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Abstract We consider Einstein-Horndeski gravity with a
negative bare constant as a holographic model to investi-
gate whether a scale invariant quantum field theory can exist
without the full conformal invariance. Einstein-Horndeski
gravity can admit two different AdS vacua. One is confor-
mal, and the holographic two-point functions of the boundary
energy-momentum tensor are the same as the ones obtained
in Einstein gravity. The other AdS vacuum, which arises
at some critical point of the coupling constants, preserves
the scale invariance but not the special conformal invariance
due to the logarithmic radial dependence of the Horndeski
scalar. In addition to the transverse and traceless graviton
modes, the theory admits an additional trace/scalar mode in
the scale invariant vacuum. We obtain the two-point func-
tions of the corresponding boundary operators. We find that
the trace/scalar mode gives rise to an non-vanishing two-
point function, which distinguishes the scale invariant theory
from the conformal theory. The two-point function vanishes
in d = 2, where the full conformal symmetry is restored.
Our results indicate the strongly coupled scale invariant uni-
tary quantum field theory may exist in d ≥ 3 without the
full conformal symmetry. The operator that is dual to the
bulk trace/scalar mode however violates the dominant energy
condition.
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1 Introduction

Conformal groups are generated by three types of transfor-
mations: (1) Poincaré transformations, (2) a scale (dilatation)
transformation and (3) special conformal transformations.
The Poincaré invariance is the underlying symmetry of any
relativistic quantum field theories (QFT). Interestingly the
Poincaré and scale transformations form a subgroup, which
leads to an important question whether there exists a scale
invariant quantum field theory (SQFT) that is not a (fully)
conformal field theory (CFT). After decades of research,
a definite answer to this question for the general situation
remains elusive. The subject has been reviewed in [1] not so
recently. In d = 2 dimensions, unitary scale invariant theo-
ries that have the discrete spectrum and the finite two-point
function of energy-momentum tensor are necessarily con-
formal [2].1 Examples of SQFTs without a full conformal
symmetry in d = 2 violating these assumptions can be con-
structed, see, e.g. [4–6]. In other dimensions, for example, in
d = 3 and d ≥ 5, some so called “free Maxwell theories”

1 However, it was argued recently that from the mathematics viewpoint,
the proof given by Polchinski [2] is incomplete, see [3].
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were constructed and demonstrated that they were SQFTs
but not CFTs [7]. However, the situation is much subtler in
d = 4. The perturbative approach can be used to demon-
strate the enhancement of conformal symmetry from scale
invariance near the fixed point [8], and a number of such per-
turbative examples were studied extensively [9–11]. It was
argued that even beyond perturbative region, SQFT should
also be CFT [8,12,13]. However, no well-defined proof is
available yet for the non-perturbative statement and a com-
plete answer is far from clear in d = 4.

The AdS/CFT correspondence [14,15] provides a pow-
erful tool to study certain strongly-coupled CFTs. It is also
natural to adopt the holographic technique for the SQFTs
[16]. In fact the holographic approach may be exactly the
right tool to address whether SQFTs without the full confor-
mal invariance can exist, since this may be an intrinsic non-
perturbative problem. Indeed, although anti-de Sitter (AdS)
spacetimes with full conformal group arise naturally and
commonly as vacua in bulk gravity theories, geometries that
preserve both the Poincaré and scale invariance, but not full
conformal invariance, are hard to come by.2 The difficulty is a
reflection of the fact that an SQFT is likely a CFT. However,
concrete such an example does exist and it is provided by
Einstein-Horndeski gravity coupled to a negative cosmolog-
ical constant. Horndeski terms are higher-derivative invariant
polynomials that are built from the Riemann curvature tensor
and the 1-form of an axion [17,18], analogous to the Gauss-
Bonnet combination [19]. It turns out that in addition to the
usual AdS vacuum with the vanishing Horndeski scalar, the
theory also admits the planar AdS at some critical point of
the coupling constants, where the Horndeski scalar is non-
vanishing and the special conformal invariance of the AdS is
broken by the scalar. Black holes of Horndeski gravity at the
critical point were also constructed, e.g. [20,21].

The AdS/CFT and AdS/CMT applications of Einstein-
Horndeski gravities have been extensively studied recently
[22–29]. An important result is that the conformal anomaly
for Einstein-Horndeski gravity in the critical AdS vacuum
contains a new term proportional to R2 [27] in addition to
the standard conformal anomaly for conformal field theory,
capturing the property that a scale but not conformal invari-
ant theory should have [30]. Moreover, the a-theorem can
only be established for the scale invariant AdS vacuum, but
not for the conformal AdS vacuum [27]. This result strongly
suggests that Einstein-Horndeski gravity on the critical AdS
vacuum may provide a consistent holographic dual for some
strongly coupled SQFT that is not conformal. An impor-
tant test to distinguish a CFT and SQFT is to examine the
trace of the stress tensor, which vanishes for CFT, but not

2 Although Einstein gravity with minimally coupled vector fields can
admit AdS that is not fully conformal, the theories typically violate the
null-energy condition [16].

for SQFT. The holographic dictionary [31,32] provides a
powerful technique to calculate the two-point functions of
the energy-momentum tensor of strongly-coupled field the-
ory using classical gravity. In this paper, we employ this
technique to calculate the holographic two-point functions
in Einstein-Horndeski gravity in both the conformal AdS
and scale-invariance AdS vacua. The holographic two-point
functions in the conformal invariant vacuum satisfies

〈
T i
i (x)Tjk

〉
= 0 =

〈
Tjk(x)T

i
i (0)

〉
, (1.1)

as one would expect. However, the above quantities do not
vanish for the scale invariant vacuum since there is in addition
a trace/scalar mode.

