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Abstract We consider the central exclusive production of
high ET jets pp → p + (X + dijet) + p. In particular we
study the possible contamination of the purely exclusive sig-
nal by semi-exclusive production where no other secondaries
are emitted in one hemisphere, between the highest ET dijet
and the recoil proton, while in the other hemisphere a third
jet, plus possibly additional hadron activity, is allowed, but
still separated from the incoming proton by a large rapidity
gap. This process arising from the fusion of a hard and a soft
Pomeron has not been considered before. It turns out that
it gives a negligible contribution. The calculation involves a
careful treatment of the QCD colour structure of the ampli-
tudes.

1 Introduction

Central Exclusive Production (CEP) of high ET jets is of
interest for at least two reasons. First, due to its relatively
large cross section it plays the role of a ‘standard candle’ for
the calculations of different CEP cross sections [1]; in partic-
ular, for the evaluation of the chance to observe new Beyond
the Standard Model (BSM) physics in the clean environment
provided by CEP kinematics. Next, due to the Jz = 0 selec-
tion rule [2,3], the production of quark jets is strongly sup-
pressed by a factor m2

q/E
2
T (where mq is the quark mass).

Therefore in the CEP process we observe the gluon jets with a
good purity.1 Thus we have a ‘gluon factory’ which provides
an excellent possibility to study gluon jets [5].

Exclusive dijet production pp → p + dijet + p is
shown symbolically in Fig. 1a. Within the perturbative QCD
approach the Pomeron may be described at lowest order in
αs by the two gluon exchange diagram, and we are led to

1 In principle, away from the exact forward region there is a |Jz | = 2
contribution, see e.g. [2,3]. However an explicit calculation in [4] shows
that the contribution of such a term is very small ∼ 1%.

a e-mail: a.d.martin@durham.ac.uk

diagram Fig. 1b. At the lowest αs order the CEP dijet cross
section was calculated in [6]. More precise results account-
ing for the leading logarithmic corrections were obtained in
[7] (see also the reviews [4,8]).

However experimentally it is challenging to observe only
two jets, without any additional secondaries. As a rule besides
the two high ET jets there are other particles, with smaller
transverse momenta, pt , and it is not quite clear whether
these particles were produced during the jet hadronization or
whether they must be considered as an additional relatively
low ET jet. Moreover, it is not excluded that some low pt
particles were missed by the detector.

For example, in order to select pure CEP dijets in the CDF
experiment [9] the ratio , R j j , of the dijet mass, Mj j , to the
mass of the whole central system, MX was plotted. Pure CEP
events should correspond to a peak at R j j = Mj j/MX = 1.
Unfortunately the peak at R j j = 1 is not well manifested
on the top of the background caused by Double Pomeron
Exchange (DPE) contribution,2 that is inclusive dijet produc-
tion in Pomeron-Pomeron collisions (sketched in Fig. 1c).
The peak looks more like a shoulder in R j j distributions of
events with ET > 10 GeV (Fig. 14a of [9]) and only one
point which exceeds the background by 1.5σ can be seen in
Fig. 14c for ET > 25 GeV.

DPE production can be described in terms of diffractive
parton distributions (dPDF). The dPDF, that is the distribu-
tion of partons inside the Pomeron, was measured at HERA
by selecting Deep Inelastic Scattering (DIS) events with a
Large Rapidity Gap (LRG) between the incoming proton
and the hadron system produced by a heavy photon (or by
selecting events with a leading proton carrying away a large
momentum fraction xL → 1) [11,12]. The cross section
of DPE dijet production is given by the convolution of the
‘hard’ 2 → 2 matrix element squared with the parton distri-
butions originating from the two Pomerons. It was calculated

2 See the discussion in [10].
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Fig. 1 Exclusive (a, b) and
semi-exclusive (c) high ET dijet
production via
Pomeron-Pomeron fusion; in the
case of diagram (b) the
perturbative QCD Pomeron is
represented schematically by the
two gluon exchange
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Fig. 2 Diagrams for three jet production via the fusion of a ’soft’
(upper) and the ’hard’ Pomeron. Two highest pT jets are produced
in the fusion of a ’hard’ Pomeron with the parton (shown as a gluon)
from the soft Pomeron PDF. The momenta transferred to the hard matrix
element by the hard Pomeron (Q) and the parton from the soft Pomeron
(k) together with the momenta of produced jets are indicated in a while
the colour indices of the incoming and outgoing gluons (quarks) are
shown in b

in [6,13] and implemented in Monte Carlo generators, like
e.g. POMWIG [14].

