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Abstract The properties of charmonium states are or will
be intensively studied by the B-factories Belle II and BESIII,
the LHCb and PANDA experiments and at a future Super-c-
τ Factory. Precise lattice calculations provide valuable input
and several results have been obtained by simulating up,
down and strange quarks in the sea. We investigate the impact
of a charm quark in the sea on the charmonium spectrum, the
renormalization group invariant charm–quark mass Mc and
the scalar charm–quark content of charmonium. The latter is
obtained by the direct computation of the mass-derivatives of
the charmonium masses. We do this investigation in a model,
QCD with two degenerate charm quarks. The absence of light
quarks allows us to reach very small lattice spacings down
to 0.023 fm. By comparing to pure gauge theory we find
that charm quarks in the sea affect the hyperfine splitting at
a level around 2%. The most significant effects are 5% in
Mc and 3% in the value of the charm quark content of the
ηc meson. Given that we simulate two charm quarks these
estimates are upper bounds for the contribution of a single
charm quark. We show that lattice spacings < 0.06 fm are
needed for safe continuum extrapolations of the charmonium
spectrum with O(a) improved Wilson quarks. A useful rela-
tion for the projection to the desired parity of operators in
two-point functions computed with twisted mass fermions is
proven.
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1 Introduction

The charmonium system is frequently characterized as the
“hydrogen atom” of meson spectroscopy owing to the fact
that it is non-relativistic enough to be reasonably well
described by certain potential models [1]. It is a perfect test-
ing ground for a comparison of theory with experiment. Over
the last years, there has been a renewed interest in spectral
calculations with charmonia because of the experimental dis-
covery of many states which are not predicted by potential
models [2], e.g. the so-called X, Y, Z states, like the X (3872)

state [3] or the Pc pentaquark candidates [4]. More exciting
experimental data are expected from the B-factories Belle II
[5] and BESIII [6], the LHCb experiment [7], the PANDA
experiment at FAIR [8] and at a future Super-c-τ Factory [9].

Simulations of QCD on the lattice are a first-principle
tool for precision computations of charmonium states below
the open charm thresholds (DD̄ etc.) [10–15], see also [16].
States above the open charm thresholds decay strongly and

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7108-6&domain=pdf
mailto:korzec@uni-wuppertal.de


607 Page 2 of 14 Eur. Phys. J. C (2019) 79 :607

multi-hadron channels need to be included for a full treat-
ment. The masses of these resonances can be computed in
the approximation that they are treated as stable and are accu-
rate up to the hadronic width [10,11].

For the computation of the charmonium spectrum the rel-
evant quarks to include in the lattice simulations are u, d,
s, and c. The question which we address in this work is the
necessity to include the charm quark c in the sea, i.e. as a
dynamical quark which contributes through loops and not
only as a valence quark. QCD with Nf = 2 + 1 (u, d, s)
dynamical quarks is cheaper to simulate than QCD with
Nf = 2 + 1 + 1 (u, d, s, c) dynamical quarks. Adding a
dynamical charm quark requires finer lattices than they are
needed for the lighter quarks and complicates the tuning of
the parameters.

For processes at energies E which are much smaller
than the charm–quark mass Mc the charm quark decou-
ples [17,18]. It can be integrated out and its effects are
absorbed in the renormalization of the gauge coupling and
light quark masses, and in small corrections proportional
to inverse powers of Mc. In [19–21] the decoupling of
the charm quark at low energies was studied in a model,
namely QCD with Nf = 2 degenerate heavy quarks of mass
1.2 Mc � M � Mc/8. Simulations at very small lattice spac-
ings down to a = 0.023 fm in physical volumes comparable
to those used in the Yang–Mills theory allow to control the
continuum limit. Concerning the renormalization the model
study confirmed that treating decoupling in perturbation the-
ory only introduces small non-perturbative corrections which
can be estimated through the model calculation. Denoting a
low energy scale of mass dimension one by S, the mass-
scaling function defined by

ηM = M

S
∂S
∂ M

, (1.1)

where M is the renormalization group invariant mass of the
heavy quark, is universal (i.e. it does not depend on the spe-
cific scale chosen) up to non-perturbative 1/M2 corrections
�ηM

NP. In [21] the conclusion was that �ηM
NP < 0.014 for

the charm quark in QCD. We emphasize that Eq. (1.1) cor-
responds to the charm quark content of the nucleon and is
needed to compute the cross-section of the scalar interaction
of dark matter with nucleons.

In this work we extend the model study of charm loop
effects to observables which explicitly depend on a valence
charm quark. The paper is organized as follows. In Sect. 2
we introduce the model. Section 3 explains our lattice setup
based on twisted mass fermions at maximal twist, the observ-
ables and the computation of their derivative with respect to
the quark mass. In Sect. 4 we present our results for the
charm loop effects, specifically in the charmonium spectrum
and the renormalized charm–quark mass. We also compute
the generalization of the mass-scaling function in Eq. (1.1)

to describe the charm–quark mass-dependence of the char-
monium states. All our results are evaluated after continuum
extrapolation and we discuss the size of lattice artifacts. Sec-
tion 5 contains the summary of this work. Appendix A shows
how to construct two-point functions which project to definite
parity states with twisted mass fermions. In Appendix B the
charmonium masses obtained on our ensembles are listed.

2 Model

Consider QCD with quarks qi , i = {u, d, s, c}. We denote
their Dirac operators by Di . Our goal is to estimate the
contribution of charm–quark loops in physical observables
A[qi , U ], where U represents the gauge field. The expecta-
tion value of the observable is〈
A[qi , U ]

〉

= 1

Z

∫
D[U ]

⎛
⎝ ∏

j=u,d,s

det D j

⎞
⎠

det Dc Ã[D−1
i , U ] e−S[U ]. (2.1)

The charm–quark loop effects1 stem from the determinant
det Dc. Quenching the charm, i.e. setting det Dc = 1 means
neglecting the charm loops. This approximation is made in
the computations of the charmonium spectrum of Refs. [10–
14]. In order to assess how good this approximation is, one
would need a comparison in the continuum limit with simu-
lations where a dynamical charm quark is added. Assuming
this was possible, the comparison would be superfluous since
one would stick with the more complete theory anyhow. But
adding a dynamical charm quark means a significant increase
in the complexity and costs of the simulations. This is so
because of the additional tuning of the charm quark mass and
the combination of small lattice spacings, which are required
by the large charm–quark mass and the large physical vol-
umes, which are needed to accommodate the light mesons.
So the really interesting question is if it is possible to decide
whether a dynamical charm quark is necessary before doing
the simulations.