The paper is organized as follows. In Sect. 2, we review
the Horndeski gravity and its vacuum solutions. One vacuum
has full conformal symmetry, while the other at the critical
point exhibits only the scale invariance. In Sect. 3, we readily
obtain the two-point functions of energy-momentum tensor
in conformal vacuum, the result makes no difference com-
pared to pure Einstein gravity. In Sect. 4, we consider the
scale invariant vacuum, and we obtain the linear perturba-
tion solutions. We find in addition to the graviton modes,
extra trace mode is also available. Furthermore, we obtain
the holographic counterterms at the critical point. With the
counterterms in hand, we employ the holographic dictionary
to derive the two-point functions of the boundary energy-
momentum tensor associated with the graviton modes and
moreover, the one-point function formulae associated with
the trace mode. In Sect. 5, we analyze the ambiguity in deter-
mining the source of the trace mode. To resolve the ambi-
guity, we come up with an algebraic proposal to obtain the
two-point functions. We also apply the extended metric basis
method to verify the two-point functions we derive. In Sect. 6,
we discuss two-point functions in d = 2, and it turns out the
trace of energy-momentum tensor indeed gives no contribu-
tion to the two-point functions. The paper is summarized in
Sect. 7. In Appendix A, we exhibits the algebraic proposal for
the diagonal part of the graviton modes in Einstein gravity,
and demonstrate explicitly that the algebraic proposal yields
the right answer.

2 Einstein-Horndeski gravity and AdS vacua

In this paper, we consider Einstein gravity with a bare cos-
mological constant �0, extended with the lowest-order Horn-
deski term. The bulk action is given by

Sbulk = 1

16π

∫
dDx

√−g Lbulk ,

Lbulk = R − 2�0 − 1
2α(∂χ)2 + 1

2γGμν∂
μχ∂νχ . (2.1)
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In this action, the Newton’s constant is set to unity. The
remaining nontrivial parameter is the bare cosmological con-
stant �0 and the ratio γ /α. This is because a constant scal-
ing of the Horndeski scalar χ yields a homogeneous scaling
of both the coupling constants (α, γ ). Note also that χ is
axionic-like and the Lagrangian is invariant under the con-
stant shift of χ .

The covariant equations of motion of (2.1) can be found in,
e.g. [21,22]. They are given by the Einstein equation Eμν = 0
and the scalar equation E = 0, where [22]

Eμν = Gμν + �gμν − 1
2α

(
∂μχ∂νχ − 1

2gμν(∂χ)2
)

− 1
2γ

(
1
2∂μχ∂νχR − 2∂ρχ ∂(μχ Rν)

ρ

− ∂ρχ∂σ χ Rμ
ρ

ν
σ − (∇μ∇ρχ)(∇ν∇ρχ)

+ (∇μ∇νχ)�χ + 1
2Gμν(∂χ)2

− gμν

[ − 1
2 (∇ρ∇σ χ)(∇ρ∇σ χ)

+ 1
2 (�χ)2 − ∂ρχ∂σ χ Rρσ

])
,

E = ∇μ

(
(αgμν − γGμν)∇νχ

)
. (2.2)

It is easy to see that the theory admits the AdS vacuum of
radius �, namely

ds2
D = ds2

AdSd+1
, χ = 0 ; �0 = −d(d − 1)

2�2 ,

D = d + 1. (2.3)

This vacuum involves only the Einstein gravity sector, and
the Horndeski term can be treated perturbatively for small
γ . The linearized perturbation of the scalar χ has the kinetic
term

− 1
2

(
α − 1

2d(d − 1)γ �−2
)
(∂χ)2. (2.4)

The ghost-free condition requires that

α − 1
2d(d − 1)γ �−2 ≥ 0. (2.5)

At the saturation point of the above inequality, which is
referred to as the “critical point” in [27], the theory admits a
new AdS vacuum, whose radius is not governed by the bare
cosmological constant, but by the ratio γ /α instead:

ds2
D = �2dr2

r2 +r2ηi j dx
i dx j , χ=χs log

(
1

r2

)
+ χ0 ,

α

γ
= d(d − 1)

2�2 , �0 = −d(d − 1)

2�2

(
1 + 2γχ2

s

�2

)
. (2.6)

Note that the χ solution is parameterized to be the same as
in [27]. In this vacuum solution, the Horndeski term is an
integral part and cannot be viewed as a small perturbation. In
particular, when � is large, corresponding to small curvature
in gravity, we must have large γ ; on the other hand, the small
γ implies small � and the corresponding large spacetime cur-
vature. A further important feature is that the full AdS con-

formal symmetry of the metric is broken by the Horndeski
axion down to the subgroup of Poincaré symmetry together
with the scale invariance, namely3

xi → λxi , r2 → r2

λ
. (2.7)

The special conformal transformation invariance of the con-
formal group is broken. It should be pointed out right away
that under the above scale transformation, the axion χ under-
goes a constant shift. We take the view that since χ appears
in the theory only through a derivative, vacua with χ and
χ +c for any constant c should be identified as the same. The
holographic dual is thus expected to be a relativistic quan-
tum field theory with the scale rather than the full conformal
invariance.

Holographic conformal anomaly for Einstein-Horndeski
gravity (2.1) was recently obtained [27]. Specifically, the a-
charges are

Generic AdS vacuum : a = �d−1,

Critical AdS vacuum : a = �d−1
(

1 − (d − 1)
γ χ2

s

�2

)
.

(2.8)

Note that we have stripped off the overall (inessential) purely
numerical constants in presenting the a-charges. It turns out
that the a-theorem cannot be established for the generic AdS
vacuum, but it can be for the critical vacuum [27].

3 Two-point functions in the conformal vacuum

The linear perturbation of the generic AdS vacuum (2.3)
involves the graviton and axion modes. Taking the AdS
spacetime to be the planar type, the perturbations are

ds2 = �2dr2

r2 + r2ηi j dx
i dx j + hi j dx

i dx j

χ = χ(r, x). (3.1)

This is the linearized version of the Fefferman-Graham (FG)
expansion with the gauge choice hμi = 0, where μ = (r, i).
The physical spin-2 massless graviton mode satisfies the fur-
ther transverse and traceless conditions, which imply

∂ i hi j = 0 , hi jη
i j = 0, (3.2)

where ∂ i = ηi j∂ j = ηi j∂/∂x j . The perturbation satisfies
(

�̄ + 2

�2

)
hi j = 0, (3.3)

3 We do do not consider in this paper the scale transformation that
leaves the equations of motion invariant, but not the action. Such scale
invariance was referred to as the “trombone” symmetry in [33].
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where the Laplacian �̄ is defined with respect to the AdS
vacuum. The scalar field satisfies(
α − 1

2d(d − 1)γ �−2
)

�̄χ = 0. (3.4)

Thus the linear equation of the graviton is identical to that
of AdS vacuum in Einstein gravity, and the solution can be
expressed in terms of the Hankel’s function of the first kind

hi j = ci j r
− d−4

2 H (1)

d
2

(
p �

r

)
eip·x , p2 = −pi p jηi j ,

cit = 0 , ci jη
i j = 0. (3.5)

