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Abstract The extraction of Compton form factors (CFFs)
in a global analysis of almost all deeply virtual Compton scat-
tering (DVCS) proton data is presented. The extracted quan-
tities are DVCS sub-amplitudes and the most basic observ-
ables which are unambiguously accessible from this process.
The parameterizations of CFFs are constructed utilizing the
artificial neural network technique allowing for an impor-
tant reduction of model dependency. The analysis consists of
such elements as feasibility studies, training of neural net-
works with the genetic algorithm and a careful regulariza-
tion to avoid over-fitting. The propagation of experimental
uncertainties to extracted quantities is done with the replica
method. The resulting parameterizations of CFFs are used to
determine the subtraction constant through dispersion rela-
tions. The analysis is done within the PARTONS framework.

1 Introduction

An intense experimental activity has been dedicated over the
last twenty years to the measurements of observables towards
a 3D description of the nucleon. Most of the knowledge about
the 3D quark and gluon structure is embodied in General-
ized Parton Distributions (GPDs) and Transverse Momentum
Dependent parton distribution functions (TMDs). The con-
tinuing efforts in understanding and determining GPDs and
TMDs are partly driven by the quest for nucleon tomogra-
phy in mixed position-momentum space or pure momentum
space (see e.g. Refs. [1,2] and refs. therein), the access to the
nucleon energy-momentum tensor [3,4] and the description
of the mechanical properties (radial and tangential pressures,
energy density, surface tension, etc.) of the nucleon [5–8].

Relations between measurements and GPDs or TMDs
are derived through factorization theorems, established at
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all order in QCD perturbation theory (pQCD). In particular,
this connection can be brought under good theoretical con-
trol with a careful and systematic check of various pQCD
assumptions. This task requires a sophisticated and modu-
lar computing machinery with fitting features. In the con-
text of GPDs, the open-source PARTONS framework [9] has
been designed and publicly released to fulfill the needs of the
experimental and theoretical GPD communities.

From a theoretical point of view, Deeply Virtual Comp-
ton Scattering (DVCS) is the cleanest channel to access
GPDs. Recent status of the phenomenology of this channel
can be found in Ref. [10] and of the related collected data
sets in Ref. [11]. The DVCS cross section is described in
terms of Compton form factors (CFFs), which are convolu-
tions of GPDs with coefficient functions computed order by
order in pQCD. While GPDs are in principle renormaliza-
tion and factorization scale-dependent, CFFs do not depend
on any arbitrary scales, and are the off-forward analogs of
the classical structure functions of Deeply Inelastic Scat-
tering (DIS) – with GPDs being the off-forward extensions
of the Parton Distribution Functions (PDFs) extracted from
DIS.

Global GPD fits over the whole DVCS kinematic domain,
from the glue to the valence region, have not been achieved
yet. However, a great deal is already known about CFFs,
in particular in the valence region. This is indeed precious
knowledge: due to the scale dependence, GPDs can only
be promoted to the status of quasi-observables thanks to
universality (the same GPDs should allow the simultane-
ous analysis of several independent exclusive processes),
while CFFs are genuine observables. Hence measuring CFFs
is an interesting task per se. Moreover, having a unified
description of all existing DVCS measurements in terms of
CFFs is important in view of the definition of future experi-
mental programmes: one has to select an observable to be
measured, specify the kinematic region, and evaluate the
required uncertainty in order to make substantial progress
in the understanding of the DVCS process. This is partic-
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ularly relevant for future experimental campaigns at Jef-
ferson Lab or for Electron-Ion Collider (EIC) design stud-
ies.

As mentioned in Ref. [10], the attempts to determine
CFFs from experimental data mostly fall into two cate-
gories:

Local fits CFFs are independently determined from mea-
surements between different kinematic bins. This amounts
to a sampling of CFFs over the probed kinematic domain.
The model-dependence of the result is low, but most of the
time, the problem is ill-posed by lack of uniqueness.

Global fits The free coefficients of a CFF parameteri-
zation are matched to experimental data. Kinematic bins
are no more treated independently. Interpolating between
measurements of the same observable on neighboring kine-
matic bins is feasible. Extrapolating out of the domain con-
strained by measurements becomes possible, paving the way
for impact studies. However the estimation of the systematic
uncertainty associated to the choice of a parameterization
is an extremely difficult task, and this is a limit to potential
impact studies.

A possible solution to the tension between the advantages and
drawbacks of these two approaches may be found in Artifi-
cial Neural Networks (ANNs) [12]. While being of common
use for PDFs today, their role in GPD-related physics has
been assessed (to the best of our knowledge) only in the pio-
neering work of Kumerički, Müller and Schäfer [13]. ANNs
offer the joint promise of a great flexibility and of a common
description of data sets in different kinematic regions. This
difficulty of this last point should not be underestimated. In
our previous fit of CFFs from almost all existing DVCS data
[14], our physically-motivated choice of CFF parameteriza-
tions restricted the scope of our study to the quark sector.
There is a need for flexible parameterizations while escap-
ing at the same time the curse of dimensionality, and in this
respect, ANNs are quite appealing solutions.

We present here the first global fit of most existing DVCS
measurements in terms of CFFs described by neural net-
works. The paper is organized as follows. In Sect. 2 we
briefly introduce the DVCS channel, define CFFs and stress
their role in dispersion relations. Section 3 is a reminder of
ANN technique and of the genetic algorithm. Our imple-
mentation of those techniques and the main elements of our
analysis are detailed in Sect. 4. We point out the experimental
data being used in this fit in Sect. 5, and outline our results
with a focus on the DVCS subtraction constant in Sect. 6.
This discussion is of major contemporary interest since it is
related to the measurability of the distribution of pressure
forces in the proton [7,8,15,16]. At last we summarize in
Sect. 7.

2 Theory framework

The golden channel in the GPD extraction programme is the
leptoproduction of a single real photon off a nucleon:

l(k) + N (p) → l(k′) + N (p′) + γ (q ′). (1)

Here, the symbols between parentheses denote the four-
momentum vectors of the lepton, l, the nucleon, N , and of
the real photon, γ . The amplitude for this process, T , is given
by a sum of amplitudes for two processes having the same
initial and final states: T BH for the purely electromagnetic
Bethe-Heitler process and T DVCS for the hadronic DVCS
process, such as:

T = T BH + T DVCS. (2)

The Bethe-Heitler part can be expressed with a great preci-
sion in terms of the nucleon electromagnetic form factors.
The DVCS part is generally parameterized by twelve helic-
ity amplitudes [17], or equivalently twelve CFFs. However,
in this analysis we restrict ourselves only to four of them,
which can be related to the leading-twist, chiral-even GPDs.
Those CFFs are usually denoted by H, E , ˜H and ˜E , and
nowadays they are the most extensively studied ones in the
context of GPD phenomenology. The exploration of other
CFFs, which can be related to either higher-twist or chiral-
odd GPDs, suffers from the sparsity of data collected in the
kinematic domain where the factorization theorem applies.

