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Abstract The Dirac equation with both scalar and vec-
tor couplings describing the dynamics of a two-dimensional
Dirac oscillator in the cosmic string spacetime is consid-
ered. We derive the Dirac-Pauli equation and solve it in the
limit of the spin and the pseudo-spin symmetries. We ana-
lyze the presence of cylindrical symmetric scalar potentials
which allows us to provide analytic solutions for the resul-
tant field equation. By using an appropriate ansatz, we find
that the radial equation is a biconfluent Heun-like differen-
tial equation. The solution of this equation provides us with
more than one expression for the energy eigenvalues of the
oscillator. We investigate these energies and find that there
is a quantum condition between them. We study this condi-
tion in detail and find that it requires the fixation of one of the
physical parameters involved in the problem. Expressions for
the energy of the oscillator are obtained for some values of
the quantum number n. Some particular cases which lead to
known physical systems are also addressed.

1 Introduction

The study of the relativistic quantum dynamics of particles
including electromagnetic interactions is an usual frame-
work for studying properties of various physical systems.
The mechanism used to describe these systems is a natu-
ral generalization of the coupling used in classical nonrela-
tivistic quantum theory [1]. This coupling is implemented,
for charged particles with charge e, through the so-called
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minimal coupling prescription, given in terms of the modifi-
cation of the 4-momentum operator, pμ → pμ − eAμ =
(p0 − eA0,p − eA), where Aμ = (V (r),−A) (with A
being the vector potential and V (r) being the scalar poten-
tial) represents the 4-vector potential of the associated elec-
tromagnetic field. This transformation preserves the gauge
invariance associated with the Maxwell’s equations. Another
way to insert interaction in the dynamics of the particle is by
including a scalar potential through a modification in the
mass term as M → M + S(r). In this realization, the poten-
tial S (r) is coupled like a scalar, different from the minimum
prescription, where the potential is coupled as a time-like
component of a 4-vector. Although there is some similarity
between the scalar and vector couplings, they have differ-
ent physical implications. Actually, the scalar coupling acts
equally on particles and antiparticles. On the other hand, the
vector coupling acts differently on particles and antiparti-
cles. As a result, the energy of particle and antiparticle are
not equals, so that bound states exist only for one of the two
kinds of particles [2].

Interesting issues that should be investigated with the
insertion of the couplings in the Dirac equation are the so-
called the spin and the pseudo-spin symmetries [3]. Basically,
these symmetries occur when the couplings are composed by
a vector V (r) and a scalar S(r) potential, under the assump-
tion that S(r) = V (r) (S(r) = −V (r)), which is the nec-
essary condition for occurrence of exact spin (pseudo-spin)
symmetry. The spin symmetry has been identified by study-
ing heavy-light mesons [4], single antinucleon spectra [5] and
dynamics of a light quark (antiquark) in the field of a heavy
antiquark (quark) [3] while that the pseudo-spin symmetry
occurs in the motion of nucleons [3,6]. In recent studies, both
the spin and the pseudo-spin symmetries appear in several
aspects concerning, for instance, the supersymmetry [7,8],
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the Hartree-Fock theory [9], the electrons in graphene [10]
and the interaction with a class of scalar and vector potentials
[11–18].

An important physical system that can be studied by
including such terms of interactions in the Dirac equation
is the Dirac oscillator [19] (for a detailed description of this
model see Ref. [20]). The Dirac oscillator is a kind of tensor
coupling with a linear potential which in the nonrelativistic
limit leads to the simple harmonic oscillator with a strong
spin-orbit coupling. It was realized experimentally for the
first time in 2013 by Franco-Villafañe et al. in [21]. The
Dirac oscillator is considered a natural model for studying
properties of physical systems because it is exactly soluble.
In the last years, several research have been developed in the
context of this theoretical framework. For instance, it appears
in the literature in the context of mathematical physics [22–
29], nuclear physics [30–33], quantum optics [34–37], super-
symmetry [38–40], theory of quantum deformations [41,42]
and noncommutativity [43–46]. Moreover, the Dirac oscilla-
tor embedded in a cosmic string background has inspired a
great deal of research in last years [47–56].

In this work, we analyze in details the solutions of the
Dirac equation with both scalar and vector interactions under
the spin and the pseudo-spin symmetry limits in the cosmic
string spacetime [57]. Cosmic strings are topologically stable
gravitational defects. According to the grand unified theories,
these defects arise from a vacuum phase transition in the near
universe. Recently, several studies have been developed in the
theoretical context [58–63] and also by evidence of cosmic
strings [64–67]. Cosmic strings are objects of studies of cur-
rent interest because of the several important applications of
topological features on physics systems in gravitation [68],
condensed matter [57] and cosmology [69].

Our work is motivated by Ref. [70] (see also Refs. [71,
72]), where the spin and pseudospin symmetries in the rela-
tivistic mean field with a deformed potential are investigated.
In this context, a relation between the deformed wave func-
tion and the spherical wave function was established at the
spherical limit by using the transformation from the cylin-
drical coordinate into the polar coordinate. This relationship
enables us to investigate the inclusion of cylindrical symmet-
rical potentials in the Dirac equation in other scenarios, such
as the cosmic string. One advantage of using such symmetry
limits in our work is that they allow us to decouple the first
and second order differential equations for the spinor compo-
nents (each obtained in the spin symmetry and pseudo-spin
limits, respectively).

We organize the paper as follows: In Sect. 2, we derive
the equation that governs the dynamics of a Dirac particle
with the minimal, nonminimal and the scalar couplings in
the cosmic string spacetime. In Sect. 3, we consider the Dirac
equation written in terms of a set of coupled differential equa-
tions. We investigate the existence of particular solutions for

the problem by assuming that the relativistic energy of the
particle is its rest energy in both the spin and the pseudo-spin
symmetries limits. In Sect. 4, we investigate the dynamics
considering that the energy of the particle is different from
its rest energy. To this end, we write down the Dirac equation
in its quadratic form. We obtain the energies and the corre-
sponded wave functions and discuss their physical validity.
In Sect. 5, we address some particular solutions and compare
them with previous results in the literature. Finally, the con-
clusions are presented in Sect. 6. Here, we use natural units
such as h̄ = c = 1.