This leads to the holographic two-point function for the
boundary energy-momentum tensor [34]

〈Ti j (x)Tkl(0)〉 = CT Ii jkl(x)
x2d , (3.6)

where Ii jkl(x) is the boundary spacetime tensor defined by

Ii jkl(x) = 1
2

(
Iik(x)I jl(x) + Iil(x)I jk(x)

) − 1
d ηi jηkl ,

Ii j (x) = ηi j − 2xi x j
x2 . (3.7)

The coefficient CT can be expressed as [35]

CT = N2CT , with CT = �d−1,

N2 = �(d + 2)

8(−1)
d
2 π

d
2 +1(d − 1)�

( d
2

) . (3.8)

In other words, CT is the dimensionful quantity with the over-
all purely numerical factors stripped off. It is easy to see the
identity

CT = 1

d − 1
�
∂a

∂�
. (3.9)

This identity was seen and conjectured to hold for all the
higher-order massless gravities [35].

4 Linear modes and boundary terms in the scale
invariant vacuum

We now consider the linear perturbation of the AdS vacuum
at the critical point (2.6). The ansatz is again the linearized
FG type, namely

ds2 = �2dr2

r2 + r2ηi j dx
i dx j + hi j dx

i dx j ,

χ = χs log
( 1

r2

) + χ0 + ψ(r, x). (4.1)

The linearized equations are complicated and they become
simpler when we examining the transverse traceless modes
and the trace mode separately. It should be understood that
the scalar perturbation ψ does not involve the constant shift
associated with the scaling of r ; the constant is absorbed by
the background χ0.

4.1 Graviton mode

The massless spin-2 graviton mode satisfies further the trans-
verse and traceless conditions. The scalar equation is then
automatically satisfied at the linear level. The tensor Eμν

becomes

Eμν = − 1
2

(
1 − γχ2

s

�2

)(
� + 2

�2

)
hμν − dγχ2

s

�3 nρ∇ρhμν

− γχ2
s

�2 nρnσ ∇ρ∇σ hμν

+ 2(d − 1)χsγ

�3 n(μ∇ν)ψ − 2χsγ

�2 βρ(μ∇ν)∇ρψ

+ γ dχs

�2 ∇μ∇νψ + γχs

�2 βμν�ψ

− gμν

(2(d − 1)γ χs

�3 nρ∇ρψ − χsγ

�2 βρσ ∇ρ∇σ ψ

+ dγ

�2 χs�ψ
)
, (4.2)

where the metric and covariant derivatives are defined on the
AdS background, and

βμν ≡ gμν − nμnν = �∇(μnν) ,

n ≡ nμ∂μ = r

�

∂

∂r
. (4.3)

The linearized equation Eri = 0 implies that

(d − 1)γ χs

�2 ∂i∂rψ = 0. (4.4)

Thus we have ψ = crr+ci xi . The equation Err = 0 implies
that

− (d − 1)γ χs

�2r

(
d∂rψ + �2

r3 ηi j∂i∂ jψ

)
= 0. (4.5)

Thus cr = 0 and ψ = ci xi . It follows that the equation
Ei j = 0 does not involve ψ and we have

(
1 + γχ2

s

�2

)(
�̄ + 2

�2

)
hi j − 2γχ2

s

�2r2 �hi j = 0, (4.6)

where � is defined with respect to the metric ηi j . The absence
of ghost excitations requires that the coefficient of the time-
derivative term ḧi j be non-negative, namely

κeff = 1 − γχ2
s

�2 ≥ 0. (4.7)

The solution is given by

hi j = ci j r
− d−4

2 H (1)

d
2

(b�p
r

)
eip·x , cit = 0 ,

ci jη
i j = 0 , b =

√
�2 − γχ2

s

�2 + γχ2
s

. (4.8)
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4.2 The trace mode

In addition to the transverse and traceless graviton mode
obtained in the previous subsection, we find the theory admits
an additional scalar mode that consists of the metric trace and
also the Horndeski axion excitation. Taking the Lorenz gauge
pμ = (−E, 0, 0, . . . , 0), the ansatz is given by

ds2 = �2dr2

r2 + r2ηi j dx
i dx j + h0dt

2 + hδĩ j̃ dx
ĩ dx j̃ ,

χ = χs log

(
1

r2

)
+ χ0 + ψ (4.9)

The perturbative functions (h0, h, ψ) depend on the bulk
radius r and boundary time t only. Thus any constant r slice
of the spacetime is an FLRW cosmological metric. For this
reason we may also call this the cosmological mode. The
kinetic term of the linearized bulk Lagrangian is

L = (d − 1)(d − 2)

64π
�rd−7

(
− �2κeff

˙̃h2 + 16γ 2χ2
s r

4

(d − 2)2�2κeff
ψ̇2

)
,

h̃ = h − 4γχsr2

(d − 2)�2κ2
eff

ψ , (4.10)

where κeff is given in (4.7). This Lagrangian is analogous
to the kinetic term of the linearized FLRW model with h̃
corresponding to the scale factor and ψ corresponding to
the matter scalar field. The absence of the ghost excitation
requires that κeff ≥ 0.

The full linearized equations can be solved by

h0 = −2γχs
(
�2 − (2d − 3)γ χ2

s

)
(
�2 + γχ2

s

) (
�2 + 3γχ2

s

) r2 ψ ,

h = 2γχs

�2 + γχ2
s
r2 ψ , (4.11)

where ψ satisfies

d
(
�2 + γχ2

s

)
r3 (

rψ ′′ + (d + 1)ψ ′)

− (d − 2)�2(�2 + 3γχ2
s )ψ̈ = 0 (4.12)

The general solution is given by

ψ = r− d
2 H (1)

d
2

(
b̃�E

r

)
e−iEt ,

b̃ =
√

(d−2)
(
�2+3γχ2

s
)

d (�2+γχ2
s )

. (4.13)

Performing a Lorentz transformation in the boundary, we
obtain the Lorentz covariant expression for the trace/scalar
mode, namely

ds2 = �2dr2

r2 + r2ηi j dx
i dx j + hi j dx

i dx j ,

χ = χs log

(
1

r2

)
+ χ0 + ψ, (4.14)

where the Lorentz covariant linear perturbation is

hi j = −
( pi p j

p2 − ηi j

)
h − pi p j

p2 h0, (4.15)

and (h0, h) are given by (4.11) with (4.13) where Et is
replaced by pi xi . It is easy to verify that this mode is neither
transverse nor traceless; it is the Lorentz covariantization of
the boundary cosmological mode.