As seen from Fig. 1c, while pure CEP events at the par-
ton level have only two high ET jets, for a DPE process at
least four partons/jets are produced - the two high ET jets
together with two spectators which are needed to compen-
sate the colour of the parton extracted from the incoming
Pomeron; besides this there may be other partons (shown by
the dotted lines in Fig. 1c) radiated during the dPDF evolu-
tion. For this reason the ratio R j j < 1 for DPE events.

The aim of this paper is to consider an ‘intermediate’ con-
figuration between the CEP and DPE possibilities – that is
dijet production due to the collison of a parton from the dPDF
of a ‘soft’ Pomeron on one side with the CEP-like ‘hard’
Pomeron on the other side. At the lowest αs order this corre-
sponds to three-jet production – a pair of high ET jets and a
jet-spectator from the soft Pomeron, see Fig. 2a.

Strictly speaking an analogous three-jet configuration can
be produced in pure CEP events as well. One has just to

consider the gg → 3-jet hard subprocess. For a pure CEP
case this was done in [15]. Another approach was used in
[16]. In this paper the configuration where the third jet has
a relatively small momentum jet (kt � pT ) was considered.
However here it was not the pure exclusive kinematics since
the cross section includes the processes in which additional
(softer) jets with kt > 1.5 GeV can be radiated.

Note that when the intercept of the Pomeron trajec-
tory, αP (0), is close to 1 there is practically no interfer-
ence between the pure CEP(3-jet) and the CEP(2-jet)⊗DPE
amplitudes. Soft Pomeron exchange in the DPE amplitude
produces an additional (imaginary) factor i . Thus we may
consider the pure CEP(3-jet) and the CEP(2-jet)⊗DPE cross
sections separately.

The outline of this paper is as follows. In Sect. 2 we
describe the detailed structure of the CEP⊗DPE amplitude
and show that it can be ‘factorized’. That is, the result can
be written as the convolution of a hard 2 → 2 matrix ele-
ment and an integral over much smaller transverse momenta.
Next, in Sect. 3, we obtain an expression for the effective
luminosity, corresponding to ‘hard’-to-‘soft’ (CEP⊗DPE)
Pomeron-Pomeron fusion, for this semi-exclusive process
and to describe its main elements, in particular, the Sudakov
T -factor and incoming parton distributions. Recall that this
effective luminosity includes all the components which are
driven by the relatively soft scale fixed by the transverse
momentum, k � ET , of a relatively soft third jet. We dis-
cuss different ways to introduce the infrared cutoff, either
by an effective gluon mass or by the Sudakov T -factor and
the incoming unintegrated parton distributions. The hard dijet
cross sections of the relevant subprocesses are given in Sect. 4
while the numerical estimates of the expected cross section
are presented in Sect. 5. We conclude in Sect. 6.

2 Soft-hard factorization

Here by factorization we mean that we can separate the cal-
culation of the hard 2 → 2 subprocess cross section for
exclusive production of the high ET dijet from that for semi-
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Fig. 3 Three diagrams which describe the imaginary part of exclusive
3-jet production amplitude. The momenta, q1,2, of incoming gluons
from the hard Pomeron and the parton, k, from the soft Pomeron are
indicated in a; pT is the hard jet momentum. Momentum fractions, x1,

and β carried by the active gluon in hard Pomeron and by the parton in
soft Pomeron are shown in b. Lorentz indices of the partons incoming
the hard matrix elements are marked in c

exclusive production involving low kt jets. In the calculation
of the latter, which includes the incoming parton densities,
we introduce an ‘effective luminosity’, see Sect. 3.3.

This effective luminosity is formed at a rather low scale
driven by the relatively small transverse momentum, kt , of the
third jet. On the other hand the hard dijet cross section occurs
at a large (∼ ET ) scale. The Sudakov factor, which accounts
for the probability not to radiate additional partons in the
interval between kt and ET , is included in the ‘effective’
luminosity.