2 The equation of motion

In this section, we derive the Dirac equation with scalar and
vector couplings to study the motion of a Dirac oscillator
in the cosmic string spacetime. We first define the spacetime
background of an idealized cosmic string where the oscillator
will move, followed by the most general interaction, which
includes the potential of the Dirac oscillator. The interactions,
however, are chosen in such a way that analytical solutions
to the Dirac equation can be obtained.

The spacetime generated by a cosmic string is described
by the following line element in cylindrical coordinates

ds2 = dt2 − dr2 − α2r2dϕ2 − dz2, (1)

with −∞ < (t, z) < ∞, r ≥ 0 and 0 ≤ ϕ ≤ 2π . The
parameter α is related to the linear mass density m̃ of the
string by α = 1 − 4m̃ and it runs in the interval (0, 1] and
corresponds to a deficit angle γ = 2π(1−α). Geometrically,
the metric in Eq. (1) corresponds to a Minkowski spacetime
with a conical singularity [73].

One starts by considering the free Dirac equation, i.e., in
the absence of interactions. The interaction will be included
later. So, we have
(
iγ μ∂μ − M

)
Ψ = 0, (2)

where Ψ is a four-component spinorial wave function. In
order to work out in the curved spacetime, we must write the
Dirac gamma matrices γ μ in the Minkowskian spacetime
(written in terms of local coordinates) in terms of global
coordinates and subsequently include the spinor affine con-
nection Γμ. In other words, we must contract γ μ with the
inverse tetrad,

γ μ = eμ
a γ a, (3)

satisfying the generalized Clifford algebra
{
γ μ, γ ν

} = 2gμν, (4)

where (μ, ν) = (0, 1, 2, 3) are tensor indices and (a, b) =
(0, 1, 2, 3) are tetrad indices. The matrices γ a = (

γ 0, γ i
)

in
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Eq. (3) are the standard Dirac matrices in Minkowski space-
time, with

γ 0 =
(
1 0
0 −1

)
, γ i =

(
0 σ i

−σ i 0

)
, (i = 1, 2, 3) (5)

where σ i are the standard Pauli matrices and 1 is the 2 × 2
identity matrix. As we are interested on in a cosmic string,
we need to write down the generalized Dirac equation in
the curved spacetime background with a minimal coupling.
Therefore, the relevant equation is
[
iγ μ(∂μ + Γμ) − eγ μAμ − M

]
Ψ = 0, (6)

where e is the electric charge and Aμ denotes the vec-
tor potential associated with the electromagnetic field. The
spinor affine connection is often written as [74]

Γμ = 1

8
ωμab

[
γ a, γ b

]
, (7)

where ωμab is the spin connection, given by

ωμab = ηace
c
νe

τ
bΓ

ν
τμ − ηace

c
ν∂μe

ν
b . (8)

In (8), Γ ν
τμ are the Christoffel symbols and ηab is the metric

tensor. By the means of the spin connection, we can construct
a local frame using a basis tetrad which gives the spinors in
the curved spacetime. Here, the basis tetrad eμ

a is chosen to
be [75]

eμ
a =

⎛

⎜⎜
⎝

1 0 0 0
0 cos ϕ sin ϕ 0
0 − sin ϕ/αr cos ϕ/αr 0
0 0 0 1

⎞

⎟⎟
⎠ , (9)

satisfying the condition

eμ
a e

ν
bη

ab = gμν. (10)

Using (9), the matrices γ μ in Eq. (6) are written more explic-
itly as

γ 0 = et0γ
0 ≡ γ t , (11)

γ z = ez0γ
0 ≡ γ z, (12)

γ 1 = e1
aγ

a ≡ γ r , (13)

γ r = er0γ
0 + er1γ

1 + er2γ
2,

= γ 2 cos ϕ + γ 2 sin ϕ, (14)

γ 2 = e2
aγ

a ≡ γ ϕ

αr
, (15)

γ ϕ = eϕ
0 γ 0 + eϕ

1 γ 1 + eϕ
2 γ 2,

= −γ 1 sin ϕ + γ 2 cos ϕ. (16)

Given the fact that the matrices in the curved space satisfy
the condition ∇μγ μ = 0, i.e., they are covariantly constant,
for the specific basis tetrad (9), the affine spin connection is
found to be

Γ = (
0, 0, Γϕ, 0

)
, (17)

with the non-vanishing element given by

Γϕ = 1

2
(1 − α) γ1γ2. (18)

We are interested on including potentials with cylindrical
symmetry, in such a way the resulting system will have trans-
lational invariance along the z direction. Then, we can dis-
card the third direction and thus consider the Dirac oscillator
in two spacial dimensions [19] (see also Ref. [20]), assum-
ing pz = 0.1 This assumption allows us to reduce the four-
component Dirac equation (6) to a two-component spinor
equation. Moreover, according to the tetrad postulated [74],
the γ a matrices could be any set of constant Dirac matrices.
Thus, a convenient representation is the following [54,76,77]

γ 0 = σ z, βγ 1 = σ 1, βγ 2 = sσ 2, (19)

where the parameter s, which is twice the spin value, can be
introduced to characterize the two spin states, with s = +1
for spin “up” and s = −1 for spin “down”. In the repre-
sentation (19), the matrices (11), (13) and (15) assume the
following form:

γ 0 = β = σ z, (20)

βγ r = σ r =
(

0 e−isϕ

eisϕ 0

)
, (21)

βγ ϕ = sσϕ = s

αr

(
0 −ie−isϕ

ieisϕ 0

)
. (22)

and Eq. (18) becomes

Γϕ = − is

2
(1 − α) σ z . (23)

Now, let us include the interactions into the Dirac equation
(6). We consider the effective potential [78,79]

Mωiσ z (βγ · r̂) r+ 1

2

(
I+σ z)Σ(r)+ 1

2

(
I − σ z)Δ(r),

(24)

with

Δ(r) = V (r) − S(r), (25)

Σ(r) = V (r) + S(r), (26)

where

V (r) = V1(r) + V2(r) = ηC1

r
+ ηL1r, (27)

S(r) = S1(r) + S2(r) = ηC2

r
+ ηL2r, (28)

are cylindrically symmetric scalar and vector potentials. The
first term in Eq. (24) represents the Dirac oscillator. In this

1 Otherwise, we shall have an overall phase factor of the kind eipz z in
the final wave function.
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manner, the time-independent Dirac equation (6) with energy
E can be written as

HDψ = Eψ, (29)

where ψ is a two-component spinor,

HD = βγ · (pα − iΓ − iMωβr) + 1

2
(I + β) Σ(r)

+ 1

2
(I − β) Δ(r) + βM, (30)

is the Dirac Hamiltonian and

pα = −i∇α = −i

(
∂

∂r
r̂ + 1

αr

∂

∂ϕ
ϕ̂

)
, (31)

is the planar spatial part of the gradient operator in the metric
(1).

