(|pt |, |qt |) A12(|pt |, |qt |)
A21(|pt |, |qt |) A21(|pt |, |qt |)

)(
f̃1(|qt |)
f̃2(|qt |)

)
,

(39)

where f̃1(2) is ann-dimensional vector, and Ai j (|pt |, |qt |)(i, j
= 1, 2) is an n × n matrix, which corresponds to the matrix
labeled by pt and qt in each integral equation. Generally, |pt |
(and |qt |) varies from 0 to +∞. Here, |pt | (and |qt |) will be
transformed into a new variable t that varies from −1 to 1
based on the Gaussian integration method,

|pt | = ε + w log

[
1 + y

1 + t

1 − t

]
, (40)

where ε is a parameter introduced to avoid divergence in
numerical calculations, w and y are parameters used in con-
trolling the slope of wave functions and finding the proper
solutions for these functions. Then one can obtain the numer-
ical results of the Bethe–Salpeter wave functions by requiring
the eigenvalue of the eigenvalue equation to be 1.

In our calculation, we take the masses of the mesons and
baryons from the PDG [1,5],m�(1620) = 1610.4 MeV,m� =
1115.683 MeV, m� = 1187.354 MeV, m� = 1314.86 MeV,
mK = 494.988 MeV mπ = 139.571 MeV. From our cal-
culations, we find �K̄ and � K̄ systems can be �(1620)

state when the cutoff � = 1632 MeV and 1356 MeV, respec-
tively. The corresponding numerical results of the Lorentz-
scalar functions in the normalized Bethe–Salpeter equation,
f̃1(|pt |) and f̃2(|pt |), are given in Figs. 1 and 2 for the �K̄
and � K̄ systems, respectively

5 The decay of �(1620) → �π

After obtaining the Bethe–Salpeter wave functions, we can
calculate some physical properties of the molecular bound
state which can be measured in experiments. One of the most
important properties is the decay width. The bound state
�(1620) can decay to �π via exchanging the K ∗ meson
as shown in Fig. 3. There is no K meson exchange contribu-
tion, as the spin-parity conservation forbids the vertex KKπ .
In the following we will write down the decay amplitude
and calculate the decay width using the solution of the one-
dimensional Bethe–Salpeter equation obtained in the previ-
ous section. The effective Lagrangian for the BBK ∗ vertex
is [26]

LBBK ∗ = −gBBK ∗ B̄

(
γ μBK ∗

μ − κBBK ∗

mN
σμνB∂νK

∗
μ

)
.

(41)

The Lagrangian for the vertex K ∗Kπ reads

LK ∗Kπ = −igK ∗KπK
∗μ(π∂μ − ∂π) · τK . (42)
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The Lorentz-scalar function of f̃1(|pt|) The Lorentz-scalar function of f̃2(|pt|)(a) (b)

Fig. 1 Numerical results for the Bethe–Salpeter wave functions in the �K̄ system

The Lorentz-scalar function of f̃1(|pt|). The Lorentz-scalar function of f̃2(|pt|).(a) (b)

Fig. 2 Numerical result for the Bethe–Salpeter wave functions in the � K̄ system

K∗

Σ

K̄

Ξ

π

Ξ(1620)

Fig. 3 Diagram contributing to the �(1620) → �−π+ decay

where the coupling constants g��K ∗ = −3.52, κ��K ∗ =
4.22, and gK ∗Kπ = −gρππ/2 with gρππ = 6.1 [20,26].

In the rest frame, we define p′
1 = (E ′

1, p
′) and p′

2 =
(E ′

2,−p′) (p′ is three-momentum) to be the momenta of �

and π , respectively. The masses of � and π are m′
1 and m′

2,
respectively. According to the kinematics in the rest frame
of the two-body decay, one has

E ′
1 = M2 − m

′2
2 + m

′2
1

2M
, E ′

2 = M2 − m
′2
1 + m

′2
2

2M
, (43)

|p′| =
√

[M2 − (m
′
2 + m

′
1)

2][M2 − (m
′
2 − m

′
1)

2]
2M

, (44)

and

d� = 1

32π2 |M|2 |p′|
E2 d�, (45)

where |p′| is the norm of the 3-momentum of either particle
in the final state in the rest frame of the initial bound state and
M is the Lorentz-invariant decay amplitude of the process.