4.3 Boundary action

In order to derive the boundary properties from the bulk per-
turbations, it is necessary to construct the boundary action.
The boundary action contains two parts. The first part is the
Gibbons-Hawking surface term, which is given by

Ssurf = 1

8π

∫
dd x

√−h
[
K + 1

4γ
(
∂μχ∂νχ nμnν

−(∂χ)2) K + 1
4γ ∂μχ∂νχKμν

]
, (4.16)

where nμ is the unit vector normal to the surface and K is
the trace of the second fundamental form Kμν = hρ

μ∇ρnν

and hμν = gμν − nμnν . The first term in the square bracket
is the contribution from the Einstein-Hilbert term [36]. The
γ -dependent terms are associated with the Horndeski term
in the bulk action. Note that in this subsection only, we use
the standard convention hμν for the boundary metric. It was
referred to as βμν in Sect. 4.1. There should be no confusion
between the hμν here and the metric perturbation hi j in the
rest of the paper.

The second part is the boundary counterterm that is nec-
essary for asymptotic AdS spacetimes. We find, up to the
quadratic curvature term and scalar term, that it is given by

Sct = 1

16π

∫
dd x

√−h
(
c0 + c1R + c2Ri jRi j

+ c3R2 + b1(∂iχ∂ iχ) + b2∂i�χ∂ iχ + · · · ),
(4.17)

where R is the Ricci scalar of the boundary metric, and
the derivatives are associated with the boundary metric. The
coefficients of the counterterms for the generic AdS vacuum
was know, given by

c0 = −2(d − 1)

�
, c1= − �

d − 2
, c2= − �3

(d−4)(d−2)2 ,

c3 = − d

4(d − 1)
c2, b1 = b2 = 0. (4.18)
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For the critical AdS vacuum, we find that they become

c0 = −2(d − 1)

�

(
1 + γχ2

s

�2

)
,

c2 = − �3

(d − 4)(d − 2)2

(
1 − γχ2

s
�2

)2

1 + γχ2
s

�2

,

c3 = − d

4(d − 1)

(
1 − 2(d − 2)2γχ2

s (�2 + 3γχ2
s )

d2(�2 − γχ2
s )

)
c2 ,

c1 = − �

d − 2

(
1 − γχ2

s

�2

)
,

b1 = (d − 1)γ

2�
, b2 = d − 1

d(d − 4)

�γ 2χ2
s (�2 + 3γχ2

s )

(�2 + γχ2
s )2 .

(4.19)

4.4 Holographic one-point functions

Having obtained the full action, namely

Stot = Sbulk + Ssurf + Sct, (4.20)

we are in the position to compute the holographic one-
functions associated with the linear modes we obtained in
Sects. 4.1 and 4.2. From the Brown-York stress tensor asso-
ciated with the perturbation mode hi j ,

Ti j (h) = − 2

rd
δStot

δhi j
, (4.21)

we can define the one-point function of the holographic
energy-momentum tensor [37]

〈Ti j 〉 = Ti j (h)rd−2
∣∣
r→∞. (4.22)

The two-point function can be obtained from dividing the
one-point function from the leading expression of the mode
hi j . This approach is not yet covariant and a full covariant
approach based on writing the modes in the metric basis was
given in [35,38,39]. In this paper, we shall not go through this
detail but simply present the results. The two-point function
of the boundary energy-momentum tensor associated with
the bulk graviton is given immediately by the same expres-
sion (3.6), with CT = N2CT and

CT =
(�2 − γχ2

s

�2 + γχ2
s

) d
2
(

1 + γχ2
s

�2

)
�d−1. (4.23)

Intriguingly, comparing to (2.8), we have CT = a + (d −
2)O(γ 2). It is worth pointing out that as the dimension d
increases, more and more higher-order counterterms are nec-
essary to cancel the divergence as r → ∞. However, only
the coefficient c0 contributes to the overall coefficient of the
two-point functions.

To obtain the one-point functions associated with trace
mode, we denote the corresponding source as h(0)

0 , h(0) and

ψ(0) which are the corresponding leading terms in the expan-
sion, i.e.

h0 = r2

(
h(0)

0 + · · · + h(d)
0

rd
+ · · ·

)
,

h = r2

(
h(0) + · · · + h(d)

rd
+ · · ·

)
,

ψ = ψ(0) + · · · + ψ(d)

rd
+ · · · . (4.24)

By applying (4.21) and (4.22),we find that the one-point func-
tion of the trace part of the energy-momentum tensor takes
the form

〈T̂t t 〉 = 0 , 〈T̂ĩ j̃ 〉 = δĩ j̃ 〈T̂ 〉 ,

〈T̂ 〉 = d2γχ2
s

8π�3

�2 + γχ2
s

�2 + 3γχ2
s
h(d). (4.25)

Note that we use hatted notation to denote the stress tensor
with its transverse and traceless part subtracted. The van-
ishing of 〈T̂t t 〉 implies that the trace/scalar mode violates the
dominant energy condition, but it can satisfy the other energy
conditions. The result can be straightforwardly covariantized
and then we have

〈T̂i j 〉 = −
( pi p j

p2 − ηi j

) 〈
T̂ 〉 (4.26)

The one-point function of Oχ that is dual to χ can be defined
similarly

〈Oχ 〉 = δS

δψ(0)
. (4.27)

For now, we have

〈Oχ 〉 = − d2(d − 1)γ 2χ2
s

8π�3
(
�2 + 3γχ2

s

)ψ(d). (4.28)

It is of importance to keep in mind that from (4.11) and (4.24)
we have

h(0) = 2γχs

�2 + γχ2
s

ψ(0) , h(d) = 2γχs

�2 + γχ2
s

ψ(d). (4.29)

It follows that we have

〈T̂ 〉 = − 2χs

d − 1
〈Oχ 〉 , (4.30)

and they are linear functions of the source h(0) (or ψ(0).) It
follows from (4.26) that the trace of the energy-momentum
tensor is

〈T̂i i 〉 = −2χs〈Oχ 〉 . (4.31)