This is why the study of a model, QCD with just Nf = 2
degenerate charm quarks, is appealing. Observables in this
model are defined in terms of a doublet of charm quarks
qc = (c1, c2) and their expectation value is

〈
A[qc, U ]〉 = 1

Z

∫
D[U ] (det Dc)

2 Ã[D−1
c , U ] e−S[U ]

(2.2)

≡
〈
Ã[D−1

c , U ]
〉gauge

. (2.3)

1 Notice that here we mean non-perturbative effects due to quark loops
on arbitrary gauge backgrounds.
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After matching this theory with a Yang–Mills (or pure gauge)
theory, the difference in physical observable will be a direct
measure of the effects of charm–quark loops. There are two
differences with respect to a comparison between QCD with
four (u, d, s, and c) and three (u, d, s) quarks: in the model we
miss the effects of the light quarks and we double the number
of sea charm quarks. Since what we are interested in is a
comparison of a theory with and without charm quarks in the
sea we do not expect the light quarks to affect the difference
of the same quantity computed in the two theories much. The
extra charm quark in the sea will make the effects larger. For a
low energy quantity, where the theory of decoupling applies,
the effects scale proportionally to the number of quarks [21],
so they are overestimated by a factor of two in the model.
For a quantity with a valence charm quark decoupling does
not apply in the obvious way2 and we consider the effects
computed with two charm quarks in the sea as an upper bound
for those with only one charm quark.

3 Simulations

In this section we introduce the lattice setup used for this work
and all the observables under investigation. We mainly focus
on quantities with an explicit charm–quark dependence, like
charmonium masses, the hyperfine splitting and the renor-
malization group invariant quark mass.

3.1 Actions and algorithms

We use relatively simple and theoretically well understood
lattice actions for our simulations. For the Nf = 0 ensembles
the standard Wilson plaquette action [22] is employed. In the
Nf = 2 case, a doublet of twisted mass Wilson fermions is
added [23,24]. In massless schemes, theories with standard
and with twisted-mass fermions share the same renormaliza-
tion factors, as long as other details of the action are the same.
We therefore also include a clover term [25] in our action.
Although not necessary for O(a) improvement of physical
quantities [24] (at maximal twist), it has been shown to reduce
O(a2) artifacts in some cases [26], and more importantly
gives us access to the wide range of renormalization factors
that have been determined non-perturbatively in the past. In
particular we benefit from the knowledge of the critical mass
mcr [27,28] and the axial current and pseudoscalar density
renormalization factors Z A [29–31] and Z P [27,32].

Since one of our goals is a detailed understanding of charm
related lattice artifacts, we simulate also at very fine lattice
spacings, much finer than what is currently feasible in simu-
lations that include light quarks. Problems related to deficient

2 Decoupling might apply for differences of masses or for binding
energies.

sampling of topological sectors are avoided by the implemen-
tation of open boundary conditions in the time directions [33].
The spatial dimensions are kept periodic.

To summarize, our action is S = Sg + Sf , with gauge
action

Sg = 1

g2
0

∑
p

w(p)tr [1 − U (p)] , (3.1)

where the summation is over all oriented plaquettes p on the
lattice, weighted by w(p) which is one everywhere except
for spatial plaquettes on the temporal boundary time-slices,
where it is 1/2. U (p) is the product of four SU(3) gauge fields
Uμ(x) around the elementary plaquette p. Gauge fields are
periodic in spatial directions and absent on temporal links
sticking out of the lattice (i.e. open boundaries). The free
parameter of the gauge action is the bare coupling g2

0 ≡ 6/β.
In case of the Nf = 2 simulations, a fermionic action is added

Sf =
∑

x

a4 χ̄(x)[Dχ ](x), (3.2)

where χ = (c1, c2)
� is a flavor doublet of quarks and the

Dirac operator is

D = Dw + Dsw + m0 + iμγ5τ
3, (3.3)

with bare mass m0 and twisted bare mass μ. The third Pauli
matrix τ 3 in the twisted mass term acts in flavor-space, all
other terms of the operator are flavor diagonal.

Dw =
3∑

μ=0

1

2

(
γμ

[∇∗
μ + ∇μ

] − ∇∗
μ∇μ

)
(3.4)

is the massless Wilson operator, containing the usual covari-
ant forward and backward finite difference operators ∇μχ(x)

= Uμ(x)χ(x + μ̂) − χ(x) and ∇∗
μχ(x) = χ(x) − U †

μ(x −
μ̂)χ(x − μ̂). Finally, the operator in the Sheikholeslami-
Wohlert term acts as

Dswχ(x) = csw

3∑
μ,ν=0

i

4
σμν F̂μν(x)χ(x). (3.5)

A symmetric discretization of the field strength tensor F̂μν ,
as e.g. in [34], is used. The fermionic fields are periodic in
spatial directions and satisfy Dχ = 0 on the first and last
time-slice of the lattice. The fermionic part of the action has
dimensionless simulation parameters κ ≡ 1

2am0+8 , aμ and
csw. The above choice for the actions corresponds to setting
the gluonic and fermionic boundary improvement terms to
their tree level values.

