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Abstract A surprising feature of our present four dimen-
sional universe is that its evolution appears to be governed
solely by spacetime curvature without any noticeable effect
of spacetime torsion. In the present paper, we give a possible
explanation of this enigma through “cosmological evolution”
of spacetime torsion in the backdrop of a higher dimensional
braneworld scenario. Our results reveal that the torsion field
may had a significant value at early phase of our universe,
but gradually decreased with the expansion of the universe.
This leads to a negligible footprint of torsion in our present
visible universe. We also show that at an early epoch, when
the amplitude of the torsion field was not suppressed, our uni-
verse underwent through an inflationary stage having a grace-
ful exit within a finite time. To link the model with observa-
tional constraints, we also determine the spectral index for
curvature perturbation (ns) and tensor to scalar ratio (r ) in the
present context, which match with the results of Planck 2018
(combining with BICEP-2 Keck-Array) data (Akrami et al.
in arXiv:1807.06211 [astro-ph.CO], 2019; Ade et al. in Phys
Rev Lett 116:031302 https://doi.org/10.1103/PhysRevLett.
116.031302, arXiv:1510.09217 [astro-ph.CO], 2016).

1 Introduction

A surprising feature of the present universe is that its large
scale behaviour appears to be controlled by one type of
geometrical deformation only, namely curvature; while we
notice practically no effect of another type of deformation,
namely torsion. The most straightforward way of including
torsion is to add an antisymmetric component to the con-
nection �α

μν , which is the essence of the so-called Einstein–
Cartan theory [3–5]. Once torsion enters into the theory in
this manner, it can in principle couple with all matter fields
having non zero spin. From dimensional argument, it can be
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easily shown that such interaction terms in general are of
dimension 5, and are suppressed by the Planck mass (Mp),
just as in the case of graviton couplings. But there has been no
experimental evidence of the footprint of spacetime torsion
on the present universe. An example is the Gravity Probe B
experiment which was designed to estimate the precession of
a gyroscope to observe any signature of spacetime torsion [6].
However, all such probes, within the limit of their experimen-
tal precision, have consistently produced negative results and
thereby disfavored the presence of the torsion in the space-
time geometry of our (3 + 1) dimensional visible universe
[7–9]. Therefore the apparent torsion free universe indicates
that the torsion field, if exists, must be severely suppressed at
the present scale of the universe. Thus the question that nat-
urally arises is : why are the effects of spacetime torsion are
less perceptible than the spacetime curvature ? There is no
satisfactory answer to this in the domain of four dimensional
classical gravity models.

The proposals to remove torsion by quantum effects in four
dimensional spacetime have appeared much before in [10],
where the authors showed the invisibility of spacetime torsion
(on the present energy scale of our universe) through the con-
sideration of quantum corrected (caused by vacuum effects)
gravitational action with torsion. There was also attempts
to seek an answer to this in the context of higher dimen-
sional braneworld models [11–21]. In particular, in Randall–
Sundrum (RS) scenario [14] which involves one extra com-
pact spacelike dimension with S1/Z2 orbifolding along the
extra dimension proposed a possible explanation for this sup-
pression of spacetime torsion in four dimension. This kind
of scenario postulates gravity in the five-dimensional ‘bulk’,
whereas our four-dimensional universe is confined to one of
the two 3-branes located at the two orbifold fixed points along
the compact dimension. However it has been already shown
that a rank-2 antisymmetric tensor field, generally known
as Kalb–Ramond (KR) field (BMN ), can act as a source of
spacetime torsion where the torsion is identified with rank-3
antisymmetric field strength tensor HMNL having a relation

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7109-5&domain=pdf
http://arxiv.org/abs/1807.06211
https://doi.org/10.1103/PhysRevLett.116.031302
https://doi.org/10.1103/PhysRevLett.116.031302
http://arxiv.org/abs/1510.09217
mailto:pul.tnmy9@gmail.com
mailto:tpssg@iacs.res.in


591 Page 2 of 14 Eur. Phys. J. C (2019) 79 :591

with BMN as HMNL = ∂[M BNL] [22]. In the RS like sce-
nario where both the gravity and the KR field propagate in
the bulk, the exponential warping nature of spacetime geom-
etry causes the KR field (or equivalently the torsion) to be
diluted on the visible 3-brane [11,23–25]. Also there is a
recent work on spacetime torsion with antisymmetric tensor
fields in higher curvature gravity model in the context of both
four dimensional and five dimensional spacetime [26], where
the authors showed that due to the effect of higher curvature
term(s), the amplitude of torsion field gets suppressed in the
course of the universe evolution.

However in the background of cosmological evolution,
the suppression of spacetime torsion (on our present uni-
verse) sourced by Kalb–Ramond field still awaits a proper
understanding. Furthermore one of our authors showed ear-
lier that the amplitude of KR field may be significant and can
play a relevant role in the early phase of the universe. This
motivates to explore whether the “dynamical evolution” of
KR field (from early universe) actually leads to a negligible
footprint of torsion on the present universe in the backdrop
of braneworld scenario. We also want to explore the “cos-
mological evolution” of KR field from very early universe to
examine whether the universe underwent through an infla-
tionary expansion [27–34]. In particular, the questions that
we address in the present paper are :

• How does the Kalb–Ramond field evolve from early era
of our universe? Does this evolution lead to an explana-
tion of why the effect of torsion is so much weaker than
that of curvature on the present visible brane?

• In such circumstance, does the four dimensional uni-
verse undergo an accelerating expansion at early epoch?
If such an inflationary scenario is allowed, then what is
the dependence of the duration of inflation on the KR
field energy density? Moreover what are the values of
the spectral index (ns) and tensor to scalar ratio (r ) in the
present context?

The present paper serves a natural explanation of the
above questions in the backdrop of Randall–Sundrum sce-
nario. However the warped RS geometry in its original form
is intrinsically unstable due to intervening bulk gravity. A
popular way of stabilizing the interbrane separation (also
known as modulus or radion) is via Goldberger–Wise (GW)
mechanism [35,36] which proposes the existence of a bulk
stabilizing scalar field. Some variants of RS model and its
modulus stabilization are discussed in [21,37–43]. Following
the GW mechanism, here we propose a dynamical stabiliza-
tion method of the extra dimensional modulus field (coupled
to the KR field through the effective field equations).

Our paper is organized as follows: the model is described
in Sect. 2, while Sect. 3 is reserved for presenting the cos-
mological field equations and their possible solutions from

the perspective of four dimensional effective theory. Their
implications and possible consequences are discussed in the
remaining part of the paper.

