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Abstract We investigate a minimal neutrino portal dark
matter (DM) model where a right-handed neutrino both gen-
erates the observed neutrino masses and mediates between
the SM and the dark sector, which consists of a fermion and a
boson. In contrast to earlier work, we explore regions of the
parameter space where DM is produced via freeze-in instead
of freeze-out motivated by the small neutrino Yukawa cou-
plings in case ofO (TeV)heavy neutrinos. For a non-resonant
production of DM, its energy density is independent of the
DM mass. Assuming a democratic coupling structure we find
MN ≈ 10 TeV. For the resonant production of DM, we find
that it can be produced via freeze-in or freeze-out even with
couplings of O(10−5). However, the measurement of the
Lyman-α forest rules out the feeble coupled freeze-out case
completely, while the resonant freeze-in production is only
viable for mDM � 3 ˚keV .

1 Introduction

Both dark matter (DM) and neutrino masses provide strong
hints for beyond standard model physics (BSM). A way to
accommodate neutrino masses is to introduce right-handed
neutrinos as SM singlets, thereby allowing for mass genera-
tion via the type I seesaw mechanism.

Furthermore, the resulting heavy neutrino state N is mas-
sive and electrically neutral. If it is considered to be a DM
candidate it must be stable. Thus, its mass must satisfy
MN < 2me. Therefore, the Yukawa coupling has to be very
small, namely yν � 10−6. Consequently, the production rate
is small, allowing for DM production via the freeze-in mech-
anism1 [2,3].

In freeze-in scenarios, DM production never becomes effi-
cient, i.e. the interaction rate � is always small compared to

1 A small DM production rate could also be generated by a large medi-
ator mass as was pointed out in [1].
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the Hubble parameter H , � � H (see Fig. 1). To account
for the observed DM relic abundance via freeze-in of the
decay h → Nν, the heavy neutrino mass should be of
O(10 keV). However, the possibility of keV sterile neutrino
DM via freeze-in within a minimal setup, the Dodelson-
Widrow mechanism [4], is already excluded by the exper-
iment, more precisely by the non-observation of the decay
N → νγ [5,6] and Lyman-α measurements [7]. However,
the idea of sterile neutrino dark matter via different produc-
tion mechanisms continues to be widely discussed [8].

In case of MN > 2me, the heavy neutrino N is obviously
not stable and therefore not a DM candidate. But even in this
case the right-handed neutrino can act as a mediator to DM
since it is a SM singlet, a possibility which is referred to as
neutrino portal DM (NPDM) [9–12].

Within these works, the small neutrino masses are gener-
ated by the type I seesaw mechanism and DM is produced via
the freeze-out mechanism. In contrast, this work explores a
minimal NPDM model where DM is produced via the freeze-
in mechanism.

In Sect. 2, we introduce the particle content and the cou-
pling structure of the model. In Sect. 3 the method for deriv-
ing the analytic results for the DM number density while
assuming a thermal shape of the distribution function is intro-
duced. Although those analytic results, which are discussed
in Sect. 4, are not exact they allow for studying the para-
metrics for DM production. Following in Sect. 5 we numer-
ically solve the Boltzmann equations at the level of momen-
tum distribution functions taking the non-thermal form of the
momentum distribution into account. Section 6 summarizes
the relevant constraints on the model from direct detection,
lepton flavour violation and structure formation. After that
we conclude.

Within the appendices, the relevant reduced cross sections
are given and the method for solving the boltzmann equations
at the level of momentum distribution functions is discussed
in more detail.
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Fig. 1 Freeze-in and freeze-out scenarios in comparison: the left panel
compares two interaction rates to the Hubble parameter H . Both of them
are smaller than H for large temperatures since � ∼ T for T � M and
H ∼ T 2M−1

Pl and both interaction rates are exponentially suppressed
for temperatures T ∼ M , where M is the DM mass. The difference

between the freeze-out case (green) and the freeze-in case (red) results
from the much smaller coupling in the freeze-in case. The right panel
shows the corresponding number densities compared to the equilibrium
density in a co-moving volume

2 Setup

A model with similar particle content was investigated in
[10], where DM production within freeze-out scenarios was
explored. In addition to the SM particle content, the model
includes three right-handed neutrinos νRi to accommodate
the observed neutrino masses. The dark sector consists of a
fermion χ and a scalar φ. While they are uncharged under
the SM gauge groups, they are charged under a dark sym-
metry, e.g. a dark U(1) or a Z2.2 Assuming the SM particles
to be uncharged under the dark symmetry renders the lighter
particle of χ and φ to be a stable DM candidate since the
dark symmetry forbids couplings between SM and dark sec-
tor particles. In this scenario, the resulting heavy neutrinos
Ni mediate between the DM and the SM particles since the
singlets νRi can couple to χ̄ and φ via a Yukawa coupling as
long as the expression χ̄φ is a singlet under all gauge groups.
The parts of the Lagrangian relevant for the neutrino mass
generation and the coupling to DM are given by

L ⊃ − (Yν)i j ν̄Li hνR j − 1

2
(MM )i j ν̄

C
Ri νR j

︸ ︷︷ ︸

Neutrino mass generation

− yχφχ̄νRi
︸ ︷︷ ︸

DM coupling

+h.c..

(2.1)

Here, we assumed a universal coupling of DM to the three
right-handed neutrinos. Furthermore, we do not take into
account any contribution to the DM relic abundance from
a possible Higgs portal interaction arising from the term
(φφ∗)(hh∗) in the scalar potential and additionally assume

2 For the calculation of the cross sections we use a real scalar. In this
case DM stability is ensured by a Z2 symmetry.

that φ does not acquire a VEV. 3 Moreover, effects resulting
from kinetic mixing of possible vector mediators of the dark
symmetry with the SM gauge bosons are neglected. Thus,
our analysis focuses on the neutrino portal to DM only.

After electroweak symmetry breaking the observed light
neutrino masses are generated via the type I seesaw mecha-
nism. To ensure that the observed neutrino masses and mixing
angles are reproduced we utilize the following parametriza-
tion of the Yukawa coupling matrix Yν [15]:

Yν =
√
MN

v
R
√
mνU

†
PMNS

=
√
MN�mν

v
︸ ︷︷ ︸

≡yν

R
1√

�mν

√
mν

︸ ︷︷ ︸

≡R′

U †
PMNS, (2.2)

where we assumed the Majorana mass matrix MM to
be diagonal with degenerated eigenvalues, i.e. MM =
diag (MN , MN , MN ). UPMNS is the PMNS matrix, v is the
vacuum expectation value of the Higgs field,

√
mν is a diag-

onal matrix with the square root of the neutrino masses as
eigenvalues, R is an orthogonal complex 3 × 3 matrix and
�mν is the square root of the large mass squared difference
�mν = √

�m2
ν . The mass- and interaction eigenstates are

transformed into each other in leading order in the small
parameter yνvM

−1
N by the matrix U :

3 In fact, the validity of this assumption as well as the vacuum stability
of this model will be investigated in a future work since due to a fermion
loop consisting of a νR and a χ the φ mass term receives a negative
contribution. In case the fermions in the loop are heavy compared to
the boson those radiative corrections might lead to a negative m2

φ and
thereby break the symmetry that stabilizes DM. Similar effects have
been investigated for the scotogenic model [13,14] where those effects
constrain the parameter space significantly.
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(

νL
νR

)