Both Nf = 0 and Nf = 2 theories are simulated
with a Hybrid Monte Carlo (HMC) [35] algorithm. The
molecular dynamics equations are integrated using a fourth
order Omelyan–Mryglod–Folk integrator. In the case with
fermions a multi-level variant is employed, with fermionic
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Table 1 Simulation parameters of our ensembles. The columns show
the lattice sizes, the gauge coupling β = 6/g2

0 , the critical hopping
parameter, the twisted mass parameter μ, the pseudoscalar mass in t0
units, the hadronic scale t0/a2 defined in [40] and the total statistics

in molecular dynamics units. Notice that even though the number of
sites in the temporal direction is even, the temporal extent T is an odd
multiple of a due to the open boundaries. The links pointing out of the
lattice volume are absent

N f ID T
a × ( L

a

)3
β κ aμ

√
t0m P t0/a2 MDUs

2 E 95 × 243 5.300 0.135943 0.36151 1.79303 (55) 1.23907 (82) 8000

N 119 × 323 5.500 0.136638 0.165997 1.8048 (15) 4.4730 (93) 8000

O 191 × 483 5.600 0.136710 0.130949 1.7656 (14) 6.561 (12) 8000

P 119 × 323 5.700 0.136698 0.113200 1.7931 (28) 9.105 (35) 17,184

S 191 × 483 5.880 0.136509 0.087626 1.8130 (29) 15.621 (60) 23,088

W 191 × 483 6.000 0.136335 0.072557 1.8075 (43) 22.39 (12) 22,400

0 qN 119 × 323 6.100 – – – 4.4329 (38) 64,000

qP 119 × 323 6.340 – – – 9.037 (30) 20,080

qW 191 × 483 6.672 – – – 21.925 (83) 73,920

qX 191 × 643 6.900 – – – 39.41 (14) 160,200

forces being integrated with a coarser step size than the forces
deriving from the gauge action. In addition the quark determi-
nant is factorized into two factors which are then represented
by two separate path integrals over pseudo fermion fields
[36].

The costs are dominated by solutions of the Dirac equa-
tion. The relatively high quark masses in our simulations,
mean that a standard conjugate gradient algorithm is often
more efficient than more complicated preconditioned vari-
ants. On the finer lattices however, SAP preconditioning [37]
of the equations involving the light Hasenbusch mass is ben-
eficial. Our simulations are carried out using a variant of
openQCD [38]. A minor change allows us to choose a dif-
ferent twisted mass parameter in the SAP preconditioner than
in the simulation [21,39]. Table 1 summarizes our simulation
parameters.

The simulation algorithm performs very well. In par-
ticular no increased critical slowing down due to deficient
sampling of topological sectors can be observed. The scal-
ing of the exponential auto-correlation time with the lat-
tice spacing is compatible with the expected τexp ∝ a−2

behavior [33]. The expected scaling of autocorrelation times
with open boundary conditions has been shown in Fig. 8 of
Ref. [21].

3.2 Observables

3.2.1 t0

The Wilson-flow equation [40,41]

∂Vμ(x, t)

∂t
= −g2

0

(
∂x,μSg[V ]) Vμ(x, t),

Vμ(x, 0) = Uμ(x), (3.6)

relates a “smeared” gauge field Vμ(x, t) at flow time t to the
original gauge field Uμ(x), that is integrated over in the path
integral. Sg[V ] is a gauge action of the smeared fields, in
our case the Wilson plaquette action, and the link differential
operator ∂x,μ is defined in the usual way [40,42]. It has been
shown that correlators constructed from gauge fields at t > 0
are automatically renormalized [43]. Among other things,
this allows to define the low-energy length scale t0 [40] as
the flow time t at which

t2〈E(t)〉 = 0.3. (3.7)

In this equation E(t) denotes the Yang-Mills action density at
flow-time t , away from the temporal boundaries. A different
discretization than the one used in the simulations may be
used. We follow [34] and use a symmetrized clover definition

E(x, t) = 1

4
Ga

μνGa
μν, (3.8)

where Ga
μν(x, t) are the Lie algebra components of the lattice

field strength tensor.

3.2.2 Isovector meson masses

We study mesons that are ground states in the channels that
are excited by operators ψ̄
τ aψ . Twisted mass fermions at
maximal twist, χ̄ andχ , are related to the fields in the physical
basis by

ψ = 1 + iγ5τ
3

√
2

χ, (3.9)

ψ̄ = χ̄
1 + iγ5τ

3

√
2

. (3.10)
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Table 2 Typical interpolators for meson states and relations between
physical and twisted basis. The particle name is the closest relative in
nature

State J PC Particle Physical basis Twisted basis

Scalar 0++ χc0 S1,2 = ψ̄ τ 1,2

2 ψ χ̄ τ 1,2

2 χ

Pseudoscalar 0−+ ηc P1,2 = ψ̄γ5
τ 1,2

2 ψ χ̄γ5
τ 1,2

2 χ

Vector 1−− J/ψ V 1,2
i = ψ̄γi

τ 1,2

2 ψ ±χ̄γi γ5
τ 2,1

2 χ

Axial vector 1++ χc1 A1,2
i = ψ̄γi γ5

τ 1,2

2 ψ ±χ̄γi
τ 2,1

2 χ

Tensora 1+− hc T 1,2
i j = ψ̄γi γ j

τ 1,2

2 ψ χ̄γi γ j
τ 1,2

2 χ

a The notation refers to the γ -structure of the operator

This means that some operators take an unusual form. For
flavor components τ 1 and τ 2, the relations are summarized
in Table 2.

Meson masses can be extracted from zero momentum cor-
relation functions of the form

fO1O2(x0, y0) = a6
∑
x,y

〈O1(x)O†
2(y)〉, (3.11)

with various choices of the operators Oi . We work with def-
inite flavor assignments, e.g. P+ ≡ P1 + i P2 = c̄1γ5c2.
Then, integrating over the fermions leaves us with a sin-
gle connected diagram of the form −∑

x,y〈tr[
1S1(x, y)
2

S2(y, x)]〉gauge, where 
i are 4 × 4 matrices related to the
operators in the correlation function, and S1 (S2) is the
inverse Dirac operator with positive (negative) twisted mass
term. Spatial translation invariance could be exploited to
eliminate one of the sums, which would allow to compute
a correlator at the cost of 12 solutions of the Dirac equation
per choice of y0. The signal however is highly improved,
by keeping the two sums. The trace can then be efficiently
estimated stochastically. We use time-dilution with 16 U (1)

noise sources per time-slice, which amounts to 16 inversions
per y0 value and Dirac structure.