2 The model

We consider a five dimensional compactified warped geom-
etry two brane model with spacetime torsion in the bulk. In
the present context, the source of torsion is taken as rank-2
antisymmetric Kalb–Ramond (KR) field BMN (where latin
indices run from 0 to 4). Torsion can be identified with rank-3
antisymmetric field strength tensor HMNL which is related to
the KR field as HMNL = ∂[M BNL]. The spacetime is S1/Z2

orbifolded along the extra dimension, where the orbifolded
fixed points are identified with two 3-branes. Considering
φ as extra dimensional angular coordinate, two branes are
located at φ = 0 (hidden brane) and at φ = π (visible brane)
respectively while the latter one is identified with the visible
universe. One of the crucial aspects of this braneworld sce-
nario is to stabilize the distance between the branes (known
as modulus or radion). For this purpose, one needs to gen-
erate a suitable modulus potential with a stable minima and
in order to do this, here we consider a massive scalar field in
the five dimensional bulk. Therefore the action of the model
is given by,

S =
∫

d4xdφ
√−G

[
R(5)

2κ2 − 	 + Vhδ(φ) + Vvδ(φ − π)

−1

2
GMN ∂M�∂N� − 1

2
m2�2 − 1

12
HMNL H

MNL
]

(1)

where R(5) is the five dimensional Ricci scalar formed by
the metric GMN , 1

2κ2 = M3 (M is the 5 dimensional Planck
mass), 	(< 0) is the bulk cosmological constant and Vh , Vv

are the brane tensions on hidden, visible brane respectively.
� is the stabilizing scalar field with m denoting its mass. The
KR field action is represented by the last term in the above
action.

Considering a negligible backreaction of the KR field
(BMN ) and the scalar field (�) on the background space-
time, the solution of metric GMN turns out to be same as
well known RS model i.e

ds2 = e−2krcφημνdx
μdxν + r2

c dφ2 (2)

where k =
√

−	
24M3 and rc is the interbrane separation. With

this metric, the scalar field equation of motion in the bulk is
following,

1

r2
c

∂

∂φ

[
e−4krcφ ∂�

∂φ

]
− m2e−4krcφ�(φ) = 0 (3)
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where � is taken as the function of φ only. Considering non-
zero value of � on the branes, the above Eq. (3) has the
general solution,

�(φ) = e2krcφ[Aeσkrcφ + Be−σkrcφ] (4)

where σ =
√

4 + m2

k2 . Further the integrations constants A
and B are obtained from the boundary conditions, �(0) = vh
and �(π) = vv as follows,

A = vve
−(σ+2)krcπ − vhe

−2σkrcπ

B = vh(1 + e−2σkrcπ ) − vve
−(σ+2)krcπ (5)

Using the five dimensional spacetime metric (see Eq. (2)),
different components of stress tensor of the stabilizing scalar
field (�) can be obtained as,

Tφφ(�) = 1

4
r2
c

[
− 1

r2
c
(∂φ�)2 + m2�2

]

and

Tμν(�) = e−2krcφημν

1

4

[
1

r2
c
(∂φ�)2 + m2�2

]

Putting the bulk scalar field solution (Eq. 3) in the expres-
sion of Tφφ(�) and Tμν(�) and using the form of A and B
in terms of vv and vh (Eq. 5), one can show that the ratio
of corresponding component of stress tensor between bulk
scalar field and bulk cosmological constant varies as v2

v/M
3

i.e
(
Tφφ(�)

Tφφ(	)

)
∼ v2

v/M
3,

(
Tμν(�)

Tμν(	)

)
∼ v2

v/M
3

where Tφφ(	) and Tμν(	) are different components of
stress tensor for the bulk cosmological constant. Similarly
the Lagrangian density for Kalb–Ramond field leads to the
ratio of KR field stress tensor with the bulk cosmological
constant as ∼ HMNL HMNL/M5. Thus the stress tensor
for the bulk scalar field as well as for the KR field is less
than that of the bulk cosmological constant for v2

v/M
3 and

HMNL HMNL/M5 less than unity. These conditions allow us
to neglect the backreaction of the stabilizing scalar field and
the KR field (on the background spacetime) in comparison
to bulk cosmological constant.

In order to introduce the radion field, we consider a fluc-
tuation of branes around the stable configuration (rc). So, the
interbrane separation can be considered as a field (T (x)) and
here, for simplicity, we assume that this new field depends
only on the brane coordinates. The corresponding metric
ansatz is,

ds2 = e−2kT (x)φgμν(x)dx
μdxν + T (x)2dφ2 (6)

Correspondingly the introduction of radion field leads to the
bulk scalar field (�) solution as follows,

�(x, φ) = e2kT (x)φ[AeσkT (x)φ + Be−σkT (x)φ] (7)

where A and B are given by the following expressions,

A = vve
−(σ+2)kT (x)π − vhe

−2σkT (x)π

B = vh(1 + e−2σkT (x)π ) − vve
−(σ+2)kT (x)π

Having these set-up, now we proceed to obtain the effec-
tive four dimensional action leading to a viable physical
description of our visible universe. In the following few sub-
sections, we individually determine the explicit form of 4D
effective action for various parts of the original five dimen-
sional action (Eq. (1)).

2.1 Effective action for 5D Einstein–Hilbert term

With the metric in Eq. (6), a Kaluza–Klein reduction for
the five dimensional Einstein–Hilbert action reduces to four
dimensional effective action as,

S(1)
e f f =

∫
d4x

√−g

[
M3

k
R(4)

−12M3

k
gμν∂μ

(
e−kπT (x)

)
∂ν

(
e−kπT (x)

)]
(8)

where R(4) is the four dimensional Ricci scalar formed by
the on-brane metric gμν . As it is evident that T (x) is not
canonical and thus we redefine the field by the following
transformation:

T (x) −→ ξ(x) =
√

24M3

k
e−kπT (x) (9)

In terms of the canonical radion field ξ(x), S(1)
e f f takes the

following form,

S(1)
e f f =

∫
d4x

√−g

[
M3

k
R(4) − 1

2
gμν∂μξ∂νξ

]
(10)

2.2 Effective action for bulk scalar field (�): radion
potential

Plugging the bulk scalar field solution (see Eq. (7)) back
into the five dimensional scalar field action Sscalar =∫
d4xdφ

√−G
[ − 1

2G
MN ∂M�∂N� − 1

2m
2�2

]
and inte-

grating over the extra dimensional coordinate φ yields the
effective action as follows,

S(2)
e f f =

∫
d4x

√−g

[
− k3

144M6 ξ4
(

vh(ξ/ f )σ − vv

)2]

(11)

where f =
√

24M3

k . Further to derive the above expression,
we use the relation between T (x) and ξ(x) as shown in Eq.
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(9). However it may be noticed that the integrand of Eq. (11)
acts as a potential term for the radion field. Afterwards we
denote this potential by V (ξ) i.e

V (ξ) = k3

144M6 ξ4(vh(ξ/ f )σ − vv)
2 (12)

Equation (12) clearly indicates that the potential V (ξ)

goes to zero in absence of the bulk scalar field (i.e vh =
vv = 0). Therefore as mentioned earlier, the potential term
for the radion field is generated entirely due to the presence
of the bulk scalar field � [35,36].

