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Abstract We discuss different choices that can be made
when matching a general high-energy theory – with the
restriction that it should not contain heavy gauge bosons –
onto a general renormalisable effective field theory at one
loop, with particular attention to the quartic scalar couplings
and Yukawa couplings. This includes a generalisation of the
counterterm scheme that was found to be useful in the case
of high-scale/split supersymmetry, but we show the impor-
tant differences when there are new heavy scalar fields in
singlet or triplet representations of SU (2). We also analyti-
cally compare our methods and choices with the approach of
matching pole masses, proving the equivalence with one of
our choices. We outline how to make the extraction of quartic
couplings using pole masses more efficient, an approach that
we hope will generalise beyond one loop. We give examples
of the impact of different scheme choices in a toy model; we
also discuss the MSSM and give the threshold corrections to
the Higgs quartic coupling in Dirac gaugino models.
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1 Introduction

In the absence of clear collider signals of new particles, there
has been much recent interest in constraining deviations from
the Standard Model (SM) in terms of effective operators. This
approach to the “Standard Model Effective Field Theory” has
primarily been interested in higher-dimensional operators
that encode new effective interactions, for example recent
work on calculating these in general theories can be found in
[1–11]. However, there is also important information that can
be extracted by matching the renormalisable couplings of the
SM. In particular, this is an increasingly important approach
to calculating the Higgs mass from a top-down theory, pro-
viding a more accurate calculation than a fixed-order one
once new particles that couple to the Higgs are above a few
TeV. It is the only approach to constraining the Higgs mass
in split supersymmetry [12–14] where new physics could
be around 100–105 TeV [15,16]; high-scale supersymmetry
[15,17–20] where it could be around 107–109 TeV; the FSSM
[21,22] where it could be as high as the GUT/Planck scale,
etc. Moreover, there is also a parallel effort considering the
low-energy theory to be a simple non-supersymmetric exten-
sion of the SM such as a Two-Higgs-Doublet Model (THDM)
[23–27], and then it is very interesting to match these theories
to new physics at a (much) higher scale.

With this motivation, we require: (i) the extraction of
the renormalisable couplings (gauge couplings, Yukawa cou-
plings and scalar quartic couplings) in the low-energy the-
ory from observables; (ii) renormalisation group equations
(RGEs) for the low-energy theory; and (iii) threshold correc-
tions at the matching scale which we shall denote throughout
M . The RGEs for general renormalisable field theories have
been known for some time up to two loop order [28–35]
and can be obtained for any model by SARAH [36–39] or

PyR@TE [40,41], and higher loop orders are available for
the SM. On the other hand, for (i) and (iii) the information
is less complete: when the low-energy theory is the SM, the
Higgs mass is used to extract the running quartic coupling,
and the extraction of all couplings can be performed at two
loop order (with some three- or four-loop corrections known),
e.g. in [18,19,42–44], but for general models in SARAH it
can be done only at one loop order, with two-loop correc-
tions to the Higgs mass in the limit of vanishing electroweak
gauge couplings [45–47]. Furthermore, threshold corrections
to the Higgs quartic coupling have been computed explicitly
for some models or scenarios such as split/high-scale super-
symmetry, up to full one-loop plus leading two-loop order
[15,20,48–50], and even recently up to leading three-loop
order in [51]. These corrections are implemented in public
codes for the Higgs mass calculation such as SusyHD [49],
MhEFT [24], FlexibleSUSY [52] and FeynHiggs [53–
55]. The codesFlexibleEFTHiggs [56] andSARAH [57]
also allow one-loop matching of a general theory to the SM as
the low-energy theory via matching of pole masses. Finally,
the code MatchingTools [58] matches two general theo-
ries to each other, but only at the tree level.

While it is vital to reduce the error in the extraction of
the top Yukawa couplings and strong gauge coupling, the
need for precision in the extraction of low-energy parameters
and especially matching is particularly important for quartic
couplings, which are well-known to be highly sensitive to
quantum corrections, as stressed e.g. in [59]. The purpose
of the running to high scales in the bottom-up approach is to
constrain the scale of new physics or investigate the (scale of)
instabilities of the potential, and these depend logarithmically
on the scale, thus the scale depends exponentially on small
differences in the low-energy parameters.

In this work, we shall instead be interested in the top-
down approach and provide all of the ingredients to match
the renormalisable couplings between two generic theo-
ries where the high-energy theory contains no heavy gauge
bosons (this generalises the most interesting well-known
examples) elucidating the various choices that can be made.
In Sect. 2 we describe three general approaches to obtain-
ing the matching conditions at one loop, of which we shall
develop the one that is most suited to be generalised beyond
one loop. However, our main focus will be on certain impor-
tant further details:

1. Mixing between heavy and light states is inevitable in
models with additional Higgs doublets, and then there are
quantum corrections to the mixing angle(s). This has been
investigated in the case of one extra doublet [20,27,60]
and it was found that a judicious choice of counterterms
allows the calculation to be simplified (so that the mix-
ing angle β is not modified). We show how this can be
generalised beyond one additional doublet.
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2. In the presence of heavy SU (2) singlets or triplets, a tri-
linear coupling with two light Higgs fields is possible,
and then the quartic coupling receives a correction at tree
level when integrating out the heavy states. The pres-
ence of trilinear couplings with two light Higgs scalars
moreover leads to infra-red divergences in the amplitudes
which cancel in the threshold corrections: we explicitly
show how these cancel and how they can be simply dealt
with.

3. In the presence of gauge singlets, tadpoles are generated
before electroweak symmetry breaking. We describe four
different approaches to dealing with them.

4. We show that the threshold corrections to the Higgs quar-
tic, under the assumption that there are no heavy gauge
bosons, are independent of gauge couplings1 at one loop,
which is not immediately obvious.

5. It is clear that cubic scalar couplings in the low energy
theory should be at most of the order of the mass scale
of the low-energy theory, which we denote ζ . However,
if we insist on including such couplings that do not
decouple as we take ζ → 0 then we find that we must
include higher-dimensional operators to cancel the infra-
red divergences. We describe this explicitly in Sect. 3.4.

6. As a result of points (1) and (4) we give, in Sect. 4, what
we believe is the simplest possible prescription for match-
ing general scalar quartic couplings.

7. As mentioned above, an alternative approach to match-
ing quartic or Yukawa couplings when the low-energy
theory is the SM is to match pole masses in the two
theories. However, given that there are different possi-
ble choices for parameter definitions when we perform
a “conventional” matching calculation, it is not immedi-
ately obvious how to compare the definitions in the two
approaches (i.e. to know what we actually obtain from
the pole-matching calculation!). This has been seen in
the case of high scale/split SUSY in [20,27,60], where
the pole mass calculation gives a result equivalent to the
“counterterm” approach to the angle β, which we define
in Sect. 3. In Sect. 5 we derive the matching conditions
for a general high-energy theory using the pole match-
ing approach, and show the correspondence with the EFT
calculation.

8. As a result of the derivation in Sect. 5, we propose in
Sect. 5.1 a simple and explicitly infra-red safe prescrip-
tion for matching Higgs quartic couplings where we only
need to evaluate two-point scalar amplitudes.

1 Note that, in the discussion of a general field theory, “gauge cou-
plings” refers strictly to the interactions of the gauge bosons. In super-
symmetric theories some of the scalar and Yukawa interactions may be
related to the gauge couplings, but for the sake of our discussion they
are treated just like all other scalar and Yukawa interactions.

Our approach to matching is illustrated with examples of the
MSSM and Dirac gaugino models in Sect. 6, and we inves-
tigate the impact of our counterterm choice in a toy model
in Sect. 7. We then describe the effect of fermion mixing
on matching Yukawa couplings in Sect. 8, before concluding
in Sect. 9. The appendices contain our notation, the general
results for threshold corrections, and specific results for Dirac
gaugino models.

2 Deriving the matching conditions

In this paper we are interested in corrections to scalar quartic
couplings in general renormalisable field theories, the effect
of mixing of scalars, and gauge (in)dependence of the results.
It turns out that in the body of the text we only explicitly need
to refer to pure scalar interactions, and some interactions of
scalars with gauge bosons. We will work in terms of real
scalars, which we denote as {�i } – with indices {i, j, k, . . .}
– in our high-energy theory, and as {φp} – with indices drawn
from {p, q, r, s, x, y} – in the low-energy theory.2 The gauge
bosons – which appear in both the high- and low-energy
theories, since we shall not consider the case of integrating
out heavy gauge bosons – are denoted as Aa

μ with indices
{a, b, c, d}. Then the Lagrangian terms of the high-energy
theory (HET) that are relevant to the matching conditions
are

LHET ⊃ − ti�i − 1

2
m2

i �
2
i − 1

6
ai jk�i� j�k

− 1

24
λ̃i jkl�i� j�k�l + gai j Aa

μ�i∂
μ� j , (2.1)

while the effective low-energy theory contains

LEFT ⊃ − 1

24
λpqrsφpφqφrφs + gapq Aa

μφp∂
μφq . (2.2)

Since the gauge group is unbroken in each case, the couplings
gapq are proportional to the group generators (in a real rep-
resentation). The full set of our conventions (and loop func-
tions) is given in Appendix A, but it should be emphasised
that we take all purely scalar couplings – i.e. ai jk and λi jkl
– to be fully symmetric under the exchange of indices, and
the gai j couplings to be antisymmetric under the exchange
i ↔ j . Note also that we can assume without any loss of
generality that we are working with scalars defined in the
mass-diagonal basis.

We shall treat the above fields as fluctuations around their
values at the minimum of the potential. Since we are assum-

2 Note that we will also use indices {p, q, r, . . .} for states of the high-
energy theory that can be identified as light and therefore correspond to
states in the low-energy theory.
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ing that no gauge groups are broken before electroweak sym-
metry breaking, the only fields that may obtain an expectation
value in the HET are gauge singlets. If we start in some basis
where the fields have expectation values {vi } then to obtain
〈�i 〉 = 0 we should make the shift

ti → ti + m2
i vi + 1

2
ai jkv jvk + 1

6
λ̃i jklv jvkvl ,

m2
i δi j → m2

i δi j + ai jkvk + 1

2
λ̃i jklvkvl ,

ai jk → ai jk + λ̃i jklvl , (2.3)

and then diagonalise the mass terms again.
We shall match our two theories together at some scale M ,

assuming that all “heavy” fields have masses of this order, and
take the mass scale of our low-energy theory to be ζ � M .
We shall have in mind that this hierarchy can be of more than
one-loop order, but in any case since we are only matching
at one loop we can treat masses that are suppressed by one
loop compared to the scale M – i.e. all m2

pq – as effectively
zero. For example, taking the SM as low-energy theory, ζ ∼
v ∼ mh . Then it is convenient to take the limit ζ → 0 in the
loop functions for the final expressions, as terms of order ζ

would lead to corrections to the result suppressed by powers
of v/M , i.e. equivalent to higher-dimensional operators.