= U

(

ν

N

)

≈
(

UPMNS Y T
ν vM−1

N
−YνUPMNS vM−1

N 1

)(

ν

N

)

(2.3)

The mixing between the left and right handed neutrinos
causes an interaction between ν, N and the Higgs as well as
a coupling of N to the SU (2)L gauge bosons. As presented
in [16], the resulting interactions between the heavy and the
light neutrinos are given by:

LW ⊃ − gW

2
√

2
liW

−
μ γ μ(1 − γ5)Bli N j N j + h.c., (2.4)

LZ ⊃ − gW
4 cos (	W )

Z0
μ{ν̄iγ μ[iIm(Cνi N j )

− γ5Re(Cνi N j )]N j

N̄iγ
μ[iIm(CNi N j ) − γ5Re(CNi N j )]N j + h.c.}, (2.5)

LH ⊃ − gW
4MW

h{2ν̄i [(mνi + MNj )Re(Cνi N j )

+ iγ5(MNj − mν j )Im(Cνi N j )]N j

+ N̄i (MNi + MNj )Re(CNi N j )N j }. (2.6)

The matrices B and C are defined as in [16] and in case of
real Yukawa couplings, as we will assume no CP violation
from now on, they yield:

Bli N j ≈ v

MN
(Y T

ν )i j , Cνi N j ≈ v

MN
(UT

PMNSY
T
ν )i j ,

CNi N j ≈ v2

M2
N

(YνY
T
ν )i j . (2.7)

Thus, the couplings relevant for heavy neutrino production
are given by

LW ⊃ − MW yν√
2MN

(UPMNSR
′T )i j l̄iW

−
μ γ μ(1 − γ5)N j + h.c.,

(2.8)

LZ ⊃ MW yν
2 cos(	W )MN

(R′T )i j Z
0
μν̄iγ

μγ5N j , (2.9)

LH ⊃ −yνh(R′T )i j ν̄i N j − y2
ν

v

MN
h(R′T R′)i j N̄i N j ,

(2.10)

whereas the coupling of the heavy neutrino to the dark sector
is governed by:

Lχ ⊃ −yχφχ̄Ni + h.c. (2.11)

Note that the parameters yν and MN are not indepen-
dent and related by the seesaw mechanism requiring yν =√

�mνMNv−1. Therefore, the couplings in Eqs. (2.8)–(2.10)
excluding the flavor dependent part can be rewritten as:

ghνN = yν =
√
mνMN

v
gWlN ,ZνN = yν

MW
MN

=
√

mν

MN

MW
v

ghNN = y2
ν

v
MN

= mν

v
gZNN = gZνN

yνv
MN

= mν

MN

MW
v

(2.12)

Thus, for MN ≥ MW , the coupling ghνN can be expected
to be dominant and the hνN vertex is the most relevant one
for DM production. Whereas for MN ≤ MW , the WlN and
ZνN vertices are expected to contribute the most to DM
production as long as MN � mν .

3 Boltzmann equations

Determining the relic abundance of the DM candidate
requires solving the Boltzmann equations, which describe the
time evolution of the particle number densities in the expand-
ing universe. In principle, the boltzmann equations have to
be solved at the level of momentum distribution functions,
which then are integrated to obtain the number density. For
a freeze-out production of DM however those distribution
functions can be safely assumed to be proportional to a Boltz-
mann distribution, which allows for solving the Boltzmann
equations at the level of number densities directly. Although
this assumption can lead to less precise results in case of
freeze-in production we will still use this formalism to obtain
analytic expressions for the relic density in Sect. 4. Later on
in Sect. 5, a numerical solution of the Boltzmann equation is
given at the level of momentum distribution functions.

Here, we review the formalism for solving the Boltzmann
equation for number densities, while the one for distribution
functions is discussed in Appendix A.

Adopting the formalism used in [17], the Boltzmann equa-
tions can be written as

ṅN + 3HnN = −
∑

a,i, j,...

(

nNna . . .

neq
N n

eq
a . . .

γeq(Na · · · → i j · · · )

− nin j . . .

neq
i neq

j . . .
γeq(i j · · · → Na · · · )

)

. (3.1)

Here, ni is the number density of particle species i . The
3HnN term takes the expansion of the universe into account
while the right hand side governs the impact of scattering
processes which occur with a certain thermal rate γeq. The
equilibrium number densitiesneq

i are given by the momentum
integral over the distribution function f eq

i of the respective
particle species which is approximated with a Boltzmann
distribution in our case:

neq
i =

∫

d3 p

(2π)3 f eq
i = gi

2π2 m
2
i T K2

(mi

T

)

. (3.2)
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For a two to two scattering involving only CP conserving
interactions the quantity γeq results in

γeq(Na → i j) = γeq(i j → Na)

= T

64π4

∫ ∞

smin

ds
√
sσ̂ (s) K1

(√
s

T

)

, (3.3)

where σ̂ (s) = 2s σ (s) λ

[

1,
m2

N
s ,

m2
a
s

]

with λ[a, b, c] =
(a − b − c)2 − 4bc, K1 (x) is a Bessel function and smin =
max[(ma + MN )2, (mi + m j )

2].
Next, to simplify the form of the Boltzmann equations we

write them in terms of the quantity Y = n
sE

, where sE =
2π2gseff

45 T 3 is the entropy density. This leads to

zHsE
dYN

dz
= −

∑

a,i, j,···
γeq(Na · · · ↔ i j . . . )

×
[

nNna . . .

neq
N n

eq
a . . .

− nin j . . .

neq
i neq

j . . .

]

, (3.4)

with z = MN
T .

For the special case of freeze-in production via a two-
to-two scattering process b1b2 → i j the solution of this
equation can be written in a compact form. Here, b1/2 are
particles in thermal equilibrium with the SM, whereas the
number densities of i and j satisfy ni/j � neq

i/j . Then, the
Boltzmann equation for the particle species i is given by:

zHsE
dYi
dz

= γeq(b1b2 ↔ i j). (3.5)

Inserting γeq (3.3) and integrating the equation from very
large temperatures, i.e. z → 0, up to today, i.e. z → ∞,
yields:

Yi = 1

64Km4
i π

4

∞
∫

0

dz z3

∞
∫

smin

ds
√
sσ̂ (s) K1

(√
s

mi
z

)

.

(3.6)

Here we use K = HsET−5 and z = miT−1. After perform-
ing the z integration with the initial condition Yi (z = 0) = 0
we are left with4

Yi = 3

128Kπ3

∞
∫

smin

ds
σ̂ (s)√
s3

. (3.7)

4 Equation (3.7) illustrates a behaviour typical for the freeze-in mecha-
nism: assuming the reaction b1b2 ↔ i j involves a dominant mass scale
Mmax and noting that the mass dimension of the remaining integral is
minus one yields Yi ∼ M−1

max.

N

ν

h

φ

χ

N

l± χ

W∓ φ

N

ν χ

Z φ

φ

χN

χN

χ

φN

φN

Fig. 2 Feynman diagrams for the DM production processes

4 Relic abundance: analytic estimates

The 2 ↔ 2 scattering processes responsible for producing
DM can be classified into two categories: SM Particle Scat-
tering and Heavy Neutrino Scattering. The SM particle scat-
tering processes involve two SM particles in the initial state,
have χ and φ in the final state and are mediated by the heavy
neutrino. Consequently, we have σ ∼ y2

ν y
2
χ .

