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Abstract Light sterile neutrinos are a popular extension
of the Standard Model and are being discussed as a pos-
sible explanation for various neutrino oscillation anoma-
lies, including the LSND, MiniBooNE, Reactor and Gal-
lium anomalies. In order to avoid inconsistencies with con-
straints derived from disappearance experiments and cosmol-
ogy, altered dispersion relations – which may originate from
extra dimensions – have been proposed as a possible solu-
tion, dubbed as “neutrino shortcuts in the extra dimension”.
In this paper we develop a neutrino mass model with an asym-
metrically warped extra dimension and two additional gauge
singlet neutrinos, one being responsible for neutrino mass
generation, while the other one is allowed to propagate in
the extra dimension, giving rise to the desired change of
the dispersion relation on the brane. By compactifying the
extra-dimensional theory on an S1/Z2 orbifold, deriving the
shape of the Kaluza–Klein tower and identifying the effec-
tive sterile neutrino dispersion relation on the brane, we can
demonstrate that the earlier, phenomenological models are
recovered as the 4-dimensional effective field theory limit of
the model discussed here.

1 Introduction

Sterile neutrinos are a common prediction in many neutrino
mass models and have been proposed as a possible solution
for various neutrino anomalies, hints for inconsistencies in
cosmological data, and as a possible dark matter candidate. In
particular sterile neutrinos with masses in 1 eV mass range are
discussed in the context of the LSND, MiniBooNE, Reactor
and Gallium anomalies. There exist, however, stringent con-
straints on light sterile neutrinos, both from neutrino oscil-
lation experiments as well as from cosmology, which rule
out the most simple scenarios. A possible way out of this
dilemma is the hypothesis that sterile neutrinos may feature
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effective Lorentz violating corrections to the standard dis-
persion relation E2 = p2 +m2, which leads to an interesting
and rich phenomenology. A particularly attractive realiza-
tion giving rise to such altered dispersion relations (ADRs)
are scenarios where the sterile neutrinos can take shortcuts
in extra dimensions. It has been conjectured in the past that
this phenomenon arises naturally in models where the sterile
neutrino propagates in an asymmetrically warped spacetime
[1–6]. Since the ADR in this framework is purely geometri-
cally induced and thus does not differentiate between parti-
cles and anti-particles, such scenarios provide an explanation
for why there are excesses in both neutrino and anti-neutrino
channels in the short baseline (SBL) neutrino anomalies.

Models with large extra dimensions became popular in
the in the late 1990s, when it was discovered that the hierar-
chy problem could be resolved or ameliorated by adopting
several flat extra dimensions [7] or one compactified, warped
extra dimension as in the well-known ’Randall–Sundrum 1
(RS1)’ model [8]. In such theories, typically the SM particle
content is located on the 3-brane, while gauge singlets (like
the graviton or sterile neutrinos) are allowed to propagate in
the extra dimension and therefore experience the associated
warping.

While the RS model uses symmetrically warped spacetime
of the form ds2 = e−2krφημνdxμdxν + r2dφ2, asymmetri-
cally warped metrics with the form ds2 = −A2(φ)dt2 +
B2(φ)dx2 + C2(φ)r2dφ2 arise from simple bulk sources
and are linked to the cosmological constant problem [9] and
the horizon problem [10,11]. Whereas these kind of models
preserve Lorentz symmetry in the 5D theory, they predict
4D Lorentz violation on the brane via an altered dispersion
relation for sterile neutrinos, which proves to be helpful for
the solution of the current anomalies in short baseline and
reactor neutrino oscillation data. Scenarios with altered dis-
persion relations adopt additional terms in the usual relation
between energy E and momentump, E2 �= |p|2+m2. Energy
dependent elements of the mixing matrix and mass squared
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differences can be generated by an additional effective poten-
tial in the Hamiltonian in flavor space and thus may pose an
explanation for the anomalies encountered in short-baseline
neutrino oscillation data such as the LSND [12–16] or Mini-
BooNE [17,18] anomalies. The excess in SBL experiments
can, in this framework, be interpreted as a resonance induced
by the extra potential and thus circumvent constraints from
atmospheric or accelerator experiments on a standard 3 +1ν