The potential in Eq. (12) has a minimum at

ξmin = 〈ξ 〉
= f

[
vv

vh

]1/σ

(13)

and a maxima at

ξmax = f

[
vv

vh

(
2

2 + σ

)]1/σ

(14)

respectively. Moreover V (ξ) goes to zero as ξ = 0. In Fig. 1
we give a plot of V (ξ) against ξ . With the expression of 〈ξ 〉,
we determine the squared mass of the radion field as

m2
rad = k2v2

vσ
2

3M3

(
vv

vh

)2/σ

(15)

2.3 Effective action for KR field action

Recall that the 5D KR field action is given by,

SH = − 1

12

∫
d4xdφ

√−G[HMNL H
MNL ] (16)

where the KR field strength tensor HMNL is related to
BMN (second rank antisymmetric tensor field) as HMNL =
∂[M BNL], with latin and greek indices running from 0 to
4 and 0 to 3 respectively. It is easy to see that the action
S[H ] is invariant under the gauge transformation as BMN →
BMN + ∂MωN (with WN as an arbitrary function of space-
time coordinates). This gauge invariance of KR field allows

us to set B4μ = 0. Using the form of GMN (see Eq. (6)) and
keeping B4μ = 0, the above action turns out to be,

SH = − 1

12

∫
d4xdφ

√−ge2kT (x)φT (x)

×
[
gμαgνβgλγ HμνλHαβγ

− 3

T (x)2 e
−2kT (x)φgμαgνβBμν∂

2
φBαβ

]
(17)

The Kaluza–Klein decomposition for the KR field can be
written as,

Bμν(x, φ) =
∑

B(n)
μν (x)χ(n)(x, φ) (18)

where B(n)
μν (x) and χ(n)(x, φ) represent the nth mode of on-

brane KR field and extra dimensional KR wave function
respectively. It may be mentioned that the wave function χ(n)

is considered to be a function of brane coordinates also (apart
from the coordinate φ), this is because our motive is to inves-
tigate whether the “dynamical evolution” of KR field leads
to its invisibility on our present universe.

Substituting the decomposition in the five-dimensional
action SH and integrating over the extra dimension, the four
dimensional effective action turns out to be:

S(3)
e f f = − 1

12

∫
d4x

√−g[gμαgνβgλγ H (n)
μνλH

(n)
αβγ

+3m2
ng

μαgνβB(n)
μν B

(n)
αβ ] (19)

provided χ(n)(x, φ) satisfies the following equation of
motion,

∂χ(n)

∂t

∂χ(m)

∂t
− 1

T 2(t)
e−2kT (t)φχ(n) ∂

2χ(m)

∂φ2 =m2
nχ

(n)χ(m)

(20)

along with the normalization condition as,
∫ π

0
dφe2kT (t)φχ(n)χ(m) = 1

T 2(t)
δmn (21)

where mn denotes the mass of nth KK mode. As we will see
later that χ(n)(x, π) is important to determine the coupling
between the KR field and various Standard Model fields on
the visible brane. Further Eq. (20) clearly demonstrates that
the dynamical evolution of χ(n)(x, φ) is coupled with the
modulus (or radion) field T (x).

Equations (10), (11) and (19) immediately lead to the final
form of the four dimensional effective action as follows :

Sef f = S(1)
e f f + S(2)

e f f + S(3)
e f f

=
∫

d4x
√−g

[
M3

k
R(4) − 1

2
gμν∂μξ∂νξ − V (ξ)

+gμαgνβgλγ H (n)
μνλH

(n)
αβγ + 3m2

n B
(n)
μν B

μν(n)

]
(22)
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where the radion potential V (ξ) is explicitly shown in Eq.
(12). At this stage it deserves mentioning that the zeroth
Kaluza–Klein (KK) mode of the field strength tensor (i.e
H (0)

μνλ) can be identified with spacetime torsion and thus from
now on, we deal with the zeroth mode of the KR field for
whichmn=0 = 0. With this lowest KK mode, the four dimen-
sional effective action turns out to be,

Sef f = S(1)
e f f + S(2)

e f f + S(3)
e f f

=
∫

d4x
√−g

[
M3

k
R(4) − 1

2
gμν∂μξ∂νξ − V (ξ)

+gμαgνβgλγ H (0)
μνλH

(0)
αβγ

]
(23)

However due to the presence of the potential V (ξ), the
radion field acquires a certain dynamics governed by the
effective field equations. In this scenario, our motivation is
to investigate whether the dynamics of the radion field can
trigger such a evolution on the KR wave function χ(0)(x, φ),
that will lead to the fact that the effect of KR field (or equiv-
alently the torsion field) evolves to get suppressed with the
expansion of our universe. Further in [25], it was shown that
the energy density of B(0)

μν may be dominant and can have a
significant role at early phase of the universe. Therefore it is
crucial to explore the dynamical evolution of KR field from
very early era of the universe where it is also an intriguing
part to examine whether the early universe passes through an
inflationary period or not. Motivated by this idea, we try to
solve the cosmological Freidmann equations obtained from
the four dimensional effective action Sef f . This is demon-
strated in the next section.

At this stage it deserves mentioning that the energy scale,
or the compactification scale, of the five dimensional bulk
is ∼ Planck scale. However as mentioned earlier that here
we are interested on inflation on our 4D visible universe,
where the energy scale (or the inverse of the duration of
inflation) comes with ∼ 1010 GeV which is consistent with
the Planck observations as has been described later. Thus
the 4D inflationary energy scale is lesser compared to the
5D bulk scale and we can consider the 4D effective action
where the extra dimensional component of 5D metric i.e the
modulus appears as radion field. Thus the approach here is
motivated by the calculation of the effective action proposed
by Goldberger and Wise in [35,36].

3 Effective cosmological equations and their possible
solutions

In order to obtain the effective field equations, first we deter-
mine the energy-momentum tensor for ξ(x) and B(0)

μν (x) as,

Tμν[ξ ] = 2√−g

δ

δgμν

[√−g

(
1

2
gαβ∂αξ∂βξ + V (ξ)

)]

= ∂μξ∂νξ − gμν

(
1

2
gαβ∂αξ∂βξ + V (ξ)

)
(24)

and

Tμν[B(0)] = 2√−g

δ

δgμν

[
1

12

√−ggμαgνβgλγ HμνλHαβγ

]

= 1

6

[
3gνρHαβμH

αβρ − 1

2
gμνHαβγ H

αβγ

]
(25)

respectively.
The on-brane metric ansatz that fits our purpose is the flat

FRW metric i.e

ds2
(4) = gμν(x)dx

μdxν

= −dt2 + a2(t)[dx2 + dy2 + dz2] (26)

where a(t) is the scale factor of the visible universe. However
before presenting the field equations, we want to emphasize
that due to antisymmetric nature, H (0)

μνλ has four independent
components on the visible 3-brane, they can be expressed as,

H (0)
012 = h1, H012(0) = h1

H (0)
013 = h2, H013(0) = h2

H (0)
023 = h3, H023(0) = h3

H (0)
123 = h4, H123(0) = h4

With these independent components along with the metric
shown in Eq. (26), we determine various components of
Tμν[ξ ] and Tμν[B(0)], as given in Appendix 1. Such expres-
sions of energy-momentum tensor immediately lead to the
off-diagonal Friedmann equations [obtained from the effec-
tive action Sef f in Eq. (23)] as,

h4h
3 = h4h

2 = h4h
1 = h2h

3 = h1h
3 = h1h

2 = 0 (27)