The heavy neutrino scattering processes have two heavy
neutrinos in the initial state and produce a pair of χ or φ.
Here, we have σ ∼ y4

χ .
All contributing diagrams are displayed in Fig. 2. The fol-

lowing discussion assumes only one SM and right-handed
neutrino generation. However, these results can easily be
translated into a three generation setup due to the assumption
of degenerated heavy neutrino masses, i.e. MNi = MN and
the universal coupling of the dark sector to the right-handed
neutrinos. For the heavy neutrino scattering, the one gener-
ation result has to be multiplied by a factor of nine. For the
dominant SM particle scattering process νi h → χφ via a
N j the one generation contribution with a neutrino Yukawa
coupling of yν = √

�mνMNv−1 has to be multiplied by
∑

i |
∑

j (R
′T )i j |2 = f1(θ) where θ is a vector containing

the in our case three real angles parametrizing the orthogo-
nal matrix R. Choosing the standard parametrization for an
orthogonal three by three matrix we find 10−16 � f1(θ) ≤ 3.

Since the Zνi N j vertex has the same flavor structure as
the hνi N j vertex the one generation result for the Zν initial
state is multiplied by the same factor as the hν initial state.

Only for the Wl initial the factor differs and results in
f2(θ) = ∑

i |
∑

j (UPMNSR′T )i j |2. Here, we find 10−18 �
f2(θ) � 7.65. Scanning both f1 and f2 for randomly chosen
values for the angles θ shows that on average f2 ≈ 2.5 f1.
Nevertheless, excluding the cases where f1 is close to its
lower bound, the contribution of the hνi initial state is still
the dominant one due to the following reason: The produc-
tion via the scattering of the gauge bosons is only viable
for temperatures below the critical temperature where the
SU (2)L × U (1)Y symmetry of the SM gets broken. Hence,
the time of production is small compared to the Higgs neu-

123



Eur. Phys. J. C (2019) 79 :611 Page 5 of 15 611

trino scattering. Therefore, we consider only the production
via hνi → χφ for the analytic estimates, while all production
channels are taken into account in the numerical solution.

4.1 SM particle scattering

For the rest of the discussion, we assume that the dark sector
particles have roughly the same mass and replace mφ = mχ .
The reduced cross section for the dominant production chan-
nel is given by:

σvh↔χφ (s) = y2
χ y

2
ν

(

1 − m2
h
s

)

s2

√
(

1 − 4
m2

χ

s

)

16π [(s − M2
N )2 + �2

N M
2
N ] . (4.1)

Here, �N is the total decay width of the propagating neutrino.
There are two cases to be distinguished:

• The resonant case with MN ≥ 2mχ where M2
N ≥ smin.

• The non-resonant case with MN < 2mχ where M2
N <

smin.

First, we discuss the non-resonant case. If we neglect the
contribution of the Higgs mass, i.e. mh � mχ , we can use
Eq. (3.7) to determine the relic density directly:

YDM = Yχ + Yφ

= 34

211π5

y2
ν y

2
χ√

geffgseff

Mpl

4
√

[4m2
χ − M2

N ]2 + �2
N M

2
N

(4.2)

MN�mχ= 34

212π5

y2
ν y

2
χ√

geffgseff

Mpl

mχ

, (4.3)

where g(s)
eff are the number of effective relativistic (entropy)

degrees of freedom which are both assumed to be constant
during this calculation with g(s)

eff = 106.75.5 Note that for
obtaining this result the reduced cross section was multiplied
by an additional factor of four arising from the four degrees
of freedom of the Higgs doublet before the electroweak phase
transition.

Remarkably in case of a heavy DM mass mχ compared
to the mediator mass MN , the result is inversely proportional
to the DM mass, i.e. the energy density is independent of
mχ . This allows for predicting the value of the product of
the Yukawa couplings yν yχ by setting YDM (z → ∞) =
YDM,exp, with

YDM,exp = �DM

�B

mB

mDM
YB ≈ 10−10mBm

−1
χ . (4.4)

5 This is a good approximation as long as the production is mainly
efficient for temperatures above 100 GeV.

The experimental values for �DM , the density parameter for
baryons �B , and the baryon number density in a co-moving
volume YB , are taken from [18] and mB , the average baryon
mass, is approximated with the proton mass.

Evaluating YDM = YDM,exp results in:

(

yν yχ
)2 ≈ 10−3 mB

MPl
≈ 10−21. (4.5)

The implications of this result are discussed in Sect. 4.3
Next, we discuss the resonant case, i.e. MN ≥ 2mχ . As it

was pointed out in [19], in this case it is useful to approximate
the Breit-Wigner peak in Eq. (4.1) with:
∫ ∞

c
dx

f (x)

(x − a)2 + b2
≈ f (a)

b
, (4.6)

which is valid as long as b � a, i.e. �N � MN . Then, the
integration of Eq. (3.7) results in:

YDM (z → ∞) = 27

4π5gseff
√
geff

(yν yχ )2

y2
ν + y2

χ

Mpl

MN
, (4.7)

where we already used MN � mχ to simplify the result.
Again, we postpone the discussion of the result to Sect. 4.3.

4.2 Heavy neutrino scattering

The cross sections for the heavy neutrino scattering for the
case of MN � mχ result in

σNN→χχ = y4
χ

√

1 − 4m2
χ

s

8πs
, (4.8)

σNN→φφ = y4
χ

2π

⎡

⎣

(

1 + 4
m2

χ

s

)

log

×
⎛

⎝

s − 2m2
χ −

√

s2 − sm2
χ

2m2
χ

⎞

⎠ + 2

√

1 − 4
m2

χ

s

⎤

⎦ .

(4.9)

By again employing Eq. (3.7) we find:

YDM = Yχ + Yφ = 35 · 33y4
χ

213π5√geffgseff

MPl

mχ

. (4.10)

As for the SM particle scattering in the limit of MN � mχ ,
the DM density is inversely proportional to its mass.

For the case where the SM scattering processes are in the
resonant regime, i.e. MN > 2mχ , in the limit MN � mχ

we cannot find an analytic estimate for the DM relic density
beside

YDM ∼ y4
χ MPl√

geffgseffMN
. (4.11)
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Although the factor of proportionality is unknown we expect
this to be much smaller compared to the contribution of the
SM particle scattering. This is due to the resonance contribut-
ing to the production via SM particle scattering. Hence, we
neglect this contribution for the discussion of the analytic
results.

4.3 Discussion of the analytic results

In the limit of MN � mχ ≈ mφ we found analytic solu-
tions for the DM relic density for both types of processes.
Combining both results yields:

YDM (z → ∞) = 33

213π5gseff
√
geff

MPl

mχ

(6y2
ν y

2
χ + 35y4

χ ).

(4.12)

By comparing this expression with the observed DM density
(4.4) one obtains

(6y2
ν y

2
χ + 35y4

χ ) ≈ 10−21 . (4.13)

Since the coupling yν is only a function of MN the coupling
yχ is fixed by the heavy neutrino mass MN . Moreover, we
find yχ � 10−5 in order not to overproduce DM.