While the SM contains no cubic scalar couplings prior to
electroweak symmetry breaking, a general low-energy theory
(involving, e.g. electroweak triplets or singlets) could con-
tain them. However, as mentioned in the introduction, for
consistency of the theory we must require

apqr ∼ ζ.

One way to see this is just from unitarity considerations [61,
62], and implies that we must include higher-dimensional
operators in the theory. Another perspective is that if we
allow cubic scalar couplings in the low energy theory then
we must add a finite set of higher-dimensional operators to
cancel infra-red divergences; we discuss this in Sect. 3.4.

In the presence of singlets, tadpole terms −tpφp may also
appear in the low-energy theory Lagrangian. However, once
again these must at least be linear in the light mass scale

tp ∼ ζ.

Consequently, when we take the limit ζ → 0 terms with
either tp or apqr vanish, and we have therefore excluded
them from Eq. (2.2).

We shall now briefly review three methods of deriving the
matching conditions between these two theories.

2.1 Diagrammatic

The conventional approach to matching theories is to com-
pare Feynman diagram calculations. The approach in the

next subsection (using path integrals) corresponds to cal-
culating 1PI diagrams, but at the expense of obtaining a
non-canonically normalised low-energy theory. If we want
to insist that our low-energy theory has canonical kinetic
terms, and want to match directly using diagrams, then the
obvious and essentially only approach is to match S-matrix
elements in the two theories. The simplest way to do this is
to take ζ → 0 first, making sure that the pole masses (not
just the tree-level masses) of all the light particles are also
set to zero, and then matching the results in the two theories
as the total external momentum is taken to zero.

2.2 Effective action: path integral approach

The other intuitive approach to matching effective theories
comes from the Wilsonian picture: we want to integrate out
the “heavy” degrees of freedom �H and be left with only
the “light” ones φL , so on the one hand, in the absence of
mixing, we write [1,2]

ei SEFT[φL ] =
∫

D�He
i S[φL ,�H ]

= ei S[φL ,�c
H [φL ]]

× exp

[
− 1

2
Tr log

(
− δ2S

δ�2
H

∣∣∣∣
�H=�c

H

)]
, (2.4)

where �c
H is defined by the relation

δS

δ�H

∣∣∣∣
�H=�c

H

= 0, (2.5)

and can be expressed in terms of φL . This means that we
write

SEFT[φL ] = Stree
EFT + S1−loop

EFT = S[φL ,�c
H [φL ]]

+ i

2
Tr log

(
− δ2S

δ�2
H

∣∣∣∣
�H=�c

H

)
. (2.6)

On the other hand, in the presence of mixing between light
and heavy states the problem of integrating out heavy degrees
of freedom has also been addressed [3–9]; writing

⎛
⎝

δ2S
δ�2

H

δ2S
δφLδ�H

δ2S
δφLδ�H

δ2S
δφ2

L

⎞
⎠ ≡

(
	H XHL

XLH 	L

)
(2.7)

we can write [7]

S1−loop
EFT = i

2
log det(	H − XHL	−1

L XLH )

∣∣∣
hard

. (2.8)

Here “hard” means that the integral over loop momentum
should be split up into “hard” and “soft” pieces via the method
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of regions, and the “soft” pieces should be discarded. This
neatly avoids infra-red divergences, which must come from
the “soft” part of the integrals (where the loop momentum is
small).

2.3 Effective action: equations of motion method

Since we shall be interested in this work in large separa-
tions of scale between the low- and high-energy theories, we
restrict to only renormalisable operators, and this means we
shall (almost always) only need the kinetic terms and cou-
plings up to quartic order. Moreover, our focus shall be on the
different choices (of parameters, renormalisation schemes
etc.) that are possible, and we want a method that makes these
transparent. We also want a technique that will generalise (in
future work) beyond one-loop order. Such an approach is
given by simply evaluating the effective action up to quar-
tic order for a general theory, and then integrating out the
“heavy” fields using the equations of motion, matching the
terms onto the equivalent ones in the low-energy theory. We
define the effective action for the full high-energy theory as
SHET [�] and recall that it is the generating function of one-
particle-irreducible diagrams; in momentum space it is

SHET = i
∞∑
n=2

1

n!
∫

dd p1 · · · dd pn�i1(p1)

· · · �in (pn) 

(n)
i1,...,in

(p1, . . . , pn)δ
4
( ∑

pi
)

(2.9)

which we expand as a series in pi/M , so that 

(n)
i1,...,in

(p1, . . . , pn) = 

(n)
i1,...,in

(0, . . . , 0) + O(
p2
i

M2 ) and we can
write, in the basis after the shifts (2.3):

SHET =
∫

d4x
[�] + · · ·


[�] ≡ −1

2
Zi j�i∂μ∂μ� j − (ti + δti )�i

− 1

2
(m2

i δi j + δm2
i j )�i� j

− 1

6
(ai jk + δai jk)�i� j�k

− 1

24
(λ̃i jkl + δλ̃i jkl)�i� j�k�l . (2.10)

We work in a minimal subtraction scheme (MS or DR
′
) where

the counterterms have already been absorbed in the above; the
(finite) quantities δti , δm2

i j , δai jk , δλ̃i jkl are the first through
fourth derivatives of the loop correction to the renormalised
effective potential. This is valid to any loop order required,
the appropriate corrections being included in the “couplings.”
We write the quartic coupling in the high-energy theory with
a tilde to distinguish it from the quartic in the low-energy the-

ory (no such distinction is necessary for the cubic couplings).
We then compute

0 = δ
[�]
δ�i

(2.11)

for the heavy fields and reinsert the results into our expanded
effective action. To obtain the same result for the effective
action as from Eq. (2.8) we should expand the scalar mass
term as a (diagonal) tree-level piece plus a perturbation and
expand the resulting effective action to one-loop order. First,
however, if there are heavy singlet fields, then denoting their
indices with an italic capital {P,Q,R,S}, they may have a
non-vanishing tadpole before electroweak symmetry break-
ing and so:

1. In some favourable cases a discrete symmetry, which is
broken at the same time as electroweak symmetry (or
not at all), forbids such a tadpole (such as in e.g. the
Z2-symmetric singlet-extension of the SM or the Z3-
symmetric NMSSM in the unbroken phase).

2. We may have the freedom to adjust the tree-level tadpole
term tP already in the basis of Eq. (2.1) so that the total
tadpole including quantum corrections is zero, without
needing to make any shifts of the form (2.3). This is the
case if we specify the high-energy theory by just a match-
ing scale and the dimensionless parameters, for example
if we scan over supersymmetric models without specify-
ing a mediation mechanism.

3. We can assume that the tadpole equation is satisfied at
tree level (so that tP = 0). Then we solve (2.11) treating
δtP as a one-loop perturbation of the tree-level tadpole
condition. I.e. since we have 〈�P 〉 = 0 at tree level with
all non-singlet field expectation values set to zero, the
solution to (2.11) is

�P = − 1

m2
P

δtP + O(�2
i ) + O(2 loops)

which effectively means shifting

δm2
i j → δm2

i j − δtP
m2
P
aPi j ,

δai jk → δai jk − δtP
m2
P

λ̃Pi jk . (2.12)

In this way we can compute around the tree-level vacuum;
in the case that the tree-level expectation value is small
or vanishing – in the basis (2.1) before any shifts – this
option would appear to be the most appropriate choice.

4. We can assume that the tadpole equation is satisfied at
loop level (so that tP + δtP = 0) after making shifts
of the form (2.3). In so doing, we can trade a different
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dimensionful parameter for each singlet tadpole equa-
tion, order by order in perturbation theory. This is the
standard approach in pole mass calculations, where the
typical choice is to eliminate mass-squared parameters,
but this is the most complicated from the EFT point of
view because we want to fix the masses in order to per-
form the matching. The tree-level tadpole equations for
the singlets in the basis before the shifts (2.3) read

m2
PvP = −tP − 1

2
aPQRvQvR

− 1

6
λ̃PQRSvQvRvS (2.13)

and, for the typical choice of adjusting the diagonal terms
m2
P , the one-loop mass shift becomes

δm2
PQ → δm2

PQ − δtP
vP

δPQ, (2.14)

where the tadpole δtP is computed at the minimum of
the potential. Note that if we have a case where vP = 0
for all P then this approach reduces to option 2: we shall
throughout assume when we refer to option 4 that the
expectation values of all the singlets concerned are non-
vanishing in the original basis.

We shall henceforth assume that one of these choices has
been made and the parameters adjusted accordingly; note
that in the path integral method the choice made is implicitly
our number 3, since the tadpole equations are chosen to be
satisfied at tree level only.