The cross section for single photon production is usually
expressed in terms of four variables: (i) the usual Bjorken
variable, xBj = Q2/

(

2p · (

k − k′)), (ii) the square of the
four-momentum transfer to the target nucleon, t = (p′− p)2,
(iii) the virtuality of the exchanged photon, Q2 = −q2 =
−(k′ − k)2, and (iv) the azimuthal angle between the lep-
tonic (spanned by incoming and outgoing lepton momenta)
and production (spanned by virtual and outgoing photon
momenta) planes. In the case of a transversely polarized tar-
get one also introduces the angle φS between the leptonic
plane and the nucleon polarization vector. It is also conve-
nient to exchange the usual Bjorken variable for the general-
ized one:

ξ = − (q + q ′)2

2(p + p′)(q + q ′)
, (3)

which in the case of DVCS is approximately equal to the
skewness variable:

η = (q ′ − q)(q + q ′)
(p + p′)(q + q ′)

. (4)

In this paper a set of lengthy formulae relating CFFs with
cross sections is omitted for brevity, but those can be easily
found e.g. in Ref. [18]. The unpublished analytic expressions
of BH and DVCS amplitudes by Guichon and Vanderhaeghen
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are used in this analysis, as implemented and publicly avail-
able in the PARTONS framework [9]. Let us note at this
moment that the leptoproduction of a single real photon is
sensitive to the beam charge, but also to the beam and target
polarization states. This gives rise to exclusive measurements
performed with variety of experimental setups, allowing for a
combination of cross sections to probe specific sub-processes
(BH, DVCS or the interference between them) or combina-
tions of CFFs. Experimental data used in this analysis will
be introduced in Sect. 5.

Our goal here is a global analysis of DVCS data avoiding
any model-dependency whatsoever. We separately extract the
real and imaginary parts of the four aforementioned CFFs
in the three-dimensional phase-space of (ξ , t , Q2). During
the extraction we do not exploit the fact that the real and
imaginary parts of a single CFF can be related together by
a fixed-t dispersion relation (see Ref. [19] for a study at all
orders in pQCD):

ReG(ξ) = CG

+ 1

π

∫ 1

0
dξ ′ ImG(ξ ′)

[

1

ξ − ξ ′ ∓ 1

ξ + ξ ′

]

, (5)

Here, G ∈ {H, E, ˜H, ˜E} denotes a single CFF with t and
Q2 dependencies suppressed for brevity, one has minus sign
for G ∈ {H, E} and plus sign for G ∈ { ˜H, ˜E} in the square
brackets, and where CG is a subtraction constant associated
to the corresponding CFF (and GPD), where:

CH = −CE , (6)

C
˜H = C

˜E = 0. (7)

The dispersion relation is only used afterwards to determine
the subtraction constant from the extracted CFF parameter-
izations. This quantity has on its own important interpreta-
tion in terms of strong forces acting on partons inside the
nucleon as shown in the recent review Ref. [7]. We also use
the requirement of having CG independent on ξ as a consis-
tency check of our analysis.

Although hadron tomography [20–22] is a very important
motivation for the phenomenology of the DVCS process, in
the present analysis we restrict ourselves to (quasi) model-
independent statements. Therefore we will only sketch what
we can foresee from the obtained results and leave detailed
quantitative tomographic interpretation for future studies.

3 Methodology

To make this paper self-contained, we remind here some ele-
ments of the theory and practice of ANNs and genetic algo-
rithms, and introduce the associated terminology.

(a)

(b)

Fig. 1 a Example of a typical feed-forward neural network. The net-
work processes three input variables to give two output values (3 → 2),
with the architecture made out of two hidden layers. The first hidden
layer contains five neurons, while the second one is made out of four
neurons. b Schematic illustration of a typical neuron. In this example it
is connected to three different neurons belonging to a previous layer of
the network. For the explanation of symbols see the text

3.1 Artificial neural networks

ANNs [12] are systems processing information. What dis-
tinguishes those systems from other information techniques
is a unique inspiration from Nature, namely by biological
neural networks making human and animal brains. All neu-
ral networks have a similar structure made out of simple,
but highly connected elements called neurons. In this work
we will exclusively focus on feed-forward neural networks,
but many other types of ANNs exist. Their usefulness in
the study of hard exclusive reactions has not been assessed
yet.

An example of a typical feed-forward neural network
structure is shown in Fig. 1a. The data are processed layer-
by-layer. One can distinguish three type of layers: (i) one
input layer, storing and distributing input information, being
the first layer of the network, (ii) a number of hidden layers
processing information and (iii) one output layer, aggregat-
ing and returning output information, being the last layer of
the network. The number of hidden layers is a parameter of
the network architecture.

In machine learning neurons share a similar structure
shown in Fig. 1b. A single neuron processes informa-
tion by evaluating two functions: (i) combination function,
f iΣ, j (

�β i
j , �vi−1), and (ii) activation function, , so that

the overall neuron’s output, vij , is given by:
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(8)

Here, the index i identifies a specific layer of the neu-
ral network, while j denotes a single neuron in that layer.
The vector �β i

j contains a so-called bias, β i
j0, and all weights

associated to the input nodes, β i
jk , with k = 1, 2, . . . The

vector �vi−1 contains values returned by neurons in the pre-
vious layer, vi−1

k , where again k = 1, 2, . . . The role of the
combination function is the aggregation of input information
to a single value to be processed by the activation function.
A typical combination function is based on the dot product
of two vectors:

f iΣ, j (
�β i
j , �vi−1) = β i

j0 + β i
j1v

i−1
1 + β i

j2v
i−1
2 + . . . (9)

The activation function gives an answer returned by the
neuron. It can be a numeric value, but it can be also a binary
answer (“yes” or “no”), which is typically used in classifica-
tion applications. Many types of activation functions exist. In
this work we use the hyperbolic tangent function for neurons
in the hidden layers,

(10)

and the linear function (identity) for neurons in the output
layer,

(11)

We illustrate both functions with Fig. 2. For the hyperbolic
tangent function one can spot an active part near −1 < x < 1
where the signal is processed almost linearly. Outside this
range a saturation appears, so that the input signal is blocked,
i.e. it is not processed by a neuron in an effective way. Those
features put extra constraints on input data to be processed
by the network. In particular, those data must be normalized
to the range of (−1, 1), so they can be processed by the first
layer of the network.