In principle, the couplings yχ and yν are otherwise
unrelated. However, both describe a coupling to the right-
handed neutrino and – if the heavy neutrino is lighter than
O(1015 GeV) – both couplings are required to be relatively
small. This motivates the idea that they might be suppressed
by the same mechanism, resulting in yν ≈ yχ .6 Considering
a model which generates yχ ≈ yν allows for constraining
the mass of the heavy neutrino since then Eq. (4.13) reads

41y4
ν = 41

(

mνMN

v2

)2

≈ 10−21. (4.14)

Thus, to fit the observed DM density (4.4), MN ≈ 10 TeV is
required. Since we are investigating the non-resonant regime
we have MN < 2mDM. Therefore, we find a lower bound
on the DM mass of mDM � 5 TeV if we naively assume the
behaviour for large DM masses to be also correct for param-
eters close to the transition of the non-resonant to resonant
regime.

We achieved this result by assuming nN = neq
N , mχ �

MN and by only taking into account the dominant processes
of the SM particle scattering. From Eq. (4.12), we see that
the contribution of the heavy neutrino scattering processes

6 For example, such a mechanism could be an extra dimensional model
where the right-handed neutrino in contrast to all other particles prop-
agates in an extra dimension since it is uncharged under all considered
gauge groups. Thereby, its coupling gets suppressed by the reduced
wave function overlap [20,21].

accounts for roughly eighty percent of the produced DM in
case of yχ = yν . Thus, the result will be altered signifi-
cantly if the heavy neutrinos are out of equilibrium during
the time where the production via heavy neutrino scatter-
ing is efficient. Also, we expect a significant change in areas
of the parameter space where mχ ≈ MN , whereas taking
into account the sub-dominant processes does not have a sig-

nificant impact since they are suppressed by
M2

W
M2

N
and only

accessible after electroweak symmetry breaking. For these
reasons, we solve the Boltzmann equations numerically for
various coupling structures in Sect. 5.

Additionally, we found an analytic solution for the DM
relic density in the limit MN � mχ where the SM particle
scattering processes are in the resonant regime:

YDM (z → ∞) = 27

4π5gseff
√
geff

(yν yχ )2

y2
ν + y2

χ

Mpl

MN
. (4.15)

In case of yχ � yν we find the observed DM energy density

if yχ ≈ 10−12
√

MN
mχ

.

However, if yχ � yν does not hold the approximation of
nχ � neq

χ we used to derive (4.12) does not apply anymore.
To illustrate that we look at the case yχ = yν , where (4.12)
results in:

YDM (z → ∞) ≈ 33

22π5gseff
√
geff

mνMPl

v2 ≈ 10−1. (4.16)

Using Eq. (3.2) we find that Y eq
DM � 10−2. Therefore,

nχ � neq
χ cannot be satisfied. Hence, the freeze-in sce-

nario does not apply here. Nevertheless, it is still possible
to account for the correct amount of DM. In this case, we
recover a freeze-out like scenario since due to the resonance
the interaction rate becomes as large as the Hubble parame-
ter although the system is feebly coupled. Thus, DM comes
into equilibrium with the SM and freezes out as soon as the
interaction rate becomes smaller than the Hubble parameter.
This occurs approximately at T = MN .7 Consequently, the
number density can be estimated by the equilibrium density
at freeze-out:

YDM (z → ∞) = Y eq
χ (T ≈ MN )

MN�mχ= 45gχ

2π4gseff
≈ 10−3.

(4.17)

Equating this result with Eq. (4.4) yields a DM mass of
mχ = O (100 eV). In contrast to the non-resonant case,
this DM mass violates the Tremaine–Gunn bound which

7 This is due to the fact that the main contribution to the interaction rate
comes from the resonance at s = M2

N , i.e. as soon as the temperature
drops below MN the resonance cannot be reached efficiently anymore
and therefore the interaction rate decreases significantly.
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Fig. 3 Parameter space for yχ = yν : the black line divides the plane
spanned by the DM massmχ and the mediator mass MN into two halves.
The upper (lower) half corresponds to the resonant (non-resonant) DM
production regime. The red and green line show where the correct
amount of DM is produced for the non-resonant and the resonant regime,
respectively. In the non-resonant regime, producing the correct density
only depends on the mediator mass, whereas it only depends on the DM
mass in the resonant region

restricts fermionic DM to have a mass of at least roughly
a keV [22]. Therefore, DM must be bosonic in this case.
However, this case also is in tension with observations of
the Lyman-α forest which allows to probe structures of the
size 100−2h−1 Mpc [23]. This issue is treated in more detail
within Sect. 6.

We summarized our results for the case yχ = yν in a
schematic plot (see Fig. 3).

5 Numerical analysis

We solved the Boltzmann equations numerically in the
non-resonant case for different coupling structures yχ =
(0.1, 1, 10)yν and DM masses of mχ ∈ [102, 1010] GeV
assuming different flavor structures, i.e. f1(θ) = (10−1, 1)

and f2(θ) = 2.46 and a normal mass hierarchy in the neu-
trino sector, i.e. mν1 < mν2 < mν3 . Additionally, we set
mν1 = 0 in the results presented in Fig. 4.

Since we investigate a feebly coupled sector, the back
reactions in the DM production processes can be neglected.
Only for the processes N ↔ νh responsible for producing
the mediator N the back reactions are relevant, since for most
of the parameter space N equilbrates with the SM.

Therefore, we solve the Boltzmann equation in two steps:

1. The N production via N ↔ νh is solved at the level
of the momentum distribution function, thereby taking
into account the non-thermal shape of the distribution.
The details of solving the Boltzmann equations at the
level of momentum distribution functions are given in
Appendix A and the collision term for the process in

Fig. 4 The numerically obtained DM density Yth is compared to the
observed DM density Yexp for different values of the DM mass mχ

and the mediator mass MN : the different colored solid lines represent
the points where the observed DM density is reproduced for a certain
coupling structure. A parameter point above a specific line overproduces
DM for the corresponding coupling structure while points below do not
generate enough DM. Lines of the same color have the same coupling
structure. A solid line represents a scenario with of f1 (θ) = 1, while a
dotted represents a scenario with f1 (θ) = 0.1. The black line separates
the plane into the non-resonant (lower right) and resonant (upper left)
regime. The latter one was not scanned. We assumed normal ordering
and one massless neutrino

question is given in Eq. (A.23). Eventually, this procedure
results in the quantity nN

neq
N

(T ).8 We take nN
neq
N

(T → ∞) =
0 as initial condition.

2. This quantity is used to solve the Boltzmann equations
for DM production via heavy neutrino and SM particle
scattering employing the formalism described in Sect. 3.
We take vanishing number densities for the DM particles
as initial conditions. The SM particles are assumed to fol-
low their equilibrium densities throughout the production
process. The final result is then given by YDM = Yχ +Yφ

for T → 0. Note that the independent solution of the
Boltzmann equations for the dark sector particles and the
heavy neutrino is only possible due to the tiny interaction
rate, which allows to neglect the back reactions from DM
production via heavy neutrino scattering.