The amplitude of CEP⊗DPE dijet production is shown
symbolically in Fig. 2a and b where both the soft and hard
Pomerons are replaced by two gluon exchange diagrams.
Let us denote the transverse momentum3 of the parton com-
ing from the upper soft Pomeron by k, and the transverse
momenta of left and right gluons which compose the bot-
tom Pomeron by q1, q2. If Q is the transverse momentum
transferred to the recoil proton, then q1,2 = q ± Q/2.

Since the value of Q2 is limited by the proton form factor
the integrals over q and k (which appear when we calculate
the cross section) are ultraviolet (UV) convergent, while the
infrared (IR) behaviour is regularized by an effective gluon
mass,mg = 0.6−0.8 GeV (see e.g. [17,18]) or by the proton
size (in both cases these reflect the confinement effects) and
by the Sudakov T -factor which accounts for the probability
not to radiate additional relatively soft gluons in the parton-
Pomeron fusion process forming the high ET dijet. This is
the same T -factor which provides the IR cutoff in a pure CEP
amplitude [7,19], see Sect. 3.1.

Since the essential values of q and k are much smaller
than the high ET jet transverse momenta, pT , we can neglect
q1,2 and k when calculating the hard matrix element and use

3 The transverse momenta are shown in Fig. 3a.

the MHV approach (see e.g. [20]) for the hard 2 → 2 sub-
process amplitude. Next, recall that in the Pomeron exchange
amplitude the imaginary part dominates, while the real part
can be restored (if needed) with the help of the well known
signature factor. That is we consider only the corresponding
imaginary part of the amplitude.

This imaginary part is given by the sum of three diagrams
with the cuts shown in Fig. 3 by a vertical dotted line. That is
we have to sum three diagrams: two in which the right gluon
couples to a high ET jet and the third in which it couples to
the upper Pomeron parton-spectator. When the right gluon
couples to a high ET jet it does not affect the kinematics
shown in Fig. 3a (since q2 � pT ). On the other hand in
Fig. 3c, where the right gluon couples to the spectator, we
have to replace the parton momentum k by k − q2. Note that
the final three jet system is colourless. Therefore the sum of
the first two diagrams (Fig. 3a, b) has a colour factor equal
(up to the sign) to that of Fig. 3c.4 Thus we can select (fac-
torize) the soft part of the amplitude, Iμν which includes the
propagators of two (lower) gluons from the hard Pomeron,
the propagator of the parton from soft Pomeron and the corre-
sponding polarization vectors. This is the central factor of the
’effective’ luminosity which should be further multiplied by
the differential hard dijet cross section as it will be explained
in Sect. 3.3.

Iμν =
∫

d2q
q1μ

(q2
1 + m2

g)(q
2
2 + m2

g)

×
[

kν

k2 + m2
g

− (k − q2)ν

(k − q2)2 + m2
g

]
T (q, Mj j ) . (1)

4 In the q2 � k limit, when the gluon wavelength 1/q2 is much larger
than the size of 3-jet system, the gluon q2 probes just the total colour
charge of this colourless system and the interaction amplitude vanishes.
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We include in (1) the Sudakov factor T which accounts for
the absence of radiation of an additional jet since it may
strongly affect the infrared behaviour of the integral. This fac-
tor is given explicitly in the next subsection. The transverse
indices μ, ν = 1, 2 correspond to incoming gluon polariza-
tions which then should be convoluted with the hard matrix
element (shown by blob in Fig. 3). In the left part of the
amplitude we choose the gluon polarization vectors to be

e1,μ � −q1,μ/x1 and ek,ν � −kν/β, (2)

where x1 is the lower proton momentum fraction carried by
gluon q1 while β is the upper Pomeron momentum fraction
carried by the parton k 5 This means that we are working in an
axial/planar gauge or using Gribov’s gauge trick6 replacing
the (lower) proton 4-momentum, pA,μ, by −q1,μ/x1.