We begin the study of the particle motion by looking for
first order solutions of the Eq. (29). For this purpose, we write
the Eq. (29) as follows,

ie−isϕ
[
− ∂

∂r
+ Mωr + is

αr

∂

∂ϕ
− (1 − α)

2αr

]
ψ2

= [E − M − Σ(r)] ψ1, (32a)

and

ie+isϕ
[
− ∂

∂r
− Mωr − is

αr

∂

∂ϕ
− (1 − α)

2αr

]
ψ1

= [E + M − Δ(r)] ψ2, (32b)

and we consider the solutions as

ψ =
(

ψ1

ψ2

)
=
⎛

⎝

∑

m
f (r) eimϕ

∑

m
ig(r) ei(m+s)ϕ

⎞

⎠ , (33)

with m = 0,±1,±2,±3, . . . being the quantum angular
momentum number. The substitution of (33) into (32a) and
(32b) gives the following set of coupled differential equa-
tions:

(
d

dr
+ s

J−
α

r
− Mωr

)
gm = [E − M − Σ(r)] fm, (34)

(
− d

dr
+ s

J+
α

r
− Mωr

)
fm = [E + M − Δ(r)] gm . (35)

where

J±
α = 1

α

[
m + sΘ± + s

2
(1 − α)

]
, (36)

where Θ+ = 0 and Θ− = 1. The reason why we are
using superscripts (±) in Eq. (36) will be clarified in the
next section. If we consider that Δ(r) = 0 and E = −M
or Σ (r) = 0 and E = +M , the solutions of Eqs. (34) and
(35) represent a particular solution for the problem, which is
excluded from the Sturm-Liouville problem. In other words,

such solutions would not be part of those obtained by solv-
ing the second-order differential equation obtained from Eq.
(29). The procedure of imposing that either Δ(r) = 0 or
Σ (r) = 0 in Eqs. (34) and (35), respectively, is known in
the literature as the exact limits of spin and pseudo-spin sym-
metries [3]. These conditions are taken into account in the
next section.

3 Particular solutions and the analysis of the spin and
the pseudo-spin symmetries

In this section, we solve the system of first-order radial differ-
ential equations obtained in the previous section by imposing
either the exact limits of spin and pseudo-spin symmetries.
Once we find the solutions, we must verify that they are
physically acceptable solutions. As mentioned above, the
exact limit of the spin symmetry occurs when Δ(r) = 0
(V (r) = S(r) in Eq. (25)), while that the exact limit of
the pseudospin symmetry is achieved by setting Σ(r) = 0
(V (r) = −S(r) in Eq. (26)). In what follows, the super-
script (+) holds for the spin symmetry and (−) holds for
the pseudo-spin symmetry. In these limits, the solutions are
related to the up and down components of the spinor in Eq.
(33), respectively.

In order to obtain the particular solutions, let us look for
the bound state solutions which obey the following normal-
ization condition,
∫ ∞

0

(
| fm(r)|2 + |gm(r)|2

)
rdr = 1. (37)

We assume E = ±M , as it was mentioned above.

3.1 The exact spin symmetry

Here, the particular solutions for the bound states are obtained
by considering Δ(r) = 02 along with the assumption E =
−M in both Eqs. (34) and (35). Therefore, we have

(
d

dr
+ s

J−
α

r
− Mωr

)
gm(r) = − 2 [M + S(r)] fm (r) ,

(38)
(

− d

dr
+ s

J+
α

r
− Mωr

)
fm(r) = 0. (39)

2 After we impose the limits of symmetry, for simplicity, we use ηC1 =
ηC2 = ηC and ηL1 = ηL2 = ηL .

123



Eur. Phys. J. C (2019) 79 :596 Page 5 of 15 596

Their solutions are written as

fm(r) = a1r
s J+

α e− 1
2 Mωr2

, (40)

gm(r) = r−s J−
α e

1
2 Mωr2

×
[
a1 (Mω)−

1
2 s(J

+
α +J−

α )− 3
2 Γ(a,b,c) + a2

]
, (41)

with

Γ(a,b,c) = ηC (Mω)
3
2 Γ(a) + ηL (Mω)

1
2 Γ(b) + M2ωΓ(c),

(42)

where

Γ(a) = Γ

[
1

2
s
(
J+
α + J−

α

)
, Mωr2

]
, (43)

Γ(b) = Γ

[
1

2
s
(
J+
α + J−

α

)+ 1, Mωr2
]

, (44)

Γ(c) = Γ

[
1

2
s
(
J+
α + J−

α

)+ 1

2
, Mωr2

]
, (45)

are upper incomplete Gamma functions [80], a1 and a2 are
constants. Let us discuss the solutions (40) and (41). Since
e− 1

2 Mωr2
dominates over rs J

+
α for any value of s J+

α , the solu-
tion fm(r) in Eq. (40) converges as r → 0 and r → ∞. On
the other hand, as the incomplete Gamma functions Γ(a,b,c)

always diverge, so gm(r) in (41) will only converge as r → 0
if a1 = 0, yielding fm(r) = 0. The resulting solution are

[
fm(r)
gm(r)

]
= a2

(
0
1

)
r−s J−

α e
1
2 Mωr2

,

{
s = ±1,

a1 = 0.
(46)

As Mω > 0 in (46), there are no values of s J−
α for which the

functions are square-integrable. In this case, we can there-
fore conclude right away that for E = −M and exact spin
symmetry there is no bound state solution.

3.2 Exact pseudo-spin symmetry

In this case, we impose Σ(r) = 0 and E = M in both Eqs.
(34) and (35). Thus, we obtain

(
d

dr
+ s

J−
α

r
− Mωr

)
gm (r) = 0, (47)

(
− d

dr
+ s

J+
α

r
− Mωr

)
fm (r) = 2 [M + S(r)] gm(r).