The results are summarized within Fig. 4. From our earlier
considerations in Sect. 4.3 we expect the setup to work for a
constant mediator mass MN as long asmχ � MN . This con-
stant value can be obtained by solving Eq. (4.13) for a given
coupling structure. Consider e.g. the case yν = yχ , where
Eq. (4.13) results in MN ≈ 10 TeV. This case is illustrated
by the solid blue line in Fig. 4. For 10 TeV ≤ mχ ≤ 104 TeV
the prediction is met by the numerical solution. For larger
DM masses, however, a larger mediator mass is required to
accommodate the observed relic density. This is due to the
following reason: The freeze-in mechanism produces DM
efficiently down to temperatures around the heaviest mass

8 Note that the quantity nN is defined as the sum over all three heavy
neutrinos, i.e. nN = ∑

j nN j .
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Fig. 5 The ratio of the heavy neutrino density to its equilibrium
density against the dimensionless quantity z = MNT−1 in case of
∑

i mνi = 0.06 eV (
∑

i mνi = 0.23 eV) [24], corresponding to the
lower (upper) bound on the sum of the three active neutrino masses.
Since the production rate of N is proportional to the sum of the active
neutrino masses this choice shows the earliest and latest point of equi-
libration. The heavy neutrinos reach equilibrium for T ≈ 103MN in
both cases. In Fig. 4, the lower bound on the sum of the neutrino masses
was used, but the results are negligibly different when considering the
upper bound

involved in the production process. For the non-resonant
regime this mass is given by the DM mass itself. Therefore,
DM production is efficient for T � mχ . The mediator mass
and, thereby the neutrino Yukawa yν , start to increase as soon
as nN

neq
N

(T ) � 1 for T � mχ , since this suppresses DM pro-

duction via heavy neutrino scattering. In case of yν = yχ
heavy neutrino scattering accounts for 35

41 of the DM produc-
tion if the heavy neutrinos are following their equilibrium
density during the time of production. If this contribution
is missing, it has to be compensated by a larger neutrino
Yukawa which results in a larger mediator mass.

The heavy neutrinos reach thermal equilibrium with the
SM via the inverse decay νi h → N j for T ∼ cMN . The
factor c is independent of the neutrino Yukawa yν and the
parameters θ which encode the flavor structure of the neutrino
Yukawas. However, it depends on the sum of the three active
neutrino masses since the decay rate is proportional to this
sum. The evolution of the heavy neutrino number density is
shown in Fig. 5. Here, the heavy neutrinos reach equilibrium
for T ≈ 10−3MN . Therefore, the lines in Fig. 4 start to
deviate significantly from a constant value of MN for mχ >

103MN , since in this case it is nN
neq
N

(T ) < 1 for the complete

production time. A constant value of MN is reached again
if the contribution of the heavy neutrino scattering becomes
negligible.

For f1 = 0.1 the contribution of SM particle scattering
is suppressed by a factor of 10 since the contribution of the
SM particle scattering is proportional to f1. Thus, a larger
coupling compared to f1 = 1 is required. This effect can be
seen in Fig. 4 where all dotted lines lie above the solid line
of the same color.

The different couplings structures result in larger (smaller)
mediator masses for a small (large) dark Yukawa coupling
compared to the neutrino Yukawa. Additionally, the effect
of a small f1 differs for a small (large) dark Yukawa. While
the increase with a larger DM mass becomes less significant
for a small dark Yukawa, the absolute difference between the
small and large f1 cases becomes stronger. This is due to the
different contributions from heavy neutrino and SM particle
scattering for the different coupling structures.

For smaller DM masses close to the transition to the res-
onant regime, the correct DM relic density is obtained for
values of MN very close to MN = 2mχ . Although not visi-
ble within Fig. 4, all lines follow the black line down to small
DM masses until the enhancement close to the resonance is
not strong enough anymore to generate a sufficient amount
of DM. However, the numerical solution is not trustworthy
in this area due to numerical instabilities and therefore not
presented here. We estimate the lower bound on mχ by eval-
uating Eq. (4.2) in the limit MN → 2mχ . In the case of

yχ = αyν we obtain mχ � α− 4
3 MeV.

6 Constraints

In this section we discuss different constraints on the model.
At first we discuss constraints from structure formation which
pose strong limits in the resonant regime. Afterwards we
investigate the impact of direct detection bounds on our
parameter space and briefly discuss charged lepton flavor
violation and indirect detection.

6.1 Structure formation

Since DM particles only interact weakly with the SM they
can escape from gravitational wells formed in the early uni-
verse, thereby delaying structure formation below their free-
streaming scale. Given the redshift at the production time
zprod the free-streaming scale is given by

λ f s =
zprod
∫

0

dz
v (z)

H (z)
, (6.1)

where v (z) is the DM velocity at a given redshift z.
The observation of absorption lines in the spectra of distant

quasars mostly induced by hydrogen clouds, the so called
Lyman-α forest, allows for probing structures on the scale of
roughly 100−2h−1Mpc [23].

Following the lines of [25], we estimate the free-streaming
scale for the case of DM in equilibrium with the SM up to a
certain freeze-out temperature and for the case of resonantly
produced DM still in the freeze-in regime. Within this model,
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the first case applies to the resonant production with a cou-
pling structure of yν � yχ whereas the latter is present in the
resonant production regime for yχ � yν . The non-resonant
production regime is not investigated here due to the much
larger DM masses that are required to generate the observed
relic density. Therefore, we do not expect this case to be in
tension with the Lyman-α forest.

As it was pointed out in [26], the free-streaming scale
should only be understood as an order-of-magnitude estima-
tor in the case of non-thermal DM momentum distribution
and may differ up to O (1) factors from results obtained with
dedicated tools like the CLASS-code which computes the
linear matter power spectrum.

For the purposes of this work, the estimation of the free-
streaming length suffices, firstly because the non-thermal
momentum distribution produced by the resonant freeze-in
process (Eq. (A.21)) is close to a thermal shape and secondly
because the resonantly produced DM for the freeze-out case
will be excluded by this method by roughly two orders-of-
magnitude.

We approximate the velocity in Eq. (6.1) by the average
velocity at the production time zprod which is only redshifted
afterwards, i.e.

v (z) = p (z)
√

p (z)2 + m2
χ

, (6.2)

with

p (z) = pprod
1 + z

1 + zprod
, (6.3)

and

pprod =
∫

dp p3 f (p, Tprod)
∫

dp p2 f (p, Tprod)
. (6.4)

Moreover, the Hubble parameter is given by

H (z) = H0

√

�m (1 + z)3 + �r (1 + z)4 + ��. (6.5)

For the numerical evaluation, we use the cosmological
parameters of [27]. Lastly, we use the relation between the

temperature and the redshift T = T0 (1 + z)
(

geff
s (T0)

geff
s (T )

) 1
3

to

give Tprod in terms of the redshift. The temperature T0 refers
to the temperature today. Inserting these expressions into
(6.1) allows for calculating λ f s in terms of the production
time zprod and the average momentum at this time pprod.
Then, the result is compared to the upper bound on the free-
streaming scale of λ f s � 0.1 Mpc which was derived in [25]
assuming that the particle species in question accounts for
all of the observed DM relic density.

In case of resonant production with yν � yχ we can
assume DM to have a Boltzmann like momentum distribu-
tion, i.e. f (p, T ) = exp(−EpT−1). We take the time of
production to be the freeze-out temperature since the inter-
actions of DM with the SM cease to be efficient from this
point on. For this distribution the average momentum results
in

pprod = m2
χ + 3mχTprod + 3T 2

prod

mχ + Tprod
. (6.6)

By comparing the interaction rate � of the process vh → χφ

in the resonant regime to the Hubble parameter we find that
Tprod ≈ MN . For mediator masses MN � MeV the free-
streaming scale becomes insensitive to the mediator mass
itself beside the change induced by the different geff

S (Tprod).
In this case, we find a lower bound on the DM mass of
mχ � 10 keV. However, we found in Sect. 4.3 that a DM
mass of 0.1 keV is required in order not to overproduce DM
within this scenario. This lies two orders of magnitude below
the estimated lower bound. Therefore, the resonant produc-
tion regime with yν � yχ is excluded by the Lyman-α mea-
surement.