In Sect. 4 we shall explore alternatives, but persisting
for now with the simplest possible approach – which we
shall in the following refer to as the “perturbative masses”
approach – we now split the fields at tree level into (all of
the) heavy ones with upper-case indices and light ones with
lower-case indices. We then integrate out the heavy fields, to
one-loop order and including only renormalisable operators,
and obtain a new Lagrangian for the high-energy theory –
Leff[�] – written entirely in terms of fields {�p} that have
counterparts in the low-energy theory:

Leff[�] = −1

2
Z pq�p∂μ∂μ�q

+ 1

8m2
P
aPqr (aPst + 2δaPst )�q�r�s�t

− δm2
PQ

8m2
Pm

2
Q
aPqraQst�q�r�s�t

− 1

24
(λ̃pqrs + δλ̃pqrs)�p�q�r�s , (2.15)

where we have omitted the mass terms and the trilinear cou-
plings for the light fields as we assume that they all vanish in
the limit ζ → 0. In this approach, there is a tree-level shift of
the quartic coupling of the theory from integrating out heavy
fields in the presence of trilinears of the form aPqr , see the
fist term that multiplies �q�r�s�t in the equation above. In
the path integral approach this is included in S[φL ,�c

H [φL ]]
of (2.6), while the one-loop corrections stemming from these
terms appear via the term XHL	−1

L XLH in (2.8).
To complete the matching, we need to identify the above

effective action with the equivalent expression computed in
the low-energy theory, which means also rescaling the kinetic
terms: we make the mapping

�i = Uipφp +UiPφP ≡ δi pφp

+ δUipφp + δiPφP + δUiPφP , (2.16)

where φi are now split into light {φp} and heavy {φP } fields,
and we can throw away the heavy fields as they are already
integrated out. In the two theories we have

ZH
i j = δi j + δZH

i j , ZL
i j = δi j + δZL

i j (2.17)

where the indices H, L indicate whether they are computed
in the high- or low-energy theory. It turns out, however,
that there is more than one way to make this identifica-
tion, depending on our choice of counterterms, and we will
describe these choices in Sects. 3 and 4. For now we need
just give the general formula, expanded up to one-loop order,
for the quartic term λpqrs in the effective low-energy theory:

λpqrs = λ̃pqrs + δλ̃pqrs − δλpqrs

+
[

− 1

8m2
P
aP pqaPrs − 1

4m2
P
aP pqδaQrs

+ 1

8m2
Pm

2
Q

δm2
PQaP pqaQrs

+ 1

6
δURp

(
λ̃Rqrs − 3

m2
P
aPRqaPrs

)

+ 1

6
δUp′ p

(
λ̃p′qrs − 3

m2
P
aP p′qaPrs

)
+ (pqrs)

]
.

(2.18)

Here δλpqrs denotes the corrections to the light quartic in the
low-energy theory, so just consisting of light degrees of free-
dom (if we use the approach of Eq. (2.8) then δλpqrs =
0). (pqrs) stands for all 24 permutations of the indices
{p, q, r, s}, counting even the cases that the indices are iden-
tical – hence for one light field the matching would be

λ1111 = λ̃1111 − 3

m2
P
a2
P11 + · · ·

123
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We give results for all of the relevant generic expressions for
one-loop corrections to the effective action in Appendix B
(see also e.g. [63]). In the next section we shall discuss the
cancellation of infra-red divergences and derive an expres-
sion for the matrix U .

3 Mixing and matching

In this section we shall discuss the effects of infra-red safety
and gauge dependence of the matching, and also derive the
matrices δU that encode the effects of mixing of the light
and heavy degrees of freedom, employing the “perturbative
masses” approach; in Sect. 4 we shall show an alternative.

3.1 Infra-red safety

If we compute the shifts with small or vanishing masses
for the “light” fields, then the corrections δλ will contain

large/divergent logarithms of the form log
m2

p

M2 , mp being
the light masses and M the mass scale of heavy states, at
which the matching is performed. Clearly these should can-
cel against the corresponding corrections in the high-energy
theory, so that the resulting shift is infra-red finite. In the
case that the theory contains no couplings of the form aP pq

or apqr the infra-red divergent corrections in δλ̃ are identi-
cal to those in δλ and so the subtraction is straightforward.
On the other hand, once we allow for these other types of
coupling the cancellation of infra-red divergences becomes
more subtle.

All-light trilinear scalar couplings apqr are forbidden in
the SM by the gauge symmetries, so in order to have such
a coupling the low-energy theory would need additional
scalars, but as we described in Sect. 2 we must forbid cou-
plings apqr in any model. However, in the presence of cou-
plings aP pq (which, for the low-energy theory being the SM,
means the high-energy theory contains either heavy singlets
or triplets) we generate a difference between λ̃ and λ at tree
level. This means that subtracting the low-energy δλpqrs

from the high-energy δλ̃pqrs is not entirely trivial, as we
shall see below. The low-energy amplitude δλpqrs coming
from scalar loops is given by

δλpqrs ⊃ κ

16
λpqxyλrsxy PSS(m

2
x ,m

2
y) + (pqrs), (3.1)

where the sum over x, y is over all light scalars. κ is a loop
factor defined in Eq. (A.4). PSS is defined with our other loop
functions in Appendix A; as we take ζ → 0 it diverges. We
will not write here the contributions from fermions, because

there is no tree-level shift to the Yukawa couplings; we show
in Appendices B.2.2 and C.1 that the cancellation of infra-
red divergences in the fermionic contributions to Yukawa and
quartic couplings is straightforward.

In the high-energy theory, there will be an identical con-
tribution to δλ̃pqrs , but

λpqrs = λ̃pqrs −
(

1

8m2
P
aP pqaPrs + (pqrs)

)
+ O(1-loop)

(3.2)

and on the other hand the corrections δaP pq , δm2
RS both con-

tain additional infra-red divergent pieces. Clearly these diver-
gences must cancel, and after a little tedious algebra (which
we present in Appendix C) it can be shown that indeed they
do. This then motivates using infra-red safe loop functions
PSS(x, y),C0(x, y, z), D0(x, y, z, u) given in the appendix,
which can be defined in terms of one of:

• Subtracting an infra-red divergent piece and taking the
limit as ζ → 0, e.g.

PSS(0, 0) ≡ lim
x→0

[
PSS(x, x) − log

x

M2

]
= 0.

• Taking the loop integral to only be over the “hard”
momenta, as described in Eq. (2.8).

• Regularising the infra-red divergences using dimensional
regularisation and discarding the divergent terms ∝ 1

εI R
.

We shall then write the infra-red safe shifts as δλ̃pqrs , δaP pq ,
δm2

PQ etc. All three definitions above do not necessarily give
the same result: there is some potential ambiguity about the
first method, because we can always add a constant piece to
the subtraction term. However, once we subtract the contri-
bution from amplitudes containing purely light fields, such
as the term δλpqrs in Eq. (2.18), then the difference is unam-
biguous. It is then convenient to take δλpqrs = 0, which is
indeed the result in dimensional regularisation, but may be
confusing to some readers.

Finally, we shall see in the next section that we must com-
pute δm2

P p and δZ pq , which in principle could contain infra-
red divergences. However, a divergence that is not trivially
equal to the same contribution in the low-energy theory could
only appear from a scalar loop, and the absence of the offend-
ing terms at one loop is guaranteed by forbidding couplings
of the formapqr . Hence we need make no distinction between
δm2

P p and δm2
P p, etc.

123
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3.2 Mixing

Here we shall derive the most obvious choice for the matrix
δU . Noting that the fields in the high-energy theory have
kinetic terms 1

2 (1+δZH )i j∂μ�i∂
μ� j , and in the low-energy

theory 1
2 (1 + δZL)pq∂μφp∂

μφq , we can make the identifi-
cation

� = (1 + δZH )−1/2R (1 + δZL)1/2φ ≡ U φ. (3.3)

To ensure that the transformation U connecting the high-
energy and low-energy fields is invertible, we retain the
“dummy” heavy fields {φP } in the low-energy set, see
Eq. (2.16), and define (δZL)pP = (δZL)P p = (δZL)PQ =
0 (note that the fields {φP } can eventually be disregarded,
as the general matching condition for λpqrs in Eq. (2.18)
depends only on UP p and Upq ). Here R = 1 + δR is a
unitary rotation, which we are free to introduce as it leaves
the kinetic terms unchanged. Taking the masses of the heavy
fields to be diagonal at tree level and expanding this just to
one-loop order we obtain

δU = −1

2
	Z + δR, 	Z ≡ δZH − δZL . (3.4)

With this transformation the kinetic terms will have the cor-
rect normalisation, but we must also choose δR to eliminate
the mass-mixing between heavy and light states: assuming
that we have diagonalised the masses at tree level (in the
end, we only require that we diagonalise the heavy masses
and remove light-heavy mixing) we have

0 =
(

− 1

2
	Z pP + δRpP

)
m2

p

+
(

− 1

2
	ZP p + δRP p

)
m2
P + δm2

P p (3.5)

where δm2
P p = P p(0), which, for vanishing light-scalar

masses, leads to

δRpP = −δRP p =
δm2

pP
m2
P

− 1

2
	Z pP (3.6)

and so

UpP = δm2
pP

m2
P

− 	Z pP , UP p = −δm2
P p

m2
P

. (3.7)

On the other hand, we have the freedom whether or not to
diagonalise the mass terms of the low-energy theory. We can
set δRpq = 0 so that

Upq = δpq − 1

2
	Z pq , (3.8)

and we will then have mass terms for the light fields of

LEFT ⊃ −1

2
(m2

pq + δm2
pq − m2

pr	Zrq)φpφq , (3.9)

where we allow now for non-diagonal masses for the light
fields at tree level. Since we are neglecting all terms of order
ζ in our calculations this is not a problem: it may be more
desirable to calculate all these terms from the high-energy
theory and then diagonalise the light fields only after elec-
troweak symmetry breaking. On the other hand, if we want
to diagonalise our light fields at zero expectation value for
the Higgs field then we require an extra rotation component
in δUpq : we would have

δUpq → − δm2
pq

m2
p − m2

q
+ m2

q	Z pq

m2
p − m2

q
.

Note that at two loops we would necessarily take the tree-
level “light” masses to be diagonal and of one-loop order,
but it is still not necessary to perform this extra diagonali-
sation before electroweak symmetry breaking. Alternatively,
we can add finite counterterms for these masses to ensure
that they are zero – and then we can simply use (3.8) again.

Up to one loop this gives

λpqrs = λ̃pqrs + δλ̃pqrs

+
[

− 1

8m2
P
aP pqaPrs − 1

4m2
P
aP pqδaPrs

+ 1

8m2
P

δm2
PQ

1

m2
Q
aP pqaQrs

− 1

6

δm2
P p

m2
P

(
λ̃Pqrs − 3

m2
Q
aPQqaQrs

)

− 1

12
	Z pp′

(
λ̃p′qrs − 3

m2
P
aP p′qaPrs

)

+ (pqrs)

]
. (3.10)

The term on the third line generalises the shift in rotation
angle in Two-Higgs-doublet models observed e.g. in [20,27,
60]. Complete expressions for the different terms in the above
equation are given in Appendix B.