The above set of equations has the following solution,

h1 = h2 = h3 = 0, h4 �= 0 (28)

Using this solution, one easily obtains total energy den-
sity and pressure for the matter fields (ξ , B(0)

μν ) as ρT =[
1
2 ξ̇2 + V (ξ) + 1

2h4h4
]

and pT =
[

1
2 ξ̇2 − V (ξ) + 1

2h4h4
]

respectively (where the fields are taken to be homogeneous
in space and an overdot denotes d

dt ). As a result, the diagonal
Friedmann equations take the following form,

3H2 = 1

2
ξ̇2 + V (ξ) + 1

2
h4h

4 (29)

2Ḣ + 3H2 + 1

2
ξ̇2 − V (ξ) + 1

2
h4h

4 = 0 (30)

where H = ȧ
a is known as Hubble parameter. Further, the

effective field equations for the zeroth mode of KR field
(B(0)

μν ) and the radion field (ξ ) are given by,
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∇μH
μνλ(0) = 1√−g

∂μ[√−gHμνλ(0)] = 0 (31)

and

ξ̈ + 3H ξ̇ + ∂V

∂ξ
= 0 (32)

respectively, where V (ξ) is explicitly shown in Eq. (12).
However the only information that we get from Eq. (31)
is that the non-zero component of H (0)

μνλ i.e h4 depends on
the coordinate t (see Appendix 2 for the derivation), as is
also expected from the gravitational field equations. Taking
time derivative of both sides of Eq. (29), we get 6H Ḣ =[
ξ̇ ξ̈ + V ′(ξ)ξ̇ + 1

2
d
dt (h4h4)

]
. Further Eqs. (29) and (30)

immediately lead to an expression as 2Ḣ = −ξ̇2 − 1
2h4h4.

Equating these two expressions of Ḣ and using the radion
field equation, one finally lands with the following time evo-
lution for h4h4 as,

d

dt
(h4h

4) = −6Hh4h
4

Solving the above differential equation, we obtain

h4h
4 = h0

a6(t)
(33)

where h0 is an integration constant which is restricted to
take only positive values in order to get a real solution of
h4. Recall that the term 1

2h4h4 represents the energy density
contributed from the KR field i.e ρK R = 1

2h4h4. Therefore
Eq. (33) clearly indicates that the energy density of the KR
field (zeroth mode) decreases monotonically as the universe
expands with time. This leads to a negligible footprint of
spacetime torsion on our present visible universe. However
at the same time Eq. (33) also demonstrates that the energy
density of the KR field should play an important role at early
phase of the universe (when a(t) is small compared to the
present one). Therefore in order to understand the dynam-
ical suppression of the KR field, it is crucial to determine
the time evolution of h4 from very early universe where it
is also important to examine whether the universe undergoes
through an inflationary stage or not. To investigate these phe-
nomena, we need to solve the scale factor during initial era.

Using the above form of h4h4 (see Eq. (33)), there remain
two independent effective field equations,

H2 = 1

3

[
1

2
ξ̇2 + V (ξ)

]
+ 1

6

h0

a6 (34)

ξ̈ + 3H ξ̇ + ∂V

∂ξ
= 0 (35)

These two equations are sufficient to determine the two
unknowns namely the scale factor (a(t)) and the radion field
(ξ(t)). As mentioned earlier, we are interested to solve Eqs.
(34), (35) during early universe and for this purpose, the
potential energy of the radion field is considered to be greater

than that of the kinetic energy (known as slow-roll approxi-
mation) i.e.

V (ξ) 
 1

2
ξ̇2 (36)

Under this approximation, Eqs. (34) and (35) are simplified
to,

H2 = 1

3
V (ξ) + 1

6

h0

a6 (37)

and

3H ξ̇ + ∂V

∂ξ
= 0 (38)

respectively. Using the explicit form of V (ξ) (see Eq. (12)),
we solve the above two equations for ξ(t), a(t) as,

ξ(t) = ξ0[
Dξσ

0 −
(
Dξσ

0 −
√
h0

a3
0ξ2

0
− 1

)
exp

[
− 1

3 σvv

√
k3

3M6 (t − t0)

]]1/σ

(39)

and

a(t) = C

[
1 +

√
3h0

2
(t − t0)

]1/3

exp

[
1

12
vv

√
k3

3M6

(
g1(t) − g2(t)

)]
,

(40)

where D = vh
vv

( k
24M3

)σ/2 and ξ0, C are integration constants

with a0 = C exp [−ξ2
0 /8]. Further g1(t) has the following

form,

g1 (t) = − Dξσ
0

(Dξσ
0 − 1)

(
1

1
3σvv

√
k3

3M6

)

×2F1

(
1, 1, 2 + 2

σ
,

Dξσ
0

Dξσ
0 − 1

exp

(
1

3
σvv

√
k3

3M6 (t − t0)

))

× exp

(
1

3
σvv

√
k3

3M6 (t − t0)

)(
Dξσ

0 − (Dξσ
0 − 1)

× exp

(
− 1

3
σvv

√
k3

3M6 (t − t0)

))−2/σ

(41)

where 2F1 symbolizes the hypergeometric function. Simi-
larly the form of g2(t) is given by,

g2 (t) = − ξσ
0

(Dξσ
0 − 1)

(
1

1
3σvv

√
k3

3M6

)
∗

×2F1

(
1, 1, 1 + 2

σ
,

Dξσ
0

Dξσ
0 − 1

exp

(
1

3
σvv

√
k3

3M6 (t − t0)

))

× exp

(
1

3
σvv

√
k3

3M6 (t − t0)

)(
Dξσ

0 − (Dξσ
0 − 1)

× exp

(
− 1

3
σvv

√
k3

3M6 (t − t0)

))1−2/σ

. (42)
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It may be noticed from Eqs. (39) and (40) that for � → 0
(or vv = 0), the solution of the radion field and the Hubble
parameter become ξ(t) = ξ0[

1+
√

h0
a3

0 ξ2
0

]1/σ = ξ(t0) and H ∝ 1
a3

respectively. This is expected because in the absence of bulk
scalar field (�), the potential V (ξ) (see Eq. (12)) goes to zero
and thus the radion field has no dynamics which in turn makes
the variation of the Hubble parameter as H ∝ 1

a3 (solely due
to the KR field having equation of state parameter = 1).

Further Eq. (39) clearly indicates that ξ(t) decreases with
time. Comparison of Eqs. (13) and (39) reveals that the radion
field reaches at its vacuum expectation value (vev) asymp-
totically (within the slow roll approximation) at large time
(t 
 t0) i.e.

�(t 
 t0) = f

[
vv

vh

]1/σ

= 〈�〉 (43)

This vev of radion field leads to the stabilized interbrane
separation (between Planck and TeV branes) as,

kπ〈T (x)〉 = 4k2

m2

[
ln

(
vh

vv

)]
(44)

where m2 is squared mass of the stabilizing scalar field �.