An improved signal and exact symmetries are achieved by
defining the averages

f̄ P P (x0 − a) ≡ 1

2
( fP P (x0, a) + fP P (T − x0, T − a)) ,

(3.12)

f̄ P A(x0 − a) ≡ 1

2
( fP A(x0, a) − fP A(T − x0, T − a)) ,

(3.13)

f̄V V (x0 − a) ≡ 1

6

3∑
k=1

(
fVk Vk (x0, a) + fVk Vk (T − x0, T − a)

)
,

(3.14)

f̄SS(x0 − a) ≡ 1

2
( fSS(x0, a) + fSS(T − x0, T − a)) ,

(3.15)

f̄T T (x0 − a) ≡ 1

6

∑
j>i

(
fTi j Ti j (x0, a) + fTi j Ti j (T − x0, T − a)

)
.

(3.16)

Enforcing the continuum time reflection symmetries pre-
vents opposite parity operators from mixing, as explained
in Appendix A. From the exponential decay of these correla-
tors at x0 
 a, meson masses are extracted. First, effective
masses are computed

ameff(x0 + a/2) ≡ ln

(
f (x0)

f (x0 + a)

)
, (3.17)

and the meson mass is then given as a weighted plateau aver-
age

m =
∑thigh

x0=tlow
w(x0 + a/2)meff(x0 + a/2)

∑thigh
x0=tlow

w(x0 + a/2)
. (3.18)

The start of the plateau, tlow, is chosen such that excited state
contributions are completely negligible, and the weights w

are given by the inverse squared errors of the correspond-
ing effective masses. All masses that we extract are those of
iso-vector mesons. In the light sector these would be called
pions or kaons ( f̄ P P ), ρ- or K ∗-mesons ( f̄V V ), a0, f0, K �

0
( f̄ SS), h1, b1 ( f̄T T ). However, since both our quarks have
the mass of a charm–quark, the meson masses that we obtain
are more comparable to the charmonia masses ηc, J/ψ ,. . .
respectively. The difference being, that these are iso-scalars
and the determination of their masses would require the com-
putation of disconnected (charm annihilation) diagrams.

3.2.3 PCAC mass

Partial conservation of the axial current is an operator relation

∂μ Âμ = 2mPCAC P̂. (3.19)

On the lattice it holds up to lattice artifacts, when inserted
into any correlation function, as long as A and P are at a
different positions than all other operators in the correlator.
These lattice artifacts depend on the exact choice of corre-
lation function, and can be quite large. We extract the bare
PCAC quark mass from

mPCAC = ∂̃0 f̄ P A

2 f̄ P P
, (3.20)

where ∂̃μ denotes the symmetric finite difference operator.
The lattice artifacts in this quantity increase, when the cor-
relators are evaluated close to the boundary (small x0). We
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form an average value from the time-slices in the plateau
region away from boundaries.

For us the main use of the PCAC mass is to find the critical
value of the bare mass m0, i.e. the maximal twist condition.
It is given by the value at which mPCAC = 0. Instead of
determining it ourselves, we use very precise critical masses
obtained in [27,28]. These were computed from slightly dif-
ferent correlation functions in a finite volume, and differ from
ours by an O(a) lattice artifact. We thus do not expect the
PCAC masses that we determine to be zero, but to be small
and to vanish when the continuum limit is approached. By
computing them, we put this expectation to a test. Figure 1
demonstrates that indeed, up to lattice artifacts, we are at
maximal twist. If we consider the usual definition of the twist
angle

ω = arctan

(
μ

Z AmPCAC

)
, (3.21)

the largest deviation from maximal twist (ω = π/2) that we
encounter in our simulations is around 6% in the ensemble
E, whilst the smallest deviation is around 2% in the ensemble
W.

3.2.4 RGI quark mass

At maximal twist a renormalized quark mass is given by
m = Z−1

P μ, and depends on the scale and scheme in which
Z P was computed. Away from maximal the more general
relation

m = Z−1
P

√
μ2 + Z2

Am2
PCAC (3.22)

holds. We neglect the (very small) contribution due to non-
vanishing mPCAC in our determination, after verifying that it
is compatible with being of O(a). The axial current renormal-
ization factor Z A is scale independent. It has been determined
non-perturbatively in the Nf = 0 theory with our action, by
exploiting current algebra relations in a massless Schrödinger
functional [29]. The same technique has also been applied to
the Nf = 2 theory [30]. In this case also a more precise deter-
mination based on universal relations between correlators in a
chirally rotated Schrödinger functional exists [31], and these
are the values that we use here. The pseudoscalar renormal-
ization factor Z P depends on the renormalization scheme
and scale. It is known non-perturbatively in the SF scheme
in both Nf = 0 [32] and Nf = 2 [27] theories for a wide
range of bare couplings, albeit at slightly different scales.
The renormalized charm quark mass can thus be computed
in the continuum limit, in this particular scheme. To be able to
compare the two theories, also the scales should match. We go
one step further and compute directly the RGI masses, which
are scale and scheme independent. The necessary relations

between renormalized and RGI masses are well known for the
scales and schemes used above, namely M/m = 1.157(12)

in the Nf = 0 theory [32], and M/m = 1.308(16) in the
theory with two dynamical quarks [27].

3.2.5 Twisted mass derivatives

We also computed the derivatives of all the observables
above, with respect to the twisted mass parameter μ. The
twisted mass derivative of a primary observable A is given
by

d〈A〉
dμ

= −
〈

dS

dμ
A

〉
+

〈
dS

dμ

〉
〈A〉 +

〈
dA

dμ

〉
. (3.23)

Most quantities we are interested in, are non-linear func-
tions of various primary observables (e.g. m P , which depends
on the correlator f̄ P P at various distances in the plateau
region). For these the chain rule dictates

d f (〈A1〉, . . . , 〈AN 〉, μ)

dμ
= ∂ f

∂μ
+

N∑
i=1

∂ f

∂〈Ai 〉
d〈Ai 〉

dμ
. (3.24)

None of the observables that we consider have an explicit
μ dependence, so the last term in Eq. (3.23) is absent. The
derivative of the action is dS/dμ = ∑

x χ̄ iγ5τ
3χ , and this

is all that is needed to compute the twisted-mass derivatives
of purely gluonic observables. More precisely,
〈

dS

dμ
A[U ]

〉

= ia4
∑

x

〈(c̄1(x)γ5c1(x) − c̄2(x)γ5c2(x))A[U ]〉 (3.25)

= ia4
∑

x

〈
tr

[
γ5 (S1(x, x) − S2(x, x))

]
A[U ]〉gauge

(3.26)

= −2μa8
∑
x,y

〈
tr

[
S†

1 (x, y)S2(x, y)
]

A[U ]
〉gauge

.