Thus we see that the boundary scalar operator has the same
scaling dimension as the stress tensor, namely � = d. Whilst
the vacuum stress tensor for both CFT and SQFT vanishes,
an important difference is that in the former no source can
excite its trace whilst the latter can. However, it should be
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commented that in QFT the non-vanishing of the stress ten-
sor trace is by itself not necessary a definite indication of
violation of the conformal symmetry. In fact, the energy-
momentum tensor constructed in QFT is not unique and it
can be redefined by introducing local counterterms in the
Lagrangian. Given this crucial property, it turns out if one has
〈Ti i 〉 ∝ ∂i∂ j Li j for some local operator Li j of scaling dimen-
sion � = d−2, one can introduce appropriate local countert-
erms in the Lagrangian to give a redefined energy-momentum
tensor that is trace free. However, it shall be emphasized that
the situation is very different in the holographic context. The
holographic dictionary provides an exclusive instruction for
us to draw conclusions about the dual QFT by studying clas-
sical gravity. From the bulk point of view, the counterterms
added in the boundary action in this section play the exclu-
sive role of canceling the divergence, but they cannot con-
tribute any further parts to modify the holographic energy-
momentum tensor. Therefore, our one-point function of the
holographic energy-momentum tensor has no ambiguity, and
the result (4.31) reflects convincingly the breaking of the
full conformal symmetry. Furthermore, it is clear that Oχ is
a conformal primary operator in the boundary field theory
and it cannot be expressed in terms of derivatives of other
operators, thus the conformal symmetry is broken by this
scalar operator. The expression (4.31) also shows that the
virial current vanishes, which was typically introduced in a
scale invariant theory to form a conserved current associated
with the scaling symmetry. This seems to suggest that even
the scaling symmetry may be broken. It is thus necessary to
study the two-point functions associated with the trace scalar
mode and we find that the scaling symmetry does preserve.
In the next subsection, we carrying out the computation of
the two-point functions, including 〈T̂ T̂ 〉, 〈T̂Oχ 〉 = 〈Oχ T̂ 〉
and 〈OχOχ 〉.

5 Two-point functions in scale invariant vacuum

The two-point functions of energy-momentum tensor asso-
ciated with graviton modes can be obtained readily and it is
given in (3.6) with the coefficient CT given in (4.23). In this
section, we focus on the two-point functions associated with
the trace mode. However, as the on-shell solution (4.11) sug-
gests, all seemingly different sources, h(0)

i j and ψ(0) actually

belong to the same singlet, so do the responses h(d)
i j and ψ(d).

In fact they are the Lorentz covariantization of the cosmo-
logical mode. It is thus not apparent at the first sight which
source contributes the specific percentage of the response
in the one-point functions (4.25), (4.26) and (4.28), which
is a necessary information to derive the corresponding two-
point functions. The analogous stituation can be found even
in graviton modes, which is discussed in Appendix A. Fol-

lowing the procedure presented in Appendix A for an sim-
per example, we shall rewrite the one-point functions such
that the distinctions between different contributions become
clear.

5.1 An algebraic proposal

It follows from (4.15) that the covariant source h(0)kl is given
by

h(0)
i j = −

( pi p j

p2 − ηi j

)
h(0) − pi p j

p2 h(0)
0 . (5.1)

Denoting

�i j = pi p j − ηi j p
2, (5.2)

we can rewrite the one-point functions of the previous sub-
section as

〈T̂i j 〉 = a1

p4 �i j�klh
(0)kl + a2

p2 �i jψ
(0),

〈Oχ 〉 = b1

2p2 �i j h
(0)i j + b2ψ

(0). (5.3)

In other words, we split the one-point functions as the linear
combinations of the metric and scalar sources as if they have
different origins, with the coefficients ai , bi to be determined.
Requiring 〈T̂Oχ 〉 = 〈Oχ T̂ 〉 implies a2 = b1. The two-point
functions can then be deduced, yielding

〈T̂i j T̂kl〉 = 2a1

p4 �i j�kl , 〈OχOχ 〉 = b2,

〈T̂i jOχ 〉 = 〈Oχ T̂i j 〉 = a2

p2 �i j . (5.4)

To obtain ai and bi , we note they must be such that (5.3)
reproduces the results (4.25), (4.26) and (4.28). It follows
from the identity

�i j h
(0)i j = −(d − 1)h(0) p2 , (5.5)

that we have

(d − 1)a1 − �2 + γχ2
s

2γχs
a2 = 〈T̂ 〉

h(0)
,

− (d − 1)γ χs

�2 + γχ2
s

a2 + b2 = 〈Oχ 〉
ψ(0)

, (5.6)

where 〈T̂ 〉 and 〈Oχ 〉 should be evaluated using (4.25) and
(4.28). Furthermore, (5.4) forms a 2 × 2 matrix
(

2a1 a2

a2 b2

)

that must have one zero eigenvalue since the system has only
one independent mode. Hence, we have the constraint

2a1b2 − a2
2 = 0 . (5.7)
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Thus we have three equations for (a1, a2, b2). Solving (5.6)
and (5.7), we can obtain ai and bi . They are given by

a1 = 2γχ2
s

(d − 1)(γ χ2
s − �2)

〈T̂ 〉
h(0)

,

a2 = b1 = 2γχs

γχ2
s − �2

〈T̂ 〉
h(0)

,

b2 = �2 + γχ2
s

�2 − γχ2
s

〈Oχ 〉
ψ(0)

. (5.8)

The zero eigenvector is given by

〈Ni j 〉 = 〈T̂i j 〉 − 2χs

(d − 1)

�i j

p2 〈Oχ 〉 . (5.9)

Thus the operator Ni j is null with 〈Ni j · · · 〉 = 0, and decou-
ples from the physical spectrum, implying that trace/scalar
operators have only one nontrivial combination. The result
is consistent with (4.30), reflecting that this is the right
approach. In Appendix A, we use the same procedure to
obtain the correct two-point functions of the diagonal part
of the energy momentum tensor associated with the graviton
mode. In the next subsection we verify the result by means of
the similar analysis developped in [35,38,39] and encoding
the trace/scalar mode in the extended metric basis.