(48)

Their solutions are given by

fm(r) = b1r
s J+

α e− 1
2 Mωr2

×
[
b1 − b2(−Mω)

1
2 s(J

−
α +J+

α )− 3
2 Γ (d, e, f )

]
,

(49)

gm(r) = b2r
−s J−

α e
1
2 Mωr2

, (50)

where b1 and b2 are constants, and

Γ(d,e, f ) = M2ωΓ(d) − ηC (−Mω)
3
2 Γ(e)

−ηL (−Mω)
1
2 Γ( f ), (51)

with

Γ(d) = Γ

[
1

2
− 1

2
s
(
J−
α + J+

α

)
,−Mωr2

]
, (52)

Γ(e) = Γ

[
−1

2
s
(
J−
α + J+

α

)
,−Mωr2

]
, (53)

Γ( f ) = Γ

[
1 − 1

2
s
(
J−
α + J+

α

)
,−Mωr2

]
. (54)

Again, the incomplete Gamma functions Γ(d,e, f ) in Eq. (49)
always diverge, so that a normalized solution requires that
b2 = 0. In such a case, the function fm(r) is square-
integrable only for s J+

α ≥ 0. The physically acceptable solu-
tion is

[
fm(r)
gm(r)

]
= b1r

s J+
α e− 1

2 Mωr2
(

0
1

)
,

{
s J+

α ≥ 0,

a1 = 0.
(55)

Therefore, we can conclude that for the case E = M along
with the exact pseudo-spin symmetry there is a bound state
solution. Here, the existence of a particular bound state solu-
tion is guaranteed only for Mω > 0. However, there are other
models in the literature where this quantity can assume any
value, so that bound states solutions are allowed for both the
spin and pseudospin symmetry limits [81].

4 The Dirac-Pauli equation and the analysis of both the
spin and the pseudo-spin symmetries

In this section, we study the dynamics for the case E �= ±M .
For this purpose, it is more convenient to work with the Eq.
(29) in its quadratic form. In our analysis, we shall see that
because of the shape of the potential (24), the solutions for the
radial equation are given in terms of biconfluent Heun func-
tions and the energy levels of the oscillator will be determined
only after imposing some quantum conditions.

To obtain the quadratic form of the Dirac equation (29),
we multiply it by the matrix operator

βγ · (pα − iΓ − iMωβr) + βM + E + 1

2
(β − 1) Σ(r)

−1

2
(1 + β) Δ(r), (56)
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leading to

−∇2
αψ − (1 − α)sσ z

iα2r2

∂

∂ϕ
+ (1 − α)2

4α2r2 + M2ω2r2ψ

−2Mω

{
σ z + s

α

[
1

i

∂

∂ϕ
− s

2
(1 − α) σ z

]}
ψ

−Σ(r)Δ(r)ψ + (E + M)Σ(r)ψ + (E − M)Δ(r)ψ

+
(
M2 − E2

)
ψ − 1

2
iσ r

{
d

dr
[Σ(r) + Δ(r)]

}
ψ

−1

2
σϕ

{
d

dr
[Σ (r) − Δ(r)]

}
ψ = 0, (57)

where ∇2
α = ∂2

r + (1/r)∂r + (1/α2r2)∂2
ϕ is the planar spa-

tial part of the Laplace-Beltrami operator in the metric (1).
By inserting the solutions (33) into Eq. (57), we obtain the
following set of two coupled radial differential equations of
second-order:

−d2 f (r)

dr2 − 1

r

d f (r)

dr
+
(
J+
α

)2

r2 f (r) + M2ω2r2 f (r)

−2Mω
(
s J+

α + 1
)
f (r) − Σ(r)Δ(r) f (r)

+ (E + M)Σ(r) f (r) + (E − M)Δ(r) f (r)

+
(
M2 − E2

)
f (r) +

[
dΔ(r)

dr

]
g(r) = 0, (58)

and

−d2g(r)

dr2 − 1

r

dg(r)

dr
+
(
J−
α

)2

r2 g(r) + M2ω2r2g(r)

−2Mω
(
s J−

α − 1
)
g(r) − Σ(r)Δ(r)g(r)

+ (E + M)Σ(r)g(r) + (E − M)Δ(r)g(r)

+
(
M2 − E2

)
g(r) −

[
dΣ(r)

dr

]
f (r) = 0. (59)

Notice that these two equations are coupled via the last terms
and the spin and pseudospin symmetry limits uncouple them.
So, here and henceforth we employ the following approach.
For the spin symmetry limit, we solve the problem by con-
sidering the upper component of the spinor and denotes it
by f + (i.e., + labels the spin symmetry solution) and for
the pseudospin symmetry limit, we consider the lower com-
ponent and denotes it by g− (i.e., − labels the pseudospin
symmetry solution).

4.1 The analysis of both the spin and the pseudo-spin
symmetries

When we take into account the exact limits of spin and sym-
metries in Eqs. (58) and (59), each component of the spinor
satisfies

−d2 f +(r)

dr2 − 1

r

d f + (r)

dr
+
(
J+
α

)2

r2 f + (r) + � 2r2 f +(r)

+a+

r
f +(r) + b+r f +(r) − (

k+)2 f +(r) = 0, (60)

and

−d2g−(r)

dr2 − 1

r

dg− (r)

dr
+
(
J−
α

)2

r2 g− (r) + � 2r2g−(r)

+a−

r
g−(r) + b−rg−(r) − (

k−)2 g−(r) = 0, (61)

where

(
k±)2 = E2 − M2 + 2Mω

(
s J±

α ± 1
)
, (62)

� = Mω, a± = 2(E ± M)ηC and b± = 2(E ± M)ηL .
The differential equations (61) and (61) can be placed in an
convenient mode using, respectively, the following solutions:

f +(x) = x |J+
α |e− 1

2 (x2+ξ+
L x)y+(x), (63)

g−(x) = x |J−
α |e− 1

2 (x2+ξ−
L x)y−(x), (64)

where x = √
�r and y±(x) satisfies

x
[
y±(x)

]′′ +
[
J
± − 2x2 − ξ±

L x
] [

y±(x)
]′

+
[(

Δ± − J
± − 1

)
x − 1

2

(
J
±ξ±

L + 2ξ±
C

)]
y± (x) = 0,

(65)

where

Δ± =
(
ξ±
L

)2

4
+
(
k±)2

�
, (66)