(3.27)

The last line is a consequence of the twisted-mass relation
D1 − D2 = 2iγ5μ and allows for a more precise stochastic
determination of the trace [44]. We found that 64 U (1) noise
vectors are enough for the errors in the determination of the
derivative to be dominated by gauge-noise, rather than the
noise from the stochastic trace evaluation.

If the observables depend on fermionic fields too, the
first term of Eq. (3.23) gives rise to new contractions that
have to be computed. These are different for every fermionic
observable. In the case of our two-point functions Eq. (3.11)
we find contractions of the form −a10 ∑

x,y,z〈tr[
1S2(x, y)


2S1(y, x)]tr[γ5(S1(z, z) − S2(z, z))]〉gauge, that can be
immediately computed because both traces have already been
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Fig. 1 The standard mass
contribution to the renormalized
quark mass, which vanishes in
the continuum limit

estimated for the evaluation of the correlator and of dS/dμ

respectively, and new terms

ia10
∑
x,y,z

〈
tr

[
γ5S2(z, y)
2S1(y, x)
1S2(x, z)

]

−tr
[
γ5S1(z, x)
1S2(x, y)
2S1(y, z)

]〉gauge (3.28)

that require some attention. When evaluated stochastically
together with the correlator itself, the number of necessary
inversions is increased by a factor of 3. While the dS/dμ

terms quantify the dependence on the sea-quarks, this last
term gives the valance quark mass dependence of the cor-
relator, which is generally much stronger – especially with
heavy quarks.

3.2.6 Mass scaling functions

At last, we also investigate the mass scaling functions

ηx ≡ μ

mx

dmx

dμ
= M

mx

dmx

dM
, (3.29)

where mx denotes the mass of a meson in a generic x chan-
nel (scalar, pseudoscalar, vector, axial vector, tensor) and M
is the renormalization group invariant quark mass. Note that
ηx is a renormalized quantity and its continuum limit can be
easily extracted from the measurements performed at differ-
ent lattice spacings, without the need of any renormalization
factor. Notice that by the Hellman-Feynman-Theorem [45],
ηx is proportional to the scalar charm quark density between
meson states x , i.e. the σ -term

ηx = 1

mx
〈x |Mc(c̄c)RGI|x〉. (3.30)

Once the twisted mass derivatives of the meson correlators
are known, the determination of ηx amounts to the evaluation
of Eq. (3.24) with a particular function f . Since the action
of Nf = 0 QCD does not depend on μ, the calculation is

greatly simplified in this case. Eq. (3.23) receives a single
contribution of the form 〈d Ã[D−1, U ]/dμ〉. In the Nf = 2
theory on the other hand, also the μ-derivative of the action
must be taken into account.

3.3 Parameters, tuning and mis-tuning corrections

Apart from the lattice size, the bare parameters of the Nf = 2
simulations are the inverse bare coupling β, the bare mass
am0 and the bare twisted mass aμ. The choice of β cor-
responds to a choice of the lattice spacing. We choose to
simulate at β ∈ {5.3, 5.5, 5.6, 5.7, 5.88, 6.0} which spans a
wide range of lattice spacings, see Table 5 and allows for
very controlled continuum extrapolations.

The bare mass is set to its critical value m0 = mcr. To
achieve this, the values in [27] are fitted to a Padé function,
as described in [21]. This puts us to maximal twist, up to
O(a2). In this situation the physical quark mass is given by
the twisted mass parameter m = Z−1

P μ. On our finest lattice
at β = 6.0 we choose

aμ = Mc

�MS
× Z P (L−1

1 ) × mc(L1)

Mc
× �MSL1 × a

L1
,

(3.31)

where the ratio of the RGI charm quark mass and the two
flavor � parameter is set to 4.87, the pseudoscalar renormal-
ization factor at scale L−1

1 and β = 6.0 in the SF scheme
is Z P = 0.5184 (33) [27], the relation between a renormal-
ized quark mass in the SF-scheme at scale L−1

1 and the RGI
quark mass M is known in the continuum M/m(L−1

1 ) =
1.308 (16) [27], and �MSL1 = 0.649 (45) [46]. Finally L1

in lattice units is obtained by an interpolation of L1/a vs
β data from [27] to β = 6.0. A quadratic fit of log(L1/a)

as a function of β, describes the data very well and yields
L1/aβ=6.0 = 17.27 (70). The quite substantial errors mean,
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that our simulated mass corresponds to the charm quark mass
only up to about 10%. This is however fully sufficient for us,
as long as the relative mass differences between the differ-
ent ensembles are under better control. To achieve this, we
do not use Eq. (3.31) at the other lattice spacings. Instead we
proceed as follows: the dimensionless, renormalized quantity

√
t0m P = 1.807463 (3.32)

is determined on the ensemble with the finest lattice spacing.
On the coarser lattices aμ is tuned such that the same value
of

√
t0m P is obtained. This condition determines the bare

twisted mass parameter very precisely and ensures that all
ensembles have the same renormalized quark mass up to
O(a2). Finally, the clover coefficient csw is set to its non-
perturbatively determined value [47].

The tuning of the twisted mass parameter can be only
carried out to a limited precision - at most to within the sta-
tistical errors. To account for the mis-tuning, a correction is
applied to all observables, based on the computed twisted
mass derivatives. First a target tuning point μ� is determined

μ� = μ + (√
t0m P − 1.807463

) (
d
√

t0m P

dμ

)−1

, (3.33)

and afterwards all quantities, denoted by � below, are cor-
rected

�(μ�) = �(μ) + (μ� − μ)
d�

dμ
. (3.34)

The error of the tuning point μ∗ is propagated to the value
of �(μ∗) taking all correlations into account. It is assumed
that the initial tuning was precise enough for the omitted
quadratic terms to be negligible, compared to the statistical
precision. Figure 2 demonstrates the procedure.