According to the above interactions, the decay�(1620) →
�−π+ is shown in Fig. 3. We can write down the amplitude
as

M = −g��K ∗gK ∗Kπ

2
u�γμ

×(p2+p′
2)μ�μν(k,mK ∗)u�(1620)F2(k)|k=q ′−pχP (p),

(46)
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where q ′ = λ2q ′
1 − λ1q ′

2 is not the relative momentum
of particles in the final state, λ1 and λ2 are defined as
λi = mi/(m1 + m2), and m1 and m2 are the masses of the
component particles of the bound states but not of the final
state.

Then, we apply the numerical solution of the Bethe–
Salpeter amplitude to calculate the decay width of�(1620) →
�π . The decay widths are 36.94 MeV and 9.35 MeV for the
�K̄ and � K̄ bound stats, respectively.

In the following we will discuss possible uncertainties in
our method. In our approach, we have taken the so-called
ladder approximation in which we do not consider other
(e.g.,crossed) graphs. The crossed graph contribution in this
work is similar with our previous work which also have been
studied in two-body system using the BS equation approach
[15], where exchange a ρ meson the ratio of the contribution
from the crossed graph to that from the ladder one is less than
15% (in the case where ω is the exchange particle the result
is almost the same while in the where φ is the exchanged
particle, the ratio is ≈ 25%).

Another approximation we have taken is the instanta-
neous approximation in which the energy exchanged between
the constituent particles of the binding system is neglected.
Although we cannot give a numerical estimation of the uncer-
tainly this approximation may cause, which would require
solving the BS equation in four dimensions, we expect this
approximation would not cause an error more than an order
since all the theoretical results in our model are consistent
with experimental data so far.

The effect of SU (3) symmetry breaking is at most of the
order ms/�χB ≈ 15% (where ms is the strange quark mass
and �χB is the chiral symmetry breaking scale which is about
1 GeV). As to the mass of the �(1620), the latest mass and
width of �(1620) reported by the Belle Collaboration are
1610±6.0(stat)+6.1

−4.2(syst) MeV and 59.9±4.8(stat)+2.8
−7.1(syst)

MeV, respectively [5]. When the mass of �(1620) is taken
as 1600 MeV, the decay widths of �(1620) → �π are
39.73 MeV and 11.12 MeV for the �K̄ and � K̄ bound stats,
respectively.

6 Summary

In this paper, we applied the Bethe–Salpeter equations to
study the possibilities that the is �(1620) is s-wave �K̄ or
� K̄ bound states with the quantum numbers J P = 1/2−.
Considering the interaction kernels based on ω and φ mesons
exchange diagrams for the �K̄ system and ρ, ω, and φ

mesons exchange diagrams for the � K̄ system, we estab-
lished the Bethe–Salpeter equations in the ladder and instan-
taneous approximations. Because the constituent particles
and the exchanged particles in the �K̄ and � K̄ systems are
not pointlike, we introduced a form factor including a cutoff

� which reflects the effects of the structure of these par-
ticles. Since � is controlled by nonperturbative QCD and
cannot be determined at present, we let it vary in a reason-
able range within which we examined whether �K̄ and � K̄
bound states could be the�(1620) state by solving the Bethe–
Salpeter equations. From our calculations, we found that the
�(1620) state can be treated as the �K̄ and � K̄ bound states
when � = 1632 MeV and 1356 MeV, respectively.

Then, we applied the numerical solutions of the Bethe–
Salpeter wave functions to calculate the decay widths of
�(1620) → �π which are induced by K ∗ exchange meson.
We obtained that the decay widths are 36.94 MeV and 9.35
MeV for the �K̄ and � K̄ bound states, respectively. Com-
paring the magnitides of these two decay widths, it is obvi-
ous that the �(1620) has a larger contribution from the �K̄
system than the � K̄ system. The same conclusion was also
found in Ref. [8] from the chiral perturbation theory. Clearly,
more theoretial and experimental efforts will be needed to
fully understand the nature of the one-star �(1620).
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