For the second (soft in x) gluon in the right part of
the amplitude of Fig. 3 it is better to use Coulomb polar-
ization, that is to use gαβ as the spin part of gluon
q2 propagator. In this case in the upper vertex of the
gluon q2 we have just pA,α . This simplifies the cal-
culation of imaginary part of the diagram, that is the
‘cut’ between the ‘soft’(right) and the ‘hard’ (left) glu-
ons; recall that the hard matrix element is to the left
of the ‘cut’. Clearly the integral (1) has no UV diver-
gency.7

The values of Iμν = Iμν(Q, k) can be calculated numeri-
cally. In order to perform the convolution with the hard matrix
element calculated in terms of helicity amplitudes we con-
sider three possibilities: I (0), I (2) and I (q) corresponding
to whether the high ET dijet is produced by gluon-gluon
fusion in either the Jz = 0 or Jz = 2 helicity states or by
quark-gluon fusion dijet production qg → qg. We introduce
the upper index I (s) (with s = 0, 2, q) in order to consider
in turn the convolution of the soft part with the different
hard matrix elements which may describe either the gluon
(gg → dijet) production in Jz = 0 or |Jz | = 2 helicity
states or qg → qg production. If the parton k is a quark then
the square bracket in (1) should be multiplied by the Dirac
matrix γν . Note that for gg → gg dijet production, Jz is
the projection of the spin of the dijet system on the longi-
tudinal (beam) axis, that is Jz corresponds to the difference
of helicities of the incoming gluons with momenta q1 and
k.

Thus we calculate

I (0)(k) = 1

4

∫
d2Q(Ixx + Iyy)

2 , (3)

5 Factors 1/x1 and 1/β are not included in Iμν but we will account for
them in Sect. 3.3 when calculating the effective luminosity (11).
6 Recall that the left (with respect to the cut) part of the diagram is
gauge invariant.
7 The IR contribution is smeared by the effective gluon mass mg and
the T -factor.

I (2)(k) = 1

4

∫
d2Q

(
(Ixx + Iyy)

2 − 4Ixx Iyy

+ 2Ixy Iyx + Ixy Ixy + Iyx Iyx
)
, (4)

I (q)(k) = 1

4

∫
d2Q(Ixx Ixx + Iyy Iyy + Ixy Ixy + Iyx Iyx ) ,

(5)

where we have used the ‘projectors’ δμνδμ′ν′ for the Jz =
0 state and

(
δμν′δνμ′ + δμμ′δνν′ − δμνδμ′ν′

)
for the Jz =

2 state. Here the indices μ′, ν′ belong to the complex-
conjugated amplitude. For quark-gluon fusion the projector
is δμμ′δνν′ .

Indeed, the projector δμν means that we select the Jz = 0
state and we have to sum over all possible polarizations of
the transverse gluon. That is we obtain

(
Ixx + Iyy

)
. Doing

the same with the complex-conjugated amplitude we obtain
(3). It is not so strightforward with the Jz = 2 amplitude
but multiplying by δμν one can easily check that the product(
δμν′δνμ′ + δμμ′δνν′ − δμνδμ′ν′

)·δμν = 0, that is this projec-
tor does not contain Jz = 0 state while the remaining states
of two gluon system have |Jz | = 2. Finally in the quark case
we just sum up all possible combinations of polarizations.

3 Soft components of production amplitude

Here we discuss the various components that are required in
the calculation of the cross section for semi-exclusive soft
production.

3.1 The Sudakov T factor

The Sudakov form factor correction originates from diagrams
like that show by the dash-dotted line in Fig. 3a. It accounts
for the fact that for exclusive events we do not allow for
standard bremsstrahlung from the colour-charged incoming
gluon (or quark). Within the leading double logarithmic (DL)
approximation the Sudakov T -factor reads

T (q, μ) = exp

(
−Ncαs

4π
ln2

(
μ2/q2

))
(6)

for the case when parton k is a gluon. When parton k is a
quark the colour coefficient Nc = 3 (for the QCD SUc(3)

group) must be replaced by (Nc +CF )/2 = 13/6. Account-
ing for the one-loop running QCD coupling αs(q2) =
(4π/b0)/ ln(q2/	2

QCD), expression (6) takes the form

Tg(q, μ) = exp

(∫ μ2

q2

dκ2

κ2

Ncαs
(
κ2

)
π

ln(κ/(κ + μ))

)
.

(7)
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In practice we use more precise expressions for the quark
and gluon T -factors. These can be found in [21].

The upper limit μ of the integral is taken to be Mj j , the
mass of the high ET dijet system (see [22]), while the lower
cutoff,q2, reflects the cancellation between the coherent radi-
ation from the q1 and q2 gluons for the emission of an extra
gluon with wavelength larger than the size of the colourless
q1 and q2 gluon pair.