scenario. For the reactor and gallium experiments, which by
themselves favor the 3 + 1ν scenario, the 3 + 1ν oscilla-
tion probabilities are recovered in the low energy limit far
below the resonance [6]. Quite recently the MiniBooNE col-
laboration has reported an evidence of 4.8σ for new physics
beyond the Standard Model which, combined with the LSND
experiment, increases to 6.1σ [19]. New efforts to clarify this
situation are planned or under development [20,21]). In this
paper we thus develop a neutrino mass model featuring an
asymmetrically-warped extra dimension which justifies the
effective 4-dimensional low-energy “sterile neutrino short-
cut” phenomenology proposed in [1–6].

2 An asymmetrically warped neutrino mass model

Orbifolding the fifth dimension on S1/Z2 allows to param-
eterize the extra dimension by an angular coordinate φ and
an extra dimensional radius r . It also ensures that the φ-
coordinate satisfies the periodic boundary conditions φ =
φ + 2π and Z2-symmetry φ = −φ. Hence, the extra dimen-
sion can be entirely described with values for φ in the range
0 ≤ φ ≤ π . Just like in the RS-model, orbifold fixed points
will be populated by 3-branes, corresponding to standard
(3+1) Minkowskian spactime parametrized by the coordi-
nates xμ. For a sufficiently general ansatz we use a metric
tensor GMN of the form

(GMN ) =

⎛
⎜⎜⎜⎜⎝

−A2

B2

B2

B2

(rC)2

⎞
⎟⎟⎟⎟⎠

, (1)

where where the metric elements A = A(φ), B = B(φ),
C = C(φ) are functions of the extra dimensional angu-
lar coordinate φ and the latin indices M, N = 0, 1, 2, 3, 4
imply a five-dimensional metric, and are chosen to recover
Minkowskian space ημν on the 3-branes. This class of non-
factorizable spacetimes is called ’asymmetrically warped’.
Note that such a metric tensor does not represent a vacuum
solution of Einstein’s equations, but can be achieved e.g.
by introducing simple bulk sources [9]. We adopt a single
fermionic SM singlet field Ψ to be allowed to enter the extra
dimension, thus the general action for such a Dirac fermion
is [22]

S =
∫

d4x
∫

dφ
√

det G

{
E A
a

[
i

2
Ψ γ a

(
∂A − ←−

∂A

)
Ψ

+ ωbcA

8
Ψ
{
γ a, σ bc

}
Ψ
]

− m sgn(φ)Ψ Ψ

}
,

(2)

where E A
a denotes the inverse Vielbein, ωbcA is the spin

connection, σ bc = [γ b, γ c] is the commutator of the Dirac
matrices andm is the fermion’s fundamental Dirac mass. The
Vielbein is defined via GMN = ηmnEM

m EN
n as the transfor-

mation of a coordinate basis of basis vectors ∂a into another,
equivalent basis eA = Ea

A∂a . This allows for a conversion of
spacetime indices A to Lorentz indices a in the local tangent
space. For this to be true, the Vielbein has to be non-singular.
For the metric 1 we obtain

(
E A
a

) = diag
( 1
A , 1

B , 1
B , 1

B , 1
rC

)
.