If, on the other hand, yχ � yν , DM does not equilbrate
with the SM even in the resonant production regime. There-
fore the spectrum is non-thermal and given by Eq. (A.21).
We take zprod

(

Tprod
)

as the temperature where the derivative
of the total particle number with respect to the time is maxi-
mized. Therewith, we find Tprod = 3.36MN which results in
pprod = 0.4Tprod. Here, we also find that for MN � mχ the
free-streaming scale is insensitive to the mediator mass and
the lower bound on the mass results in mχ � 3 keV.

To summarize, the Lyman-α measurement strongly con-
straints the resonant production regime of this model. While
the case where the resonant enhancement of the production
cross section is strong enough to equilibrate DM with the SM
is completely ruled out, the freeze-in regime is only allowed

for couplings yχ � 10−12
√

MN
keV with mχ � 3 keV.

6.2 Direct detection

Direct detection experiments search for interactions of DM
with nuclei. In this model, a coupling of DM to the Z boson is
generated at one loop. The corresponding Feynman diagram
is shown in Fig. 6. The coupling to the Z is then given by
L ⊃ gZχχ χ̄γ μPLχ Zμ with [28]

gZχχ = − y2
χ

16π2

gw

4 cos θw

�mν

MN
2.3 · g

(

M2
N

m2
φ

)

, (6.7)
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Fig. 6 1-Loop diagram generating the effective coupling of DM to the
Z. The indices i, j run from 1 to 3

and

g (x) = x[(x + 2) log (x) + 3 (1 − x)]
2 (1 − x)2 , (6.8)

where we have used the best fit values of [29] for the param-
eters of the PMNS matrix in case of normal ordering, which
yields

∑3
k,m=1(Y

T
ν Yν)km ≈ 2.3 · y2

ν .
Therewith, DM interacts with quarks via Z exchange.

Since this process happens at energies far below the Z mass,
the heavy mediator is integrated out leading to

L ⊃ 1

M2
Z

[gZχχ χ̄γ μ(1 − γ 5)χ ][q̄γμ(gqv + gqaγ
5)q],

(6.9)

where gqv and gqa are the couplings of the SM quarks to the
Z . At low energies only the vector-vector and axial-axial
interactions are not suppressed by powers of the relative
velocity or momentum transfer, thereby leading to a spin-
independent and a spin-dependent DM-nuclei cross section,
respectively [30,31]. For the spin-independent cross section
we obtain [31]

σSI = μ2
χN g

2
Zχχ

πM4
Z

[Z(2guv + gdv) + (A−Z)(guv+2gdv)],
(6.10)

with μχN = mχ MXe
mχ+MXe

, guv = gw

(

1
4 cos θw

− 2 sin2 θw

3 cos θw

)

and

gdv = gw

(

− 1
4 cos θw

+ sin2 θw

3 cos θw

)

.

This cross section is constrained by the XENON experi-
ment, as shown in Fig. 7. Therefore, the freeze-in setup can-
not be constrained by this measurement. There are scenarios
considered in the literature which allow for having a large
direct detection signature even in a freeze-in scenario [32].

Fig. 7 The expected direct detection signals for the coupling structures
investigated within Sect. 5 are compared to the current bounds from
XENON1T [33] (dashed black curve). The dip in the red curve is due
to a cancellation appearing in the loop function

In [32], the cross section is enhanced due to a very light medi-
ator. Since in our model the interaction is mediated by a Z
boson this does not apply here.

6.3 Indirect detection and HEP phenomenology

Prospects for indirect detection of DM such as the observa-
tions of γ -rays from the galactic center or the precise mea-
surement of the CMB all rely on the efficient annihilation
of DM into SM particles. In the case of neutrino portal DM
this usually happens subsequently by DM first annihilating
into heavy neutrinos which then decay or annihilate into SM
particles. Several prospects for indirect detection were inves-
tigated in [34] for the case of freeze-out production of DM
where before DM freezes out its annihilation is efficient. This,
however, is not the case for the freeze-in scenario investigated
in this work. Here, the process is efficient only in the direc-
tion of DM production. This leads to a suppression of the
annihilation cross section 〈σv〉 which enters all observables
of indirect detection considered in [34] since the couplings yν
and yχ are required to be feeble. Moreover, the annihilation
rate is suppressed by a factor nDM

neq
DM

compared to the freeze-

out case. For this reason we do not study indirect detection
observables within this work.

The minimal version of the type I seesaw mechanism
employed here induces couplings of the SM gauge bosons
and the Higgs to the heavy neutrino states. This can mod-
ify electroweak precision observables and induce charged
lepton flavor violation (LFV) as well as additional Higgs
decay channels in case of a light heavy neutrino [35,36]. The
strongest constraints come from the decay μ → eγ with
B(μ → eγ ) ≤ 4.2 · 10−13 [24]. Within this setup the decay
is mediated at one loop level by a W boson and a neutrino.
The branching ratio of this process is then given by [37]:

�(μ → eγ )

�(μ → νμeν̄e)
= 3α

32π

∣

∣

∣

∑6
k=1 UμkU

†
ek F (xk)

∣

∣

∣

2

∑3
k, j=1 UμkU

†
μkUelU

†
el

, (6.11)
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where F (xk) is a loop function with xk = m2
kM

−2
W . Since

we assumed the heavy neutrinos to be mass-degenerate and
the light neutrino mass is tiny compared to mW we split the
sum in the numerator into two parts with F (0) = 10

3 and

F

(

M2
N

M2
W

)

. Additionally we neglect the small deviation from

one in the diagonal elements ofUPMNSU
†
PMNS in the denom-

inator. Since the mixing matrix U is unitary we find

�(μ → eγ )

�(μ → νμeν̄e)
= 3α

32π

�m2
ν

M2
N

(

F (0) − F

(

M2
N

M2
W

))2

×
∣

∣

∣

∣

∣

(

UPMNS
mν

�mν

U †
PMNS

)

μe

∣

∣

∣

∣

∣

2

. (6.12)

Taking the best fit values from [29] we find
(

UPMNS
mν

�mν
U †

PMNS

)

μe
= 0.12. Thus, we can give the

branching ratio as a function of the heavy neutrino mass
only since the free parameters of the orthogonal matrix R
cancel within this setup [15]. This expression is maximized
for MN = 1.36MW and results in

�(μ → eγ )

�(μ → νμeν̄e)
= 3α

32π

�m2
ν

M2
W

0.122 · 0.266 ≈ 10−31,

(6.13)

which is far below the experimental limit. For this reason, we
also expect other LFV and electroweak precision observables
not to significantly constrain the scenario.

Another imprint of this model could be found in addi-
tional decay channels of the Higgs if MN < mh . In this case
the decays h → νi N j and h → Ni N j are kinematically
accessible. As pointed out in [10,38] the dominant contribu-
tion comes from the decay into a heavy and a light neutrino.
However, branching ratios of this process larger than 10−2

are already ruled out and are typically much smaller due to
the tiny Yukawa coupling [38]. Therefore, the contribution
is negligible.