A comparison with direct simulations indicates that even
for large shifts of ≈ 15% in aμ the linear approximation
works well. The true shifts, that are needed are all much
smaller, at most 5.40%. Note that the μ-shifts could also
be computed using the mass reweighting, as explained in
[48,49].

The Nf = 0 simulations are carried out at β ∈
{6.1, 6.34, 6.672, 6.9}. The valence quarks have m0 = mcr

[50], non-perturbative csw from [50] and three values of the
twisted mass parameter, chosen such that a short interpolation
to the value of

√
t0m P given in Eq. (3.32) can be performed.

An example of this procedure is shown in Fig. 3. Since decou-
pling applies to t0, the condition Eq. (3.32) means that the
quark mass in the Nf = 0 theory is the same as in the theory
with two flavors, up to O(a2) and tiny O(�2/M2

c ) power
corrections [20,21].

Fig. 2 The solid square and circular markers are direct simulation
results for t0/a2 (top) and amV (bottom) on our coarsest ensembles with
β = 5.3. The simulations were carried out at slightly different masses,
namely aμ = 0.36151 (circle) and aμ = 0.30651 (square). The lines,
with their respective error bands illustrate the value and error of the
derivative of the observable with respect to the twisted mass parameter.
The pentagram depicts the values obtained at the tuning point Eq. (3.32)
. Its vertical error bar is the complete error, including all correlations

Fig. 3 Interpolation of the measured pseudoscalar masses (circles) on
the Nf = 0 ensemble qW (see Table 1). The horizontal line depicts the
tuning point Eq. (3.32). The vertical lines are the resulting interpolated
twisted mass parameter aμ� and its statistical error. The measured vec-
tor, scalar and tensor mesons masses (diamonds, triangles and squares
respectively) can then be interpolated to the tuning point, resulting in
the corresponding solid markers. In their error bars all the correlations
among the data have been taken into account

3.4 Data analysis

We use the 
-method [51] for the determination of statistical
uncertainties. Observables like the effective mass Eq. (3.17)
are non-linear functions of “primary observables”, and their
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errors are determined as described in [52]. When incorpo-
rating the mis-tuning corrections of Sect. 3.3 the necessary
nonlinear functions can become quite unwieldy. For instance,
the vector meson mass at μ� depends on the vector correlator
in the plateau region, but also on the pseudoscalar correla-
tor in its plateau region, to determine how big a shift in μ

is required. Furthermore, the vector mass depends on the μ-
derivatives of these correlators, on the μ-derivative of the
action and on the μ-derivative of the action times the cor-
relators. Combinations like

√
t0mV depend on even more

primary data.

4 Results

4.1 Raw results

We measured all observables described in the previous sec-
tion on all ensembles, except of mT and mS which were
measured only on a subset and the mass derivatives, which
were not measured on the W ensemble. A somewhat delicate
issue is the proper choice of the plateau regions over which
the effective masses are averaged. The leading correction to
a constant effective mass is given by

ameff(x0 + a/2) = am + c e−�1x0 + O(e−2�1x0)

+ O(e−�2x0), (4.1)

where �1 (�2) is the distance between m and the first (sec-
ond) excited state. In a first preliminary fit we determine
�1 and c. We are then in the position to choose the plateau
region such, that the influence of the excited states on the
plateau average Eq. (3.18) is negligible compared to its sta-
tistical uncertainty. The thus determined plateau regions are
collected in Table 3. Figure 4 demonstrates the procedure for
the case of ensemble W . The effective masses in the axial-
vector channel become too noisy, before a clean plateau is
reached and are hence excluded from the tables.

The results for the plateau averages are summarized in
Table 6 in Appendix B, which shows the results at the sim-
ulated parameters, as well as the values corrected for small
mis-tunings in the twisted mass parameter.

4.2 Continuum extrapolations

We perform continuum extrapolations of dimensionless
quantities. These are either ratios of meson masses, namely
mV /m P , mS/m P and mT /m P , or the mass-scaling functions
ηP and ηV . One last quantity is the renormalized quark mass.
We take the continuum limit of the dimensionless ratio of m
and m P . All fits are restricted to a region where the data can
be well described by the expected leading scaling violations

Table 3 The meson masses are determined from effective masses in
the region tlow < x0 + a/2 < thigh. The table shows tlow/a − thigh/a
for the different ensembles and channels

ID m P mV mS mT

E 21–35 21–35 – –

N 30–58 30–58 26–46 26–46

O 34–71 34–71 – –

P 37–71 37–71 25–51 30–51

S 47–101 47–101 – –

W 55–101 55–101 31–41 31–41

qN 32–58 32–58 26–42 26–42

qP 39–71 39–71 28–51 28–41

qW 60–101 60–101 35–44 30–43

qX 104–173 104–173 – –

Fig. 4 The effective masses on the W ensemble for the pseudoscalar
(circles), vector (diamonds), scalar (triangles) and tensor (squares)
channels are displayed, together with the plateau average and its error
band. The fit to the leading correction Eq. (4.1) is also shown

of order a2. This means, neglecting data with lattice spacings
coarser than a2/t0 > 0.25.

Figures 5, 6 and 7 and Table 4 summarize our findings.
The data entering the fits are collected in Table 7.

The results in the continuum limit are collected in Table 4.

4.3 Dynamical charm effects

The comparison of continuum results in the Nf = 2 theory
with those in the Nf = 0 theory directly quantifies the typical
size of the effects, that the inclusion of dynamical charm
quarks have on observables with valence charm quarks.

Although they were determined very precisely, no sig-
nificant effect can be seen in the meson mass spectrum.
The most significant deviations of around 1.6σ are found
in the ratios mV /m P and mS/m P . The relative differ-
ences between the central values of the first ratio are

123



607 Page 10 of 14 Eur. Phys. J. C (2019) 79 :607

Fig. 5 Continuum limits of the meson mass ratios mV /m P , mS/m P
and mT /m P in both the Nf = 2 (left) and N f = 0 (right) theories. The
dotted lines indicate the value of the corresponding ratio in nature

Fig. 6 Continuum limits of the mass scaling functions ηP and ηV in
both the Nf = 2 (left) and N f = 0 (right) theories

only ([mV /m P ]Nf=2 − [mV /m P ]Nf=0)/[mV /m P ]Nf=2 =
0.12 (7)%. For the hyperfine splitting (mV − m P )/m P this
means a charm quark effect of around 2%. In the mS/m P

ratio the central values deviate by 2.7 (1.6)%.
A clearer difference between the N f = 0 and N f =

2 theories can be observed in the mass-scaling functions
and in the RGI quark mass. The values of ηP and the
quark mass differ by almost 3σ . The relative differences are
(η

Nf=2
P −η

Nf=0
P )/η

Nf=2
P = 3.4 (1.1)% and ([Mc/m P ]Nf=2−

[Mc/m P ]Nf=0)/[Mc/m P ]Nf=2 = 5.0 (1.8)%. An even
larger (but less significant) difference is found in ηV .