Biases and weights are free parameters of neural networks.
Instead of predefining those parameters a training is done,
and only during that training biases and weights are fixed to
accommodate the network’s answer to the stated problem.
Such training is done with a training sample, which should
be as representative as possible for the problem under con-
sideration. Both input and output information are known for
the training sample.

In a wide variety of applications neural networks are
trained with the back-propagation algorithm [23]. This algo-
rithm minimizes the so-called cost function (e.g. root mean
square error, RMSE) against the training sample. Such a min-
imization usually is straightforward, as typically the cost
function is analytically differentiable with respect to each
parameter of the network, so that its gradient is known in the
space of those parameters. However, there are cases where

Fig. 2 Hyperbolic tangent (solid curve) and linear (dashed curve) acti-
vation functions

the back-propagation algorithm (or similar) cannot be used.
Those are in particular problems with the differentiation of
the cost function being practically difficult. In those cases
one can evaluate the gradient numerically. Eventually, one
can use the genetic algorithm [24], which we will describe in
the next paragraph. It is a popular replacement for the back-
propagation algorithm in the context of machine learning. In
particular, the genetic algorithm is used in this analysis, as a
differentiation of cross sections and other observables with
respect to the free parameters of CFF parameterizations is
not straightforward.

3.2 Genetic algorithm

The genetic algorithm [24] is a heuristic technique used
for search and optimization purposes. It is applicable in
particular whenever standard minimization techniques fail
because of the complexity of the problems under consider-
ation. Because of that, but also because of a unique ability
to avoid local minima, the genetic algorithm is commonly
used in physics, mathematics, engineering and manufactur-
ing. It is frequently used for the learning of neural networks,
where it supervises the search of biases and weights against
the training sample.

The genetic algorithm mimics mechanisms of reproduc-
tion, natural selection and mutation, all being the corner-
stones of the evolution process known from Nature. It uti-
lizes nomenclature inspired by the natural evolution process.
A population is a set of possible solutions to the stated prob-
lem. A single solution is referred to as a candidate and it
is characterized by a set of genes making up a genotype. In
the following, we will thus speak equivalently of candidates
and genotypes. The usability of single candidates in solving
problems is examined by a fitness function, whose argument
is the genotype. To help the reader understand this nomen-
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Fig. 3 Scheme of the genetic algorithm

clature we explain it with an example of a multidimensional
fit to experimental data. In such a fit a single fitted param-
eter may be identified as one gene, while a complete set of
those parameters as the genotype. The ability to describe
experimental data by a given set of parameters is typically
examined with a χ2 function, which in this case we will refer
to as the fitness function. A set of possible solutions makes
the population. We point out that in general the implemen-
tation of introduced terms strongly depends on the problem
under consideration.

The genetic algorithm is iterative, that is, it consists of sev-
eral steps being consecutively executed in a loop, until one
of well defined conditions, referred to as stopping criteria, is
fulfilled. The algorithm is described with the help of Fig. 3. (i)
In the first step an initial population is generated. A number
of candidates making up this initial population is a parameter
of this algorithm. The creation of a new candidate consists
for instance of the random generation of its genotype with
gene values laying in defined ranges. (ii) Each candidate is
evaluated by acting on its genotype with the fitness function.
The resulting fitness score indicates how good the candidate
is accommodated to the stated problem. Then, all the candi-
dates are sorted according to those scores. The one having
the most preferable score is considered as the best one. (iii)
Stopping criteria are checked and the algorithm is stopped if
one of them is fulfilled. In such a case the genotype of the
best candidate is considered as the solution. A possible stop-
ping criterion is for instance a threshold on the fitness score
of the best candidate or a threshold on the number of iteration
epochs that has passed already. (iv) A fraction of candidates
being identified by the worst fitness scores is removed from
the population and forgotten. Their place in the population
is taken by new candidates carrying genes of the remaining
candidates. That is, two or more remaining candidates pass

(a)

(b)

(c)

Fig. 4 Illustration of under-fitting, proper fitting and over-fitting.
Training data are represented by points, while the effect of a training
procedure is represented by red solid curves. The same training data are
used in all three cases

a fraction of their genotypes to a new candidate in a hope of
creating even a better adapted individual. This step is known
as the reproduction or cross-over. (v) A random fraction of
genes in the population is modified. This modification may
consist of the random generation of a new gene value within
a specified range (as during the initialization) or it can be a
small shift with respect to the original gene value. The pur-
pose of this step, which is known as the mutation, is to keep
the population diverse. The mutation probability cannot be
too high, as in such a case the genetic algorithm becomes a
random search. The mutation ends a single epoch, so that the
algorithm proceeds with the evaluation as the next step.

3.3 Regularization

Two extreme cases of failure in the learning procedure are
known as under-fitting and over-fitting. A compact explana-
tion of those effects goes as follows. Under-fitting results in
a lack of success in describing the training sample, as well as
any other sample, while over-fitting is having a model being
too flexible, which is not able to describe data other than the
training sample. Over-fitting usually happens either because
the model memorizes a noise present in the training sample,
or because it becomes too flexible in a range between train-
ing points. The extrapolation does not count here, as neural
networks typically become pliant outside ranges covered by
the training sample. Both effects, together with the case of
proper training, are graphically illustrated in Fig. 4. At this
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point we should stress that both under-fitting and over-fitting
are not specific features of neural network training, but are
known and common problems met in data fitting whenever
the number of free parameters becomes large.

Regularization is the introduction of additional informa-
tion to improve the resolution of badly behaved problems. In
the case of neural networks, the regularization helps to avoid
over-fitting. In the following we describe the early stopping
regularization that is used in this analysis, however many
other types of regularization exist. We note that in this anal-
ysis we have found regularization techniques using a penalty
term in the cost function impractical. Such techniques, like
Lasso or Ridge regressions [23], make the values of neural
network weights small and as a consequence replicas simi-
lar to each other (the replication method will be introduced
in Sect. 3.4). While this may be seen as a feature in some
analyses, in this one it does not lead to a reliable estimation
of uncertainties, as replicas are not spread significantly in a
domain that is not sufficiently constrained by data.

Our procedure of dealing with over-fitting makes the train-
ing supervised. It means that we randomly divide our initial
sample into two independent sub-samples, which in the fol-
lowing we will refer to as training sample and validation
sample. While the purpose of the training sample remains
the same, i.e. it is used for the training, the validation sample
is exclusively used for the detection of over-fitting.