Recall that strictly speaking the full T factor correction
depends on a particular jet searching algorithm. Depending
on the algorithm some part of bremsstrahlung emission may
be allowed and included in high ET jet hadronization.

3.2 Incoming parton distributions

Note that, due to the cancellation for k � q between the first
and the second terms in the square brackets of (1), the relevant
values of momentum k is of the order of q. The integral is
UV convergent. The dominant contribution comes from the
low q, k domain with an IR cutoff provided by the T -factor
(6) or (for the case of not too large ET , when the T -factor
is ineffective) by confinement, or by an effective gluon mass
mg .

Note that the calculation of the diagrams of Fig. 3 require
knowledge of unintegrated parton distributions, f a . For the
‘soft’ (upper) Pomeron these explicitly depend on the trans-
verse momentum k, that is f a = f a(xIP , β, k, μ; t) with
a = g, q, where the arguments are defined below. These
unintegrated distributions can be obtained from the (inte-
grated) dPDFs with the help of the KMR/MRW prescriptions
[21,23]. Actually here we use the simplified form

f a(xIP , β, k, μ; t) = ∂

∂ ln k2

[
Ta(k, μ)xaD(xIP , β, k2; t)

]
,

(8)

where aD is the integrated diffractive parton distribution
(dPDF) and x = xIPβ. For aD we take the H1 fit B
parametrization which satisfactorily describes the diffractive
DIS data [11]. Note that the corresponding dPDF depends
on three arguments – the proton momentum fraction, xIP ,
carried by the Pomeron, the Pomeron momentum fraction,
β, carried by the parton, and the scale μ. Besides this there
is the dependence of the Pomeron flux on the momentum
transferred, t (see the parametrization presented in [11]).

The situation for the ‘hard’ (bottom) Pomeron is differ-
ent. When the scale is relatively large, say q1,2 > 1−2 GeV,
we have to replace the two gluon exchange diagram (i.e. the
Low-Nussinov two gluon Pomeron [24,25]) by the General-
ized Parton Distribution (GPD) function8 of proton. That is
instead of the usual (unskewed) PDF we deal with the GPD

8 See e.g. [26] for review.

since the momentum transferred through our Pomeron is not
zero. In particular, the momentum fraction x2 � x1. Since
we are looking for LRG events, the value of x1 � 1 is itself
small and so the Generalized function GPD can be obtained
from the known usual PDF [27,28]. In the limit x2 � x1 the
ratio Rg =GPD/PDF is given by

Rg = 22λ+3

√
π


(λ + 5/2)


(λ + 4)
, (9)

when the small x behaviour of gluons is described by
xg(x) ∝ x−λ and where 
 is the Gamma function.

3.3 Effective luminosity

As shown above, the three jet cross section caused by the
fusion of a ‘soft’ and a ‘hard’ Pomeron can be written as
the convolution of the effective luminosity with the cross
section of the hard subprocess. The non-trivial point is that
now the third jet (with the smaller transverse momentum k
distribution) is included in an effective ‘luminosity factor’,
L(x1, β, xIP ; k, Mj j ). That is the final cross section reads

M2
j j dσ

dY j j dM2
j j dβdk

2
= L

(
x1, β, xIP ; k, Mj j

) dσ̂

dt̂
, (10)

where Y j j is the rapidity of the high ET dijet system and xIP
is the fraction of the proton’s momentum carried by the soft
(upper) Pomeron.

Using the notation I (s) of Eqs. (3–5) we can write the
effective luminosity as

L(s)(x1, β, xIP ; k, Mj j ) = παs(k2)

4
I (s)(k) f a(xIP , β, k, μ)S2 .

(11)

Here f a (a = g, q) denotes the unintegrated diffractive par-
ton distribution produced by the soft (upper) Pomeron; and
β is the fraction of the soft Pomeron’s momentum carried
by the parton k. The factor S2 is the soft gap survival factor
which accounts for the absorptive corrections (see, for exam-
ple, the review in [29]). In other words S2 is the probability
that the LRG will not be filled by secondaries produced by
additional inelastic interactions which may accompany the
main process of Fig. 3.