7 Conclusion

We have investigated a minimal neutrino portal DM model.
The SM is extended by three right-handed neutrinos which
generate the neutrino masses via a type I seesaw mechanism
and, furthermore, act as mediator between the SM and DM.
The dark sector consists of a boson φ and fermion χ cou-
pled to the right handed neutrino via a Yukawa coupling.
Motivated by the small Yukawa couplings of the type I see-
saw mechanism in case of small heavy neutrino masses of
MN � O (PeV) we studied DM production via the freeze-in
mechanism.

We derived analytic solutions for the number density in
the resonant (MN > mχ + mφ) and non-resonant (MN <

mχ + mφ) DM production regime. Adding the requirement
that the coupling of the right-handed neutrino to the SM is
of the same order of magnitude as its coupling to the dark
sector allows for the prediction of the mediator or the DM
mass respectively. In the non-resonant regime, we find MN ≈
10 TeV. The non-resonant regime is studied in more detail
numerically, as seen in Fig. 4.

Within the resonant regime, however, for yχ � yν the
resonant production of DM is strong enough to bring it into
equilibrium with the SM. Thus, the freeze-out mechanism
is revovered although the couplings between DM and the
SM are feeble. Moreover, in this scenario we can predict
a DM mass of mχ ≈ 100 eV. For yχ � yν , nonetheless,
DM production via freeze-in is still possible. To satisfy the
observed DM energy density the coupling of the right-handed

neutrino to DM is required to be yχ ≈ 10−12
√

MN
mχ

.

The resonant scenario is strongly constrained by the mea-
surement of the Lyman-α forest. The freeze-out case can be

excluded completely, while freeze-in with yχ ≈ 10−12
√

MN
mχ

is only viable for mχ � 3 keV. Charged lepton flavor vio-
lation, Higgs decays, indirect detection and direct detection
have little impact on our parameter space due to the feeble
coupling of the SM to the dark sector. Thus, producing the
observed DM energy density within this model of neutrino
portal DM is possible even with small couplings between the
SM and the dark sector.

Although within this work CP violation in the PMNS
matrix was assumed to be absent, it could be included in
the analysis to explore its phenomenological imprints and its
impact on leptogenesis.
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Appendix A: Boltzmann equations at the level of momen-
tum distribution functions

A common simplifying assumption (e.g. in [17]) to solve
the Boltzmann equation is to perform the momentum inte-
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gration by assuming that if a particle distribution deviates
from its equilibrium density it differs only by a momentum-
independent factor, i.e. fi = αi f th

i with ∂αi
∂pi

= 0. Further-
more, the equilibrium densities of bosons and fermions are
approximated by a Boltzmann distribution.

Following the lines of [26,39] we solve the Boltzmann
equations at the level of momentum distribution functions.
This has the advantage of a more accurate solution and the
exact shape of the momentum distribution allows for more
insights into the process of structure formation. Throughout
the calculation we approximate the equilibrium densities of
any particle species by a Boltzmann distribution. The Boltz-
mann equation is given by:
(

∂

∂t
− Hp

∂

∂p

)

f (p, T (t)) = C(p, T ). (A.1)

Here t is the time, H the Hubble parameter, f is the momen-
tum distribution function of the particle species whose evo-
lution is described by this Boltzmann equation, p is their
momentum and C(p, T ) is the collision term which describes
the impact of interactions. For the integration of this equa-
tion it is convenient to perform a coordinate transformation
(t, p) → (r, x) such that the differential operator on the left
hand side contains a derivative with respect to one of the new
variables only. If r only depends on t and

∂x

∂t
− Hp (r, x)

∂x

∂p
= 0, (A.2)

the L.H.S. of Eq. (A.1) results in

∂r

∂t

∂

∂r
. (A.3)

The condition (A.2) is fulfilled if

x(p, t) = x

(

a (t)

a (t0)
p, t0

)

(A.4)

A convenient choice for x is

x(p, t) = 1

T0

a (t)

a (t0)
p =

(

gs (T0)

gs (T )

) 1
3 p

T
. (A.5)

For the last equality we used the conservation of entropy
s(T0)a(T0) = s(T )a(T ) = const. and gs are the entropy
degrees of freedom. The conservation of entropy also allows
us to relate the temperature T to the time t :

dT

dt
= −HT

(

1 + T

3

dgs
dT

g−1
s

)−1

. (A.6)

Since T is only a function of t and not of p we can choose

r (T ) = m0

T
, (A.7)

with m0 being am arbitrary mass scale. Combining all this
the Boltzmann equation results in

r H

(

1 − T

3

∂

∂r
ln(gs)

)−1
∂

∂r
f (p (r, x) , T (r))

= C(p (r, x) , T (r)). (A.8)

Since in this work DM production is mainly governed by
2 ↔ 2 scattering processes we will discuss the collision term
for these type of processes in more detail. For a A + B →
C+DM scattering the collision term for the evolution of the
momentum distribution function of DM is given by:

CDM(p) = gAgBgC
2EDM

∫

d3pA

2EA (2π)3

d3pB

2EB (2π)3

d3pC
2EC (2π)3

× (2π)4 δ4(pA + pB − pC − pDM )

× |M|2( f A fB − fC fDM ). (A.9)

Here, Ei =
√

p2
i + m2

i , M is the matrix element for the
process A + B → C + DM which is the same in both
directions since we are assuming CP invariant interactions
and fi is the distribution function of particle species i . We
assume that fC fDM � f A fB which is justified since the
paper explores the freeze in production of DM. Furthermore,
we take f A/B = f thA/B assuming the interactions of A and
B are efficient enough to keep them in thermal equilibrium.
Moreover, taking f thA/B to be a Boltzmann distribution, shift-
ing the integration over pc to pC +pDM = P and multiplying
the equation by 1 = ∫

dP0δ (P0 − EC − EDM ) yields

C(pDM ) = gAgBgC
4EDM

∫

d4P

(2π)3

exp (−P0/T )

EC
δ

× (P0 − EC − EDM )

×
∫

d3pA

2EA (2π)3

d3pB

2EB (2π)3 (2π)4 δ4

× (pA + pB − pC − pDM )|M|2 (A.10)

The equation above can be simplified by rewriting it in terms
of the reduced cross section [40]:

gAgBgCgDM

∫

d3pA

2EA (2π)3

d3pB

2EB (2π)3 (2π)4 δ4

× (pA + pB − pC − pDM )|M|2

= σ̂ (s)
√
[

1 − (mC+mDM )2

s

] [

1 − (mC−mDM )2

s

]
. (A.11)

Moreover, we change the variables of integration from d4P
to an integration over the zero component of the center
of mass momentum vector P0, the center of mass energy
s and the angle θ between center of mass momentum P
and the momentum of the DM candidate pDM , d4P =
2πP2dP0dPd cos(θ) = 2π

√

P2
0 − sd P0dsd cos(θ). To
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eliminate the remaining δ function we express the argument
in terms of cos(θ):

δ (EC + EDM − P0)

= δ

(
√

P2 + p2
DM − 2PpDM cos (θ) + m2

C + EDM − P0

)

= EC

PpDM
δ(cos(θ) − cos(θ0)), (A.12)

where cos(θ0) is the value required for cos(θ) for a vanishing
argument of the δ function. Therewith, Eq. (A.10) results in

C(pDM ) = 1

4gDM EDMpDM

∞
∫

smin

ds

× σ̂ (s)
√
[

1 − (mC+mDM )2

s

] [

1 − (mC−mDM )2

s

]