3.3 Gauge dependence

Since we take all gauge groups to be unbroken in the limit
ζ → 0, we may expect that gauge couplings ought to induce
no net contribution to λpqrs . Indeed, if there are no trilinear
couplings in the theory, then this is immediately obvious: the
gauge contributions to δλ̃pqrs and δλpqrs are identical in this
case, because the unbroken gauge interactions cannot mix
heavy and light fields and certainly the corrections of quartic

123
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Fig. 1 Gauge-dependent diagrams with only light scalars/gauge bosons in the loops, which must contribute zero after infra-red regulation; heavy
fields are denoted with a thick line

order in the gauge couplings – i.e. the first row of diagrams in
Fig. 1 – must always be equal.3 For corrections of quadratic
order in the gauge couplings, the second row of diagrams
in Fig. 1 all contain only massless/light fields in the loops,
and so we expect them not to contribute. However, once we
include trilinear couplings, there are diagrams such as those
given in Fig. 2 which are individually non-zero after infra-
red regulation, and so it is possible that there could be some
residual dependence on the gauge couplings. However, this
cancels out, as we show below.

The individual infra-red safe contributions (it is straight-
forward to show that the infra-red divergences cancel) are

κ−1δg2 λ̃pqrs = −1

2
ξgapt gaqvatPr aPvsC0(m

2
t ,m

2
P ,m2

v)

+ (pqrs) = −1

2
ξgapt gaqvatPr aPvs

× A0(m2
P )

m4
P

+ (pqrs)

= −1

8
ξg2C2(P)aPrsaP pq

A0(m2
P )

m4
P

+ (pqrs),

κ−1δg2aP pq = −ξgaPT gaqnaT np PSS(m
2
T ,m2

n)

− ξgaPT gapnaT nq PSS(m
2
T ,m2

n)

= ξgaPT gaT N aN pq
A0(m2

T )

m2
T

3 On the other hand, there is a difference if we compute the corrections
in different schemes; if we match a theory in the DR

′
scheme onto

a theory in the MS one then there is a shift to the quartic couplings
of quartic order in the gauge couplings, see e.g. [10,64] for general
formulae.

= −ξg2C2(P)aP pq
A0(m2

P )

m2
P

,

κ−1δg2m2
PQ = −ξgaPT gaQT A0(m

2
T )

= −ξδPQg2C2(P)A0(m
2
P ), (3.11)

where g2 is the relevant gauge coupling and C2(P) is the
quadratic Casimir of the corresponding representation of
heavy field P . For each term we have used gauge invari-
ance to simplify the expressions. We see that all of these
contributions are proportional to the gauge-fixing parameter
ξ , which tells us that the total contribution must vanish; this
would not have been obvious if we had worked in the Feyn-
man gauge (but of course would be in the Landau gauge!).
Indeed, combining the above contributions as in eq. (3.10)
gives

δg2 λ̃pqrs −
[

1

4m2
P
aPrsδg2aP pq

− 1

8m2
Pm

2
Q
aPrsaQpqδg2m2

PQ + (pqrs)

]
= 0.

(3.12)

Hence we can indeed neglect gauge contributions at one loop,
as there is no gauge contribution to δm2

pP and δg2 ZH =
δg2 ZL . However, it is important to note that we require all
of the separate pieces together in order to cancel the gauge
dependence, which will be relevant in Sect. 4.
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Fig. 2 Gauge-dependent
diagrams with one heavy scalar
in the loop; heavy fields are
denoted with a thick line

3.4 Trilinear couplings and higher-dimensional operators

We end this section by considering the case of non-vanishing
trilinear couplings between light states, i.e. apqr = 0. Such
couplings result in new divergent diagrams compared to
the case considered in Appendix C (where we demonstrate
the cancellation of all IR divergences when apqr = 0).
Indeed, considering the different contributions appearing in
Eq. (3.10), one can observe that several divergent terms in
the high-energy part of the matching do not seem to cancel
out with any term in the low-energy part, namely

κ

{
−1

2
λ̃pqxYarxzasYz

PSS(m2
x ,m

2
z )

m2
Y

+ 1

2
apXYaqX zarYuaszu

PSS(m2
z ,m

2
u)

m2
Xm2

Y

− 1

4
aP pq λ̃Pr xyasxy

PSS(m2
x ,m

2
y)

m2
P

+ 1

2
aP pqaPX yarX zasyz

PSS(m2
y,m

2
z )

m2
Pm

2
X

− 1

12
aPxyapxy

[
λ̃Pqrs − 3

m2
Q
aPQqaQrs

]
PSS(m2

x ,m
2
y)

m2
P

− 1

2
apX yaqX zaryuaszu

PSS(m2
z ,m

2
u)

m4
X

+ (pqrs)

}
. (3.13)

Note that all these terms involve one, or two, trilinear cou-
plings between light scalars. Moreover, one may observe that
these remaining terms are all proportional to a PSS loop func-
tion – in some cases this PSS being obtained from the expan-
sion of aC0 or D0 function – while it can be shown that diver-
gent terms with C0(m2

x ,m
2
y,m

2
z ) or D0(m2

x ,m
2
y,m

2
z ,m

2
u) –

with all masses being light – do cancel out.
If we reason with orders of magnitude, it is natural to

assume that couplings aPqr and aPQr are of the order of a
heavy mass, say M , times numerical factors of O(1). From
this we can easily see that all of the above terms are of order
apqr/M (and even (apqr/M)2 for the last one). As we could
expect apqr to be of the order of a light mass (e.g. mp ∼ ζ ),
it would seem natural that the above terms be suppressed at
least as O(ζ/M) – and therefore also go to zero in the limit

ζ → 0. The finite part of the matching is then exactly the
same as that obtained previously.

However, one can still want to understand what happens if
the trilinear couplings between light states are not of the order
of ζ . Having very large trilinear couplings in the low-energy
theory could potentially cause a breakdown of perturbativity
and/or unitarity, as well as expectation values in the low-
energy theory of the order of the heavy masses. Nevertheless,
it is actually still possible in such a case to cancel all of the
IR divergences, by taking into account higher-dimensional
operators.

More specifically, one can deduce from the form of the
divergent terms in Eq. (3.13) that the required new oper-
ators are a dimension-5 operator cpqrst5 φpφqφrφsφt and a
dimension-6 operator k pqrs6 φpφq∂μφr∂

μφs (a correction to
the kinetic term of the scalars). The former will cancel out
with the first five lines of Eq. (3.13), while the latter com-
pensates the last remaining term.

3.4.1 Higher-dimensional operators in a toy model

To illustrate how to address the additional terms of Eq. (3.13),
it will prove useful to first consider a simple toy example,
with only two scalars – one light L and one heavy H – in the
high-energy theory. The Lagrangian of such a model reads

LHET ⊃ −1

2
m2

L L
2 − 1

2
m2

H H2 − 1

6
aLLL L

3

− 1

2
aLLH L2H − 1

2
aLHH LH2 − 1

6
aHHH H3

− 1

24
λ̃LLLL L

4 − 1

6
λ̃LLLH L3H

− 1

4
λ̃LLHH L2H2 − 1

6
λ̃LHHH LH3 − 1

24
λ̃HHHH H4

(3.14)

Performing the one-loop matching of the quartic coupling
λLLLL as previously, we obtain

λLLLL + δλLLLL = λ̃LLLL − 3

m2
H

(aLLH )2 + δλ̃LLLL

− 6aLLH
m2

H

δaLLH + 3(aLLH )2

m4
H

δm2
HH .

(3.15)
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(i) (ii) (iii) (iv) (v) (vi)

Fig. 3 Types of diagrams that contribute to the high-energy part of the matching of quartic couplings and that contain divergences only regulated
when including higher-dimensional operators in the low-energy theory. Bold lines denote heavy propagators

Fig. 4 Diagrams in the
high-energy theory that
contribute to the tree-level
expression of cLLLLL5 (or in

general of cpqrst5 ). Bold lines
denote heavy propagators

(a) (b)

The IR-divergent terms left on the right-hand side of the
matching are then

−κ

[
20

aLLHaLLL λ̃LLLH

m2
H

− 30
aLHH (aLLH )2aLLL

m4
H

+12
(aLLH )2(aLLL)2

m4
H

]
PSS(m

2
L ,m2

L), (3.16)

and correspond to the types of diagrams shown in Fig. 3
(recall that κ is the loop factor). One can expect the divergent
terms in Eq. (3.16) to correspond to diagrams in the EFT sim-
ilar to those in Fig. 3, but with the dashed lines correspond-
ing to heavy propagators contracted to points. In particular,
the low-energy diagrams corresponding to diagrams (i) and
(i i i) − (vi) in Fig. 3 will involve a coupling between five
scalars, while the diagram corresponding to (i i) will involve
a dimension-6 coupling between four scalars, suppressed by
m4

H . We define the corresponding operators as

LEFT ⊃ − 1

5!c
LLLLL
5 L5 − 1

4
kLLLL6 L2(∂μL)2 (3.17)

Before deriving the expressions of these two higher-
dimensional operators, it is important to note that they will
only appear in one-loop diagrams in the low-energy part of
the matching and therefore it will suffice for the discussion
at hand here to obtain their tree-level expressions. For the
dimension-5 coupling, two different sorts of diagrams con-
tribute to its tree-level expression, as shown in Fig. 4. We
find

cLLLLL5 = −10
aLLH λ̃LLLH

m2
H

+ 15
aLHH (aLLH )2

m4
H

. (3.18)

The dimension-6 operator is obtained from similar dia-
grams as the tree-level threshold corrections to λLLLL , but
taking the second order in the p2/m2

H expansion of the heavy

i

j

k

l

x

y

Fig. 5 New diagram in the low-energy theory part of the matching of
the scalar quartic coupling, involving a dimension-5 scalar operator

i

j

k

l

Fig. 6 New diagram involving a dimension-6 operator – denoted by a
black square – in the low-energy side of the one-loop matching

propagator. Finally, we find

kLLLL6 = − 2

m4
H

(aLLH )2. (3.19)

One can then compute the new contributions to δλLLLL

arising from diagrams involving cLLLLL5 and kLLLL6 – shown
respectively in Figs. 5 and 6 – and one finds
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κ−1δλLLLL ⊃ 2cLLLLL5 aLLL PSS(m
2
L ,m2

L )

+ 6kLLLL6 (aLLL)2[PSS(m2
L ,m2

L) − m2
LC0(m

2
L ,m2

L ,m2
L)

]
.