As a principle, too short a learning leads to under-fitting,
while a too long one is responsible for over-fitting, unless the
network’s architecture prevents it. Therefore, between those
two extremes there must be an optimal epoch in the train-
ing corresponding to a most favorable solution. The search
of such an optimal epoch is the goal of the early stopping
technique. The principle of this method is to monitor the val-
idation sample with the cost function, fcost, and to stop the
training whenever the value of this function starts to grow.
This idea is illustrated in Fig. 5. In practice, such a growth
is difficult to be detected due to fluctuations of the cost func-
tion values. Therefore, various quantities are used for its
detection. In this analysis we monitor the following quan-
tity evaluated for the test sample, which is inspired by Ref.
[25]:

fstop(ti ) = f av
cost(ti )

min
j<i

f av
cost(t j )

− 1 . (12)

Here, ti and t j denote different epochs in the training. In the
numerator of Eq. (12) one has the value of the cost function
for the epoch under consideration, and in the denominator
the minimal value of this function obtained in all previous
epochs. To minimize the impact of random fluctuations on
fstop(ti ) the cost function is averaged using the running aver-
age technique:

Fig. 5 Demonstration of early stopping regularization technique: the
cost function for training (red solid curve) and test (blue dashed curve)
samples as a function of training epoch

f av
cost(ti ) = 1

2n + 1

n
∑

j=−n

fcost(ti− j ) , (13)

where n is the length of a strip of numbers that is used
for the averaging. In this analysis n = 25. With those
definitions fstop(ti ) > 0 indicates a need of stopping the
training. However, as fluctuations of the cost function can-
not be completely avoided we stop the training only when
fstop(ti ) > 0 for more than one hundred consecutive iter-
ations. We take the set of parameters obtained in the first
iteration of such a sequence as the result of our training pro-
cedure. In rare cases the stopping criterion is not fulfilled
during the whole training procedure. In those cases the result
is obtained from the last allowed epoch of this procedure,
tmax = 1000.

3.4 Replica method

As in our last analysis [14], the replica method is used to
propagate uncertainties coming from experimental data to
CFF parameterizations. In addition to our nominal extraction
of CFFs, the fit is repeated one hundred times, each time
independently modifying the central values of experimental
points using the following prescription:

vi j ± Δtot
i j

replica k−−−−→
(

rndk(vi j ,Δ
tot
i j ) ± Δtot

i j

)

× rndk(1,Δnorm
i ). (14)

Here, vi j is the measured value associated to the experimen-
tal point j coming from the data set i . It is linked to statistical,
Δstat

i j , systematic, Δsys
i j , and normalization, Δnorm

i , uncertain-
ties. The latter one is correlated across bins of data, like for
instance uncertainties related to beam and target polarization
measurements. The total uncertainty, which is used to evalu-
ate χ2 function utilized in this analysis to perform the fit, is
given by:

Δtot
i j =

√

(

Δstat
i j

)2 +
(

Δ
sys
i j

)2
. (15)
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The generator of random numbers following a specified nor-
mal distribution, f (x |μ, σ), is denoted by rndk(μ, σ ), where
k both identifies the replica and is a unique random seed.

4 Implementation

4.1 Neural network architecture

In this subsection we describe the architecture of the used
neural networks. In particular a determination of the number
of hidden neurons in those networks is described. We start
with a general statement: any neural network is a container
to store information and as such it cannot be too small to
serve that purpose. It can be larger than needed though, how-
ever such neural networks require a careful regularization to
avoid over-fitting and their training is more time-consuming.
We note that usually the optimal network’s architecture is
selected prior the training, however there exist regularization
techniques like dropout [26], which alter an initial architec-
ture during the training to obtain best results. In those tech-
niques a number of neurons is either added or dropped as the
training proceeds.

We extract four CFFs, each one being a complex quantity
having both real and imaginary parts. Although the real and
imaginary parts of the a given CFF can be connected together
via a dispersion relation (with the subtraction constant being
involved), in the extraction presented in this paper we keep
them fully independent quantities. The dispersion relation is
only used for an interpretation of the obtained results, which
is presented in Sect. 6. Therefore eight independent neural
networks are used.

The architecture of a single network used in this analysis
is shown in Fig. 6. It consists of three input neurons, one
hidden layer containing six neurons, and one output neuron.
Both input and output variables of the network are linearized
and normalized (as much as possible). The linearization is
achieved with a logarithmic projection and ξ pre-factors:

ξ ′ = log10 ξ, (16)

t ′ = t, (17)

Q2′ = log10 Q
2, (18)

ReG′ = ξ ReG, (19)

ImG′ = ξ ImG, (20)

where the prime symbol is used to distinguish between origi-
nal and linearized variables. For the normalization we utilize
the min-max method:

v′′ = −1 + 2
v′ − v′

min

v′
max − v′

min
, (21)

Fig. 6 Scheme of a single neural network that is used in this analysis
to represent either the real or the imaginary part of a single CFF

where v′ and v′′ is a given linearized variable before and
after the normalization, respectively, and wherev′

min andv′
max

are normalization parameters specified in Table 1. The min-
max values used for the normalization of ξ ′, t ′ and Q2′

have
been selected to cover the target phase-space, while those for
ReG′ and ImG′ roughly correspond to v′

min,GK − Δv′
GK and

v′
max,GK +Δv′

GK values, where Δv′
GK = v′

max,GK −v′
min,GK.

Here, v′
min,GK and v′

max,GK are min-max values found in a
poll of CFFs evaluated from the Goloskokov–Kroll (GK)
GPD model [27–29] for the experimental data kinematics
that are used in this analysis, see Sect. 5. Both linearization
and normalization significantly improve the performance of
ANNs. We point out that the ranges specified in Table 1 are
not absolute, i.e. the networks may still reasonably describe
data covering the exterior of domains defined by v′

min and
v′

max values. In particular in this analysis the activation func-
tion of output neurons is set to the identity and thus does not
show any saturation effects.

The number of neurons in the hidden layer is determined
with a benchmark sample made out of one thousand CFF
points evaluated with the GK GPD model. Those CFF points
are randomly generated in a broad range of 10−6 < ξ < 1,
0 GeV2 < |t | < 1 GeV2 and 1 GeV2 < Q2 < 100 GeV2.
We have checked how many neurons in the hidden layer are
needed to provide a good description of the benchmark sam-
ple. This test is performed with the FANN library [30] for the
neural network implementation and with the quickprop train-
ing algorithm [31] available in that library. The post-training
RMSE for CFFH is shown in Fig. 7 as a function of the num-
ber of hidden neurons. From this figure one may conclude
that the addition of a new neuron to the network made already
out of six neurons does not significantly improve the perfor-
mance. We note that a high number of neurons slows down
the training and makes the regularization more difficult. That
is why in this analysis the number of hidden neurons in each
network is set to six, which we consider to be a sufficient
number.
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Table 1 Values used in the scaling of input and output variables

v′ v′
min v′

max v′ v′
min v′

max

log10 ξ −6 1 t −1 0.5

log10 Q2 −1 2

ξReH −1 1.5 ξ ImH −4 6

ξRe ˜H −0.6 0.9 ξ Im ˜H −1 1.5

ξReE −1.5 1 ξ ImE −6 4

ξRe˜E −120 180 ξ Im˜E −8 12

Fig. 7 Average root mean square error (RMSE) for the neural network
describing the benchmark sample (see the text) as a function of the
number of hidden neurons in that network for the real (solid line) and
imaginary (dashed line) parts of CFF H. The RMSE values correspond
to the normalized variables, see Table 1