×
∞
∫

√
smin

dP0

(2π)2 exp

(

− P0

T

)

×
1

∫

−1

d cos (θ) δ (cos (θ) − cos (θ0))

︸ ︷︷ ︸

=1, if cos(θ0)∈[−1,1]

(A.13)

The last integral basically restricts the boundaries of either
P0 or s in the sense that if

√

P2 + p2
DM − 2PpDM cos(θ0) + m2

C + EDM − P0 = 0

(A.14)

is fulfilled | cos(θ0)| ≤ 1 must hold. This requirement yields
the inequality

(s + m2
DM − m2

C − 2P0EDM )2 ≤ 4p2
DM (P2

0 − s). (A.15)

In case of mC = mDM
9 this results in a lower (relative

minus sign) and upper bound (relative plus sign) of the P0

integration of

P±
0 = EDMs

2m2
DM

⎡

⎣1 ± pDM

EDM

√

1 − 4
m2

DM

s

⎤

⎦

mDM=0=
{

P+
0 → ∞

P−
0 = s

4pDM
+ pDM

. (A.16)

9 This is a good approximation for this work since we assume the dark
sector to be almost degenerate in mass.

The last equality is given to showcase that in case of mDM =
0 only a lower bound exists, as was shown in [39], while for
finite DM masses there is also an upper bound. Thus, we have

C(pDM ) = 1

4gDM EDMpDM

∞
∫

smin

ds

× σ̂ (s)
√

1 − 4
m2

DM
s

P+
0∫

P−
0

dP0

(2π)2 exp

(

− P0

T

)

. (A.17)

The s integral and the following integration of the differ-
ential equation for an arbitrary cross section cannot be per-
formed analytically. However, in case of a very light DM
candidate (mDM ≈ 0) and a resonant production process
with �mediator � Mmediator the integral can be evaluated ana-
lytically. Moreover, this case is of special interest for this
work since for resonant production the DM mass turns out
to be below keV. Therefore, the exact shape of the momen-
tum distribution is required to quantify the impact of DM on
structure formation. In this case we have P+

0 → ∞ and

σ̂ (s) ≈ δ(s − M2
N )

√

1 − 4
m2

DM

s
σ̂BW (s) . (A.18)

Hence the collision term yields

C(pDM ) = T

32π2gDMp2
DM

σ̂BW (M2
N )

exp ×
(

− M2
N

4pDMT
− pDM

T

)

. (A.19)

Transforming the variables according to Eqs. (A.7) and (A.5)
and taking gs to be a constant, i.e. x = pDM

T , leads to

C(pDM ) = 1

32π2gDM

r

x2m0
σ̂BW (M2

N )

exp ×
(

−M2
Nr

2

4xm2
0

− x

)

. (A.20)

A collision term of this form can be integrated and results in
the following momentum distribution function:

f (p, T ) = Mpl σ̂BW (M2
N )

64π2gDMcH

exp(−p/T )

M3
N

T 2

p2

×
[
√

πp

T
erf

(

MN√
pT

)

− 2
MN

T
exp

(

−M2
N

T p

)]

,

(A.21)

where erf (x) is the error function. Therewith, the number
density is given by the integration over the momentum
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n (T ) = 4πgDM

∞
∫

0

p2 f (p, T )
T�MN= Mpl σ̂BW (M2

N )

8cH

T 3

M3
N

.

(A.22)

In the last step, we assumed that the temperature where we
observe the DM density is much smaller than the mass of the
resonant particle. As mentioned above, to derive this analytic
result we took the effective entropy degrees of freedom to be
a constant. Hence the above formula is only a good approxi-
mation as long as we take T large enough to stay at a constant
value of gs (T ) ≈ 100. Of course, we observe the universe
at a smaller temperature. However, the above result remains
a good approximation if the main part of the production has
been finished before gs (T ) starts to vary significantly since
for a collisionless particle species the quantity Y = n

s is a
constant.

By comparing the number of produced DM particles at
temperature T to the number of particles for T → 0,

n(T )T 3

limT→0 n(T )T 3 , with an unapproximated n (T ) we find that

for T ≈ MN
4 already over 0.99 of DM particle have been

produced. Thus, as long as MN ≥ 100 GeV the result (A.22)
serves as a good estimate.

Beside collision terms for 2 ↔ 2 scattering processes, the
collision term for the (inverse) decay N ↔ νh is required.
The procedure for performing the integration over the particle
momenta follows the same lines as for the 2 ↔ 2 scattering.
Thus, we only give the result for the collision term resulting
from the decay that appears in the Boltzmann equation for
the heavy neutrino N :

CN (pN ) = MN
√

p2
N + M2

N

⎡

⎣

y2
ν gνgh
16π

MN exp

⎛

⎝−
√

p2
N + M2

N

T

⎞

⎠

− �N→νh fN (pN , T )

⎤

⎦ . (A.23)

Appendix B: Cross sections

Here, we give the relevant reduced cross sections for the case
mφ = mχ . Since CP conservation is assumed the reduced
cross sections for a process and its time reserved process are
the same.

σ̂vi h↔χφ (s) =
⎛

⎝

∑

j

(Yν)i j yχ

⎞

⎠

2
(

1 − m2
h
s

)2

32π

× s2
√

1 − 4
m2

χ

s

(s − M2
N )2 + �2

N M
2
N

(B.1)

Here, �N is the total decay width of the propagating neutrino
which can decay into vh for MN > mh and into χφ for
MN > 2mχ . The decay width is given by:

�N = y2
ν

(M2
N − m2

h)
2

16πM3
N

+ y2
χ

(MN + 2mχ )

√

M2
N − 4m2

χ

16πMN
.

(B.2)

σWl→χφ = y2
χ y

2
ν

3M2
W

24πsMN (s − M2
N )2

[(M2
W − m2

l )(M
2
W

+ 2(m2
l − M2

W ) − 4MNmχ )

+ (M2
N + m2

l − M2
W + 4MNmχ )]

×
√

s(s − 4m2
χ )

m4
l + (s − M2

W )2 − 2m2
l (s + M2

W )
(B.3)

σZν→χφ = y2
χ y

2
ν

3M2
W

√

1 − 4m2
χ

s

16π2M2
N (s − M2

N )(s − M2
Z )

× [(s + M2
Z )M2

N + 4MNmχ (s − M2
Z )

+ s2 − sM2
Z − 2M4

Z ] (B.4)

σ̂NN→χχ = y4
χ

32πs

⎡

⎣

√

(s − 4m2
χ )(s − 4M2

N )(2M4
N − 4M2

Nm
2
χ + m2

χ s)

M4
N − 4M2

Nm
2
χ + m2

χ s

−4M2
N arcCoth

⎛

⎝

2M2
N − s

√

(s − 4m2
χ )(s − 4M2

N )

⎞

⎠

⎤

⎦ (B.5)

σNN→φφ = y4
χ

(

1 − 4m2
χ

s

)
⎡

⎣ −
√

(s − 4M2
N )(s − 4m2

χ )

× (m2
χ s + 2M4

N + 4M3
Nmχ )

+2[2MN (2mχ MN ) + s][m2
χ (s − 4M2

N ) + M4
N ]

× arctanh

⎛

⎝

√

(s − 4M2
N )(s − 4m2

χ )

s − 2M2
N

⎞

⎠

⎤

⎦ (B.6)
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