The gamma-matrices γ a obey the Clifford-Algebra{
γ a, γ b

} = 2ηab , where ηab is the Minkowski-metric, with
γ a=4 = iγ 5 . The mass term of Eq. (2) contains the sign
of the extra dimensional coordinate in order to preserve Z2-
symmetry. It can be shown that the spin connection term
E A
a

ωbcA
8 Ψ

{
γ a, σ bc

}
Ψ vanishes so that we are left with

S =
∫

d4x
∫

dφ
√

det G

{
E A
a

[
i

2
Ψ γ a

(
∂A − ←−

∂A

)
Ψ

]

−m sgn(φ)Ψ Ψ

}
. (3)

We now decompose the Dirac spinor Ψ using the chiral

operator Ψ1/2 = 1∓γ 5

2 Ψ . Note that we do not explicitly call
these spinors left- or right-handed, since in five dimensions
this concept cannot be applied. This is because γ 5 is part
of the Clifford Algebra in 5D and therefore cannot serve
as a chiral projector. This is true for any odd dimensional
spacetime.

After an integration by parts we obtain expressions for
the action, which can be associated with a mass-term and
a kinetic-term respectively, because of their spinor structure
(for details see appendix A). The expressions yield

Skin =
∫

d4x
∫

dφ
√

detG

{
Ψ 1 i

[
γ 0

A
∂0 + γ k

B
∂k

]
Ψ1

+Ψ 2 i

[
γ 0

A
∂0 + γ k

B
∂k

]
Ψ2

}
(4)

and

Smass =
∫

d4x
∫

dφ

{
−
[

Ψ 1

(√
detG

2rC
∂φ + ∂φ

√
detG

2rC

)
Ψ2

−Ψ 2

(√
detG

2rC
∂φ + ∂φ

√
detG

2rC

)
Ψ1

]

−m sgn(φ)
[
Ψ 1Ψ2 + Ψ 2Ψ1

] }
. (5)
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We apply a Kaluza–Klein (KK) decomposition, i.e. we
expand the 5D spinors Ψ1/2(x, φ) in a in a series of a product

of functions ψ
1/2
n (x) and f̂

1/2
n (φ)

Ψ1/2 =
∑
n

ψ
1/2
n (x)

1√
2rξ

f̂
1/2
n (φ) with ξ = ξ(φ) =

√
detG

2rC
,

(6)

where f̂
1/2
n (φ) will be constructed as eigenfunctions of a

Hermitian operator. This operator arises as we compare the
decomposed action to the standard Dirac action in 4D. It can
be shown that the kinetic part of the action is actually able to
recover the 4D Dirac actions kinetic part

SDiracKin =
∫

d4x
{
ψn(x)

(
i /∂ + Ω̂

)
ψn(x)

}
(7)

up to some correction Ω by choosing the scalar product

∫
dφ f̂

1/2
n

C

A
f̂

1/2†
m := δnm, (8)

for the functions f̂
1/2
n (φ). The correction term can be identi-

fied as

Ω =
∫

dφ
∑
mn

2∑
j=1

[
ψ

j
n f̂ j†

n
C(A − B)

AB
i γ k∂k ψ

j
m f̂ j

m

]
. (9)

While the theory is Lorentz invariant in the full 5D picture, the
Ω-term induces Lorentz violation (LV) in the 4D projection
after integrating out the extra dimension φ. This can lead to
a different interplay between the momentum and the energy
of a particle on the brane (see e.g. [23–25]). In other words,
the operator changes the dispersion relation E2 = p2 + m2

experienced by an observer on the brane. Applying Eq. (8) to
the decomposed Smass and matching it to the standard mass
term of the Dirac action, we can derive another condition

(
∓∂φ

r
− mC

)
f̂

2/1

k = −Mk
C

A
f̂

1/2

k , (10)

for the extra dimensional function f̂
1/2

k . This is a system of
first order, coupled, eigenvalue-like equations, which deter-
mine the behavior of the extra dimensional function f̂1/2 and
therefore the shape of the KK spectrum of masses. From this
expression we can derive that the shape of the KK tower in the
asymmetrically warped case does not differ from symmetric
warping scenarios (ds2 = F(φ)ημνdxμdxν + r2dφ). This is
due to the non-dependence on the metric element B(φ). In an
RS-like set-up, the KK spectrum is shaped like the roots of
Bessel’s function. The order of this function is determined by
the extra dimensional fermion’s fundamental mass and the

inverse radius of the extra dimension (for further reading see
[22]). The only difference between symmetric and asymmet-
ric scenarios is therefore the induced LV on the brane, which
is dependent on the difference A(φ) − B(φ). Obviously, the
LV vanishes in the symmetric limit, recovering the results of
[22].