(3.20)

Note that the last term within parentheses in the above expres-
sion is regular in the limit mL → 0. Using the tree-level
expressions in Eqs. (3.18) and (3.19), we can rewrite these
contributions as

κ−1δλLLLL ⊃ −
[

20
aLLHaLLL λ̃LLLH

m2
H

− 30
aLHH (aLLH )2aLLL

m4
H

]
PSS(m

2
L ,m2

L)

− 12
(aLLH )2(aLLL)2

m4
H

[
PSS(m

2
L ,m2

L) + reg.
]
,

(3.21)

which exactly correspond to the divergent terms in Eq. (3.16).

3.4.2 Discussion of the dimension-5 operator for a general
theory

We now investigate the corresponding higher-order operators
in the context of the matching of generic theories. We denote
these two couplings as cpqrst5 and k pqrs6 , respectively, and we
define the corresponding Lagrangian terms as

LEFT ⊃ − 1

5!c
pqrst
5 φpφqφrφsφt

−1

4
k pqrs6 φpφq∂μφr∂

μφs . (3.22)

For both operators, we will first derive their (tree-level)
expression in terms of couplings of the high-energy the-
ory, before showing how their inclusion allows to cancel all
remaining IR divergences in the one-loop matching of the
quartic coupling.

We must first derive the tree-level expression of the new
dimension-5 scalar cpqrst5 operator that is generated in the
low-energy theory, by repeating the matching of effective
actions done in Eq. (2.15). Keeping now terms with five
scalars, the Lagrangian of the high-energy theory contains

Leff[�] ⊃ 1

12m2
P
aP pq λ̃Prst�p�q�r�s�t

− 1

8m2
Pm

2
Q
aP pqaPQr aQst�p�q�r�s�t + · · ·

(3.23)

Identifying this with the definition of c5 in Eq. (3.22), and
symmetrising the indices, we obtain for the tree-level match-
ing of c5

cpqrst5 = − 1

12m2
P
aP pq

[
λ̃Prst − 3

2m2
Q
aPQr aQst

]
+ (pqrst).

(3.24)

The dimension-5 operator gives rise to a new type of dia-
grams, shown in Fig. 5, contributing to the low-energy part of
the matching of the quartic couplings. The additional terms
in δλpqrs read

κ−1δλpqrs ⊃ 1

12
cpqrxy5 axys PSS(m

2
x ,m

2
y) + (pqrs)

= − 5

6m2
P
aP pqaxys

[
λ̃Pr xy − 3

2m2
Q
aPQr aQxy

]

× PSS(m
2
x ,m

2
y) + (pqrs). (3.25)

Using permutations of indices, it can be shown that the terms
in Eq. (3.25) match exactly the three first lines of Eq. (3.13).
Only the last term

−1

2
apX yaqX zaryuaszu

PSS(m2
z ,m

2
u)

m4
X

+ (pqrs),

is left, and has to be cancelled out by the dimension-6 operator
defined in Eq. (3.22).

3.4.3 Discussion of the dimension-6 operator for a general
theory

We start by deriving the (tree-level) matching condition for
this coupling, using once again the equations of motion for
the heavy fields, and we have

Leff[�] ⊃ 1

8

aP pqaPrs

m4
P

∂μ

(
�p�q

)
∂μ

(
�r�s

) + · · ·

= 1

2

aP praPqs

m4
P

�p�q∂μ�r∂
μ�s + · · · (3.26)

Matching the Lagrangians of the high- and low-energy theory
at tree level, we obtain

k pqrs6 = − 2

m4
P
aP praPqs . (3.27)

In turn, we find the following Feynman rule for the dimension-
6 coupling

p1

p2

p3

p4

i

j

k

l

= +ik pqrs6 p3 · p4 = − i

2
k pqrs6

[
(p3 − p4)

2 − p2
3 − p2

4

]
.
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The new type of diagrams in the low-energy theory that
will cancel the remaining divergence is shown in Fig. 6. From
these, we have a contribution to δλpqrs

κ−1δλpqrs ⊃ 1

4
k pqxy6 arxzasyz

(
PSS(m

2
y,m

2
z )

− m2
xC0(m

2
x ,m

2
y,m

2
z )

) + (pqrs)

= − 1

2m4
P
aP pxaPqyarxzasyz

(
PSS(m

2
y,m

2
z )

− m2
xC0(m

2
x ,m

2
y,m

2
z )

) + (pqrs), (3.28)

where for the second equality, we used the matching in
Eq. (3.27). The first term within parentheses in the Eq. (3.28)
exactly cancels the last divergent term in Eq. (3.13), while
the second term is regular in the limit m2

x → 0.

4 Non-minimal counterterm approach

In the derivation of Sect. 3.2 we used the running (MS or DR
′
)

parameters of the high-energy theory as inputs. However, we
may prefer to define our matching scale in terms of the loop-
corrected masses and mixings, for example in high-scale/split
SUSY cases we can typically choose to adjustm2

Hu
,m2

Hd
, Bμ

and also the Z -counterterms. In other words, we can allow
new finite corrections to the counterterms, which we denote
δct Z , δctm2:4


[�] = 1

2

(
δi j − ′

i j (0) + δct Zi j
)
∂μ�i∂

μ� j

− 1

2

(
m2

i δi j + i j (0) + δctm
2
i j

)
�i� j + · · · (4.1)

where we made use of the relations δZi j = −′
i j (0) and

δm2
i j = i j (0) to avoid confusion with the counterterms, and

the prime on ′
i j denotes the derivative of i j with respect

to the external momentum. We then make the definition

U ≡ NH RNL (4.2)

where NH , NL are not (necessarily) unitary, and R is unitary
– in Sect. 3 we had NH = 1 − 1

2δZH , NL = 1 + 1
2δZL (see

Eq. (3.3)). Wanting to diagonalise the masses of the heavy
states, and ensure all fields have correctly normalised kinetic
terms we have

NH
i ′i

(
δi ′ j ′ − HET ′

i ′ j ′ (0) + δct Zi ′ j ′
)
NH

j ′ j = δi j ,

RkPNH
i ′k

(
m2

i ′δi ′ j ′ + HET
i ′ j ′ (0) + δctm

2
i ′ j ′

)
NH

j ′l Rl j ≡ M2
PδP j .

(4.3)

4 We do not include the divergent parts of the counterterms in
δct Z , δctm2 as they have already been implicitly subtracted.

However, with the intention of using top-down information
on the new dimensionless couplings appearing in the HET
(since we cannot fix them from the bottom up, and since
they are often given by e.g. unification or symmetry rela-
tionships such as the relationship between the Higgs quartic
coupling and the gauge couplings in supersymmetric models)
we should maintain the use of MS (or DR

′
) values for them,

and so we should set δct Z = 0 as before; this also precludes
additional finite counterterms for the cubic and quartic terms.
Then at one-loop order

R = 1 + δR, RT = 1 − δR, U = 1 − 1

2
	Z + δR

and (dropping the HET on the self-energies when it is unam-
biguous)

M2
P = m2

P + m2
P′

PP (0) + PP (0) + (δctm
2)PP ,

0 = 1

2
′

P j (0)[m2
P + m2

j ] + P j (0)

+ δctm
2
P j + δRP j [m2

P − m2
j ], (4.4)

with no summation on repeated indices. We then have some
freedom to choose our mass counterterms to adjust δR. We
could choose δm2

i j so that δRi j = 0, but then we still have off-
diagonal contributions to U from the wave-function renor-
malisation. The most expedient choice seems to be to elimi-
nate the terms UPq (but not UpQ) via

δctm
2
Pq = −Pq(0) ⇒ δUPq = − m2

q

m2
P − m2

q

′
Pq(0).

(4.5)

For the light masses, the above equations do not determine
δRpq , and so we can take it to be zero and work in the flavour
basis (of course, any unitary rotation of the fields is equiva-
lent).5 In other words, once we set the light masses to zero,

UPq = 0, Upq = δpq − 1

2
	Z pq . (4.6)

This generalises the result for two Higgs doublets in [27].
Hence in the non-minimal counterterm approach, we can
eliminate the mixing term between the heavy and light states.
The result is:

λpqrs = λ̃pqrs + δλ̃pqrs

+
[

− 1

8m2
P
aP pqaPrs − 1

4m2
P
aP pqδaPrs

5 Since the light masses need tuning to remain small, we see that we
should either adjust the tree-level masses order by order in perturbation
theory, or take δctm2

pq = −HET
pq (0) + LET

pq (0).
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+ 1

8m2
P

(δm2
PQ + δctm

2
PQ)

1

m2
Q
aP pqaQrs

− 1

12
	Z pp′

(
λ̃p′qrs − 3

m2
P
aP p′qaPrs

)
+ (pqrs)

]
.

(4.7)

We then still have the choice of counterterm for δctm2
PQ. If

we take

δctm
2
PQ = 0 (4.8)

then we can evaluate (4.7) with g → 0 in all of the loop
corrections, but at the expense of including δm2

PQ. On the
other hand, we in principle also have the freedom to take
δctm2

PQ = −δm2
PQ but, as we have seen in the previous sec-

tions, this will spoil the cancellation of infra-red divergences
and gauge dependence. Indeed, if we set δctm2

PQ = −δm2
PQ

then we still have the problem of gauge invariance, and so
the simplest possible choice is

δctm
2
PQ = −δm2

PQ

∣∣∣∣
g→0

. (4.9)

The mass-squared quantities defined using this counterterm
choice do not have a simple physical interpretation (they
correspond neither to a running mass nor a pole mass) but
nevertheless will be the quantities that appear as the expan-
sion parameters, and could potentially be identified with the
matching scale; we also expect that it should be these quanti-
ties that are most useful beyond one-loop order, but we leave
the investigation of that to future work.