Note that by using integral (1) in (11) we have assumed
that the hard (lower) Pomeron is described just by the two-
gluon exchange diagram. To be more precise the two-gluon
exchange factor 1/((q2

1 +m2
g)(q

2
2 +m2

g)) should be replaced
by the unintegrated GPD function. That is, when calculating
the I (s)(k) of Eqs. (3–5) we have to use
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Iμν =
∫

d2q
q1μ · Fg(x1, x2; q, μ)

(q2
1 + m2

g)(q
2
2 + m2

g)

×
[

kt,ν
k2 + m2

g
− (k − q2)t,ν

(k − q2)2 + m2
g

]
. (12)

The GPD function Fg in our x2 � x1 limit can be written in
the simplified form [5,30]

Fg(x1, x2; q, μ) = Rg
∂

∂ ln q2

[√
Tg(q, μ)x1g(x1, q

2)
]
,

(13)

where g(x1, q2) is the usual integrated gluon distribution and
Rg is given by (9). Here and below we put for simplicity Q =
0 and omit this argument from now on. Note that working
in terms of unintegrated distributions we have no explicit T -
factor in (12). It is already included in the expressions for f a

and Fg (see (13)).
At first sight it looks as if the integral (12) over q2 has

a logarithmic dq2/q2 form for q2 � k2, and instead of the
unintegrated distribution (13) one can use the full GPD func-
tion taken at a scale equal to k2. However, this is not true.
Expanding the expression in the square brackets in (12) over
the q/k ratio and averaging over the azimuthal angle, we see
that the first term proportional to q/k vanishes, while the
remaining terms do not have a logarithmic structure. Simul-
taneously the integral over the lowest jet momentum k also
has a non-logarithmic form.

Note also that in the denominators 1/k2 and 1/(k − q2)
2,

corresponding to a parton radiated from the soft Pomeron in
(12), we have to keep the full parton virtuality k2 = k2

t /(1 −
β). Therefore, with the previous notation k2 = k2

t we must
replace (12) by

Iμν =
∫

d2q
q1μ · Fg(x1, x2; q, μ)(
q2

1 + m2
g

) (
q2

2 + m2
g

)

×
[

(1 − β)kν

k2 + q2
IP

− (1 − β)(k − q2)ν

(k − q2)2 + q2
IP

]
. (14)

Finally for the unintegrated soft Pomeron distribution f a

we have taken (8) from the fit B parametrization of the
H1 collaboration [11] assuming that at Q2

k < Q2
0 the val-

ues of aD(xIP , β, Qk; t) and ∂aD(xIP , β, Qk; t)/∂ ln Q2
k are

frozen; that is, equal to their value at Q = Q0. For very
small Qk < 1 GeV we put aD(...) ∝ Q2

k but this negligibly
changes the results in comparison with the simple ‘frozen’
assumption (recall that here Q2

k = k2
t /(1 − β)). Note that

in (14) an effective infrared cutoff qIP , corresponding to the
soft Pomeron size, is included in order to have the possibility
of considering Pomerons with a size smaller than that given
by the cutoff mg; we put qIP = 1 GeV (or 0.2 GeV).

4 Hard dijet (2 → 2) cross section

The cross section of hard subprocess of dijet production is
calculated using the MHV formalism [20]. The only non-
trivial point is that now we are not looking for the usual
colour-averaged cross sections, but for cross sections with
the high ET dijet in either a colour-octet state (if the parton
k is a gluon) or a colour-triplet state (if it is a quark). That is,
the hard matrix element M for the differential cross section

dσ̂

dt
= |M|2

16π ŝ2 (15)

is given as follows:

Macd
λcλd

(gg → gg; Jz = 0)

= 1

4(N 2
c − 1)

∑
b,e

f abe
∑
λe,λb

δλbλe M
ebcd
λeλbλcλd

, (16)

Macd
λcλd

(gg → gg; Jz = 2)

= 1

4(N 2
c − 1)

∑
b,e

f abe
∑
λe,λb

δλb−λe M
ebcd
λeλbλcλd

, (17)

Maik
λcλd

(gg → qq̄; Jz = 0)

= 1

4(N 2
c − 1)

∑
b,e

f abe
∑
λe,λb

δλbλe M
ebik
λeλbλiλk

, (18)

Maik
λcλd

(gg → qq̄; Jz = 2)

= 1

4(N 2
c − 1)

∑
b,e

f abe
∑
λe,λb

δλb−λe M
ebik
λeλbλiλk

, (19)

and

Mick
λiλbλcλk

(gq → gq)

= 1

2(N 2
c − 1)

∑
b,i ′

tbii ′
∑
λi ′

δλiλi ′ M
i ′bck
λi ′λbλcλk . (20)

where a, b, c, d, e = 1, 2, . . . , 8 (i, i ′, k = 1, 2, 3) are the
gluon (quark) colour indices, while the λa, λb, . . . = ±1
are the helicities of the corresponding gluon or quark (λi =
±1/2). Mebcd

λeλbλcλd
(gg → gg) and Mick

λi ′λbλcλk (qg → qg) are
the conventional matrix elements. These formulae, with the
unusual clour strcture exposed, are needed for the calculation
of three (or more) jet production.