J
± =2

∣∣J±
α

∣∣+ 1, (67)

ξ±
C = a±/

√
� and ξ±

L = b±/
√

� 3. Equation (65) is
a homogeneous, linear, second-order, differential equations
defined in the complex plane. The solutions of these equa-
tions are given in terms of the biconfluent Heun functions by
[82,83]

f +(x) = e− 1
2 (x2+ξ+

L x)
[
c1x

∣
∣J+

α

∣
∣
N+ (2

∣
∣J+

α

∣
∣, ξ+

L , Δ+, 2ξ+
C , x

)

+ c2x
−∣∣J+

α

∣
∣
N+ (−2

∣∣J+
α

∣∣, ξ+
L , Δ+, 2ξ+

C , x
) ]

, (68)

g−(x) = e− 1
2 (x2+ξ−

L x)
[
c1x

∣
∣J−

α

∣
∣
N− (2

∣∣J−
α

∣∣, ξ−
L , Δ−, 2ξ−

C , x
)

+ c2x
−∣∣J−

α

∣
∣
N− (−2

∣
∣J−

α

∣
∣, ξ−

L , Δ−, 2ξ−
C , x

) ]
, (69)
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where

N± (2
∣
∣J±

α

∣
∣, ξ±

L , Δ±, 2 ξ±
C , x

)

=
∞∑

q=0

A ±
q

(
2
∣∣J±

α

∣∣, ξ±
L , Δ±, 2 ξ±

C

)

(
1 + 2

∣∣J±
α

∣∣)
q

xq

q! . (70)

The coefficients of the series are given by

A ±
0 = 1, (71)

A ±
1 = 1

2

[
2 ξ±

C + ξ±
L

(
1 + 2

∣∣J±
α

∣∣)] , (72)

A ±
q+2 =

{
(q + 1) ξ±

L + 1

2

[
2ξ±

C + ξ±
L

(
1 + 2

∣∣J±
α

∣∣)]
}
A ±

q+1

− (q + 1)
(
q + 1 + 2

∣∣J±
α

∣∣)

× [
Δ± − 2(

∣∣J±
α

∣∣− 1 − q)
]
A ±

q , (73)

and

(
1 + 2

∣
∣J±

α

∣
∣)
q = Γ

(
q + 2

∣∣J±
α

∣∣+ 1
)

Γ
(
2
∣∣J±

α

∣∣+ 1
) . (74)

From the recursion relation (73), the function

N±(2
∣
∣J±

α

∣
∣, ξ±

L , Δ±, 2 ξ±
C , x)

becomes a polynomial of degree n, if and only if, the two
following conditions are imposed [83,84]:

Δ± − 2
(
1 + ∣∣J±

α

∣∣) = 2n, n = 0, 1, 2, . . . , (75)

A ±
n+1 = 0. (76)

In this case, the (n + 1)th coefficient in the series expansion
is a polynomial of degree n in 2 ξ±

C . When 2 ξ±
C is a root of

this polynomial, the (n + 1)th and subsequent coefficients
cancel and the series truncates, resulting in a polynomial form
of degree n for the solution N± (2 |J±

α |, ξ±
L , Δ±, 2 ξ±

C , x
)
.

From the condition (75), we extract the following expressions
involving the energy E±

nm :

(
E±
nm

)2 − M2 = 2Mω
[
n + ∣∣J±

α

∣∣− s J±
α + 2Θ±]

− η2
L

M2ω2

(
E±
nm ± M

)2
, (77)

We notice in Eq. (77) the absence of the parameter ηC . This
steams from the fact that these expressions do not represent
the energies of the system in its present form. Actually, the
condition (76) allows us to establish a quantum condition
that links the energy and others physical quantities, includ-
ing ηC [79,85,86]. As a result, it is possible to express the
energy in terms of all the physical parameters involved in the
problem, namely, ηC , ηL , M , and ω. We emphasize that that,
a priori, we are free to choose which parameter we want to
fix. Here, such a quantum condition is established through
the frequency ω of the system. Therefore, we now label ω

as ωnm . Before performing the procedure, let us consider
the solution (70) up to second-order in x of the expansion,
namely,

N± (2 |J±
α |, ξ±

L , Δ±, 2 ξ±
C , x

) = A ±
0(

1 + 2 |J±
α |)0

+ A ±
1(

1 + 2 |J±
α |)1

x + A ±
2(

1 + 2 |J±
α |)2

x2

2! + · · · (78)

with

A ±
0 = 1, (79)

A ±
1 = 1

2

[
2 ξ±

C + ξ±
L J

±] , (80)

A ±
2 = ξ±

L

[
ξ±
C + 1

2
ξ±
L J

±
]

+
[

ξ±
C + 1

2
ξ±
L J

±
]2

, (81)

Thus, Eq. (78) reads

N± (2 |J±
α |, ξ±

L , Δ±, 2 ξ±
C , x

) = 1 +
[

ξ±
L J

± + 2 ξ±
C

2
(
2
∣∣J±

α

∣∣+ 1
)

]

x

+
[

ξ±
L

(
ξ±
C + 1

2ξ±
L J

±)+ (
ξ±
C + 1

2ξ±
L J

±)2 − 2nJ±
(
2
∣∣J+

α

∣∣+ 1
) (

2
∣∣J+

α

∣∣+ 2
)

]

x2

+ · · · .

