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Abstract Considering that the proton has an outer pion
cloud of radius ∼ 0.87 fm and an inner core of radius ∼ 0.44
fm where the valence three quarks are confined and in the
framework of optical limit approximation of Glauber, the
proton–proton elastic scattering differential cross section,
total cross section, the ratio of real part to imaginary part
of elastic scattering amplitude in the forward direction, the
total elastic and inelastic cross sections are calculated for
LHC energy at

√
s = 7, 8, 13 TeV. The three-quark force is

included. A good agreement is obtained with the experimen-
tal data at LHC energy 7, 8 and 13 TeV of last measurements
of TOTEM Collaborations. Only for the differential cross
section a disagreement is obtained for q2 > 1 (GeV/c)2,
where the complete Glauber polynomial is needed. We tried
to confirm the results of radii of two- and three-quark force
and the gluon quant energy which were obtained before at
ISR energy.

1 Introduction

The results of measurements of proton–proton elastic scat-
tering data at 7, 8, 13 TeV by TOTAM and ATLAS Collab-
oration [1–10] are in the focus of attention of researcher at
the last few years. Different models with different basis and
different degree of agreement with the experimental data of
LHC energy [11–25] were suggested and used. Therefore,
we need more studies at this range of energy.

Since in the previous our work [26] we obtained a good
agreement with p–p elastic scattering data of ISR energy at√
s = 19.42 − 53 GeV by using optical limit approximation

of Glauber theory [27], we try to use the same approxima-
tion to discuss the results of TOTEM measurements of LHC
energy at

√
s = 7, 8, 13 TeV [1–8]. In the present paper we

will calculate the p–p elastic scattering differential cross sec-
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tion dσ/dq2, total cross section σt , the ratio ρ of real part to
imaginary part of elastic scattering amplitude in the forward
direction, the total elastic and inelastic cross sections σel and
σin , respectively. In these calculations, the three-quark force
is considered using the same approach in [26]. We try to con-
firm the results of the radii of two- and three-quark force and
the gluon quant energy which were obtained at ISR energy.

2 The model

We consider that the proton consists of an outer pion cloud
of radius ∼ 0.87 fm and an inner core of radius ∼ 0.44 fm
where the valence three quarks are confined [28]. Therefore,
proton–proton elastic scattering amplitude can be written as

T (q) = T0(q) + F(q), (1)

where q is the momentum transfer vector, T0(q) represents
the incident cloud–target cloud interaction and is given by
a phenomenological formula [29], in dimensionless variable
q0 = R0q,

T0(q) = iR2
0(s)B0 exp{−c0q

2
0/2} (2)

where c0 and B0 are dimensionless constants and R0 is the
inelastic radius of proton [30]. The second term F(q) repre-
sents core-core scattering amplitude as composite systems of
three quarks for each. In this work, we represent this ampli-
tude in terms of quark–quark interaction in the framework of
optical limit approximation [31]. Thus,

F(q) = i R2
0(s)

2π

∫
db0 exp{iq0 . b0}[1 − exp{iχopt (b0)}],

(3)

where b is the two-dimensional impact vector between the
mass centres of the two protons, and b0 = b/R0. Considering
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the three-quark force, the total optical phase shift χopt(b0) is
given by [26,32]

χopt(b0) =
∑
j,k

χ t
jk(b0) +

∑
j,m,k
j �=m

χ th
(jm)k(b0) +

∑
j,k,l
k �=l

χ th
j (kl)(b0),

(4)

where χ t
jk(b0) is the two-quark force phase shift, χ th

(jm)k(b0)

and χ th
j (kl)(b0) are the three-quark force corrections. In the

used approach, (jm)k means that the incident quark j inter-
acts with the target quark k and, at the same time, the incident
quark j interacts with another quark m in the incident pro-
ton. Also, j (kl) means that the incident quark j interacts with
the target quark k and, at the same time, the target quark k
interacts with another target quark l.