3 Altered dispersion relation and connections to the
shortcut parameter

To study the LV on the brane quantitatively, we extract the
aforementioned altered dispersion relation (ADR) on the
brane from the correction term (Eq. (9)) of the underlying
action S. By using Eq. (8), we can express this correction
term as

S ⊃
∫

d4x
∑
n,m

2∑
j=1

[
ψ

j
n Ĩ jnm i γ k∂k ψ

j
m

]
, (11)

where Ĩnm = ∫
dφ f̂ j†

n
C
B f̂ j

m − δnm is the correction param-
eter. To study neutrino oscillation properties, we now intro-
duce an active, brane-bound, lefthanded neutrino state νL
to the action and consider only the lefthanded zero-mode
Ψ 0
L of the extra dimensional singlet state, without taking

into account the Kaluza–Klein excitations (this can be jus-
tified by adopting a sufficiently small extra dimension). A
righthanded zero-mode is forbidden because of Z2 symme-
try in the S1/Z2 orbifolding. To generate the active neutrino
masses, we have to introduce another righthanded neutrino
N , which is not allowed to propagate in the extra dimension.1

This righthanded state couples to the active states via tiny
Yukawa couplings y0, whereas the extra dimensional gauge
singlet Ψ 0

L couples to N via dimensionful couplings κ . This
way νL gets indirectly coupled to the extra dimensional Ψ 0

L .
The corresponding, CP conserving action yields

S =
∫

d4x
(
νL , Ψ 0

L , N
)⎛⎝

i /∂ 0 y0v

0 i /∂ + i Ĩ00∂kγ
k κ

y0v κ i /∂

⎞
⎠

×
⎛
⎝

νL
Ψ 0
L
N

⎞
⎠ , (12)

1 In extra-dimensional scenarios like this, assigning gauge charges to
fields is a common tool to localize those on a brane [26] In this case,
N can, for instance, be in a non-trivial representation of some larger
symmetry (e.g. an SO(10) GUT), which is broken at a higher energy
scale. After symmetry breaking, N is in the singlet representation of
the remaining subgroup SU (3)C × SU (2)L ×U (1)Y . This mechanism
fixes N on the brane along with the other SM particles.

123



604 Page 4 of 7 Eur. Phys. J. C (2019) 79 :604

where Ĩ00 is the mode diagonal correction parameter for the
zero mode. This parameter can be calculated analytically for
the metric ds2 = dt2 +exp (2krφ)dx2 +r2dφ2 chosen here.
We obtain

Ĩ00 = 1 − exp (−4πkr)

4πkr
, (13)

in the case where the fundamental Dirac mass m is much
smaller than the warping scale parameter k. These parame-
ters have to be chosen this way, since we want the left- and
righthanded correction integrals to be approximately equal
to one another.

To discuss the dispersion relations, we perform a rotation
from the interaction basis

(
νL , Ψ 0

L , N
)

to the propagation
basis

(
φ , χ, ξ

)
. For the propagations eigenstates φ, χ and ξ

the dispersion relations can be calculated by variation δS = 0
of the action, leading to the Euler–Lagrange equations for this
particular problem (see Appendix C). The solutions for these
ADR are given by

E2
φ = p2, (14)

E2
χ/ξ

= κ2 + p2

⎡
⎣
(

1 + Ĩ00

2

)2

− Ĩ 2
00

4

⎤
⎦

︸ ︷︷ ︸
f ( Ĩ00)