Now let us determine the quantum condition mentioned
above. For the condition (76), we must investigate A ±

n+1 =
0. For simplicity, we consider only the case n = 0, which
requires that A ±

1 = 0 in Eq. (80). This requires us to solve
the equation

2
a±
√

�
+ b±

√
� 3

J
± = 0, (82)

which provides the following frequencies related to the
ground state of the system:

ω±
0m = − ηL

2M ηC
J
±. (83)

However, Eq. (83) will only be an acceptable quantum condi-
tion if ηL/ηC < 0 to ensure that the frequencies ω±

0m are pos-
itive. Thus, respective energies corresponding to the ground
state are

E±
0m = 4M η2

C

1 + (
J±)2

⎡

⎢
⎣∓1(±)

√√
√√1 +

(
J±)2

4M2η2
C

Q±
0m

⎤

⎥
⎦ , (84)

where

Q±
0m =

[
ηL

ηC

(∣∣J±
α

∣
∣− s J±

α + 2Θ±)
J
± − 4M2 η2

C(
J±)2 + M2

]

×
[

1 +
(
J±)2

4 η2
C

]

. (85)
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(a)

(b)

Fig. 1 Illustration of the energy eigenvalues in the spin symmetry limit,
E+

0m , as a function of the parameter α. (a) s = 1 and (b) s = −1. We use
M = 1, ηC = 1 and ηL = 1. In a the energies of the states with m < 1
become larger for α → 0 whereas for α = 1 the differences between the
energy levels decrease as well as the energy values. For the states with
m � 1 (dot-dashed blue and solid brown lines), the energies change
very slowly and are non-degenerate. In b the opposite of a occurs: the
states with m � 0 are more energetic for α → 0 and less energetic for
α = 1

In (84), the notation (±) refers to the particle and antipar-
ticle energies. The energies in Eq. (84) now depend on all
the physical parameters involved in the problem. In Figs. 1
and 2, we plot the profile of these energies as a function of the
parameterα. In both plots we clearly see that the energy levels
of the particle and antiparticle belong to the same spectrum
and, moreover, there is no channel that allows the sponta-
neous creation of particles because none of the lines of the
spectrum cross each other.

5 Particular cases

In this section, we study particular solutions of problem
solved in the previous section. Namely, we will investigate

(a)

(b)

Fig. 2 Illustration of the energy eigenvalues in the pseudospin sym-
metry limit, E−

0m , as a function of the parameter α. In a the plot for
s = 1 and b for s = −1. We use M = 1, ηC = 1 and ηL = 1. The
energies of the states corresponding to a given value of m near α = 0
in a and b are more energetic while near α = 1 the differences between
the energy levels decrease as well as their respective values

three cases. For the first two, the solutions of the resulting
equations are given in terms of biconfluent Heun functions
whereas the third, which will not involve scalar and vectorial
interactions, will be given in terms of the confluent hyperge-
ometric function.

Let us then return to Eq. (65) and solve it for the particular
case ηL = 0. The resulting equation governs the dynamics
of a two-dimensional Dirac oscillator interacting with the
potential ηC/r . In this case, the solutions are given by

f̃ +(x) = c̃1x |J+
α |e− 1

2 x
2
Ñ+ (2

∣∣J+
α

∣∣, 0,Δ+, 2ξ+
C , x

)

+ c̃2 x
−|J+

α |e− 1
2 x

2
Ñ+ (−2

∣∣J+
α

∣∣, 0,Δ+, 2ξ+
C , x

)
,

(86)

g̃−(x) = c̃1x |J−
α |e− 1

2 x
2
Ñ− (2

∣∣J−
α

∣∣, 0,Δ−, 2ξ−
C , x

)

+ c̃2 x
−|J−

α |e− 1
2 x

2
Ñ− (−2

∣∣J−
α

∣∣, 0,Δ−, 2ξ−
C , x

)
.

(87)
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Then, using the condition (75), we find the energies

(
E ±
nm

)2 − M2 = 2M
(
n + ∣∣J±

α

∣∣− s J±
α + 2Θ±) ω̃±

nm, (88)

Moreover, from condition (76), we consider again A ±
n+1 = 0

for n = 0, and solve it for �̃±
0m . One can thus verify that it

is not possible to extract a physically acceptable expression
for �̃±

0m . Consequently, n = 0 is not an allowed value for the
quantum number and we need to solve A ±

n+1 = 0 for n = 1.
Thus, we have

�̃±
1m = 2η2

C

M

(
E ±

1m + M
)2

J± , (89)

Substituting (89) into (88) and solving these equations for
E ±

1m , we find

[
E +

1m

]
p =

⎛

⎝
1 + 2η2

C
J+
(
1 + J+ − 2s J+

α

)

1 − 2η2
C

J+
(
1 + J+ − 2s J+

α

)

⎞

⎠M, (90a)

[
E +

1m

]
ap = − M, (90b)

and

[
E −

1m

]
p = M, (91a)

[
E −

1m

]
ap = −

⎛

⎝
1 + 2η2

C
J−
(
J− − 2s J−

α + 5
)

1 − 2η2
C

J−
(
J− − 2s J−

α + 5
)

⎞

⎠M, (91b)

where the subscripts p and ap refer to the energies of the
particle and antiparticle, respectively. As we are studying
the dynamics for which E ±

0m �= ±M , the energies
[
E +

1m

]
ap

and
[
E −

1m

]
p are not allowed energies for the particle. The

profiles of the energies (90a) and (91b) as a function of the
parameter α are shown in Figs. 3 and 4, respectively. We can
observe in Fig. 3a (s = +1) the presence of degeneracy for
m = −2,−1, 0, while in Fig. 3b (s = −1), the degeneracy
occurs for m = 0, 1, 2. In Fig. 4, the spectrum of the states
with m = −2 (Fig. 4a for s = +1) and with m = 2 (Fig. 4b
for s = −1) change very slowly and are non-degenerate.

The second particular case is when ηC = 0. In this case,
the system consists of a Dirac oscillator interacting with a
linear potential, ηLr . Thus, the solutions of Eq. (65) is again
given in terms of the Heun functions,

f̄ +(x) = e− 1
2 (x2+ξ+

L )
[
c̄1 x |J+

α | N̄+ (2
∣∣J+

α

∣∣, ξ+
L , Δ+, 0, x

)

+ c̄2 x
−|J+

α | N̄+ (−2
∣∣J+

α

∣∣, ξ+
L ,Δ+, 0, x

) ]
, (92)

ḡ−(x) = e− 1
2 (x2+ξ−

L )
[
c̄1 x |J−

α | N̄− (2
∣∣J−

α

∣∣, ξ−
L , Δ−, 0, x

)

+ c̄2 x
−|J−

α | N̄− (−2
∣
∣J−

α

∣
∣, ξ−

L ,Δ−, 0, x
) ]

, (93)

(a)

(b)

Fig. 3 Illustration of the energy levels in the spin symmetry limit,[
E+

1m

]
p , as a function of the parameter α for the particular case when

ηL = 0. In a the plot for s = 1 and b for s = −1. We use M = 1 and
ηC = 1. In a the energies are degenerate for m = −2,−1, 0. Energy
is not defined in α = 0.5 when m = 1 (dashed green line). The energy
value for m = 2 (solid brown line) and α → 0 increases while near
α = 1 it decreases. The characteristics present in b are equivalent to a
by changing m by −m

and the energies are given by

(
Ē±
nm

)2 − M2 = 2Mω̄
(
n + ∣∣J±

α

∣∣− s J±
α + 1 + Θ±)