4 Beginning of inflation

After obtaining the solution of a(t) (in Eq. (40)), we can now
examine whether this form of scale factor corresponds to an
accelerating era of the early universe (i.e. t � t0) or not. In
order to check this, we expand a(t) in the form of Taylor
series (about t = t0) and retain the terms only up to first
order in t − t0:

a(t � t0) = a0

[
1 +

√
3h0

2
(t − t0)

]1/3

× exp

[
1

12
ξ2

0 vv

√
k3

3M6 (Dξσ
0 − 1)(t − t0)

]

(45)

where a0 is the value of the scale factor at t = t0 and related
to the integration constant C as,

a0 = C exp [−ξ2
0 /8].

Equation (45) leads to the acceleration of the universe at
t → t0 as follows:

ä

a
(t � t0) =

[
ξ2

0 vv

12

√
k3

3M6 (Dξσ
0 − 1) +

√
h0

2

(
1 + 1√

3

)]

[
ξ2

0 vv

12

√
k3

3M6 (Dξσ
0 − 1) −

√
h0

2

(
1 − 1√

3

)]

(46)

It may be noticed that for the condition

ξ2
0 vv

12

√
k3

3M6 (Dξσ
0 − 1) >

√
h0

2

(
1 − 1√

3

)
(47)

the early universe undergoes through an accelerating stage

while for
ξ2

0 vv

12

√
k3

3M6 (Dξσ
0 − 1) <

√
h0
2

(
1 − 1√

3

)
, ä(t → t0)

becomes less than zero.
At this stage, it deserves mentioning that the parameters

vv and h0 controls the strength of the radion field and the
KR field energy density respectively. Therefore the interplay
between the radion field and the KR field fixes whether the
early universe evolves through an accelerating stage or not.
However in order to solve the flatness and horizon problems
(for a review, we refer to [28,29]), the universe must passes
through an accelerating stage at early epoch and from this
requirement, here we stick to the condition shown in Eq.
(47).

5 End of inflation and reheating

In the previous section, we show that the very early universe
expands with an acceleration and this accelerating stage is
termed as the inflationary epoch. In this section, we check
whether such acceleration of the scale factor has an end in a
finite time or not.

The end point of an inflationary era is defined by,

ä

a
= Ḣ + H2 = 0 (48)

We now examine whether this condition is consistent with
the field equations shown in Eqs. (37) and (38). Near the
end of inflation, one can safely neglect the term proportional
to 1/a6 and thus Eq. (37) takes the following form (at end
regime of inflation):

H2 = 1

3
V (ξ)

= k3

432M6 v2
vξ

4(Dξσ − 1)2

Differentiating both sides of this equation with respect to t,
we get the time derivative of the Hubble parameter as follows,

Ḣ = − k3

54M6 v2
vξ

2(Dξσ − 1)2 (49)

123



591 Page 8 of 14 Eur. Phys. J. C (2019) 79 :591

where we use the equation of the radion field (3H ξ̇+V ′(ξ) =
0). Plugging back the expressions of H2 and Ḣ into Eq. (48),
one gets the following condition on radion field,

ξ = 2
√

2 = ξ f = ξ(t f ) (50)

where t f is the time when the radion field acquires the value
2
√

2 (in Planckian unit). Equation (50) clearly indicates that
the inflationary era of the universe continues as long as the
radion field remains greater than ξ f (= 2

√
2). Correspond-

ingly the duration of inflation (i.e. t f − t0) can be calculated
from the solution of ξ(t) as follows,

ξσ
f = ξσ

0[
Dξσ

0 − (Dξσ
0 −

√
h0

a3
0ξ2

0
− 1) exp

[
− 1

3 σvv

√
k3

3M6 (t f − t0)

]]

Simplifying the above expression, we obtain

t f − t0 =
(

3

σvv

√
k3

3M6

)
ln

[Dξσ
0 − 1 −

√
h0

a3
0ξ2

0

Dξσ
0 − ξσ

0
ξσ
f

]
(51)

recall D = vh
vv

( k
24M3

)σ/2 and σ = m2

4k2 .
Therefore it is clear that the inflation comes to an end in

a finite time. In order to estimate the duration of inflation
explicitly, one needs the value of the parameters h0, ξ0 and
vv , which can be determined from the expressions of spec-
tral index and tensor to scalar ratio as discussed in the next
section.

However before moving to the next section, here we dis-
cuss the reheating in the present context and the possible
effects of KR field (or equivalently the spacetime torsion) on
it. Needless to say that reheating describes the production of
Standard Model matter at the end of the period of accelerated
expansion. For this purpose, we consider an example where
the radion field (i.e the inflaton) is coupled to another scalar
field ζ , given by the interaction Lagrangian,

Lint = −gλξζ 2 (52)

where g is a dimensionless coupling constant and λ is a mass
scale. With this interaction Lagrangian, the decay rate of the
inflaton into ζ particles becomes

� = g2λ2

8πmrad
(53)

recall that mrad is the mass of the radion field (see Eq. (15)).
Generally the energy loss of the inflaton due to the production
of ζ particles is taken into account by adding a damping term
to the inflaton equation of motion as,

ξ̈ + 3H ξ̇ + �ξ̇ + ∂V

∂ξ
= 0 (54)

Equation (54) clearly indicates that the radion field losses
energy due to the expansion of the universe and due to trans-
fer to the ζ particles, accounted by the damping terms 3H ξ̇

and �ξ̇ respectively. As a result the production of ζ particles
becomes effective when the Hubble parameter becomes less
or comparable to �, otherwise the energy loss into particles
is negligible compared to the energy loss due to the expan-
sion of space as occurred during early phase of the inflation.
Therefore the time scale th (let us call it the reheating time)
after when the production of ζ becomes effective is given by

H(th) = � (55)

With the solution of scale factor (see Eq. (40)), the above
equation turns out to be,

1

12
vv

√
k3

3M6 (ġ1(th) − ġ2(th)) +
√

3h0
2

3

(
1 +

√
3h0

2 th

) = �

(56)

where g1 and g2 are shown in Eqs. (41) and (42) respectively.
Recall,h0 represents the energy density of the KR field during
early universe and the presence of h0 in the above expression
entails that the KR field indeed affects the reheating time th .
In order to understand the effect of KR field more clearly,
we write th = t (0)

h + δt , where t (0)
h is the reheating time in

absence of KR field (h0 = 0) i.e

1

12
vv

√
k3

3M6 (ġ1(t
(0)
h ) − ġ2(t

(0)
h )) = � (57)

Thus δt is the deviation of reheating time from t (0)
h solely

due to the presence of the KR field. Expanding Eq. (56) in
terms of th = t (0)

h + δt , we get the following expression of
δt

δt = −
√

3h0
2

1
4vv

√
k3

3M6

(
1 +

√
3h0

2 t (0)
h

)(
g̈1(t

(0)
h ) − g̈2(t

(0)
h )

)

(58)

where we use Eq. (57) and retain up to the term first order in
δt . Clearly δt becomes zero as h0 → 0, as expected. Using
the explicit expressions of g1, g2 along with the condition
m
k < 1 (i.e ratio of bulk scalar field mass to bulk curvature is
less than unity, which is also consistent with Planck observa-
tions as described in the next section), we determine the term
g̈1 − g̈2 (sitting in the denominator of Eq. (58)) as follows:

g̈1 − g̈2 =
(

Dξσ
0

(Dξσ
0 − 1)