(15)

where p is the 3-momentum on the brane. As expected, the
decoupled dispersion relation (14) does not get affected at
zeroth order approximation for y0v, while the relations for the
other two eigenstates are altered by a factor of f ( Ĩ00). This
can be interpreted as an altered dispersion relation allowing
for sterile neutrino shortcuts in the extra dimension as sug-
gested in the phenomenological approach of [1]. Rearranging
Eq. (15) and taking into account that Ĩ00 � 1 holds, we can
expand the ADR in a Taylor series up to first order in Ĩ00

additionally to the high energy limit E 	 κ , yielding

pχ/ξ ≈ E − κ2

2E
− E2

2E
Ĩ00 + O( Ĩ 2

00) + O(κ2 Ĩ00) (16)

for two of the propagation eigenstates χ and ξ . The contribu-
tions to the mass-squared-difference of the order O(κ2 Ĩ00)

are neglected, since it is only a renormalization of the cou-
pling κ . Therefore we effectively end up with an additional,
energy dependent potential V+ = E2 Ĩ00, which induces new
resonance phenomena in neutrino oscillations. Just as in [1],
the potential V+ has some properties, which are different
from the standard matter potential induced from elastic for-
ward scattering of active neutrinos and matter, being non-
discriminatory between neutrinos and anti neutrinos and pos-
sessing a stronger energy dependence V+ ∼ E2 instead of
a linear dependence. The correction term Ĩ00 and the short-
cut parameter ε proposed in [1] can be identified, when the

mixing between active and sterile states is small. In this con-
text we cannot confirm a hint towards baseline dependence
of the resonant behaviour as suggested in [2] and consider
it to be an artifact of the semi-classical approach adopted
in that work. In order to account for the correct resonance
energy while neglecting the effect of heavy KK excitations,
one needs to vary the warp factor k and extra dimensional
radius r independently. In order to explain the hierarchy prob-
lem one might be forced to invoke more than one extra dimen-
sion.

4 Conclusion

In this paper we have developed a neutrino mass model giving
rise to sterile neutrino shortcuts in an asymmetrically warped
extra dimension.

In this context we have derived the shape of the KK tower
of an additional fermionic singlet in a general extra dimen-
sional asymmetric warping framework and have demon-
strated that this shape does not differ from symmetric warp-
ing scenarios (where the warp factors of time and 3-space
are the same). The main difference between both warping
scenarios is the emergence of effective Lorentz-violation on
the 3-brane and a resulting altered dispersion relation of the
fermionic singlet and any particles mixing with it.

Moreover, we have developed a concrete mechanism of
neutrino mass generation, based on an additional particle
content consisting of a gauge singlet neutrino Ψ , which is
able to propagate in the extra dimension, and an SM singlet
neutrino N confined to the 3-brane. The SM singlet brane
neutrino mixes with the gauge singlet Ψ and the active neu-
trinos νL which conveys the effects of asymmetric warping to
the active neutrinos, whose masses are generated by Yukawa
interaction with the standard Higgs field. We have shown that
such a model features an effective potential V+ ∼ E2 dur-
ing propagation, leading to resonant active-sterile neutrino
oscillations.

The sterile neutrino shortcut scenario proposed in [1,3–
6] can thus be understood as the four-dimensional effective
field theory limit of the model presented here.
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Appendix A: Calculation of the KK spectrum

From all the terms that are contained in Eq. (3), the
ones containing Greek indices are analyzed first. This is
because of their similarities regarding their spinor structure
Ψ 1/2O(∂μ)Ψ1/2, making them comparable to a kinetic term.
They are

S ⊇ Skin =
∫

d4x
∫

dφ
√

detG

{
i

2A

[
Ψ 1γ

0
(
∂0 − ←−

∂0

)
Ψ1

+Ψ 2γ
0
(
∂0 − ←−

∂0

)
Ψ2

]

+ i

2B

[
Ψ 1γ

k
(
∂k − ←−

∂k

)
Ψ1 + Ψ 2γ

k
(
∂k − ←−

∂k

)
Ψ2

]}
.