5.2 Extended metric basis

In this subsection, we aim to validate the algebraic proposal
in the previous subsection by following and generalizing the
explicit analysis in [35,38,39]. Considering we have only one
single mode, h(0)

i j and ψ(0) should no longer be separated, it

is natural to define an extended metric to combine h(0)
i j and

ψ(0) together, i.e.

h(0)
ab =

(
h(0)
i j , 2ψ(0)

)
= h(0)

i j e
(i)
a e( j)

b + 2ψ(0)e(d)
a e(d)

b ,

(5.10)

where we have introduced the extended vielbein e(b)
a with

a = 0, . . . , d, and the factor “2” is for latter convenience.
We can also define the extended one-point function

〈T̂ab〉 =
(

−�i j

p2 〈T̂ 〉, 〈Oχ 〉
)

= −�i j

p2 〈T̂ 〉e(i)
a e( j)

b + 〈Oχ 〉e(d)
a e(d)

b . (5.11)

With this notation, the two-point functions are given by

〈T̂abT̂e f 〉 = 2δ〈T̂ab〉
δh(0)e f

=
(

〈T̂i j T̂kl〉 〈T̂i jOχ 〉
〈Oχ T̂i j 〉 〈OχOχ 〉

)
. (5.12)

To proceed, after using (5.5), we note

〈T̂ab〉h(0)ab = (d − 1)
γ χ2

s − �2

2γχ2
s

〈T̂ 〉h(0)

= 2(�2 − γχ2
s )

�2 + γχ2
s

〈Oχ 〉ψ(0) := C . (5.13)

Therefore, we have

〈T̂ab〉 =
(

− �i j

p2 〈T̂ 〉e(i)
a e( j)

b + 〈Oχ 〉e(d)
a e(d)

b

)

(
− �kl

p2 〈T̂ 〉e(k)
e e(l)

f + 〈Oχ 〉e(d)
e e(d)

f

)h(0)e f

C
.

(5.14)

We end up with

〈T̂abT̂e f 〉 = 2

C

(
− �i j

p2 〈T̂ 〉e(i)
a e( j)

b + 〈Oχ 〉e(d)
a e(d)

b

)

(
− �kl

p2 〈T̂ 〉e(k)
e e(l)

f + 〈Oχ 〉e(d)
e e(d)

f

)
. (5.15)

Then we can immediately obtain the two-point functions by
reading off the components of (5.15), namely

〈T̂i j T̂kl〉 = 2�i j�kl

p4

〈T̂ 〉2

C
, 〈OχOχ 〉 = 2

C
〈Oχ 〉2 ,

〈T̂i jOχ 〉 = 〈Oχ T̂i j 〉 = −2�i j

p2

〈T̂ 〉〈Oχ 〉
C

. (5.16)

Provided with (4.30) and the value of C in (5.13), we repro-
duce the results that were given by (5.4) and (5.8). Obviously,
(5.6) and (5.7) are satisfied.

5.3 Explicit results of the two-point functions

We now present the explicit two-point functions for the
trace/scalar mode and these are 〈T̂i j T̂kl〉, 〈T̂i jOχ 〉 = 〈Oχ T̂i j 〉
and 〈OχOχ 〉. It should be understood that the combination
(5.9) is a null operator and non-physical.

5.3.1 〈T̂ T̂ 〉
In momentum space, we have

〈T̂i j (p)T̂kl(0)〉 = − i(d−2)γ 2χ4
s �d−3

2d �( d2 )2(d−1)(�2−γχ2
s )

(
(d−2)(�2+3γχ2

s )

d(�2+γχ2
s )

) d
2 −1

�i j�kl p
d−4, (5.17)

for d is odd, and

〈T̂i j (p)T̂kl(0)〉 = (d−2)γ 2χ4
s �d−3

2d−1π �( d2 )2(d−1)(�2−γχ2
s )

(
(d−2)(�2+3γχ2

s )

d(�2+γχ2
s )

) d
2 −1

�i j�kl p
d−4 log p, (5.18)

for d is even.
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In the configuration space, two-point function is given by

〈T̂i j (x)T̂kl(0)〉 = �(d−2)γ 2χ4
s �d−3

8(−1)
d
2 π

d
2 +1

�(
d
2 )(d−1)(�2−γχ2

s )

(
(d−2)(�2+3γχ2

s )

d(�2+γχ2
s )

) d
2 −1

�̂i j �̂kl
( 1

x2(d−2)

)
, (5.19)

where �̂i j is given by

�̂i j = ∂i∂ j − ηi j�. (5.20)

We can obtain the explicit structure of the two-point function
of energy-momentum tensor associated with the trace/scalar
mode by evaluating �̂i j �̂kl

( 1
x2(d−2)

)
, we then obtain

�̂i j �̂kl
( 1

x2(d−2)

) = 4(d − 1)(d − 2)
(
d

(
Iik I jl + Iil I jk

)

+ d(d − 1)Ii j Ikl

− (d − 1)
(
ηikη jl + ηilη jk

) + 4(d − 3)ηi jηkl

) 1

x2d ,

(5.21)

where

Ii j (x) = ηi j − 2xi x j
x2 . (5.22)

5.3.2 〈OχOχ 〉
In momentum space, the two-point function is given by

〈OχOχ 〉 = − i(d − 2)(d − 1)γ 2χ2
s �d−3

2d+2 �( d2 )2(�2 − γχ2
s )

( (d − 2)
(
�2 + 3γχ2

s

)

d
(
�2 + γχ2

s

)
) d

2 −1
pd , (5.23)

for d is odd, and

〈OχOχ 〉 = (d − 2)(d − 1)γ 2χ2
s �d−3

2d+1π �
( d

2

)2 (
�2 − γχ2

s

)
(

(d − 2)
(
�2 + 3γχ2

s

)

d
(
�2 + γχ2

s

)
) d

2 −1

pd log p, (5.24)

for d is even. In configuration space, we have immediately

〈Oχ (x)Oχ (0)〉 = − (d − 2)(d − 1)�(d + 1)

8(−1)
d
2 π

d
2 +1�( d2 )

γ 2χ2
s �d−3

(�2 − γχ2
s )

( (d − 2)(�2 + 3γχ2
s )

d(�2 + γχ2
s )

) d
2 −1 1

x2d . (5.25)

5.3.3 〈T̂Oχ 〉 = 〈Oχ T̂ 〉
In momentum space, explicitly, we have

〈T̂i j (p)Oχ (0)〉 = − i(d − 2)γ 2χ3
s �d−3

2d+1 �( d2 )2(�2 − γχ2
s )

( (d − 2)(�2 + 3γχ2
s )

d(�2 + γχ2
s )

) d
2 −1

�i j p
d−2 , (5.26)

for d is odd, and

〈T̂i j (p)Oχ (0)〉 = (d − 2)γ 2χ3
s �d−3

2dπ �( d2 )2(�2 − γχ2
s )