)2( 1
3 σvv

√
k3

3M6

(1 + 2/σ)(2 + 2/σ)

)

×
(
Dξσ

0 − (Dξσ
0 − 1) exp

(
− 1

3
σvv

√
k3

3M6 (t − t0)

))−2/σ
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×
[

3 2F1

(
2, 2,

2

σ
,

Dξσ
0

Dξσ
0 − 1

× exp

(
1

3
σvv

√
k3

3M6 (t − t0)

))
exp

(
2

3
σvv

√
k3

3M6 (t − t0)

)

+ 8

(3 + 2/σ)
2F1

(
3, 3,

2

σ
,

Dξσ
0

Dξσ
0 − 1

× exp

(
1

3
σvv

√
k3

3M6 (t − t0)

))
exp

(
σvv

√
k3

3M6 (t − t0)

)⎤
⎦

(59)

Thus the term g̈1 − g̈2 is positive. As a result, Eq. (58)
immediately leads to the condition δt < 0 which in turn
makes th < t (0)

h . Thereby the presence of Kalb–Ramond
field makes the reheating time lesser in comparison to the
case when the KR field is absent. However, this is expected
because the KR field corresponds to a deceleration of the
universe i.e due to the appearance of KR field the Hubble
parameter (H(t)) decreases with a faster rate by which H(t)
reaches to � more quickly relative to the situation where the
KR field is absent.

6 Spectral index, tensor to scalar ratio and number of
e-foldings

In order to test the broad inflationary paradigm as well as
particular models against precision observations [1,2], we
need to calculate the value of spectral index (ns) and ten-
sor to scalar ratio (r ) and for this purpose, here we define a
dimensionless parameter (known as slow roll parameter) as,

ε = −Ḣ/H2 (60)

Recall the slow roll equation, H2 = 1
3V (ξ) + h0

6a6 . Differ-
entiating both sides of this equation with respect to time, we
get

2Ḣ = − 1

9H2

(
∂V

∂ξ

)2

− h0

a6

where we use the field equation for radion field. These expres-
sions of Ḣ and H2 lead to the slow roll parameter ε as follows,

ε=1

2

⎡
⎢⎢⎢⎣

16p2v4
vξ

6(Dξσ − 1)4 + 3h0
a6

(
pv2

vξ4(Dξσ − 1)2 + h0
2a6

)

(
pv2

vξ4(Dξσ − 1)2 + h0
2a6

)2

⎤
⎥⎥⎥⎦

(61)

where p = k3

144M6 and D = vh
vv

( k
24M3

)σ/2.
The spectral index and tensor to scalar ratio are defined

by,

ns = 1 − 2ε

∣∣∣∣
t=t0

− ε̇

Hε

∣∣∣∣
t=t0

r = 16ε

∣∣∣∣
t=t0

With the expression of ε obtained in Eq. (61), r and ns turn
out to be,

r = 8

⎡
⎢⎢⎢⎣

16p2v4
vξ

6
0 (Dξσ

0 − 1)4+ 3h0
a6

0

(
pv2

vξ4
0 (Dξσ

0 −1)2 + h0
2a6

0

)

(
pv2

vξ4
0 (Dξσ

0 − 1)2 + h0
2a6

0

)2

⎤
⎥⎥⎥⎦

(62)

and

ns = 1 − U1

U2
(63)

where U1 and U2 have the following expressions:

U1 =
[

384p3v6
vξ

8
0 (Dξσ

0 − 1)6

+18h0

a6
0

(
pv2

vξ
4
0 (Dξσ

0 − 1)2 + h0

2a6
0

)2

−6h0

a6
0

(
16p2v4

vξ
6
0 (Dξσ

0 − 1)4

+3h0

a6
0

(
pv2

vξ
4
0 (Dξσ

0 − 1)2 + h0

2a6
0

))

−144h0

a6
0

p2v4
vξ

6
0 (Dξσ

0 − 1)4
]

and

U2 =
(
pv2

vξ
4
0 (Dξσ

0 − 1)2 + h0

2a6
0

)(
16p2v4

vξ
6
0 (Dξσ

0 − 1)4

+3h0

a6
0

(
pv2

vξ
4
0 (Dξσ

0 − 1)2 + h0

2a6
0

))

respectively. It may be observed that the spectral index and
tensor to scalar ratio depend on the parameters vv , h0 and ξ0.
To fix these parameters, we use the observational results of
Planck 2018 ( combining with BICEP-2 Keck-Array data )
[1,2] which put a constraint on ns and r as ns = 0.9649 ±
0.0042 and r < 0.064 respectively. Here we take,

κvv =
√
h0

M2 
 10−7.

It may be mentioned that these values of vv and h0 are con-
sistent with the condition that is necessary for neglecting the
backreaction of the bulk scalar field and the KR field on the
background five dimensional spacetime.

Using Eqs. (63), (62) along with the values of vv and h0,
we give the plots (see Figs. 2, 3) of ns , r with respect to ξ0.

Figures 2 and 3 clearly demonstrate that for 34 < ξ0 < 38
(in Planckian unit), both the observable quantities ns and
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35 36 37 38

0.962

0.964

0.966

0.968

Fig. 2 ns vs ξ0

35 36 37 38

0.052

0.054

0.056

0.058

0.060

0.062

0.064

Fig. 3 r vs ξ0

Table 1 Estimated values of various quantities for κvv =
√
h0

M2 
 10−7

and ξ0 = 36

Parameters Estimated values

ns 0.969

r 0.100

t f − t0 10−10 (GeV)−1

N 58

r remain within the constraints provided by Planck 2018
[1,2].

Further with the estimated values ofvv ,h0 and ξ0, the dura-
tion of inflation (t f −t0, see Eq. (51)) comes as 10−10(Gev)−1

if the ratio m/k (bulk scalar field mass to bulk curvature
ratio) is taken as 0.2 [35]. We also determine the number of
e-foldings, defined by N = ∫ �t

0 Hdt (� t = t f − t0, dura-
tion of inflation), numerically and lands with N 
 58 (with
ξ0 = 36, in Planckian unit).

In Table 1, we now summarize our results:

T t
T

t

20 40 60 80 100 120 140
0.2

0.4

0.6

0.8

1.0

Fig. 4 T (t)
〈T 〉 vs t̃

q(t)

t

20 40 60 80

50

40

30

20

10

Fig. 5 q(t) vs t̃

Table 1 clearly indicates that the present model may well
explain the inflationary scenario of the universe in terms of
the observable quantities ns and r as per the results of Planck
2018.

Using the solutions of ξ(t), a(t) (see Eqs. (39), (40))
along with the estimated values of the parameters (vv , h0,
ξ0), we give the plots for the interbrane separation (T (t),
see Fig. 4) and the deceleration parameter (q = −ä/a, see
Fig. 5) against a dimensionless time variable t̃ = t

t f
N .

where we use the relation ξ(t) =
√

24M3

k e−kπT (t). Figure 4
clearly reveals that the interbrane separation increases with
time and saturates at 4k2

m2 ln [vh/vv] (= kπ〈T 〉, see Eq. (44))
asymptotically. It may be mentioned that for vh/vv = 1.5 and
m/k = 0.2, kπ〈T 〉 acquires the value 
 36 – required for
solving the gauge hierarchy problem. Further Fig. 5 demon-
strates that the early universe starts from an accelerating stage
with a graceful exit at a finite time.