4.4 Lattice artifacts

Having access to very fine lattice spacings is crucial for
reliable continuum extrapolations. Although our fermionic

Fig. 7 Continuum limits of the renormalized quark masses in the SF-
scheme divided by the pseudoscalar meson mass. Note that the quark
masses in Nf = 2 and Nf = 0 theories are renormalized at different
renormalization scales and cannot be compared directly

Table 4 Results for various quantities in the continuum limit for both
the Nf = 0 and the Nf = 2 theory

Quantity Nf = 2 Nf = 0 Sea effects [%]

mV /m P 1.05405 (60) 1.05274 (46) 0.124 (71)

mS/m P 1.258 (14) 1.224 (20) 2.7 (1.9)

mT /m P 1.271 (38) 1.321 (33) 3.9 (4.1)

ηP 0.6996 (81) 0.67553 (42) 3.4 (1.1)

ηV 0.666 (31) 0.6060 (13) 9.0 (4.2)

Mc/m P 0.4764 (74) 0.4528 (51) 5.0 (1.8)

action, i.e. twisted mass fermions with an additional clover
term, is known to have relatively mild lattice artifacts, the
continuum value of e.g. mV /m P would be significantly
underestimated if we had access only to our two coarsest
lattices (E and N). The finer of the two has a lattice spacing
of a ≈ 0.049 fm, which is comparable to the finest lattice
spacings typically achievable in large-volume simulations
with light quarks. The situation is depicted in Fig. 8.

The presence of large lattice artifacts of O((aμ)2) not
only affects observables like mV /m P , but also the value
of the lattice spacing a itself. Since it is obtained by deter-
mining some hadronic length scale Lhad/a in lattice units at
finite lattice spacing and dividing it by the continuum value
in fm, i.e. a = a/Lhad × Lhad,cont, its value depends on
the lattice artifacts present in Lhad. In our case one possi-
bility to compute the lattice spacings is through the scale
Lhad,cont,1 ≡ L1 = 0.40 (1) fm. Its values in lattice units
are known for our bare couplings and the resulting lattice
spacings are between aL1 = 0.023 fm on ensemble W
and aL1 = 0.066 fm on ensemble E . Alternatively, one
could determine the lattice spacing through Lhad,cont,2 ≡√

t0(M) = 0.1131 (38) fm [21]. While the two lattice spac-
ing determinations agree well on the fine ensembles, the dif-
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Fig. 8 Continuum extrapolations of mV /m P . One extrapolation
includes only data with a2/t0 < 0.25, the other uses only coarse lattices
with a2/t0 > 0.2. The continuum limits differ significantly between the
two extrapolations

Table 5 Lattice spacings in physical units on our quenched and dynam-
ical ensembles, determined in two different ways

Ensemble aL1 [fm] at0 [fm]

E 0.066 0.104

N 0.049 0.054

O 0.042 0.045

P 0.036 0.038

S 0.028 0.029

W 0.023 0.024

qN – 0.054

qP – 0.038

qW – 0.024

qX – 0.018

ference is quite substantial on the coarsest one, where we
find at0 ≈ 0.1 fm, i.e. we observe a 37% lattice artifact in a!
Since t0/a2 is also determined on the quenched ensembles,
we can determine their lattice spacings using the decoupling
relation

√
t0(M)

Nf=2 = √
t0

Nf=0 + O(M−2). Note that lat-
tice spacings determined by using the N f = 0 theory as an
effective theory for our massive two flavor theory differ from
those determined by using it as an (uncontrolled) approxima-
tion to full QCD. In particular these lattice spacings depend
on the value of M in the fundamental theory. This is also
the reason why our value of Mc does not agree with other
quenched determinations, like e.g. [53]. Table 5 summarizes
our scale setting.

5 Conclusions

In this work we presented a determination of the effects of
charm quarks in the sea based on a simulation of a model,
QCD with Nf = 2 charm quarks. By comparing to the
Nf = 0 pure gauge theory at the matching point defined
in Eq. (3.32) we can compute the size of these effects. We
find that they are below 2% for the hyperfine splitting of
charmonium. These are good news for lattice QCD compu-
tations of charmonium based on simulations of Nf = 2 + 1
light quarks in the sea. We also demonstrate in Fig. 8 that
lattice spacings a < 0.06 fm are needed for safe continuum
extrapolations of the charmonium spectrum when using O(a)
improved Wilson quarks.

We also computed the effects of sea charm quarks in the
mass-scaling functionη of the charmonium masses Eq. (3.29)
and in the renormalization group invariant charm–quark mass
Mc. Table 4 lists the comparison in the continuum limit of
these quantities in the Nf = 2 and Nf = 0 theory. The effects
of the charm sea quarks are clearly resolved and their size
is 3% for ηP and 5% for Mc. We notice that our results are
upper bounds for the effects of a charm sea quark in QCD
since in our model we have doubled their number.