( (d − 2)(�2 + 3γχ2
s )

d(�2 + γχ2
s )

) d
2 −1

�i j p
d−2 log p , (5.27)

for d is even. In configuration space, two-point function is

〈T̂i j (x)Oχ (0)〉 = �(d − 1)(d − 2)γ 2χ3
s �d−3

8(−1)
d
2 π

d
2 +1�( d2 )(�2 − γχ2

s )

( (d − 2)(�2 + 3γχ2
s )

d(�2 + γχ2
s )

) d
2 −1

�̂i j
( 1

x2(d−1)

)
. (5.28)

It is worth noting that

�̂i j
( 1

x2(d−1)

) = −2(d − 1)(d Ii j + ηi j )
1

x2d . (5.29)

To conclude this section, we stress that all the two-point
functions respect the covariance of the scaling symmetry,
indicating the theory is scale invariant.

6 Additional comments in d = 2

As was discussed in the introduction, an scale invariant theory
in d = 2 should be enhanced to be fully conformal, satisfying
the theorem proved in [2]. For the D = 3 Einstein-Horndeski
theory, we expect that the holographic two-point functions in
d = 2 for the trace/scalar modes vanish identically. Indeed,
these two-point functions presented in (5.3) all have an over-
all factor (d − 2). The traceless energy-momentum tensor
on the other hand has non-vanishing two-point functions and
they were presented in section 3.6. The overall coefficient,
when specialized in d = 2, is given by

CT = �

(
1 − γχ2

s

�2

)
= a, (6.1)

which is precisely the holographic central charge. Although
this result fits the expectation, it is derived from holographic
dictionary between the bulk graviton and boundary stress ten-
sor in general dimensions. However, there is no local graviton
in D = 3 gravity.

In order to derive the two-point function, we follow the
procedure presented in [40]. It is convenient to introduce
the holomorphic/anti-holomorphic coordinates in the AdS3

boundary

ds2 = �2

r2 dr
2 − r2dzdz̄, (6.2)

where (z, z̄) = (t+x, t−x). We then impose the perturbation
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ds2 = �2

r2 dr
2 − r2dzdz̄ + r2(hzz(r, z, z̄)dz

2

+ hz̄z̄(r, z, z̄)dz̄
2 + hzz̄(r, z, z̄)dzdz̄),

χ(r, z, z̄) = −2χs log r + ψ(r, z, z̄). (6.3)

The equation of motion requires that hzz , hz̄z̄ , hzz̄ and ψ must
take the form as

hzz = h(0)
zz + h(2)

zz

r2 , hz̄z̄ = h(0)
z̄ z̄ + h(2)

z̄ z̄

r2 ,

hzz̄ = h(0)
zz̄ + h(2)

zz̄

r2 , ψ = ψ(0) + ψ(2)

r2 . (6.4)

To verify that the trace part of two-point functions is indeed
vanishing, we set hzz = hz̄z̄ = 0. The remaining equations
of motion give rise to

h(2)
zz̄ = − 2γχs

�2 + γχ2
s
ψ(2),

4γ 2χ3
s ψ(2) − �2(�2 + γχ2

s )((�2 + γχ2
s )∂z∂z̄h

(0)
zz̄

+2γχs∂z∂z̄ψ
(0)) = 0. (6.5)

The resulting one-point functions are given by

〈Tzz̄〉 = −γχs

4π�
∂z∂z̄ψ

(0),

〈ψ〉 = −�2 − γχ2
s

�χs
∂z∂z̄h

(0)
zz̄ . (6.6)

These two-point functions are all vanishing up to the contact
terms, i.e.

δ∂z∂z̄ψ
(0)

δh(0)
zz̄

∼ 0 ,
δ∂z∂z̄ψ

(0)

δψ(0)
∼ �δ2(z) ,

δ∂z∂z̄h
(0)
zz̄

δψ(0)
∼ 0 ,

δ∂z∂z̄h
(0)
zz̄

h(0)
zz̄

∼ �δ2(z). (6.7)

To compute the traceless part of two-point functions, for
example, 〈TzzTzz〉, we set ψ = 0 and turn off the irrelevant
sources h(0)

zz , h(0)
zz̄ . The remaining equations of motion reduce

to

∂z̄h
(2)
zz = �2

(
�2 + γχ2

s

)

2
(
�2 + 3γχ2

s

)∂3
z h

(0)
z̄ z̄ ,

h(2)
z̄ z̄ = �2

(
�2 + γχ2

s

)

2
(
�2 + 3γχ2

s

)∂z∂z̄h
(0)
z̄ z̄ ,

h(2)
zz̄ = �2

(
�2 + γχ2

s

)

�2 + 3γχ2
s

∂2
z h

(0)
z̄ z̄ . (6.8)

From the first equation above, we have immediately

h(2)
zz = 3�2

(
�2 + γχ2

s

)

2π
(
�2 + 3γχ2

s

)
∫

d2z′ 1

(z − z′)4 h
(0)
z̄ z̄

(
z′, z̄′

)
.

(6.9)

(Here we made use of the formula ∂z̄
1
z = 2πδ2(z).) In addi-

tion, we find that the one-point function is

〈Tzz〉 = �2 + γχ2
s

4π�3 h(2)
zz . (6.10)

Therefore, we have

〈
Tzz(z)Tzz

(
z′

)〉 = 2δ〈Tzz〉
δh(0)

z̄ z̄

= 3C̃T
4π2

1

(z − z′)4 , (6.11)

where the numerical-stripped coefficient is

C̃T =
(
�2 + γχ2

s

)
(
�2 + 3γχ2

s

)
(

1 + γχ2
s

�2

)
�. (6.12)

This result is different from (6.1) which was obtained from
specializing the general results to d = 2. Instead we have

C̃T  a + O
((

γχ2
s

)2
)

. (6.13)

The discrepancy at the higher orders of γ requires further
investigation.

7 Conclusion

In this paper, we obtained the holographic two-point func-
tions of Einstein-Horndeski gravity with negative cosmologi-
cal constant. Einstein-Horndeski gravity admits the AdS vac-
uum with full AdS conformal symmetry, and it is denoted as
the conformal vacuum in this paper. In addition, the theory
admits a scale invariant AdS vacuum whose full conformal
symmetry is broken by the Horndeski scalar which exhibits
the log r behavior. Therefore, the theory should have some
SQFT dual and can naturally serve as the holographic model
to investigate the difference between SQFT and CFT.