7 Solution for Kalb–Ramond extra dimensional wave
function

The equation for the zeroth mode of KR wave function
(χ(0)(t, φ)) follows from Eq. (20) and given by,
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(
∂χ(0)

∂t

)2

− 1

T 2(t)
e−2kT (t)φχ(0) ∂

2χ(0)

∂φ2 = 0 (64)

As we may notice that the dynamics of the interbrane sepa-
ration controls the evolution of χ(0)(t, φ).

It may be mentioned that the overlap of χ(0)(t, φ) with the
brane φ = π (i.e. χ(0)(t, π)) regulates the coupling strengths
between KR field and various Standard Model fields on the
visible brane. These interaction terms play the key role to
determine the observable signatures of KR field on our uni-
verse and thus we are interested to solve Eq. (64) in the vicin-
ity of φ = π (i.e. near the visible brane). Near the regime of
φ 
 π , Eq. (64) can be written as,
(

∂χ
(0)
v

∂t

)2

− 1

T 2(t)
e−2kπT (t)χ(0)

v

∂2χ
(0)
v

∂φ2 = 0 (65)

where χ
(0)
v denotes the KR wave function near the visible

brane. Equation (65) can be solved by the method of sep-
aration of variables as χ

(0)
v (t, φ) = f1(t) f2(φ). With this

expression, Eq. (65) turns out to be,

T 2(t)e2kπT (t) 1

f 2
1

(
d f1
dt

)2

= 1

f2

d2 f2
dφ2 (66)

As it is evident that the left and right hand side of Eq. (66) are
functions of time and φ alone respectively. Therefore both
sides of Eq. (66) can be separately equated with a constant
as follows:

T 2(t)e2kπT (t) 1

f 2
1

(
d f1
dt

)2

= b2 (67)

and

1

f2

d2 f2
dφ2 = b2 (68)

where b is the constant of separation. Solution of Eq. (68) is
given by f2(φ) = e−bφ , while Eq. (67) is solved numerically
as shown in Fig. 5 (plotted with respect to the dimensionless
time variable t̃ = t

t f
N , with N be the number of e-foldings

of the inflationary era).
Figure 6 clearly demonstrates that in the regime φ 
 π ,

the KR wave function monotonically decreases with time and
the decaying time scale (t̃ 
 25) is less than the exit time
of the inflation (t̃ = 55). This may explain why the present
universe carries practically no observable signatures of the
rank two antisymmetric Kalb–Ramond field (or equivalently
the torsion field).

Thereby as a whole, the solution of χ
(0)
v (t, φ) is given

by χ
(0)
v (t, φ) = e−bφ f1(t), where f1(t) is obtained in Fig. 6.

Using this solution as a boundary condition, we solve Eq. (64)
(evolution of KR wave function in the whole bulk) numeri-
cally as plotted in Fig. 7.

Figure 7 reveals that the zeroth mode of KR wave function
χ(0)(t, φ) decreases with time in the whole five dimensional

t

5 10 15 20 25

2

4

6

8

10

Fig. 6 χ
(0)
v vs t̃

0

1

2

3

x

0
5

10
15

20t

0

5

10

Fig. 7 χ(0) vs φ (along x axis) and t

bulk i.e for 0 ≤ φ ≤ π . However for a fixed t , χ(0)(t, φ)

has different values (in Planckian unit) on hidden and visible
brane and such hierarchial nature of χ(0)(t, φ) (between the
two branes) is controlled by the constant b.

For T (t) = 〈T 〉, the zeroth mode of KR wave function
acquires a constant value throughout the bulk and given by

χ(0)(t, φ)

∣∣∣∣
T=〈T 〉

=
√

k

〈T 〉e
−kπ〈T 〉 (69)

where we use the normalization condition as shown in Eq.
(21). This result is also in agreement with [11]. Using the

above expression of χ(0)(t, φ)

∣∣∣∣
T=〈T 〉

, we obtain the coupling

strengths of Kalb–Ramond field with U (1) gauge field and
fermion field on the visible brane as follows [11]:

λK R−U (1) = 1

Mp
e−kπ〈T 〉 (70)

and

λK R− f er = 1

Mp
e−kπ〈T 〉 (71)

where Mp = √
M3/k. For k〈T 〉 
 12 (required for solving

the gauge hierarchy problem), e−kπ〈T 〉 becomes of the order
10−16. Thereby Eqs. (70), (71) clearly indicate that the inter-
action strengths of KR field to the matter fields are heavily
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suppressed over the usual gravity-matter coupling strength
1/Mp. This may well serve as an explanation why the large
scale behaviour of our present universe is solely governed
by gravity and carries practically no observable footprints of
antisymmetric Kalb–Ramond field.

8 Conclusion

We consider a five dimensional braneworld model with
spacetime torsion caused by a rank-2 antisymmetric Kalb–
Ramond (KR) field in the bulk. The extra spatial dimension is
S1/Z2 orbifolded where the orbifolded fixed points are iden-
tified with hidden and visible brane respectively. A massive
scalar field is also considered in the bulk in order to gener-
ate a stable potential term for the radion field (ξ ) – required
for stabilizing the interbrane separation. We determine the
explicit form of the radion potential (V (ξ)) as shown in Eq.
(12). It may be observed that V (ξ) goes to zero in absence of
the bulk scalar field, as expected [35]. However the presence
of the potential V (ξ) activates a dynamics to the radion field
governed by the effective field equations. In this scenario, we
want to investigate whether the dynamics of the radion field
can trigger such a dynamical evolution on the KR field, that
may lead to an explanation of why the effect of torsion is
so much weaker than that of curvature on the present visible
universe. Motivated by these ideas, we solve the cosmologi-
cal field equations from the perspective of four dimensional
effective theory. Our findings are as follows:

• We find that the Kalb–Ramond energy density (ρK R)
on our visible universe depends on the on-brane scale
factor a(t) as ρK R ∝ 1/a6 (see Eq. (33)). As we may
observe that ρK R monotonically decreases as the uni-
verse expands with time, which leads to a negligible foot-
print of the KR field on the present universe. However
Eq. (33) also entails that the energy density of the KR
field may be significant in early universe. This points
us to explore the dynamical evolution of the KR field
from very early phase of the universe. For this purpose,
we solve the coupled Freidmann equations for the radion
field (ξ(t)) and the scale factor (a(t)) during initial era and
the solutions are given in Eqs. (39) and (40)) respectively.
It is demonstrated in Fig. 4 that the interbrane separation
increases with time and saturates at a constant value (〈T 〉)
asymptotically. It is also found that without any fine tun-
ing of the parameters, the asymptotic value of the mod-
ulus can address the gauge hierarchy problem. On the
other hand, the solution of the scale factor corresponds
to an accelerating expansion of the early universe and the
rate of expansion depends on the parameters vv and h0