Further analysis to compute charm loop effects in decay
constants and finestructure of Bc mesons is in progress. So
far the disconnected contributions due to charm annihilation
[54] have been neglected since we computed isovector char-
monium masses in our model. Work on these contributions
is under way.
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Appendix A: Parity and time-reflection symmetries

Following transformations can be considered as a change of
variables in the lattice path integral:

Parity

P :

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U0(x0, 
x) → U0(x0,−
x)

Uk(x0, 
x) → U †
k (x0,−
x − ak̂), k = 1, 2, 3

χ(x0, 
x) → γ0χ(x0,−
x)

χ̄(x0, 
x) → χ̄ (x0,−
x)γ0

(A.1)

Time reflection

T :

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U0(x0, 
x) → U †
0 (T − x0 − a, 
x)

Uk(x0, 
x) → Uk(T − x0, 
x), k = 1, 2, 3

χ(x0, 
x) → γ0γ5χ(T − x0, 
x)

χ̄(x0, 
x) → χ̄(T − x0, 
x)γ5γ0

(A.2)

They are symmetries of the twisted mass action only if
μ = 0. In general these transformations lead to relations
between expectation values in theories with positive and
with negative twisted masses. E.g. for the two-point func-
tions like Eq. (3.11) one finds

〈O1O2〉 = 〈P[O1]P[O2]〉−μ (A.3)

〈O1O2〉 = 〈T [O1]T [O2]〉−μ. (A.4)

With standard Wilson fermions (μ = 0), these equations can
be used to show that 〈O1O2〉 = 0 if the operators O1 and
O2 have opposite parity, i.e. if P[O1]P[O2] = −O1O2. As
a consequence, an operator with a definite parity will only
excite states with the same parity. This property is lost in
the twisted mass formulation, and in general operators will
excite states with both parities.

The combined T P transformation is a symmetry of the
twisted mass action

〈O1O2〉 = 〈T P[O1]T P[O2]〉. (A.5)

For the averaged correlators Eqs. (3.12)–(3.16) this means

1

2
〈O1O2 + T [O1]T [O2]〉

= 1

2
〈T P[O1]T P[O2] + P[O1]P[O2]〉. (A.6)

It is now easy to see that the averaged correlator vanishes,
if P[O1]P[O2] = −O1O2. So, by enforcing the continuum
time reflection symmetry of the correlator, automatically the
mixing of opposite parity operators is prohibited.

Appendix B: Tables

See Tables 6 and 7.
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Table 6 Meson masses and t0 in lattice units. For Nf = 2 simulations
the first line contains the values extrapolated to the tuning point μ� and
the second line the values at the simulated parameters. For Nf = 0

ensembles the first line contains the values interpolated to μ�, and the
following three lines contain the values measured at different valence
quark masses

Ensemble aμ am P amV amT amS t0/a2

E 0.3809 (54) 1.667 (16) 1.757 (18) – – 1.172 (25)

0.36151 1.61079 (13) 1.69494 (36) – – 1.23907 (82)

N 0.16647 (28) 0.8551 (12) 0.8985 (12) 1.005 (51) 0.977 (15) 4.468 (12)

0.166 0.85337 (17) 0.89687 (34) 1.000 (51) 0.975 (15) 4.4730 (93)

O 0.13714 (31) 0.7117 (13) 0.7488 (15) – – 6.445 (25)

0.13095 0.68929 (11) 0.72742 (26) – – 6.561 (12)

P 0.11482 (32) 0.6001 (14) 0.6317 (15) 0.707 (19) 0.7337 (53) 9.070 (42)

0.1132 0.59421 (24) 0.62579 (40) 0.703 (20) 0.7269 (53) 9.105 (35)

S 0.08717 (25) 0.4570 (10) 0.4814 (12) – – 15.641 (71)

0.087626 0.45870 (18) 0.48309 (34) – – 15.621 (60)

W 0.072557 0.38200 (16) 0.40219 (31) 0.481 (10) 0.4680 (37) 22.39 (11)

qN 0.17632 (11) 0.85846 (37) 0.90106 (52) 0.994 (33) 1.018 (18) 4.4329 (38)

0.16 0.806508 (100) 0.85216 (48) 0.933 (38) 0.972 (22) –

0.17 0.838522 (96) 0.88224 (41) 0.970 (35) 1.000 (20) –

0.18 0.870096 (93) 0.91204 (36) 1.008 (32) 1.028 (18) –

qP 0.12235 (26) 0.60125 (100) 0.6328 (11) 0.762 (43) 0.710 (14) 9.037 (30)

0.11 0.56074 (32) 0.59454 (81) 0.728 (51) 0.669 (15) –

0.12 0.59373 (31) 0.62562 (69) 0.756 (44) 0.703 (14) –

0.13 0.62619 (30) 0.65634 (61) 0.783 (38) 0.736 (12) –

qW 0.07798 (19) 0.38602 (73) 0.40607 (100) 0.4960 (98) 0.4713 (63) 21.925 (83)

0.07 0.35943 (14) 0.38103 (77) 0.472 (11) 0.4465 (72) –

0.08 0.39294 (14) 0.41247 (57) 0.5022 (94) 0.4775 (60) –

0.09 0.42573 (13) 0.44361 (44) 0.5322 (79) 0.5086 (52) –

qX 0.05771 (13) 0.28792(53) 0.30296 (56) – – 39.41(14)

0.056 0.28218 (10) 0.29755 (20) – – –

0.058 0.288920 (99) 0.30389 (19) – – –

0.06 0.295621 (98) 0.31022 (19) – – –

Table 7 Ratios of masses and the mass scaling functions. All values are at the tuning point μ�

Ensemble mV /m P mS/m P mT /m P m/m P ηP ηV

E 1.0542 (17) – – 0.4407 (46) 0.664 (14) 0.698 (33)

N 1.05084 (36) 1.143 (18) 1.175 (60) 0.3756 (38) 0.6977 (75) 0.652 (26)

O 1.0520 (15) – – 0.3717 (38) 0.6984 (74) 0.632 (28)

P 1.05258 (55) 1.2226 (86) 1.177 (31) 0.3691 (38) 0.6974 (47) 0.660 (14)

S 1.05342 (64) – – 0.3679 (38) 0.7002 (65) 0.657 (32)

W 1.05285 (82) 1.225 (12) 1.259 (29) 0.3664 (37) – –

qN 1.04968 (42) 1.186 (21) 1.158 (39) 0.3945 (20) 0.65290 (20) 0.5856 (16)

qP 1.0526 (10) 1.182 (22) 1.269 (71) 0.3939 (20) 0.66593 (59) 0.5972 (29)

qW 1.0523 (15) 1.222 (17) 1.286 (26) 0.3933 (20) 0.66936 (59) 0.6003 (42)

qX 1.05226 (42) – – 0.3903 (20) 0.67342 (50) 0.6037 (12)
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