With this unusual colour structure we now find that the
hard cross sections, averaged over the colours and helicities
of incoming partons and summed for the outgoing partons,
read:

dσ̂ (0)(gg → gg)

dt
= πα2

s N
3
c

(N 2
c − 1)2

1

p4
T

(
1 − 4p2

T

ŝ

)
, (21)

dσ̂ (0)(gg → qq̄)

dt
= 0, (22)
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dσ̂ (2)(gg → gg)

dt
= πα2

s N
3
c

(N 2
c − 1)2

× 1

p4
T

(
1 − 4p2

T

ŝ

) (
1 − 4p2

T /ŝ + 4p4
T /ŝ2

)
, (23)

dσ̂ (2)(gg → qq̄)

dt

= πα2
s N

2
c

4(N 2
c − 1)2

1

p2
T ŝ

(
1 − 4p2

T

ŝ

)(
1 − 2p2

T /ŝ
)

, (24)

dσ̂ q(gq → gq)

dt
= πα2

s

N 3
c (N 2

c − 1)

(
2N 2

c û + t̂

t̂

)2
û2 + ŝ2

16ŝû
.

(25)

where

ŝ = M2
j j , t̂=ŝ(1− cos(θ))/2, û = ŝ(1+ cos(θ))/2,

(26)

are the Mandelstam variables corresponding to the hard sub-
process; θ is the scattering angle in dijet rest system; and
p2
T = t̂ û/ŝ.

Note that in the case of gluon-gluon collisions the factor
(1 − 4p2

T /ŝ) vanishes at θ = π/2. This reflects the fact that
we deal with a gg system in the asymmetric ( f abc tensor)
colour-octet state. Therefore the corresponding (symmetric)
gg wave function has a zero at 90◦.

5 Numerical example

The above formulation allows the evaluation of the role of
‘soft-hard’ Pomeron fusion as a background to CEP high
ET jet production. As a numerical example we calculate the
cross section of central semi-exclusive dijet production at√
s = 13 TeV for jets with pT = 30 GeV and rapidity

of dijet system Y j j = 0. We take the dijet scattering angle
θ = 45o (in dijet c.m.s.) in order not to affect the result
by the vanishing of gluon-gluon induced colour-octet cross
sections (21,23,24) at θ = 90o. That is the two high ET

jets are separated by the pseudorapidity interval �η = 3.5
(corresponding to jets with η j = ±1.75). We sum over all
types of parton jets. That is, a jet may be a gluon or a light
quark (u, d, s, c) jet.9 Next the dijet system is accompanied
by a softer third jet, allowing transverse momentum k3 < pT .
Specifically we consider k3 < 3, 6 and 10 GeV. In addition
we allow radiation from the soft Pomeron with ki < k3.
The results are shown in Fig. 4; we plot the distribution over
the ratio Mj j/MX = R j j = β and compare this with the
cross section of pure exclusive dijet production (shown by the
dashed line in the upper right corner). For the ‘hard’ Pomeron

9 We take the survival factor S2 = 0.02 as in model-2 of [31].

dσ/dYdΔηdβdpt
2  (fb/Gev2)