4.2 Initial fit

Without any improvement the fit either does not converge
or converges very slowly. This is due to a large number of
parameters to be constrained in the training and a widely
opened phase-space for CFF values, cf. Table 1. To over-
come this difficulty the network is initially trained on values
obtained in a local extraction of CFFs. That is, CFF values
multiplied by ξ are independently extracted in each kinematic
bin of data, analogously as in Refs. [15,32,33], and then used
in a training based on the back-propagation algorithm.

The local extraction procedure includes all four CFFs, so
effectively eight values per each kinematic bin of (xBj, t, Q2)

are fitted. This may make a single fit underconstrained, in
particular if a given kinematic bin is populated only by a
single experimental point. To overcome this difficulty it is
imperative to set sensible ranges in which the fitted values
are allowed to vary. In this analysis those ranges are set to
(5 × v′

min, 5 × v′
max), where the values of v′

min and v′
max are

specified in Table 1. The ranges are wider than those used in
the construction of our neural networks, which prevents from

introducing a bias on the final extraction of CFF parameter-
izations.

The initial fit reduces the χ2 value per single data point
from O(106) to O(10). The further minimization, which
reduces the same quantity to O(1), is done by our genetic
algorithm minimizer, where values of weights and biases
obtained in the initial fit are used as starting parameters.

4.3 Genetic algorithm

The parameters of our genetic algorithm minimizer are as fol-
lows. The gene values (weights and biases) may vary between
−10 and 10. The population consists of 1000 candidates and
the fraction of candidates left after the selection process (sur-
vivors) is 30%. We consider two types of mutation and each
of them occurs with the same probability of 0.1% per gene.
The mutation type-A is a random generation of gene values
from the range of −10 and 10. This type of mutation keeps
the population diverse. The mutation type-B is a small shift
of gene values. This shift is randomly generated from a dis-
tribution of gene values in the population. This distribution
is made for the modified gene. The mutation type-B pro-
vides a fine-tuning of fitted parameters. The fraction of 20%
and 10% best candidates in the population is resistant to the
mutation type-A and type-B, respectively, so the best results
are not destroyed by the mutation process.

We demonstrate the performance of our genetic algo-
rithm minimizer with Fig. 8, where values of a single gene
are plotted against the training epoch. Intensity in popu-
lation equal 1 means that all candidates in the population
share the same gene value. Low values of this quantity indi-
cate that only few or none candidates share the same gene
value. One can see few features in this plot being typi-
cal for a performance of genetic algorithms: (i) the diver-
sity of values is large at the beginning of minimization,
which means that the whole phase-space available is equally
scanned to find a cost function minimum, (ii) usually, few
such local minima are found at the beginning of minimiza-
tion and simultaneously explored by the algorithm for a
number of iterations, (iii) close to the actual minimum the
algorithm concentrates on its neighborhood, trying to per-
form a fine-tuning of fitted parameters, (iv) even at this
stage of minimization, the whole phase-space is homoge-
neously scanned due to the mutation process to eventually
find a new minimum and to avoid the convergence to a local
one.

4.4 Regularization

A typical distribution of the cost function as a function
of the training epoch is shown in Fig. 9. In addition, we
show the distribution of the fstop quantity that we use to
detect over-fitting, see Eq. (12). With our stopping criterion:

123



Eur. Phys. J. C (2019) 79 :614 Page 9 of 19 614

Fig. 8 Diversity of gene values in the whole population against the training epoch for a single gene. For more details see the text

Fig. 9 Cost function (top plots) and fstop quantity (bottom plots) used
to detect over-fitting in the regularization method based on the early
stopping technique, see Sect. 3.3, as a function of the training epoch. The
left plots show dependencies in the full range of training epoch, while

the right ones are for a zoom in the range of 200 < t < 1000. The red
(blue) solid and dashed curves illustrate the values of the cost function
for the training (test) sample, before and after averaging, respectively

fstop > 0 for more than one hundred iterations, for this exam-
ple we consider the solution obtained in the epoch 382 as
the valid one and we use this solution in the further analy-
sis.

4.5 Feasibility test

In order to check our procedure a feasibility test was per-
formed. In this test the extraction of CFF parameteriza-
tions is done on a sample of pseudo-data generated in the
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Fig. 10 Example outcome of the feasibility test. The imaginary part
of the CFF H evaluated from GK GPD model [27–29] (dotted line) and
the corresponding parameterization of that quantity extracted from the
pseudo-data generated with this model (gray band). The plot is shown
for Q2 = 2 GeV2 and t = −0.3 GeV2

leading-order formalism with the GK GPD model [27–29].
The generation of pseudo-data is straightforward: for each
experimental data point, a single point of pseudo-data is
generated. This single point of pseudo-data is generated
with the same type (differential cross section, or beam
spin asymmetry, or beam charge asymmetry, etc.), and at
the same kinematics as the original point. The obtained
observable value is then smeared according to the uncer-
tainties of the original point. As a result of this proce-
dure, pseudo-data are faithfully generated, corresponding to
the experimental data; however “input” CFFs are known
for this sample. These pseudo-data are used in the same
procedure of CFF extraction as the genuine experimental
data.

The outcome of this feasibility test is in general posi-
tive. The value of the χ2 function per single data point is
1.13, or 1.06 for data other than HERA and COMPASS
points (see Sect. 6 for an explanation of this behavior). The
agreement between the CFF parameterizations obtained from
the pseudo-data and the GK GPD model used to generate
those data is demonstrated with Fig. 10, where the imag-
inary part of CFF H and the model are compared as a
function of ξ for example kinematics of t = −0.3 GeV2

and Q2 = 2 GeV2. The curve representing the model
stays within the uncertainty band of the extracted param-
eterization. The only exception is the region of ξ ≈ 1,
which is not covered by pseudo-data and where the model
rapidly goes to zero. However, in this region the difference
between the model and the central value of the extracted
parameterization is still reasonable (e.g. 1.23σ for ξ =
0.95).