In terms of profile functions of interactions Γ t
jk(b0),

�th
j (kl)(b0 jk, t′0kl) and �th

(jm)k(b0 jk, t0 jm) of two-quark force

and three-quark forces, respectively, the phase shifts χ t
jk(b0),

χ th
j (kl)(b0) and χ th

(jm)k(b0) are given by [26,32]

χ t
jk(b0)

= i
∫

dρ0dr0dρ′
0dr

′
0

∣∣ϕI (ρ0, r0)ϕT(ρ
′
0, r

′
0)

∣∣2
�t
jk(b0 jk), (5)

χ th
j (kl)(b0)

= i
∫

dρ0dr0dρ′
0dr

′
0

∣∣ϕI (ρ0, r0)ϕT (ρ′
0, r

′
0)

∣∣2
�th

j (kl)(b0 jk, t′0 kl),

(6)
χ th

(jm)k(b0)

= i
∫

dρ0dr0dρ′
0dr

′
0

∣∣ϕI (ρ0, r0)ϕT (ρ′
0, r

′
0)

∣∣2
�th

(jm)k(b0 jk, t0 jm),

(7)

where ϕI (ρ0, r0) and ϕT (ρ′
0, r

′
0) are the wave functions of the

relative motion of the incident and target proton, respectively,
with dimensionless variables (ρ0, r0) and (ρ′

0, r
′
0), respec-

tively. If r1, r2 and r3 are the position vectors of the quarks
inside the proton, then, ρ = R0ρ0 = r3 − (r1 + r2)/2,
r = R0r0 = r1 − r2 are the relative coordinates of quarks.
The independent variables of profile functions are

b0 jk = b0 − t0 j + t′0 k, t0 jm = t0 j − t0m,

t01 = 2

3
ρ0⊥, t02 = −1

3
ρ0⊥ + 1

2
r0⊥,

t03 = −1

3
ρ0⊥ − 1

2
r0⊥

where the sign ⊥ means that the projection is on the impact
plane. For the target proton we have the same formulas with
dashes.

The profile functions Γ t
jk(b0), �th

j (kl)(b0 jk, t′0kl) and

�th
(jm)k(b0 jk, t0 jm) of two-quark force [29] and three-quark

forces [26,32,33], respectively, are taken as follows

�t
jk(b0 jk) = A0 jk

9

(1 − iεjk)

4πβ0 jk
exp

{
− 1

2β0 jk
b2

0 jk

}
, (8)

�th
j (kl)(b0 jk, t′0 kl)

= (A j (kl) + i B j (kl)) exp

{
− 1

γ0

(
b2

0 jk + t′20kl
)}

, (9)

�th
(jm)k(b0 jk, t0 jm)

= (A(jm)k + i B(jm)k) exp

{
− 1

γ0

(
b2

0 jk + t20 jm

)}
(10)

For knowledge only, the corresponding quark–quark elas-
tic scattering amplitudes of the profile functions (8), (9) and
(10) are obtained by inverse Fourier transformations

f tjk(q) = i

2π

∫
db0 jke

iq0.b0 jk�t
jk)(b0 jk)

= A0 jk

9

(i + εjk)

4π
exp

{
−β0 jkq2

0/2
}

(11)

f thj (kl)(q,q
′)

= i

2π

∫
db0 jkdt′0kleiq0.b0 jk+iq0

′.t′0 kl�th
j (kl)(b0jk, t′0 kl)

= iπγ 2
0

2
(A j (kl) + i B j (kl)) exp{−γ0(q2 + q′2)/4} (12)

f th(jm)k(q,q
′)

= i

2π

∫
db0 jkdt0 jme

iq0.b0jk+iq0
′.t0 jm�th

(jm)k(b0 jk, t0 jm)

= iπγ 2
0

2
(A(jm)k + i B(jm)k) exp

{
−γ0(q2

0 + q′2
0)/4

}
(13)