(A.1)

To convert the left-bound derivatives into standard (right-
bound) derivatives, an integration-by-parts is used:

Skin =
∫

d4x
∫

dφ i

{
+Ψ 1γ

0

√
detG

2A
∂0Ψ1 + Ψ 2γ

0

√
detG

2A
∂0Ψ2

+Ψ 1γ
k

√
detG

2B
∂kΨ1 + Ψ 2γ

k

√
detG

2B
∂kΨ2

}

−
∫

d3xk
∫

dφ i

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
Ψ 1γ

0

√
detG

2A
Ψ1

]

∂V︸ ︷︷ ︸
=0

−
[
Ψ 2γ

0

√
detG

2A
Ψ2

]

∂V︸ ︷︷ ︸
=0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

−
∫

d4−k x
∫

dφ i

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
Ψ 1γ

k

√
detG

2B
Ψ1

]

∂V︸ ︷︷ ︸
=0

−
[
Ψ 2γ

k

√
detG

2B
Ψ2

]

∂V︸ ︷︷ ︸
=0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+
∫

dφ i

{
Ψ 1γ

0∂0

√
detG

2A
Ψ1 + Ψ 2γ

0∂0

√
detG

2A
Ψ2

+Ψ 1γ
k∂k

√
detG

2B
Ψ1 + Ψ 2γ

k∂k

√
detG

2B
Ψ2

}
.

(A.2)

The terms on the border vanish since it is assumed that
all quantum fields vanish in infinity. Since the entries
of the metric G are not dependent on the brane coordi-
nates, the derivatives commute with the operator expression
∂μ

√
detG(φ)/2 f (φ) = √

detG(φ)/2 f (φ) ∂μ and the action can be
written as in Eq. (4). This form allows for a ’smooth’ KK
decomposition.

In the second analysis of the five dimensional action S, the
terms containing derivatives with respect to the extra dimen-
sion ∂φ are under examination. Due to the configuration of
their spinors, these terms are connected to the mass-term.

The relevant terms are

S ⊇ Smass =
∫

d4x
∫

dφ
√

detG

{
− 1

2rC

[
Ψ 1γ

5
(
∂φ

−←−
∂φ

)
Ψ2 + Ψ 1γ

5
(
∂φ − ←−

∂φ

)
Ψ2

]

− m sgn(φ)
[
Ψ 1Ψ2 + Ψ 2Ψ1

]}
.

(A.3)

In analogy to the calculations in the terms with indices μ, an
integration-by-parts is conducted and using the relationship

Ψ 1/2γ
5Ψ2/1 = ±Ψ 1/2Ψ2/1 (A.4)

we arrive at Eq. (5). which can be decomposed via Eq. (6).
The kinetic part after decomposition reads

Skin =
∫

d4x
∫

dφ
∑
n

∑
m

{
C

A

[
ψ1
n f̂ 1†

n i

(
/∂

+ (A − B)γ k

B
∂k

)
ψ1
m f̂ 1

m

+ ψ2
n f̂ 2†

n i

(
/∂ + (A − B)γ k

B
∂k

)
ψ2
m f̂ 2

m

]}
, (A.5)

from which we can infer the scalar product in Eq. (8) and
the correction term (9) by matching it to the corrected Dirac
action (7).

With these conditions set, we decompose the mass term
of the action and find

Smass =
∫

d4x
∫

dφ
∑
n

∑
m

{
−
[
ψ1
n

1√
2rξ

f̂ 1†
n

(
ξ ∂φ

+∂φξ
)
ψ2
m

1√
2rξ

f̂ 2
m

−ψ2
n

1√
2rξ

f̂ 2†
n

(
ξ ∂φ + ∂φξ

)
ψ1
m

1√
2rξ

f̂ 1
m

]

−2rCξ m
sgn(φ)

2rξ

[
ψ1
n f̂ 1†

n · ψ2
m f̂ 2

m + ψ2
n f̂ 2†

n · ψ1
m f̂ 1

m

]}
.