We obtained the holographic two-point functions of the
energy-momentum tensor in the conformal vacuum, and they
are the same as those in pure Einstein-AdS gravity. Our focus
was on the scale invariant vacuum. We found that the per-
turbations around the scale invariant vacuum have nontriv-
ial trace/scalar mode in addition to the graviton modes. The
solution is the Lorentz covariantization of the boundary cos-
mological mode and it can contribute to the two-point func-
tions. We obtained the holographic counterterms associated
with the scale invariant vacuum, and then we derived the
two-point functions of energy-momentum tensor associated
with both the graviton modes and the trace/scalar mode. The
non-vanishing of the two-point function of the trace/scalar
mode is a distinguishing feature of SQFTs from CFTs.

The situation becomes more subtle in D = 3, d = 2
case. As expected the two-point function of the trace/scalar
mode vanishes in d = 2, indicating that the scale invariant
theory is fully conformal. The central charge derived from
the holographic two-point function of the energy-momentum
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tensor differs from holographic anomalous a-charge beyond
the linear order of the Horndeski coupling constant γ . This
discrepancy clearly warrants further investigation.

Our investigation of the scale invariant AdS vacuum in
Einstein-Horndeski gravity, which is ghost free, indicates
that strongly coupled scale invariant quantum field theory
might exist without the full conformal invariance. Further-
more, the operator that is dual to the trace/scalar bulk mode
however violates the dominant energy condition. Its bulk ori-
gin as the cosmological mode suggests that the boundary
scalar operator may serves as an inflaton in cosmology. How-
ever, multiple subtleties remain that raise further questions.
In our holographic construction, the boundary field theory
must include a scalar operator that is the holographic dual
of the Horndeski axion. It is this conformal primary opera-
tor that serves the purpose of violating the special conformal
symmetry, via the trace equation (4.31). To make the bulk the-
ory quantum complete by introducing additional necessary
fields will not alter this fact unless the scale-invariant AdS
vacuum no longer exists at all at the full quantum level. On
the other hand, in our construction, there is no apparent local
virial current operator that is typically arising in an SQFT,
indicating that the scale symmetry may be violated as well.
However, we find that the holographic two-point functions
all respect the covariance of the scaling symmetry. It is thus
intriguing to speculate whether there should be a generalized
theory of Einstein-Horndeski gravity in which the local virial
current operator is visible in the spectrum. Indeed it should
be pointed that the constant shift symmetry of the Horndeski
theory can be gauged to give rise to Einstein-vector theo-
ries [41], where a vector field and the curvature tensor are
non-minimally coupled. It is of great interest to investigate
the same issue in these theories where there are also scale-
invariant but not conformal AdS vacua.
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A An example in diagonal graviton modes

To illustrate the algebraic proposal in Sect. 5.1, we consider
the diagonal graviton modes as an example since they are
not all linearly independent, but satisfying the traceless con-
dition. For simplicity, we focus on pure Einstein gravity in
D = 4, d = 3, and consider following the following diagonal
transverse perturbation

ds2 = �2

r2 dr
2 + r2ηi j dx

i dx j

+ r2
(
h1(r, t)dx

2
1 + h2(r, t)dx

2
2

)
. (A.1)

The solution is given by

h1(r, t) = −h2(r, t) = r− 3
2 H (1)

3
2

(
�E

r

)
e−iEt . (A.2)

In other words, h1 and h2 are linearly dependent. The one-
point functions can be found in [35] and are given by

〈T1〉 = 3

16π�
h(d)

1 , 〈T2〉 = 3

16π�
h(d)

2 = −〈T1〉 . (A.3)

From the solution (A.2), it is clear that there is only one mode
rather than two, which is similar to our case in trace/scalar
mode of Einstein-Horndeski gravity at the critical point. Note
one-point functions (A.3) are evaluated with applying the
solution (A.2), hence two contributions coming from h1 and
h2 are mixed in (A.3). Therefore, to compute the two-point
functions, it is necessary to clarify the distinction of two parts
in one-point functions. We rewrite the one-point functions as

〈T1〉 = a1h
(0)
1 + a2h

(0)
2 , 〈T2〉 = b1h

(0)
1 + b2h

(0)
2 , (A.4)

where a2 = b1 is due to 〈T1T2〉 = 〈T2T1〉. We can now
immediately read out the two-point functions

〈T1T1〉 = 2a1, 〈T1T2〉 = 〈T2T1〉 = 2a2,

〈T2T2〉 = 2b2. (A.5)

Match (A.3) and (A.4), giving rise to the constraints

a1 − a2 = 3

16π�

h(d)
1

h(0)
1

= N1

2
�2E3,

b2 − a2 = 3

16π�

h(d)
2

h(0)
2

= N1

2
�2E3, (A.6)

where N1 is i
8π

, which is exactly the same as N1 in [35]
provided with d = 3. Moreover, (A.4) can form a matrix
(

2a1 2a2

2a2 2b2

)
(A.7)

The uniqueness of the source requires that the matrix should
admit zero eigenvalue, then we should have

a1b2 − a2
2 = 0. (A.8)
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From (A.6) and (A.8), ai and bi can be solved

a1 = b2 = 1
4 N1�

2E3 , a2 = b1 = − 1
4 N1�

2E3. (A.9)

Therefore, the two-point functions are given by

〈T1(E)T1(0)〉 = 1
2 N1�

2E3 , 〈T2(E)T2(0)〉 = 1
2 N1�

2E3,

〈T1(E)T2(0)〉 = 〈T2(E)T1(0)〉 = − 1
2 N1�

2E3, (A.10)

On the other hand, the two-point function of Einstein gravity
in momentum space is explicitly obtained, and it is given by

〈Ti j (p)Tkl(0)〉 = N1�
2

�d=3
i jkl (p)

p
,

�d
i jkl(p) = 1

2

(
�ik� jl + �il� jk − �i j�kl

)
. (A.11)

We focus on p = (E, 0, 0), and hence

�11 = �22 = E2 , �12 = �21 = 0 ,

�d=3
1111 = �d=3

2222 = 1
2 E

4 , �d=3
1122 = �d=3

2211 = − 1
2 E

4.

(A.12)

It is now clear that our results (A.10) match the exact results
obtained in [35].
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