The used transformation in Eqs. (12) and (13) are suggested
by Hassan et al. [33]. A0jk , εjk and β0 jk are two-quark force
dimensionless parameters. The quantity εjk is the ratio of
the real to imaginary parts of the quark–quark amplitude in
the forward direction and β0 jk is the slope parameter and
is related to the radius of two-quark interaction. From the
profile function Γ t

jk(b0 jk), we can consider rt = √
2βjk as a

radius of quark–quark interaction, where βjk = β0 jkR2
0. The

parameters A j (kl), Bj (kl), A(jm)k, B(jm)k and γ0 are the three-
quark force dimensionless parameters. Also, rth = √

γ ,
where γ = γ0R2

0, could be considered as the three-quark
force radius [26]. From the uncertainty relation of energy
and time, we know that rth = 1

2rt . Therefore, we can write
√

γ = 1
2

√
2βjk =

√
βjk
2 . Thus, we can take γ = βjk

2 . If we
represent the uncertainty relation in the form �t�E ≥ h̄ we
have �E ≥ h̄

�t = h̄c
�r . If we consider �r is a radius of a cer-

tain force, then, �E can be considered as the quant energy
of the mediator of this force, approximately.

The wave functions of incident and target protons are taken
in the form

φI (ρ0, r0) =
√

α3
0

33/2π3 e
− α0

2

(
2
3 ρ2

0+ 1
2 r

2
0

)
, (14)
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With (ρ′
0, r

′
0) we have the same form for the wave function

φT (ρ′
0, r

′
0) of the target proton. The parameter α0 = R2

0α,

where α is related to the root mean square radius
〈
r2

〉1/2
p of

proton by the relation α = 1〈r2〉p [34].

In this study, we take A0 jk = A0, εjk = ε and β0 jk = β0

for all j and k. Also, we take A j(kl) = A(jm)k = A and
Bj(kl) = B(jm)k = B for all j, k, l and m as previously [26].
Thus, the total proton–proton optical phase shift χopt is given
by [26]

χopt(b0) = χ t
opt(b0) + χ th

opt(b0)

= 9α0A0 (i + ε)

12π (2 + 3α0β0)
exp

{
−[3α0/(4 + 6α0β0)]b2

0

}

+ 108α2
0γ 2

0 (i A − B)

5 + 10α0γ0 + 3α2
0γ 2

0

× exp

{
− 3α0 (2 + α0γ0)

5 + 10α0γ0 + 3α2
0γ 2

0

b2
0

}
. (15)

Therefore, the elastic scattering amplitude F(q), Eq. (3), is
obtained in the form

F(q) = − i R2
0(s)

∞∑
n=1

n∑
m=0

in

(n − m)! m!G(m, n)

× exp
{
−H(m, n)q20

}
, (16)

where

G(m, n) = (9α0A0(i + ε))m(2 + 3α0β0)
1−m (108α2

0γ 2
0 (i A − B))n−m

(
5 + 10α0γ0 + 3α2

0γ 2
0

)1−n+m

(12π)m3α0
(
m(5 + 10α0γ0 + 3α2

0γ 2
0 ) + (n − m)(2 + α0γ0)(4 + 6α0β0)

) , (17)

H(m, n) = (2 + 3α0β0) (5 + 10α0γ0 + 3α2
0γ 2

0 )

6α0(m(5 + 10α0γ0 + 3α2
0γ 2

0 ) + (n − m)(2 + α0γ0)(4 + 6α0β0))
(18)

The proton–proton elastic scattering differential cross sec-
tion is given by

dσ

dq2 = π |T0(q) + F(q)|2 . (19)

For the proton–proton total cross section we will use

σt (s) = 4π Im(T0(0) + F(0)). (20)

The ratio ρ of real part to imaginary part of proton–proton
elastic scattering amplitude in the forward direction is given
by

ρ = Re(T0(0) + F(0))

Im(T0(0) + F(0))
. (21)

To calculate the total cross section of elastic scattering,
we will use the relation