− η2
L

M2ω̄2

(
Ē±
nm ± M

)2
, (94)

Note that energies (94) are identical to those given in Eq.
(77). However, the frequency ω̄ is not the same. The differ-
ence between them is just the imposition established by the
condition (76). For n = 0, we obtain the frequencies

ω̄±
0m = 0, (95)

By substituting (95) into the respective energies (94), we find

Ē±
0m = ∓M(±)M. (96)
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(a)

(b)

Fig. 4 Illustration of the energy levels in the pseudo-spin symmetry
limit,

[
E−

1m

]
p , as a function of the parameter α for the particular case

when ηL = 0. In a the plot for s = 1 and b for s = −1. We use
M = 1 and ηC = 1. In a the energy of the states are not defined when
the parameter α is 0.25 (dashed-long orange line), 0.42 (dashed-dot
blue line) and 0.59 (solid brown line). The energy of the state with
m = −2 (dot red line) changes very slowly and it shows no degeneracy.
The spectrum is more energetic near the points of singularity and less
energetic near α = 0.1 and α = 1, respectively, except the m = −1
curve (dashed green line), which is more energetic only near α = 0.1.
The characteristics manifested in b are equivalent to a by changing m
by −m

For n = 1, we have

ω̄±
1m = 1

M

[
η2
L

(
1 + J±

2

) (
Ē±

1m ± M
)2
] 1

3

, (97)

and the energies are given by

(
Ē±

1m

)2 − M2 = 2Mω̄±
1m

(
n + ∣∣J±

α

∣∣− s J±
α + 2Θ±)

− η2
L

M2
(
ω̄±

1m

)2
(
Ē±

1m + M
)2

, (98)

with ω̄±
1m given in Eq. (97). For this particular case, it is veri-

fied that Eq. (98) presents four energy eigenvalues being two
for each type of symmetry limit considered. However, only

(a)

(b)

Fig. 5 The energy Ē+
1m as a function of the parameter α. a s = 1, b

s = −1. We use M = 1 and ηL = 1. In a the plot for s = 1 and b
for s = −1. We see clearly that the spectrum of the states are more
energetic near α = 0.1 and less energetic near α = 1

two of them are physically acceptable. The profiles of the
energies Ē+

1m and Ē−
1m are plotted as a function of the param-

eter α for s = 1 and s = −1 in Figs. 5 and 6, respectively.
We can see that both particle and antiparticle belong to the
same spectrum and contains no degeneracy. In Fig. 5a, we
clearly observe that the states with m > 0 are more affected
by the curvature while in Fig. 5b this occurs for the states
with m > 0. These same characteristics are also present in
Fig. 6, the only difference is that the spacing between each
level as well as their respective energy values are larger when
compared with the spectra of the Fig. 5.

Finally, the last case we want to discuss in that in which
ηL = ηC = 0 in Eq. (65). In this case, the solutions (69) and
(69) take the form

f +(x) = x |J+
α |e− 1

2 x
2
F+(x), (99)

g−(x) = x |J−
α |e− 1

2 x
2
F−(x), (100)

where x = √
�r and F±(x) satisfies the Kummer differen-

tial equation [80,82]
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(a)

(b)

Fig. 6 The energy Ē−
1m as a function of the parameter α. We use M = 1

and ηL = 1. In a the plot for s = 1 and b for s = −1. The states are
more energetic near α = 0.1 and less energetic near α = 1

(
F±)′′ (x) +

(
2
∣∣J+

α

∣∣+ 1

x
− 2x

)
(
F±)′ (x)

+
[
Δ̆± − (

2
∣∣J+

α

∣∣+ 2
)] (

F±) (x) = 0,

whose general solution is known to be

F±(x) = anM

(
1

2
+
∣∣J±

α

∣∣

2
− Δ̆±

4
, 1 + ∣∣J±

α

∣∣ , x2

)

+ bnx
−2|J±

α |M
(

1

2
−
∣∣J±

α

∣∣

2
− Δ̆±

4
, 1−∣∣J±

α

∣∣ , x2

)

,

(101)

In the above equations, M is the Kummer function [80,82].
For this particular case, if we write the condition (75) in the
form

1

2
+
∣∣J±

α

∣∣

2
− Δ̆±

4
= −n′, (102)

(a)

(b)

Fig. 7 The energy ε+
0m as a function of the parameter α. In a the plot

for s = 1 and b for s = −1. We use M = 1. In a, the states with
m � 0 are more affected by curvature while the states with m � 1 are
degenerate and are not affected by curvature. In b, we have the situation
opposite to a: the states with m � 0 are most affected by curvature and
states with m � −1 are degenerate and are not affected by curvature

with n′ = 0, 1, 2, 3, ..., where Δ̆± =
(
k̆±
)2

/Mω and
(
k̆±
)2 = (

ε±
nm

)2 − M2 + 2Mω
(
s J±

α ± 1
)
, the energies

of the oscillator are obtained. Since V (r) = S(r) = 0,
spin and pseudo-spin symmetries are now absent, and sig-
nals (±) in Eq. (102) are only used to represent the function
f +(x), g−(x) (components of ψ of Eq. (57) with positive
and negative energy, respectively) of the particle. In this way,
the eigenvalues of Eq. (101) are given by

(
ε±
nm

)2 − M2 = Mω
[
2n + J

± + 1
]− 2Mω

(
s J±

α ± 1
)
,

(103)

and the unnormalized bound state wave functions are

f +(x) = x |J+
α |e− 1

2 x
2
M
(
−n, 1 + ∣∣J+

α

∣∣ , x2
)
, (104)

g−(x) = x |J−
α |e− 1

2 x
2
M
(
−n, 1 + ∣

∣J−
α

∣
∣ , x2

)
. (105)
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(a)

(b)

Fig. 8 The energy ε−
0m as a function of the parameter α. In a the plot

for s = 1 and b for s = −1. We use M = 1. The only non-degenerate
states affected by curvature are those with m � −2 in a and m � 2 in
b. All states with m < 2 are not affected by curvature

The energies in Eq. (103) (for n = 0 and s = ±1) are plotted
as a function of the parameter α in Figs. 7e 8, respectively.
For a particle with s = 1 (Fig. 7a), all states with m > 0
are degenerate and are not affected by curvature while with
s = −1 (Fig. 7b), this characteristic occurs for the states with
m < 0. On the other hand, for an antiparticle with s = 1
(Fig. 8a), only the state with m = −2 is non-degenerate
while with s = −1 (Fig. 8b), only the state with m = 2 is
non-degenerate. In Ref. [87], the Dirac 2D oscillator inter-
acting with the Aharonov-Bohm potential in the time space
of the cosmic string was studied in the context of self-adjoint
extensions. In the absence of the Aharonov-Bohm field, the
resulting equation corresponding to the regular solution (Eq.
46) of Ref. [87] reproduces the Eq. (103).