In this way, when calculating the quartic coupling in the
low-energy theory, we should take

λpqrs = λ̃pqrs

−
[

1

8m2
P
aP pqaPrs − 1

24
δλ̃pqrs

+ 1

4m2
P
aP pqδaPrs + 1

12
	Z pp′

× (
λ̃p′qrs − 3

m2
P
aP p′qaPrs

) + (pqrs)

]
g→0

. (4.10)

This is one of the main results of this work: we have a
prescription that eliminates mixing between light and heavy
degrees of freedom that can be applied in any model.

It can also be convenient to write the above explicitly for
the case of the low-energy theory being the SM, and where
the (neutral component of the) Higgs field H is complex with
interactions

LEFT ⊃ −λHH
HH

4
|H |4, LHET ⊃ − λ̃HH

HH

4
|H |4

− 1

2
aPHH�PH2 − 1

2
aHH
P �PH

2−aH
PH�P |H |2.

(4.11)

Note that when working with complex fields we use lowered
indices for a given field and raised indices for its complex
conjugate. We obtain for the matching

λHH
HH = λ̃HH

HH − 2

m2
P

(aHPH )2 − 1

m2
P
aPHHaHH

P

+
[
δλ̃HH

HH − 4

m2
P
aHPH δaHPH

− 1

m2
P

(aPHH δaHH
P + aHH

P δaPHH )

− 2	ZH
H

(
λ̃HH
HH − 2

m2
P

(aHPH )2 − 1

m2
P
aPHHaHH

P
)]

g→0
.

(4.12)

As a coda to this discussion, we note that another coun-
terterm choice that is available is to use pole masses for the
heavy states. This would have the advantage that standard
expressions could be used to define the counterterms, and it
would avoid the problems of infra-red divergences (at least
at one loop) and gauge dependence because the pole mass is
a well-defined quantity. Furthermore, if the heavy states had
masses not outside experimental reach (for example coloured
superpartners around 2 TeV) then we would be using physi-
cally measurable quantities. However, from an effective field
theory point of view this choice is less practical, because (1)
there would not be cancellations between the counterterms
and the terms in the effective potential (which are evaluated at
zero external momentum); (2) the loop functions containing
external momenta become much more complicated at one
loop, and the full set is not known analytically at two.

Finally, a more extreme counterterm choice would be to
use pole masses for all states, both light and heavy, with-
out taking the limit ζ → 0. This would technically remove
the problem of infra-red divergences, but replace it with a
practical one (the computations would become much more
cumbersome, with numerically large logarithms, unless the
limit of ζ → 0 were taken analytically, when they would
reduce to the expressions above).

5 Comparison with the pole matching approach

As mentioned in the introduction, an alternative approach to
matching quartic couplings in effective theories is to match
the pole masses of the light scalar fields; this method has
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recently been advocated as an efficient matching technique
in [56]. This is only really tractable when the low-energy
theory has scalars that do not mix with each other, and so if we
assume that the low-energy theory is the SM (or any extension
thereof without any additional scalars/gauge bosons), then
there is only one physical scalar mass, and then there is only
one equation to solve:

1

2
λSMv2

SM + 	M2
SM (m2

h) = m2
0 + 	M2

HET (m2
h), (5.1)

where: we define the quartic term in the SM Higgs potential
as λSM

4 |H |4 ; m0 is the tree-level Higgs boson mass in the
high-energy theory; 	M2

SM (m2
h) and 	M2

HET (m2
h) denote

the one-loop corrections to the Higgs mass in the SM and in
the high-energy theory, respectively, computed with external
momentum equal to the Higgs pole mass m2

h . Since we work
in the broken phase of the theory, the value for λSM extracted
in this way will be correct up to subleading terms of order
v2/M2. This approach has the advantage of requiring only
two-point functions, at the expense of requiring numerical
cancellations between large terms. Given that we described
several choices in Sects. 2, 3 and 4, it is interesting and
important to compare this calculation with our traditional
EFT approach so that we understand the results obtained via
the pole matching method.

To extract λSM , we can next perform a double expansion in
v as well as loop order, neglecting subleading terms, because
the EFT approach will only capture the leading terms in the
expectation values. So we write the threshold corrections for
all parameters gi as

gSMi = gHET
i + 	gi (g, λ, v, . . .). (5.2)

To extract the quartic coupling λ, we need thresholds for all
parameters that appear at tree-level in the Eq. (5.1), which
consists only of λ and v. The other important parameters
of the SM are then the gauge and Yukawa couplings; the
threshold corrections to these are only needed for running
(or e.g. for supersymmetric relationships) in the high-energy
theory but not for the extraction of λ at one-loop order
(whereas at two-loop order they are required). Nevertheless,
the one-loop gauge threshold corrections are given in B.1.3
and those to the Yukawas in B.2.2; alternatively the Yukawa
couplings can be extracted by pole-mass matching of the
quarks/leptons, under the assumption that the couplings are
real and diagonal.

To match v, we can match the pole mass of the Z -boson
and use the relation

m2
Z = 1

4
(g2

Y + g2
2)v2 + Z Z (m2

Z ). (5.3)

Then clearly we need Z Z and thresholds to gY and g2 to
determine the shift to v. So then

v2
SM = v2

HET + 4

g2
Y + g2

2

×
[
HET

Z Z (m2
Z ) − SM

Z Z (m2
Z ) − 1

4
v2(	g2

Y
+ 	g2

2
)

]

(5.4)

Now we can take the v = 0 expressions in 	g2
i

because they

already have a prefactor of v2. As we show in Appendix D,
these are given by

	g2
Y

+ 	g2
2

∣∣∣
v=0

= (g2
Y + g2

2)

[
HET ′

Z Z (0) − SM ′
Z Z (0)

]
v=0

.

(5.5)

For the self-energies we need to expand them to order v2,
which is equivalent to order p2:

Z Z (m2
Z ) = Z Z (0)

∣∣∣
v=0

+ v2
[
∂v2Z Z (0)

+ g2
Y + g2

2

4
′

Z Z (0)

]
v=0

+ · · · (5.6)

This then yields

v2
SM = v2

HET + 4

g2
Y + g2

2

[
HET

Z Z (0) − SM
Z Z (0)

]
+ O(v4).

(5.7)

In other words, we do not need the momentum dependence
of the gauge-boson self-energies. Note also that the self-
energies in Eq. (5.7) are not expanded in v2, in order to
retain the correct dependence on the O(v2) terms. Under
the assumption that there are no heavy gauge bosons being
integrated out, we need only consider heavy fermions and
scalars in the above, and the resulting shift in v is ultimately
independent of the gauge couplings.

Armed with this, we would now like to use the pole mass
approach to obtain the most efficient way of extracting the
EFT matching condition for λ, which means that we are inter-
ested in an ultimately infra-red safe expression (i.e. contain-
ing no large logarithms) and valid up to leading order in an
expansion in v – recall that v is of order ζ . Then the tree-level
Higgs mass m2

0 is of order ζ 2, and we see

	M2(m2
0) = 	M2(0) + m2

0
′
hh(0) + O(ζ 4). (5.8)
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Next, we need to solve the relation (5.1). This gives:

λSM = 2

v2
HET

[
m2

0

(
1 + [HET ′

hh (0) − SM ′
hh (0)]

)

− m2
0

m2
Z

[HET
Z Z (0) − SM

Z Z (0)]

+ [	M2
HET (0) − 	M2

SM (0)]
]
, (5.9)

Here m2
0 is a function of vHET (which is defined in terms of

the Z mass) but we could alternatively express the quantities
on both sides of Eq. (5.1) in terms of vSM which would yield
the same result. Now 	M2

SM (0) depends on λSM , so we will
need to solve the above relationship recursively (at one loop
this is one recursion). We know from the previous sections
that in general there will be a tree-level difference between
λSM and the quartic self-coupling of the Higgs in the high-
energy theory, and it is interesting to see how this arises.

First we need to divide the fields into three types: the index
1 for the Higgs, greek letters {α} for heavy (doublet) fields
that mix with the Higgs at zero expectation value, and capi-
tal roman letters {I, J, K , L} for heavy scalar fields that mix
with the Higgs only after EWSB6; in the previous (and sub-
sequent) sections we had {α} ⊂ {P}, {I, J, K , L} ⊂ {P} as
we did not need to explicitly distinguish between the set {α}
and {I, J, K , L}, but in this approach it becomes important.
As before, though, we do not need to explicitly discuss fields
that never obtain an expectation value or mix with the Higgs
(such as squarks and fermions etc.). Then the allowed scalar
couplings (under gauge symmetries) are

{aI11, aI1α, aIαβ, aI J K , λ̃1111, λ̃α111, λ̃αβ11,

λ̃αβγ 1, λ̃αβγ δ, λ̃I J11, λ̃I Jα1, λ̃I Jαβ, λ̃I J K L}. (5.10)

In the pole-mass approach, the expectation values of fields
are usually treated as fixed, with chosen dimensionful param-
eters being fixed by the tadpole equations order by order in
perturbation theory. We can rotate all of the doublets so that
only one has an expectation value and

vα = 0.

In any theory of many Higgs doublets, such as the
MSSM/THDM, this choice corresponds to the so-called
“Higgs basis”, but in the presence of singlets/triplets this
is no longer the case, since the expectation values of the lat-
ter cannot be just rotated away. This basis is not commonly
used in the practical calculation but it will greatly simplify
our analysis, in particular because non-alignment effects only
appear at higher order in v1.

6 Elsewhere we use {I, J, K , L} for fermions: in this section we do not
have explicit fermion indices so there should hopefully be no confusion.