σel =
∞∫

0

dσ

dq2 dq2 = π

∞∫

0

|T0(q) + F(q)|2 dq2 (22)

By using Eqs. (2) and (16) we get

σel = π R2
0(s)

[
B2

0

c0
−

∞∑
n=1

n∑
m=0

in

(n − m)! m!
B0G(m, n)

H(m, n) + c0/2

−
∞∑
j=1

j∑
k=0

(−i) j

( j − k)! k!
B0G∗(k, j)

H(k, j) + c0/2

+
∞∑
j=1

j∑
k=0

∞∑
n=1

n∑
m=0

(−i) j

( j − k)! k!
in

(n − m)! m!
G∗(k, j) G(m, n)

H(k, j) + H(m, n)

⎤
⎦

(23)

The inelastic total cross section is given by

σin = σt − σel. (24)

3 Results and discussion

The results of dσ

dq2 calculations at the energies 7, 8, 13 TeV

are presented in the Figs. 1, 2 and 3, respectively. The fitting
quark–quark parameters of two- and three-quark forces and
the values of parameters of pion-cloud part are given in the

Table 1. In these calculations, the value of root mean square
radius of proton is

〈
r2

〉1/2
p = 0.868 fm, noting that the exper-

imental value of proton radius is rp = 0.84 − 0.87 fm [35].
The data at 7, 8 and 13 TeV is taken from the Refs. [1,4,6–8],
respectively. A complete set of 7 TeV data with statistical and
systematic errors is given in [1] for q2 up to 2.44(GeV/c)2,
while the data at 8 and 13 TeV are preliminary and the statis-
tical and systematic errors are given only up to 0.2(GeV/c)2.
Therefore, to show the extent of agreement of the calculations
with the data the quantities χ2/NDF = [∑n

i=1((dσ/dq2
i )exp.

−(dσ/dq2
i )theo.)

2/error2
i ]/n, [(dσ/dq2

i )exp. − (dσ/dq2
i )theo.]/√

error2
stat. + error2

syst. and [(dσ/dq2
i )exp. − (dσ/dq2

i )theo.]/
(dσ/dq2

i )theo. are calculated for 7 TeV as in the Ref. [18],
see Fig. 1. For the other two energies where the statistical
and systematic errors are not available for us, the last quan-
tity is only calculated, see Figs. 2 and 3. A good agreement is
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Table 1 The dimensionless values of α0 = R2
0/

〈
r2

〉
p , two-quark force

parameters A0, ε and β0, three-quark force parameters A, B and γ0 and
cloud parameters B0 and c0. R2

0(s) = σin(s)/π and the experimental

value of σin(s) of proton–proton scattering are taken from [1,3,5] for
7, 8 and 13 TeV, respectively

√
s, TeV R2

0 mb A0 ε β0 A B γ0 B0 c0 α0

7 23.4 1.6 0.25 0.14 1.6 −0.45 0.07 0.092 0.499 3.1040

8 23.78 1.6 0.24 0.144 1.6 −0.44 0.072 0.09 0.458 3.15

13 25.31 1.6 0.24 0.14 1.8 −0.44 0.07 0.091 0.446 3.36

obtained with two-, three-quark forces and pion-cloud effects
up to q2 ≈ 1(GeV/c)2. In fact, the pion-cloud effect has a
contribution in the forward direction for q2 ≤ 0.5(GeV/c)2

and it decreases with increasing the energy
√
s and q2, see

Figs. 1, 2 and 3. The pion-cloud contribution is not enough to
obtain an agreement with the experimental data. Only with
three-quark force contribution we have a good agreement for
q2 ≤ 1 (GeV/c)2 . The disagreement for q2 > 1 (GeV/c)2

may be related to the absence of multi-scattering terms in
the optical limit approximation. This is because the actual
effects of the multi-scattering terms are in this region. This
conclusion is related to many published works in the frame-
work of complete polynomial of Glauber approximation at
ISR energy [29,34,36], where, with a simple correction, the
agreement with the differential cross section was obtained up
to q2 = 10 (GeV/c)2. Since, the first minimum and second
maximum are coming from the interference of the single-
and double scattering terms, we need to interpret the agree-
ment with the data at these regions without the double scat-
tering terms. Since, the scattering processes with three-quark
force correction are considered as processes of many particle
together (three quarks), we believe that these processes play,
partially at least, the same role of multi-scattering processes.