(with vv and h0 controls the energy density of the bulk
scalar field and the KR field respectively). At this stage,

it deserves mentioning that in absence of the bulk scalar
field (�), the radion field becomes constant while the
Hubble parameter varies as H ∝ 1/a3. This is expected
because for � → 0 (or vv = 0), the potential V (ξ) goes
to zero and thus the radion field has no dynamics which
in turn makes the variation of the Hubble parameter as
H ∝ 1/a3 (solely due to the KR field having equation of
state parameter = 1). The duration of inflation (t f − t0)
is obtained in Eq. (51) which reveals that the accelerating
phase of the universe terminates within a finite time. Fur-
ther we also discuss the possible effects of the KR field on
the reheating in the present context. We explained that the
presence of Kalb–Ramond field makes the reheating time
(the time interval after which the production of new par-
ticles becomes effective) lesser in comparison to the case
when the KR field is absent. However, this is expected
because the KR field corresponds to a deceleration of the
universe i.e due to the appearance of KR field the Hubble
parameter (H(t)) decreases with a faster rate by which
H(t) reaches to � (the decay amplitude) more quickly
relative to the situation where the KR field is absent.

• In order to test the model with the observations of Planck
2018 (combining with BICEP-2 Keck-Array data), it is
crucial to calculate the spectral index of curvature per-
turbation (ns) and tensor to scalar ratio (r ), which are
defined in terms of the slow-roll parameter (ε). Using
these definitions, the expressions of ns and r are explic-
itly determined in the present context and as a result, we
find that for suitable values of the parameters (vv , h0,
ξ0), ns and r remain within the constraints provided by
Planck 2018 [1,2] (see Table 1). Moreover the duration
of inflation comes as 10−10 (GeV)−1 if the ratio m/k
(bulk scalar field mass to bulk curvature ratio) is taken as
0.2 [35].

• However the overlap of the zeroth mode KR wave func-
tion (χ(0)(t, φ)) with the visible brane actually fixes the
coupling strengths of KR field with various Standard
Model fields on the brane. Keeping this in mind, we solve
χ(0)(t, φ) on the visible brane, numerically, as plotted
in Fig. 6. It is clearly demonstrated that at φ = π the
KR wave function monotonically decreases with time
and the decaying time scale is less than the exit time
of the inflation. Further we also determine the numeri-
cal solution for the KR wave function in the whole bulk
(see Fig. 7), which reveals that the effect of χ(0)(t, φ)

decreases with time in the full five dimensional bulk i.e.
for 0 ≤ φ ≤ π . However it may be mentioned that the
dynamics of χ(0)(t, φ) is controlled by the evolution of
the radion field and it turns out that for T (t) = 〈T 〉,
χ(0)(t, φ) acquires a constant value throughout the bulk
as obtained in Eq. (69). Consequently we determine the
coupling strengths of KR field with various matter fields
on our present visible universe. As a result, such interac-

123



Eur. Phys. J. C (2019) 79 :591 Page 13 of 14 591

tion strengths come with a heavily suppressed factor over
the usual gravity-matter coupling 1/Mp. This may pro-
vide a natural explanation why the large scale behaviour
of our present universe is solely governed by gravity and
carries practically no observable footprints of spacetime
torsion.

• The second rank antisymmetric Kalb–Ramond field is
related to a pseudo-scalar field, known as axion field
(Z(x)) given by Hμνα = εμναβ∂β Z . It may be men-
tioned that there exist some dark matter models where
the axion field was considered as a possible candidate
to solve the mystery of dark matter [44–46]. However
an experimental program named ABRACADABRA is
designed to search for axion dark matter and the first
results of ABRACADABRA is recently published in [47]
where the authors, through estimating the axion-photon
coupling, have found no evidence for axion-like cosmic
dark matter with 95 percentage C.L. This is consistent
with the results of our present paper i.e the present uni-
verse carries no evidence of axion-like dark matter com-
ing from Kalb–Ramond field.
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Appendix 1

Using Eq. (24) along with the FRW metric, we obtain various
components of Tμν[ξ ] as follows:

T00[ξ ] = 1

2
ξ̇2 + V (ξ)

T11[ξ ] = T22[ξ ] = T33[ξ ] = a(t)2
[

1

2
ξ̇2 − V (ξ)

]

Further Eq. (25) leads to the various components of Tμν [B(0)]
as,

T00[B(0)] = 1

2
[−h1h

1 − h2h
2 − h3h

3 + h4h
4]

T11[B(0)] = 1

2
a(t)2[h1h

1 + h2h
2 − h3h

3 + h4h
4]

T22[B(0)] = 1

2
a(t)2[h1h

1 − h2h
2 + h3h

3 + h4h
4]

T33[B(0)] = 1

2
a(t)2[−h1h

1 + h2h
2 + h3h

3 + h4h
4]

T10[B(0)] = −h4h
3, T20[H ] = h4h

2

T30[B(0)] = −h4h
1, T12[H ] = a(t)2h2h

3

T13[B(0)] = −a(t)2h1h
3, T23[H ] = a(t)2h1h

2

Appendix 2

The field equation for the zeroth mode Kalb–Ramond field
is given by,

∂μ

[√−gH (0)μνλ
]

= 0 (72)

where g is the determinant of the on-brane metric. Using the
FRW metric ansatz, one obtains

√−g = a3(t), where a(t)
is the scale factor of the universe. Thus Eq. (72) takes the
following form,

∂μ[a3(t)H (0)μνλ] = 0

⇒ ∂0

[
a3(t)H (0)0νλ

]
+ ∂1[a3(t)H (0)1νλ]

∂2[a3(t)H (0)2νλ] + ∂3[a3(t)H (0)3νλ] = 0 (73)

where the greek indices ν, λ run from 0 to 3. Therefore for

• ν = 2 and λ = 3, Eq. (73) becomes

∂t [a3(t)H (0)023] + ∂x [a3(t)H (0)123]
∂y[a3(t)H (0)223] + ∂z[a3(t)H (0)323] = 0 (74)

Due to the antisymmetric nature of KR field, the last two
terms of the above equation identically vanish. Further
from Eq. (28), H (0)023 = 0. As a result, only the second
term of Eq. (74) survives and leads to the information that
the non-zero component of KR field (H (0)123) is indepen-
dent of the coordinate x i.e ∂x [H (0)123] = 0.

• ν = 1 and λ = 3, Eq. (73) becomes

∂t [a3(t)H (0)013] + ∂x [a3(t)H (0)113]
∂y[a3(t)H (0)213] + ∂z[a3(t)H (0)313] = 0 (75)

Here the third term survives, which ensures that H (0)123

is independent of y.
• ν = 1 and λ = 2, Eq. (73) becomes

∂t [a3(t)H (0)012] + ∂x [a3(t)H (0)112]
∂y[a3(t)H (0)212] + ∂z[a3(t)H (0)312] = 0 (76)

where the fourth term sustains and gives ∂z[H (0)123] = 0.

Therefore it is clear that the non-zero component of the
Kalb–Ramond field i.e H (0)123 depends only on the time (t)
coordinate.
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