5 Experimental data

Table 2 summarizes DVCS data used in this analysis. For the
explanation of symbols used to distinguish between observ-
able types see Ref. [14]. Only proton data are used. Available
neutron data are sparse ones, but in principle they may be
used to attempt a flavor separation. This is however beyond
the scope of the presented analysis.

As in our previous analysis [14], recent Hall A data [34,35]
for cross sections measured with unpolarized beam and tar-
get, d4σ−

UU , are not used in the final extraction of CFF infor-
mation. Again, only the corresponding differences of cross
sections probing longitudinally polarized beam, Δd4σ−

LU ,
are used. We will elaborate on the inclusion of Hall A data
in Sect. 6.

The difference with respect to our previous analysis [14]
in terms of used data comes from the inclusion of low-xBj

sets. For COMPASS, instead of a single point for the mea-
surement of the t-slope b, four points for the cross section
measurement, d3σ±

UU , are used. The measurement of both
slope and cross sections is reported in Ref. [36]. The cross
sections provide richer information than the slope itself. In
addition, the slope measurement relies on the assumption of
the t-dependence being exponential, which can be avoided
analyzing the cross section points. However, the COMPASS
cross sections are measured in broad kinematic bins and
because of that they cannot be compared to models eval-
uated at the average kinematics of events corresponding to
those bins. That is why in this analysis, the COMPASS points
are compared to respective integrals of cross sections. Those
multidimensional integrals are time consuming and signifi-
cantly extend the computing time of our fits.

HERA data for DVCS [37–39] are included in this anal-
ysis. As we will demonstrate in Sect. 6, those data provide
important constraints on CFF parameterizations in the low-
xBj region. However, the sparsity of data covering this region
makes our extraction of CFFs difficult, as will be explained
in Sect. 6.

We apply two kinematic cuts on experimental data:1

Q2 > 1.5 GeV2, (22)

− t/Q2 < 0.2. (23)

The purpose of those cuts is the restriction of the phase-space
covered by experimental data to the deeply virtual region,
where one can rely on the factorization between GPDs and
the hard scattering kernel. In principle, those cuts can be
avoided in the extractions of amplitudes. However, we keep
them here to allow an interpretation of the extracted CFFs
in terms of GPDs. In addition, the cuts are applied to keep

1 There is a typo in Eq. (86) of our last publication [14]. Instead of
−t/Q2 < 0.25 there should be −t/Q2 < 0.2 , as in Eq. (23) here.
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Table 2 DVCS data used in this analysis

No. Collab. Year Ref. Observable Kinematic dependence No. of points used / all

1 HERMES 2001 [40] A+
LU φ 10/10

2 2006 [41] Acos iφ
C i = 1 t 4/4

3 2008 [42] Acos iφ
C i = 0, 1 xBj 18/24

Asin(φ−φS) cos iφ
UT,DVCS i = 0

Asin(φ−φS) cos iφ
UT,I i = 0, 1

Acos(φ−φS) sin iφ
UT,I i = 1

4 2009 [43] Asin iφ
LU,I i = 1, 2 xBj 35/42

Asin iφ
LU,DVCS i = 1

Acos iφ
C i = 0, 1, 2, 3

5 2010 [44] A+,sin iφ
UL i = 1, 2, 3 xBj 18/24

A+,cos iφ
LL i = 0, 1, 2

6 2011 [45] Acos(φ−φS) cos iφ
LT,DVCS i = 0, 1 xBj 24/32

Asin(φ−φS) sin iφ
LT,DVCS i = 1

Acos(φ−φS) cos iφ
LT,I i = 0, 1, 2

Asin(φ−φS) sin iφ
LT,I i = 1, 2

7 2012 [46] Asin iφ
LU,I i = 1, 2 xBj 35/42

Asin iφ
LU,DVCS i = 1

Acos iφ
C i = 0, 1, 2, 3

8 CLAS 2001 [47] A−,sin iφ
LU i = 1, 2 – 0/2

9 2006 [48] A−,sin iφ
UL i = 1, 2 – 2/2

10 2008 [49] A−
LU φ 283/737

11 2009 [50] A−
LU φ 22/33

12 2015 [51] A−
LU , A−

UL , A−
LL φ 311/497

13 2015 [52] d4σ−
UU φ 1333/1933

14 Hall A 2015 [34] Δd4σ−
LU φ 228/228

15 2017 [35] Δd4σ−
LU φ 276/358

16 COMPASS 2018 [36] d3σ±
UU t 2/4

17 ZEUS 2009 [37] d3σ+
UU t 4/4

18 H1 2005 [38] d3σ+
UU t 7/8

19 2009 [39] d3σ±
UU t 12/12

SUM: 2624/3996

a correspondence with our previous analysis [14], allowing
a straightforward comparison. Let us note at this point, that
the neural network approach developed in this work provides
an easy way for the addition of CFFs identified with higher-
twist contributions. With those contributions included one
could relax the cuts (22) and (23), allowing more data to be
included.

In total, in this analysis 2624 points are used out of
3996 available in all considered data sets. The coverage of
phase-space by those data in the sections of (xBj, Q2) and
(xBj,−t/Q2) is shown in Fig. 11. With those plots one can
easily conclude about the actual coverage by various exper-

iments, but also identify parts of phase-space not probed at
all by existing data.

6 Results

6.1 Performance

The value of the χ2 function obtained after the training of
our neural network system with 2624 experimental points is
2243.5 for the central replica. It gives the average deviation of
that system’s answer from experimental data 2243.5/2624 ≈

123



614 Page 12 of 19 Eur. Phys. J. C (2019) 79 :614

Fig. 11 Coverage of the
(xBj, Q2) (left) and
(xBj,−t/Q2) (right)
phase-spaces by the
experimental data listed in
Table 2. The data come from the
Hall A (�, �), CLAS (�, �),
HERMES (•, ◦), COMPASS (�,
�) and HERA H1 and ZEUS
(�, ♦) experiments. The gray
bands (open markers) indicate
phase-space areas (experimental
points) being excluded from this
analysis due to the cuts
introduced in Eqs. (22) and (23)

Table 3 Values of the χ2 function per data set. For a given data set, cf.
Table 2, given are: χ2 value, the number of experimental points n, and
the ratio between those two numbers

No. Collab. Year Ref. χ2 n χ2/n

1 HERMES 2001 [40] 10.7 10 1.07

2 2006 [41] 5.5 4 1.38

3 2008 [42] 18.5 18 1.03

4 2009 [43] 34.7 35 0.99

5 2010 [44] 40.7 18 2.26

6 2011 [45] 16.7 24 0.70

7 2012 [46] 22.4 35 0.64

8 CLAS 2001 [47] – 0 –

9 2006 [48] 1.0 2 0.52

10 2008 [49] 376.4 283 1.33

11 2009 [50] 28.3 22 1.29

12 2015 [51] 306.6 311 0.99

13 2015 [52] 884.7 1333 0.66

14 Hall A 2015 [34] 231.8 228 1.02

15 2017 [35] 211.4 276 0.77

16 COMPASS 2018 [36] 3.0 2 1.50

17 ZEUS 2009 [37] 5.49 4 1.38

18 H1 2005 [38] 22.2 7 3.17

19 2009 [39] 23.4 12 1.95

0.85 per single data point. This value per experimental data
set is given in Table 3. The number of free parameters, that is
the number of weights and biases in all networks, is 248.
There is not much sense of studying the goodness of fit
with this information taken into account, as we know a pri-
ori that the size of a single network may be too large, and
that is why we are using a regularization. In other words,
we are able to increase the number of neurons in our net-
work, and therefore the number of weight and biases, keep-
ing at the same time the same precision of data descrip-
tion.