Using the same parameter values of Table 1, we calculate
the total cross section σt and the ratio ρ of proton–proton
scattering at 7, 8, and 13 TeV. The obtained results are given
in the Table 2, where the experimental data of σt are taken
from [1,3,5] for 7, 8, and 13 TeV, respectively. The ρ values
of the COMPETE preferred-model extrapolation at 7 and
8 TeV [37] are presented in the last column, as well as the
measured value of ρ at 13 TeV [6]. A good agreement with the
experimental data of σt and the values of ρ [6,37] means that
the used model with three-quark force correction can describe
well the data at these very high energies. The contributions
of the pion-cloud in the total cross section σt and the ratio ρ

is clear, see the Table 2.
To ensure this conclusion, we calculate the total cross sec-

tion of elastic scattering σel and the total cross section of
inelastic scattering σin. The results with all corrections are
given in the Table 3. The good agreement with the experi-
mental data indicates that the model is physically accepted
to describe the data and the three-quark force is important.

Fig. 1 The p–p elastic scattering differential cross section at 7 TeV. The
dashed, dot-dashed and solid curves represent the results of (two-quark
force) only, (two-quark force + pion cloud effect), and (two-+three-
quark force+ pion-cloud effect), respectively. The experimental data
are taken from [1]

123



Eur. Phys. J. C (2019) 79 :599 Page 5 of 8 599

Fig. 2 Same as Fig. 1 for 8 TeV. The experimental data are taken from
[4,8]

Although, the model has a limited range of applicability
that extends approximately up to the first diffractive mini-
mum and maximum, and due to this reason the model gives
reasonable description of σt , σel , σin and ρ, that are sensitive
to the low values of q2 but are not sensitive to elastic scat-
tering data at large values of q2. However, we expect a good
agreement over a wide range of q2 if we use the complete
polynomial of Glauber theory [27].

From all above results of dσ

dq2 , ρ, σt , σel , σin we can trust

the seriousness of the parameter values in Table 1. Therefore,
using the relations rt = √

2β, rth = √
γ and Eg ≥ h̄c

rt
for

two-quark interaction radius, three-quark force radius and the
quant energy of force mediator (gluon), respectively, these
quantities are calculated. These quantities were calculated in
previous work [26] at ISR energy, their values, in average,
were rt = 0.738 fm, rth = 0.364 fm and Eg ≈ 271.695MeV ,
respectively. The results at 7, 8, 13 TeV are given in Table 4.
In average, we have rt = 0.826 fm, rth = 0.411 fm and Eg ≈
238.946MeV . It is clear that, the values of rt and rth are still
less than the radius of proton, 0.87 fm, and the radius of core,
0.44 fm, respectively. Note that, from Table 4, each of these
quantities has the same order at different LHC energies as in

Fig. 3 Same as Fig. 1 for 13 TeV. The experimental data are taken
from [6–8]

the case of ISR energy, [26], where the same order at energy√
s in the range 19.42–53 GeV. The values of radii rth and rt

at LHC energy are greater than their values at ISR energy by
12%, approximately. This leads to decreasing the energy of
mediator by 12%, approximately. However, we can consider
the values of the radii and energy of gluon at ISR and LHC
energies of the same order, approximately.