Now we wish to derive 	M2
HET (0), which can be

obtained by taking derivatives of the effective potential, and
expand it to orderO(v2

1). First we split the one-loop effective
potential into a supertrace over heavy and light fields:

V (1) ≡ V
(1) + V (1)

I R ,

V
(1) ≡

∑
i∈heavy fields

1

4
(−1)2si (2si + 1)m4

i (logm2
i − 3/2)

(5.11)

(where si is the spin of the field). V
(1)

is regular as v1 →
0, whereas V (1)

I R has infra-red divergences in its second and
higher derivatives. Hence we next expand only the derivatives

of V
(1)

in the tadpole equations as a series in v1 and vI . To
this end we define

	Vi1···in ≡ κ
∂nV

(1)

∂�i1 · · · ∂�in

∣∣∣∣∣
�i=0,vi=0

,

	V I R
i1···in ≡ κ

∂nV (1)
I R

∂�i1 · · · ∂�in

∣∣∣∣∣
�i=vi ,v1 =0

. (5.12)

We work in the basis after any shifts of the parameters (2.3) –
but, crucially, such shifts are made before electroweak sym-
metry breaking, so in all cases vI will be nonzero but small
after electroweak symmetry is broken. In this notation the
expansions of the tadpole equations become:

0 = 	V I R
1 + m2

11v1 + aI11v1vI + 1

6
λ̃1111v

3
1

+ 1

2
λ̃11I Jv1vI vJ + 	V11v1 + 	VI11vI v1

+ 1

6
	V1111v

3
1 + · · ·

0 = 	V I R
α + m2

α1v1 + aIα1v1vI + 1

6
λ̃α111v

3
1

+ 1

2
λ̃α1I Jv1vI vJ + 	Vα1v1 + 	VIα1vI v1

+ 1

6
	Vα111v

3
1 + · · ·

0 = 	V I R
I + tI + 	VI + m2

I JvJ + 1

2
aI J K vJvK

+ 1

2
aI11v

2
1 + 1

2
λ̃I J11vJv

2
1 + 1

6
λ̃I J K LvJvK vL

+ 	VI JvJ + 1

2
	VI J K vJvK + 1

2
	VI11v

2
1

+ 1

2
	VI J11vJv

2
1 + 1

6
	VI J K LvJvK vL + · · · (5.13)

Although we have not expanded the derivatives of VI R , we
know that V (1)

I R ∼ O(ζ 4) so 	V I R
1 ∼ O(ζ 3) and 	V I R

11 ∼
O(ζ 2), so we will not need to. We must now understand how

123



Eur. Phys. J. C (2019) 79 :669 Page 17 of 34 669

to treat the expectation values vI – recall that these are really
the differences between the singlet expectation values and
their values at v1 = 0. Firstly we can solve the third equation
for

m2
I vI = −

[
1

2
aI11v

2
1 + 1

2
	VI11v

2
1 + 	VI JvJ

+
∑
J =I

m2
I JvJ + tI + 	VI + 	V I R

I + · · ·
]
, (5.14)

where we write m2
I ≡ m2

I I , singling out the diagonal ele-
ment, since at tree level and for v1 = 0 we take m2

I J to be
diagonal, and thus m2

I J is of subleading order for I = J .
Now, depending on our treatment, we have

tI =
{

0 Possibilities 1 and 3
−	VI Possibilities 2 and 4

In other words, recalling that 	V I R
I ∼ O(ζ 3) we find that

vI = − 1

m2
I

(tI + 	VI ) + O(v2
1/M) + O(2-loop).

Note that for triplets tI = 	VI = 0 whatever the option. This
means there is no ambiguity in the definition of vHET = v1

in (5.4), since the corrections to the Z mass from triplets will
be of subleading order compared to that from doublets and
can be neglected.

Now we must consider the mass matrices, and perturba-
tively determine them both to one-loop order and to order
v2

1. Since we are interested in 	M2
HET (0) we just need the

second derivative of the effective potential

M2
i j ≡ ∂2

∂vi∂v j
[V (0) + κV (1)] (5.15)

so we have

(M2)11 = m2
11 + 	V11 + 	V I R

11 + 1

2
λ̃11I JvI vJ

+ (aI11 + 	VI11)vI + 1

2
(λ̃1111 + 	V1111)v

2
1 + · · ·

= 1

3
(λ̃1111 + 	V1111)v

2
1 + 	V I R

11

− 1

v1
	V I R

1 + O(v3
1), (5.16)

as we would expect. For the other doublets,

(M2)α1 = 1

3
(λ̃α111 + 	Vα111)v

2
1 + 	V I R

α1 − 1

v1
	V I R

α + · · ·
(5.17)

which will not contribute to the mass of the lightest eigen-
value at order v2

1 ∼ ζ 2, and so they can be neglected, as

claimed. Finally,

(M2)I1 = (aI11 + 	VI11)v1 + 	V I R
I1 + λ̃I J11vJv1 + · · ·

(M2)I J = m2
I δI J + 	VI J + 	V I R

I J + aI J K vK + O(v1)

(5.18)

Then the result for the mass shift (after performing a double
expansion in v and loop order) is

m2
0 + 	M2

HET (0) = (M2)11 − ((M)2
I1)

2

m2
I

+ (M)2
I1(M)2

J1

m2
I m

2
J

(	VI J + 	V I R
I J + aI J K vK )

+ O(v3
1) + O(2-loop)

= v2
1

[
1

3
(λ̃1111 + 	V1111) − a2

I11

m2
I

− 2aI11	VI11

m2
I

+ aI11aJ11	VI J

m2
I m

2
J

]

− v2
1

m2
K

(tK + 	VK )

[
− 2aI11λ̃I J11

m2
I

+ aI11aJ11aI J K
m2

I m
2
J

]

+ 	V I R
11 − 1

v1
	V I R

1 − 2aI11v1	V I R
I1

m2
I

+ aI11aJ11v
2
1	V I R

I J

m2
I m

2
J

+ O(v3
1) + O(2-loop). (5.19)

The equivalent expression in the low-energy theory is of
course just

1

2
λSMv2

SM + 	M2
SM (0) = 1

3
v2
SMλ1111

+ 	V SM
11 − 1

vSM
	V SM

1 , (5.20)

where 	V SM
1 ,	V SM

11 are the first and second derivatives of
the Standard Model effective potential, and it is important to
note that they are not equal to 	V I R

1 ,	V I R
11 in the presence

of aI11 terms. This leads to

λSM = 2

3
λ1111. (5.21)

Next we can see that

	V I R
11 − 1

v1
	V I R

1 − 2aI11v1	V I R
I1

m2
I

+ aI11aJ11v
2
1	V I R

I J

m2
I m

2
J

− 	V SM
11 + 1

v1
	V SM

1 = O(v3
1) + O(2-loop). (5.22)

and so we can identify the derivatives of the one-loop con-
tribution to the effective potential with corrections to the dif-
ferent couplings, i.e.

	V1111 → δλ̃1111, 	VI11 → δaI11, 	VI J → δm2
I J .

(5.23)

123



669 Page 18 of 34 Eur. Phys. J. C (2019) 79 :669

The result for matching λ1111 becomes

λ1111 = λ̃1111 − 3
a2
I11

m2
I

+ δλ̃1111

− 6aI11δaI11

m2
I

+ 3
aI11aJ11δm2

I J

m2
I m

2
J

+ (tK + 	VK )

[
6aI11λ̃I J11

m2
I m

2
K

− 3aI11aJ11aI J K
m2

I m
2
Jm

2
K

]

−
(

λ̃1111 − 3
a2
I11

m2
I

)(
	Z11

+ 1

m2
Z

[HET
Z Z (0) − SM

Z Z (0)]
)

. (5.24)

Next, it can be shown that7

1

m2
Z

[HET
Z Z (0) − SM

Z Z (0)] = 	Z11 + O(v2) (5.25)

and we conclude that the pole-mass calculation is equivalent
to the EFT calculation with the counterterm choices (4.5) for
the heavy-light mixing and (4.8) for the heavy masses. This
agrees with the result found in the MSSM in [60] where it was
found that the classic PBMZ calculation of the Higgs mass
[68] yields a result equivalent to including a counterterm for
the rotation angle between the fields such as used in [20].

Furthermore, we find that it is straightforward to make
a connection between the pole mass matching and the EFT
approach for the treatment of the singlet expectation values:
the third line in Eq. (5.24) vanishes for options 2 or 4 for the
singlet tadpoles, and gives exactly the shifts (2.12) for option
3, where tK = 0. This was not necessarily obvious, since the
definitions are subtly different (in the pole matching proce-
dure, the conditions are specified at v1 = 0). Note that the
treatment of the singlet tadpoles in the pole-mass matching
approach is commonly chosen to be option 4.

5.1 Efficient computation of the matching

Since it is typically simpler to compute two-point functions,
it is to be expected that the pole-mass matching procedure
should be easier to implement than a conventional calcula-
tion. However, there remains the problem of efficiently sub-
tracting the large logarithmic terms. The above derivation
shows us that the calculation (5.9) can be simplified to

λSM = 2

v2
HET

[
m2

0(1 − 2	Z11) + 	̂M2
HET (0)

]
, (5.26)

7 For example, this can be shown either explicitly at one loop using the
expressions in the appendix, or using the Ward identities (29) and (30)
from [65]; see also (3.10) from [66] and D.11 from [67].

where 	Z11 is computed at zero external momentum with
all light masses set to zero; the second term is defined with a
hat to mean that we drop all terms which contain only light
masses, and for remaining terms (of the type PSS(m2

P ,m2
p),

etc.) we set all logarithms of light masses logm2
p → 0. Fur-

thermore, we can also set the gauge contributions to zero.
However, we must also take care with the gauge depen-

dence in the presence of heavy triplet scalars (such as in Dirac
gaugino models). In that case, if we set the gauge contribu-
tions to zero in the matching, then we must also set them
to zero in the heavy tadpole relationship between m2

I and
vI (5.14) – otherwise we will reintroduce gauge dependence
into the result.

6 Examples

6.1 Pole matching in the MSSM

The calculation in Sect. 5 is perhaps couched in unfamiliar
terms, so it is useful to present the standard example of split
or high-scale supersymmetry, where the MSSM scalars are
heavy and, when integrated out, yield a scalar sector that
is just that of the SM, so ideal for application of the pole
matching procedure.

The relevant part of the scalar sector consists of two com-
plex fields H0

u , H0
d that mix and have as potential prior to

electroweak symmetry breaking

V (0) = (m2
Hu

+ |μ|2)|H0
u |2 + (m2

Hd
+ |μ|2)|H0

d |2

− (BμH
0
u H

0
d + h.c.) + g2

Y + g2
2

8
(|H0

u |2 − |H0
d |2)2.