Figures 12, 13, 14 and 15 provide a straightforward com-
parison between our fit and the selected data sets. As indi-
cated by the χ2 values summarized in Table 3, we are
able to describe the data well within a single phenomeno-
logical framework based on the neural network approach.
This includes data ranging from HERA to JLab kinemat-
ics. Beyond the results of this analysis, predictions coming
from the GK [27–29] and VGG [53–56] GPD models are
also shown. Those two models originate from the exploratory
phase of GPD studies and are able to describe only a general
behavior followed by experimental data. This confirms the
need for new GPD models constrained in global analyses,
preferably multi-channel ones.

As has been already mentioned in Sect. 5, Hall A cross
sections are not included in the nominal data set that is used
in this analysis. We point out, that in our last analysis [14]
we were not able to describe those cross sections with the
proposed Ansatz and those data were excluded there as well.
The question is: can those data be described in this analysis,
where a flexible CFF parameterization based on the neural
network approach is used? The answer consists of two parts:
(i) the parameterizations of CFFs obtained in this analysis
from the nominal data set do not have the predictive power
to describe Hall A cross sections. The value of theχ2 function
for those cross sections is 5916.6, which for 594 points gives
the reduced value of 9.96. The bad description is also seen by
eye in Fig. 13. (ii) the inclusion of Hall A cross sections in the
extraction of CFFs significantly improves the χ2 evaluated
for this subset, from aforementioned 9.96 to 1.12 per single
data point. However, such an inclusion makes the χ2 for the
CLAS cross sections worse, from 0.66 reported in Table 3
to 0.83 per single data point. Taking both observations into
account we found the situation unclear at this moment. Hall A
cross sections will be investigated further in a future analysis
with higher-twist contributions taken into account.

The inclusion of low-xBj experimental data has signifi-
cantly extended the coverage of phase-space. However, the
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Fig. 12 Comparison between the results of this analysis, the selected
GPD models and experimental data published by CLAS in Refs. [51,52]
for d4σ−

UU at xBj = 0.244, t = −0.15 GeV2 and Q2 = 1.79 GeV2 (left)
and for A−

UL at xBj = 0.2569, t = −0.23 GeV2, Q2 = 2.019 GeV2

(right). The gray bands correspond to the results of this analysis with

68% confidence level for the uncertainties coming from DVCS data,
respectively. The dotted curve is for the GK GPD model [27–29], while
the dashed one is for VGG [53–56]. The curves are evaluated at the
kinematics of experimental data

Fig. 13 Comparison between the results of this analysis, the selected GPD models and experimental data published by Hall A in Ref. [34] for
d4σ−

UU (left) and Δd4σ−
LU (right) at xBj = 0.392, t = −0.233 GeV2 and Q2 = 2.054 GeV2. For further description see the caption of Fig. 12

sparsity of those data creates problems in the supervised
training that we utilize in this analysis, see Sect. 3.3. Namely,
the random division of the available experimental data into
training and test subsets causes an insufficient coverage of
some parts of the phase-space by either the training or the
test points. This may lead to over-fitting, if a given part of
the phase-space is only covered by training points, or under-
fitting, if kinematics is only covered by test points. The effect
increases the spread of replicas and because of that gives an
additional contribution to the estimated uncertainties. The
goodness of fit for those data is also worse as shown in
Table 3. Foreseen data coming from electron-ion facilities
will improve this situation.

6.2 Compton form factors

The parameterizations of CFFs are shown in Figs. 16 17,
18 and 19 for example kinematics of t = −0.3 GeV2 and
Q2 = 2 GeV2 as a function of ξ . As expected the data pro-
vide the best constraints on ImH, and some on ReH, Im ˜H
and Re˜E . Other CFFs are poorly constrained by the avail-
able data, in particular E related to GPD E , being of a great
importance for the study of parton densities in a transversely
polarized proton and the determination of the orbital angular
momentum through Ji’s sum rule.

The inclusion of HERA and COMPASS data in a global
extraction of CFFs is not trivial, but those data provide impor-
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Fig. 14 Comparison between the results of this analysis, the selected GPD models and the experimental data published by HERMES in Ref. [42]
for Acos 0φ

C (left) and Asin(φ−φS) cos φ
UT,I (right) at t = −0.12 GeV2 and Q2 = 2.5 GeV2. For further description see the caption of Fig. 12

Fig. 15 Comparison between the results of this analysis, the selected
GPD models and the experimental data published by COMPASS in Ref.
[36] for d3σ±

UU (left) and by H1 in Ref. [39] for d3σ+
UU at xBj = 0.002

and Q2 = 10 GeV2 (right). In the left plot, the experimental data, the

results of this analysis and the GPD model evaluations are 3D integrals
in four bins of the (ν, Q2, t) phase-space, where ν is the virtual-photon
energy. The ranges of those bins are specified in Ref. [36]. For further
description see the caption of Fig. 12

tant constraints in the low and intermediate range of xBj. We
demonstrate it with the example of Fig. 20, where the imag-
inary part of the CFF H is shown without the inclusion of
low-xBj data. We point out that the gap between the col-
lider and fixed target experiments seen in the coverage of
the (xBj, Q2) phase-space in Fig. 11 is expected to be filled
by future experiments at expected electron-ion collider facili-
ties. The precision of foreseen data should allow for a precise
phenomenology in that domain.

The Q2 evolution of the CFF H for ξ = 0.002 and
ξ = 0.2 is shown in Fig. 21. One can note a rather mild
Q2-dependence followed by the extracted CFF parameteri-
zations, consistent with the expected logarithmic behavior.