As in the previous work [26], we try to evaluate residue
energy to know the field particle of the external strong field
of proton. The residual energy of proton is defined as [26]

Eres = protonmass − (mass of three quarks

+sum of gluons of two − quark interactions)

= mp − (
mass of three quarks + Eguu + Egud + Egud

)
Taking Eguu = Egud = Eg ≈ 238.946 MeV, mp = 938.27
MeV and the current mass of three valence quarks of proton
together is about 9.95 MeV [38] we have

Eres = 938.27 − (9.95 + 3 × 238.946) = 211.482 MeV

This value of Eres is greater than the mass of π− meson
of order 140 MeV which is considered as the mediator of
proton strong force. The increment of order 71 MeV. From
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Table 2 Total cross section with (two-quark force, σ t
t ), with (two-quark

force +pion cloud, σ t+c
t ) and with (two-quark force +pion cloud+three-

quark force, σ t+c+th
t ). The ratio of real to imaginary parts of p–p elastic

scattering amplitude in the forward direction with(two-quark force, ρt ),
with (two-quark force +pion cloud, ρt+c) and with (two-quark force

+pion cloud + three-quark force, ρt+c+th). The experimental data of
total cross sections at 7, 8 and 13 TeV are taken from [1,3,5], respec-
tively. The values of ratio ρ in the last column are taken from [37] for
7 and 8 TeV and from [6] at 13 TeV

√
s TeV σ t

t mb σ t+c
t mb σ t+c+th

t mb σ
exp
t mb ρt ρt+c ρt+c+th ρ

7 34.50 61.55 98.53 98.58 ± 2.23 0.2279 0.1277 0.1400 0.141 ± 0.007

8 35.049 61.944 101.477 101.7 ± 2.9 0.2189 0.1239 0.1359 0.140 ± 0.007

13 37.157 66.100 110.673 110.6 ± 3.4 0.2179 0.1225 0.1084 0.10 ± 0.01

Table 3 The total cross section of proton–proton elastic scattering σel
and inelastic scattering σin . The experimental data are taken from [1,3,
5] for 7, 8 and 13 TeV, respectively
√
s TeV σel mb σel , exp. mb σin mb σin, exp mb

7 25.16 25.43 ± 1.07 73.37 73.15 ± 1.26

8 27.007 27.1 ± 1.4 74.187 74.7 ± 1.7

13 31.115 31.0 ± 1.7 79.559 79.5 ± 1.8

the uncertainty relation of time and energy, we conclude that
the radius of strong force out the proton at the LHC energy is
of order 1fm. At the same time, with the mass of π− meson
of order 140 MeV we have this radius of value 1.414 fm. In
the previous work [26], where Eres = 135.66 MeV, we have
the radius of proton strong force is 1.454 fm. Regarding these
results, we can consider that the strength of proton field is
related to the energy of the proton and its field at LHC energy
is stronger than its field at ISR energy with smaller radius.

We must remember that the first determinations of quark
masses were performed using quark models. The resulting
masses only make sense in the limited context of a particu-
lar quark model, and cannot be related to the quark current
masses. In order to discuss the current quark masses, defini-
tions based on quantum field theory were used. The picture
of the proton in our calculations, is based on an effective field
theory model [28]. Therefore, the current masses of quarks
are used in our calculations of Eres.

It is well known that the proton mass (938.27 MeV), the
sum of current masses of three quarks (9.95 MeV) and the
mass of π−meson, the particle of proton strong field (139.57
MeV). Also, we can consider that the residual mass Eres

equals to the mass of π − meson. Therefore, regardless of
the proton incident energy and optical limit calculations, we
can calculate the gluon energy Eg by using the relation

Eg = 1

3

{
mp − (mass of the three quarks + Eres)

}

= 1

3
{938.27 − (9.95 + 139.57)} = 262.917 MeV

With this Eg value, the quark–quark interaction radius rt is
0.75 fm and the three-quark force radius rth is 0.375 fm. It
is clear that, these values of Eg , rt and rth, are consistent,
approximately, with the obtained values of these quantities
in our previous work [26] and this work.