Rjj=β

CEP 2 jets x10-3

m
g =0.7 GeV

q
I  =1 GeV
P

k
3 < 3 GeV

k
3< 10 GeV

k
3 < 6 GeV

Fig. 4 The cross section of three jet semi-exclusive central production
integrated over the third jet transverse momentum k3 up to 3, 6 and 10
GeV (respectively shown by blue, black and red continuous curves) at√
s = 13 TeV as the function of the ratio R j j = Mj j/MX . The two

high ET jets have pT = 30 GeV and pseudorapidities η j = ±1.75,
Y j j = 0. An infrared cutoff mg = qIP = 0.2 GeV was used for the
main calculation shown by continuous curves. Two alternative choices
of cutoff are also shown: mg = 0.7 GeV corresponding to the long
dashed curve with k3 < 6 GeV, while qIP = 1 GeV and mg = 0.2
GeV corresponds to the lower dashed curve (k3 < 6 GeV). The pure
exclusive dijet cross section reduced by factor of 1000 is shown by
the horizontal short dashed line. We used the integrated MMHT2014
parton distributions [32] (for the ’hard’ Pomeron) and the H1 fit B for
the diffractive parton distributions [11] for the soft Pomeron

we use the integrated parton distributions of [32] and for the
‘soft’ Pomeron) the diffractive parton distributions of H1 fit
B [11].10

As emphasized above, the major contribution comes from
the relatively low transverse momenta of the third jet; the dif-
ference between the blue (k3 < 3 GeV) and the red (k3 < 10
GeV) curves is rather small. This fact justifies the possibility
of calculating such a 3-jet cross section using the factoriza-
tion approach.

All the continuous curves were calculated using a weak
infrared cutoff of about 1 fm (mg = qIP = 0.2 GeV). A
stronger IR cutoff, shown by the dashed curves, reduces the
cross section by a factor of about two.

In comparison with the pure exclusive (CEP) dijet produc-
tion (shown by the horizontal dotted line) the contribution of
production driven by the soft-hard Pomeron fusion mecha-
nism is practically negligible. It is smaller by three orders
of magnitude. Recall that the probability of radiation of a
third jet from the hard matrix element in hard-hard Pomeron

10 The NLO DGLAP evolution of fit B input distributions was per-
formed by QCDNUM program [33].
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(CEP) fusion is about 10% [15]. The role of DPE dijet pro-
duction was studied in [16]. There the authors accounted for
the fact that due to detector resolution and the jet searching
algorithm, the CEP peak is washed out and has a maximum
at R j j � 0.9. Allowing for the initial-state shower, that is
including the DPE contribution, the cross section obtained
in [16] already at R j j = 0.9 exceeds the CEP component by
more than a factor of 2.

Such a strong suppression of ‘hard-soft’ Pomeron fusion is
caused by the asymmetric structure of the amplitude. Besides
the αs suppression (in which the small value of coupling is
not compensated by the logarithmic transverse momentum
integration

∫
dk2

t /k
2
t ) our hard matrix element has an addi-

tional smallness due to the fact that we are looking for the
production of large ET jets in an asymmetric colour octet
state. Recall that the elementary dijet cross sections (21–24)
vanish at θ = 90o. Thus the absence of large logarithms in
the kt and qt integrals over the incoming parton momenta and
the numerically small factors coming from the asymmetric
angular integrations, result in a very small contribution of
this mechanism to the final high ET jets cross section.

6 Conclusion

We have considered the possibility of semi-exclusive high
ET dijet production accompanied by a third jet with smaller
transverse momentum plus the possibility of additional radi-
ation coming from soft Pomeron spectators. That is jet pro-
duction from soft-hard Pomeron fusion.

We have shown that the cross section of such a process can
be calculated using the factorization of hard dijet cross sec-
tions and an effective luminosity which describes the prob-
ability to find appropriate incoming partons and to emit the
third jet. Moreover the role of the infrared cutoff was studied.

We found that the contribution of this channel is quite
small in comparison with pure CEP dijet production. This
fact, which was not evident a priori, greatly simplifies the
calculation and interpretation of the exclusive (and semi-
exclusive) high ET jet production since one can neglect the
hard-soft Pomeron fusion contribution.

Note that the cross section that we have calculated is just
the simplest example of processes which may arise from the
fusion of two different structures of the Pomeron. The result
that processes caused by soft-hard Pomeron fusion can be
factorized, as the convolution of a pure hard matrix element
and an effective luminosity calculated at a much lower scale,
has a universal nature. That is, the effective luminosity can
be applied to other central diffractive processes. However, as
we have shown in our 3-jet example, the cross section aris-
ing from hard-soft Pomeron fusion turns out to be small. Of
course, in cases where the original CEP amplitude is sup-
pressed, for example by the Jz = 0 selection rule as in bb̄

production, then the hard-soft fusion contribution may be
noticeable.
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