6.3 Nucleon tomography

In Fig. 22 we show our results for the slope b of the DVCS
cross section described by a single exponential function,
d3σUU ∝ exp(bt). This slope is evaluated as indicated in our
previous analysis [14]. It can be converted into a transverse
extension of partons under assumptions that are also specified
in Ref. [14]. The uncertainties on the extracted values of b are
larger than expected, mainly because of the aforementioned
problems with the supervised training caused by the sparsity
of the low-xBj data. In addition, without an explicit assump-
tion about the exponential t-behavior of ImH, the estimation
of b from pliant replicas gets additional uncertainties.
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Fig. 16 Real (left) and imaginary (right) parts of the CFF H as a func-
tion of ξ for t = −0.3 GeV2 and Q2 = 2 GeV2. The blue solid line
surrounded by the blue hatched band denotes the result of our previ-
ous analysis [14]. The depicted uncertainty accounts for uncertainties

estimated in that analysis for experimental data, unpolarized, polarized
PDFs and elastic form factors. For further description see the caption
of Fig. 12

Fig. 17 Real (left) and imaginary (right) parts of the CFF ˜H as a function of ξ for t = −0.3 GeV2 and Q2 = 2 GeV2. For further description see
the caption of Fig. 16

The extraction of tomography information from CFFs is
also possible in the high-xBj range, see for instance Refs.
[32,33]. However, this requires a “de-skewing” of ImH, i.e.
one needs to evaluate the GPD Hq(x, 0, t) from:

ImH(ξ, t)
LO= π

∑

q

e2
q H

q(+)(x = ξ, ξ, t), (24)

where the sum runs over quark flavors q, eq is the electric
charge of a specific quark flavor in units of the positron charge
e and where Hq(+)(x, ξ, t) = Hq(x, ξ, t) − Hq(−x, ξ, t).
Because of the model-dependency of this procedure we
refrain from doing it here. We point out that a straightfor-
ward, however still model-dependent, access to the nucleon

tomography is a feature of the CFF Ansätze proposed in our
previous analysis [14].

6.4 Subtraction constant

The subtraction constant CH is evaluated with our results on
the CFF H and the dispersion relation introduced in Sect. 2.
More precisely, the imaginary part of the CFFH is integrated
according to Eq. (5) in the range of ε < ξ ′ < 1 and then
subtracted from the corresponding real part. By studying CH

as a function of ε the latter has been chosen to be 10−6, which
introduces a little bias on CH comparing to ε = 0. This bias
is estimated to be smaller than 1%.
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Fig. 18 Real (left) and imaginary (right) parts of the CFF E as a function of ξ for t = −0.3 GeV2 and Q2 = 2 GeV2. For further description see
the caption of Fig. 16

Fig. 19 Real (left) and imaginary (right) parts of the CFF ˜E as a function of ξ for t = −0.3 GeV2 and Q2 = 2 GeV2. For further description see
the caption of Fig. 16

Fig. 20 The same as Fig. 16, but without the HERA and COMPASS
data taken into account in the extraction of CFFs

The subtraction constant for a given Q2 and t should be the
same independently on the value of ξ used in its extraction.
This is demonstrated in Fig. 23 (top), whereCH is shown as a
function of ξ for example kinematics of t = −0.3 GeV2 and
Q2 = 2 GeV2. We consider this test as a proof of consistency
between the parameterizations of the real and imaginary parts
of the CFF H.

The subtraction constant as a function of t and Q2 is shown
in Fig. 23 (bottom) for ξ = 0.2. As expected, the uncertain-
ties are large in domains sparsely covered by data, in particu-
lar for t → 0 and Q2 → ∞, which are important for a direct
interpretation of CH in terms of the energy-momentum ten-
sor. However, the uncertainties obtained in domains covered
by data are encouraging, so our result coming from a model-
independent extraction can provide important constraints on
models of CH . Our findings are consistent with the recent
observation of Ref. [16].
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Fig. 21 Imaginary part of the CFF H as a function of Q2 for t = −0.3 GeV2 and ξ = 0.002 (left) and ξ = 0.2 (right). For further description see
the caption of Fig. 16

Fig. 22 Comparison between the results of this analysis, the selected
GPD models and the experimental data by the COMPASS [36], ZEUS
[37] and H1 [38,39] Collaborations for the slope b at Q2 = 10 GeV2.
Note that the shown data differ by Q2 values indicated in the legend.
For further description see the caption of Fig. 12

7 Summary

In this paper we report the extraction of CFF parameteri-
zations from proton DVCS data. The extracted quantities
are the most basic observables as one can unambiguously
access by exploring the DVCS process. We analyze the
data in the region in which the interpretation in the lan-
guage of GPDs is applicable. In this analysis, a dispersion
relation is used to access the DVCS subtraction constant,
which is related to the mechanical forces acting on partons
in the nucleon. Also, the nucleon tomography that describes
a spatial distribution of partons inside the nucleon is dis-
cussed.

The extraction of CFFs is done with the help of the
artificial neural networks technique, allowing for an essen-
tial reduction of model dependency. The presented analysis
includes such elements as the training of neural networks
with the genetic algorithm, the careful regularization to avoid
over-fitting and the propagation of experimental uncertain-
ties with the replica method. The work is done within the
PARTONS framework [9].

The results of this analysis include in particular unbiased
CFF parameterizations extracted in the three-dimensional
phase-space of (xBj, t, Q2), with a reliable estimation of
uncertainties. In addition, a direct extraction of the subtrac-
tion constant from the experimental data is presented.

The analysis is complementary to our previous one [14],
where CFF parameterizations were constructed with the
basic GPD properties acting as Ansatz building blocks.
Although a physically motivated Ansatz gives more insight
into GPD physics, its inherent model-dependency introduces
an extra theoretical uncertainty, which usually can be only
roughly estimated. The situation is opposite for the analysis
presented in this paper – the extraction of CFFs is unbiased,
but the link with GPD physics is not as straightforward as
in the case of previous analysis. Therefore, both analyses,
which are performed on a similar data set, provide a com-
plete picture of the DVCS process.

This work provides a benchmark for a powerful tool to be
used in future GPD analyses. This tool allows in particular
for a nearly model-independent estimation of the impact of
future experiments, in particular those to be performed in the
foreseen electron-ion facilities. CFF parameterizations that
are presented in this paper can be used for a fast generation
of DVCS cross sections, which may be useful e.g. for Monte
Carlo generation. Studies of Timelike Compton Scattering
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Fig. 23 Subtraction constant evaluated from the CFF H as a function of ξ for t = −0.3 GeV2 and Q2 = 2 GeV2 (top), as a function of −t for
ξ = 0.2 and Q2 = 2 GeV2 (bottom left) and as a function of Q2 for ξ = 0.2 and t = −0.3 GeV2 (bottom right)

and higher twist contributions are also possible within the
proposed framework.
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