Finally, it is useful to note that the optical limit results of
the elastic scattering differential cross section have a shoul-
der where 1.5 < q2 < 2 (GeV/c)2 and this shoulder does
not exist in the experimental data of the differential cross
section at ISR and LHC energies. Since the second mini-
mum in Glauber formalism is coming from the interference
of double and triple scattering terms which take place with
the composite particles of three or more constituents, the pro-
ton picture as two constituent’s system is suggested in [39].
Bialas and Bzdak proposed a model of nucleons interaction at
ISR energy for small momentum transfer where the nucleon
was considered as a quark and diquark system [14,15]. In
this model the interaction between quarks and diquarks is
assumed to be purely absorptive, therefore the forward scat-
tering amplitude of the Bialas and Bzdak model has no real
part. With this assumption the results of [16] at ISR energis
(
√
s = 23.5 − 62.5 GeV) and LHC (TOTEM) energy of√
s = 7 TeV have a good agreement with the experimental

data except at the minimum region, where a singular point
was obtained due to the zero real part of amplitude. At the
same energies, with nonzero real part of parton-parton scat-
tering amplitude the results of Bialas–Bzdak model describe
well the dip region of the differential cross-section where the
singularity is deleted [17,18].

Table 4 The values of rth and
rt . E2g and Eg are the
two-gluon exchange and
one-gluon exchange energy

√
s TeV β fm2 γ fm2 rth = √

γ fm rt = √
2β fm E2g MeV Eg MeV

7 0.327 0.164 0.40 0.81 487.67 243.84

8 0.34 0.17 0.413 0.827 476.995 238.498

13 0.354 0.177 0.42 0.84 468.9 234.5
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Fig. 4 a and b Represent the proton picture with Rq , Rd , and Rqd values of [15,18], respectively

However, in Bialas–Bzdak model, at ISR energy, for
example, the values of quark radius Rq , diquark radius Rd

and the distance between the centres of quark and diquark
Rqd, in the proton, approximately, are 0.28, 0.76 and 0.32 fm,
respectively, [15]. These values at 7 TeV are 0.45, 0.94 and
0.32 fm, respectively, [18]. Since, the radius of proton is 0.87
fm, we cannot separate quark and diquark into two entities,
i.e., we cannot consider that quark and diquark are two inde-
pendent constituents. Both quark and diquark occupy spaces
that cannot be separated. In other words, if we consider the
quark and diquark as spheres, then the quark takes a place
inside the diquark at any time. Thus, with these values of Rq ,
Rd , and Rqd, and the proton radius Rp of the same order of
diquark radius Rd , we can consider the proton is the diquark
with one constitute quark inside it, see Fig. 4. The increasing
of the total cross section is not enough to accept this physical
picture of proton and we need more studies in this concern.

At the same time, in the framework of multiple scattering
theory of Glauber, Wakazumi [29] studied p–p scattering in
terms of quark–quark amplitude for number of constitutes
n = 2, 3, 4, . . ., to determine the number of constituents of
proton. He found that this number equals 3 constituents, see
Fig. 3 in [29]. Also, many works with three quark assumption
at ISR and LHC energies and with good agreement with the
experimental data can be found.

4 Conclusions

In conclusion, the three-quark force is important to obtain a
good agreement with proton–proton elastic scattering data at
LHC energies 7, 8, 13 TeV in the framework of optical limit

approximation. Only we need to use the complete polynomial
of Glauber model to obtain a good fit with the differential
cross section for q2 > 1 (GeV/c)2. Since the total cross
section and ratio are calculated at q2 = 0, their results with
complete polynomial of Glauber model are not affected and
will be the same as in optical limit approximation. Also, the
effect on the elastic and inelastic total cross sections will
be small due to that the effect of multi-scattering terms are
in general small. The obtained values for the radii of two-
quark and three-quark forces are consistent with the radii of
proton and core of proton, respectively. Finally, we need a
physical interpretation for the values of the residual energy
representing the strong field outside the proton.

Data Availability Statement This manuscript has associated data in a
data repository [Authors’ comment: The experimental data used in the
present study was published by TOTEM Collaboration [1–6].]
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