(A.6)

Carrying out derivatives leads to terms, which cancel in a
nice way because of the carefully chosen ansatz (6) and we
obtain

Smass =
∫

d4x
∫

dφ
∑
n

∑
m

{
ψ1
n f̂ 1†

n

(
−∂φ

r

−m sgn(φ)C) ψ2
m f̂ 2

m

+ψ2
n f̂ 2†

n

(
+∂φ

r
− m sgn(φ)C

)
ψ1
m f̂ 1

m

}
. (A.7)

To make use of the already determined scalar product (8),
the functions f̂

1/2
n are constructed as eigenfunctions of the
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Hermitian operator
(
± ∂φ

r − mC ′
)

. This condition is a sys-

tem of coupled, first order differential equations (10), which
fixes the shape of the KK spectrum, while Eq. (8) fixes nor-
malization.

AppendixB:Calculationof the zeromode correction inte-
gral

Beginning with Eq. (10), we make the zeroth KK mass M0

to vanish. This way, the equations decouple and we are left
with a simple equation

(
∓∂φ

r
− m

)
f̂

2/1

0 = 0. (B.8)

This equation can be solved via the separation of variables
method, yielding

f̂
2/1

0 (φ) = K̂
2/1

0 exp (∓2rmφ). (B.9)

The second condition in Eq. (8), the scalar product of the
defined functions, gives us the normalization

∫
dφ f̂

2/1

0 (φ) f̂
2/1 †
0 (φ) = 1 (B.10)

⇒
(
K̂

2/1

0

)2 = ∓2rm

exp (∓4πrm) − 1
(B.11)

Using the definition of the correction integral Ĩ
2/1

00 =∫
dφ f̂

2/1 †
0

C
B f̂

2/1

0 − 1 , we obtain

Ĩ
2/1

00 =
m
k

m
k ± 1

exp
(
4πkr

(∓m
k − 1

))− 1

exp
(∓4πkr m

k

)− 1
. (B.12)

In the limit of m
k → 0 an equality between Ĩ 1

00 and Ĩ 2
00 is

achieved. In this case the correction integral breaks down to
the value in Eq. (13).

Appendix C: Calculation of the ADR

Starting from the 4D-Lagrangian Lint = vLintv in Eq. (12)

in interaction space, we rotate to propagation space via a
unitary transformation U so that

Lint = (
φ, χ, ξ

)
U †Lint U
︸ ︷︷ ︸

=:Lpro

⎛
⎝

φ

χ

ξ

⎞
⎠ (C.13)

holds. The eigenvalue equation

det

(
Lint − 13 ⊗ λ

)
= 0 (C.14)

of the external structure can be written in Fourier space as

det

(
V W

X Y

)
= det

⎡
⎢⎢⎢⎣
(
V 0
X 1

)

︸ ︷︷ ︸
:=A

(
1 V

−1
W

0 Y − XV
−1

W

)

︸ ︷︷ ︸
:=B

⎤
⎥⎥⎥⎦,

if V is invertible

= det (A) det (B)

= det (V) det (Y − XV
−1

W).

(C.15)

where

V = /p W = (
0 y0v

)

X = (
0 y0v

)T
Y =

(
/p + Ĩ00 pkγ k κ

κ /p

)
.

(C.16)

This leads to the solution

0 = (
/p − λ

)3 + Ĩ00 pkγ
k [(/p − λ)2 − y2

0v2]

− [
y2

0v2 − κ2] (/p − λ) (C.17)

y2�1⇒ λ ≈ /p ∨ λ ≈ /p + Ĩ00 pkγ k

2
±

√
4κ2 +

(
Ĩ00 pkγ k

)2

2
.

(C.18)

These correspond to the eigenvalues of propagation.
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