6 Conclusion

In this paper, we have studied the dynamics of a 2D Dirac
oscillator interacting with cylindrically symmetric scalar and

vector potentials in the space-time of the cosmic string. The
problem was solved taking into account the spin and pseu-
dospin symmetry exact limits through two stages. First we
have solved the Dirac equation by looking for first order
solutions. We used an appropriate ansatz for the Dirac equa-
tion and obtained a system of coupled first order differential
equations. We investigated this system and verified that it
admits physically acceptable particular solutions, i.e., bound
states solutions, only for the pseudo-spin symmetry exact
limit, Σ = 0 and E = M . In the second moment, we have
constructed and solved the Dirac equation in its quadratic
form, which excludes the E �= ±M cases from its solutions.
For this case, we shown that the resulting radial differen-
tial equation is the biconfluent Heun equation. We studied
the series solution of this equation as well as its asymptotic
behavior at infinity and at the origin and found two condi-
tions (Eqs. (75) and (76)) to make the series a polynomial.
The use of these two conditions allowed us to obtain expres-
sions for the energies corresponding to fixed values of n. In
particular, we obtained the expression corresponding to the
state with n = 0, which is given by Eq. (84). We investigate
how the curvature affects the energies. For this intent, we
have plotted it as a function of the parameter α for each of
the limits of symmetries and spin element projection consid-
ered. In the case of the energy obtained for the spin symmetry
limit (Eq. (84) with superscript +), we have shown that for
s = 1 the states with m < 1 become more energetic when
α → 0 while for α = 1 the differences between the energy
levels as well as the respective energy values decrease. For
the states with m � 1, the energies change very slowly and
are non-degenerate. When the spin element is s = −1, we
have verified that the effects are opposite to those for s = 1,
namely, the states with m � 0 are more energetic for α → 0
and less energetic for α = 1. These characteristics were also
observed in the graph of the energies obtained in the pseud-
spin symmetry limit (Eq. (84) with superscript −). For both
s = ±1, the energies of the states corresponding to a given
value of m when α → 0 are more energetic while for α = 1
the differences between the energy levels decrease as well as
their respective energy values.

We also investigated some special cases for the solution of
the Eq. (57). In the first case, we have assumed the vanishing
of the linear potential by imposing ηL = 0. We obtained the
energies (Eqs. (90a)–(90b) and (91a)–(91b)) and plot them as
a function of the parameter α for both s = ±1. However, we
have shown that the energies (90b) and (91a) are not allowed.
In the energy profile (90a) for s = 1, the energies of states
with m � 0 are degenerate. In particular, when α = 0.5, the
state energy withm = 1 is not defined. We also have observed
that the energy values of the state with m = 2 when α → 0.

increases while for α = 1 it decreases. It also was verified
that these same characteristics are present in the graphic for
s = −1. In the plot of the energy given by Eq. (90b) for
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s = ±1, other important characteristics were manifested,
and these are absent in the plot of Eq. (90a). For s = 1, the
energy of the states are not defined for α equal to 0.25, 0.42
and 0.59. The spectrum is more energetic for α → 0 and
α = 1, except the m = −1 curve, in which is more energetic
only for α → 0. We have found that energy of the state with
m = −2 changes very slowly and are non-degenerate. We
have also found that these characteristics are present in the
graphic for s = −1.

In the second particular case investigated, we have
assumed ηC = 0 and, as for the first case, four energy
eigenvalues were found, but only two of them are physically
acceptable because of the requirement that E �= ±M . For
this case, we have not found energies with a given values of
m and α that are not allowed. The graphs of the energies (for
s = ±1) as a function of the α for both spin and pseudo-spin
symmetry limits revealed that they are more energetic for
α → 0 and less energetic for α = 1.0. The only difference
is that the spacing between the energies of the states for a
fixed m in the spin symmetry limit are greater than those in
the spin symmetry limit.

In the last particular case studied, we have assumed ηL =
ηC = 0. For this system, the resulting radial equation was
a equation Kummer differential equation type. We obtained
the energy spectrum (ε±

nm in Eq. (103)) and we plotted it as
a function of the α for both s = ±1. In the graph of the
energy ε+

0m for s = 1, we have verified that the states with
m > 0 are degenerate while for s = −1 this occurs for
states with m < 0. In the graph of the energy ε−

0m , we have
found that only the states with m = −2 (for s = 1) and
with m = 2 (for s = −1) are non-degenerate. A feature
present in all energy profiles, including the general case, is
the absence of channel that allows creation of particles, and
also no crossings of lines, which guarantees that particle and
antiparticle belong to the same spectrum.

As a final remark, we would like to mention that the model
addressed here can be applied to other systems, especially
those in condensed matter physics. This is due to the fact
that linear defects in condensed matter, such as disclinations
and dislocations in solids, can be studied through the same
approach used to treat a cosmic string [57]. A possible appli-
cation would be an adaptation of the model used to investigate
how the quantum dots and antidots, with the pseudoharmonic
interaction and under the influence of external magnetic and
Aharonov-Bohm potential are influenced by the presence of a
screw dislocation as that studied in Ref. [88] in the context of
spin and pseudo-spin symmetries. Interesting investigations
can also be made by considering non-inertial effects on the
particle dynamics [89]. The inclusion of non-inertial effects
in relativistic and non-relativistic quantum mechanics is an
issue of current interest it may be interesting to study some
physical system in the scenario of the problem addressed here
or in some other particular geometry.
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