(6.1)

After electroweak symmetry breaking we give expectation
values to both fields of 〈H0

u 〉 ≡ v√
2

sin β, 〈H0
d 〉 ≡ v√

2
cos β,

and we take CP to be conserved so that the neutral SM
Higgs boson comes from the mixing of the scalar compo-
nents. Solving the one-loop tadpole equations for m2

Hu
,m2

Hd
the tree-level Higgs mass matrix for the real components
hu,d ≡ √

2Re(H0
u,d), writing tβ ≡ tan β etc., is

M2
0 =

(
Bμtβ + 1

4 (g2
Y + g2

2)v2c2
β −Bμ − 1

8 (g2
Y + g2

2)v2s2β

−Bμ − 1
8 (g2

Y + g2
2)v2s2β

Bμ

tβ
+ 1

4 (g2
Y + g2

2)v2s2
β

)
.

(6.2)

The contributions of the heavy particles to the one-loop cor-
rections to the mass matrix at zero external momentum can
be obtained from the derivatives of V

(1)
, see Eq. (5.11), com-

puted at the minimum of the potential:
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[
	̂M2(0)

]
i j

= κ
∂2V

(1)

∂hi∂h j

∣∣∣∣
min

− κ
δi j

vi

∂V
(1)

∂hi

∣∣∣∣
min

, (i, j = u or d).

(6.3)

In order to obtain the correction to the quartic coupling from
Eq. (5.26), we expand to O(v2) the corrections to the mass
matrix. To this effect, we define a derivative along the direc-
tion of h

∂

∂h
≡ sβ

∂

∂hu
+ cβ

∂

∂hd
, (6.4)

and we obtain:

	̂M2(0) =
(

−Vud tβ Vud
Vud − Vud

tβ

)

+ v2

3

(
Vddhh Vudhh
Vudhh Vuuhh

)

+ v2

6

(
−Vudhhtβ Vudhh
Vudhh − Vudhh

tβ

)
+ O(v4), (6.5)

where we introduced the following abbreviations for the

O(v0) parts of the derivatives of V
(1)

:

Vi j ≡ κ
∂2V

(1)

∂hi∂h j

∣∣∣∣
v=0

min
,

Vi jhh ≡ κ
∂4V

(1)

∂hi∂h j (∂h)2

∣∣∣∣
v=0

min
, (i, j = u or d). (6.6)

Note that, in the above, all contributions with an odd number
of derivatives of V

(1)
vanish for v = 0 because the one-loop

corrections to the potential only contain terms with even pow-
ers of the Higgs fields. Rotating the combined mass matrix
to the Higgs basis, we see that both the O(v0) and the second
of the O(v2) terms in the one-loop corrections will cancel
out in the correction to the Higgs mass. From the remaining
O(v2) terms from Eq. (6.5), we find that the correction to the
Higgs boson mass in the MSSM is

	̂M2
HET (0) = v2

3

[
s2
βVuuhh + 2sβcβVudhh + c2

βVddhh

]
+ O(v4)

= v2

3

(
sβ

∂

∂hu
+ cβ

∂

∂hd

)4

V
(1) + O(v4). (6.7)

Inserting this into Eq. (5.26), and noting that in the MSSM
there are no trilinear couplings involving only the Higgs
bosons, we find

λSM = 2

3
(λ̃1111 + δλ̃1111) − 4

3
	Z11λ̃1111 + O(v2/M2)

(6.8)

where

λ̃1111 = ∂4V (0)

∂h4 = 3

4
c2

2β(g2
Y + g2

2),

δλ̃1111 = ∂4V
(1)

∂h4 + 	regλ̃1111. (6.9)

	regλ̃1111 is a shift due to changing between the DR
′
and MS

schemes, given e.g. in [20] or the general expressions in [64].
We have checked that, when using the general formulae in the
appendix for the self-energies and derivatives of the one-loop
effective potential, we can reproduce the matching condition
from [20] – after accounting for the different definitions of
the electroweak gauge couplings in the tree-level part.

The above illustrates the equivalence between the pole-
matching procedure and the EFT calculation for the MSSM
matching to the SM, and is much simpler than an explicit
term-by-term derivation in e.g. [56].

6.2 Dirac gauginos

In the context of matching a heavy theory onto the SM,
Dirac gaugino models are particularly interesting because
they contain both singlet and triplet scalars, which are the
most general possibilities for the presence of a coupling
aI11 at O(ζ 0) with a SM doublet: SU (2) gauge invari-
ance forbids other representations (although in the most
general case we would also be allowed triplets carrying
hypercharge ± 1). Moreover, in many scenarios a hierar-
chy between the singlet/triplet states and the Higgs is nat-
ural, which comes from a large Dirac gaugino mass, so an
EFT approach to the Higgs mass calculation is particularly
appropriate. Indeed first attempts were made in this direc-
tion in [21,22,26]; in [21,22] a Dirac-gaugino model was
matched onto the SM – without (most) threshold corrections
– while in [26] the Minimal Dirac Gaugino Supersymmet-
ric Standard Model (MDGSSM) and Minimal R-symmetric
Supersymmetric Standard Model (MRSSM) were matched
onto the THDM, giving one-loop threshold corrections in
the limit that the Dirac gaugino masses were small. Here
we shall consider the one-loop threshold corrections of the
MDGSSM matching onto the SM plus higgsinos in the limit
that the Dirac gaugino masses are large.

Using the conventions and choices of [26] where we take
an approximate R-symmetry to hold, the theory consists of
the MSSM superfields plus additional adjoint chiral super-
fields, namely a (complex) singlet S, a triplet of SU (2) T
and an octet of SU (3) O, all having no hypercharge, and
superpotential

WHiggs = μHu · Hd + λSSHu · Hd + 2λT Hd · THu

(6.10)
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in addition to the usual Yukawa coupling terms. These are
supplemented by standard soft terms

Lstandard soft = −m2
Hu

|Hu |2 − m2
Hd

|Hd |2
− Bμ(Hu · Hd + h.c)

−
(

1√
2
tS S + h.c.

)
− m2

S|S|2 − 2m2
T tr(T †T )

− 1

2
BS

(
S2 + h.c

)
− BT (tr(T T ) + h.c.)

− m2
O |O|2 − BO (tr(OO) + h.c.) , (6.11)

as well as supersoft operators mDiθ
α for Dirac masses

∫
d2θ

[√
2mDY θαW1αS + 2

√
2mD2θ

αtr (W2αT)

+2
√

2mD3θ
αtr (W3αO)

]
, (6.12)

where Wiα are the gauge field-strength superfields. We shall
take for simplicity μ � M ∼ mDi ∼ √

Bμ, which also
requires tS � M3, and assume that CP is conserved. We
shall also neglect any trilinear soft terms such as S3, ST 2

(even though these are not forbidden by any symmetry) both
for simplicity, and because they are typically found to be very
small in gauge mediation scenarios [69].

As stated above, this model has almost all of the inter-
esting ingredients that differentiate it from the MSSM in the
matching: the singlet S and the triplet scalars T split into
scalar and pseudoscalar pieces

S = 1√
2
(vS + SR + i SI ), T a = 1√

2
(T a

P + iT a
M ) (6.13)

with masses

m2
SR = m2

S + BS + 4m2
DY , m2

SI = m2
S − BS, (6.14)

m2
T P = m2

T + BT + 4m2
D2, m2

T M = m2
T − BT . (6.15)

The neutral scalar component of the triplet T 0
P and the scalar

component of the singlet SR can then mix with the light Higgs
after electroweak symmetry breaking. Hence both these
fields have trilinear couplings with the light Higgs of the form
aI11: working in terms of complex fields H ≡ 1√

2
(h + iG0)

where h is the neutral Higgs and G0 the would-be Goldstone
boson (there is no expectation value because we work in the
basis before electroweak symmetry breaking), we have

aSRHH = −gYmDY c2β

a
T 0
P H

H = g2mD2c2β. (6.16)

The triplet cannot obtain an expectation value before elec-
troweak symmetry breaking. However, while at tree level

we can take the singlet to have no expectation value, at one
loop there is an unavoidable tadpole and the quantum tadpole
equation becomes

0 = m2
SRvS + tS + δtS, (6.17)

where as before tS is the tree-level tadpole (which we are
assuming is small). The simplest option to deal with this is to
adjust the (supersymmetry-breaking) tadpole term to ensure
that vS = 0. Indeed, if we are working in a model where
parameters such as the singlet tadpole and sfermion masses
are not specified from the bottom up, then this is acceptable.
However, in other cases we must choose one of the options 3
or 4 from Sect. 2.3. If we take option 3 (i.e. we take vS � 0 to
be the VEV of the tree-level potential), then since we neglect
μ the only important cubic coupling is aHSRH , where H is the
neutral component of the heavy Higgs doublet:

L ⊃ −gYmDY s2β SR(HH + HH). (6.18)

Then the mass mixing term becomes

(δm2)HH → (δm2)HH + gYmDY s2β

δtS
m2

SR

. (6.19)

This potentially provokes a change in tan β. However, this
shift is simply absorbed into the counterterm if we use the
choice (4.5). For the shifts to cubic couplings, we note that
there is no quartic coupling λ̃HH

SRH
or λ̃H

SRHH , but there is a

coupling λ̃H
SRSRH

= λ2
S , therefore

aSRHH → − gYmDY c2β − λ2
S

δtS
m2

SR

(6.20)

and finally we find that our expression for the Higgs quartic
is

λHH
HH = (1 − 2δZH

H )

(
1

2
(g2

Y + g2
2)c2

2β + (λ2
S + λ2

T )s2
2β

)

− 2c2
2β

(
g2
Ym

2
DY

m2
SR

(
1 − δm2

SR

m2
SR

)
+ g2

2m
2
D2

m2
T P

(
1 − δm2

T P

m2
T P

))

+ δλ̃HH
HH − 4

m2
SR

aSR HH δaSRHH − 4

m2
T P

a
T 0
P H

H δa
T 0
P H

H

− 4
c2βλ2

SgYmDY

m4
SR

δtS − κ

2
(g2

Y + 3g2
2 + 2g2

Y g
2
2). (6.21)

The final term accounts for the conversion from DR
′
to MS:

all of the quantities on the right hand side are expressed in
terms of DR

′
values. The expressions for all of the loop quan-

tities are given in Appendix E. Note that if we used option
2 from Sect. 2.3 then we would obtain the same result but
with δtS = 0. On the other hand, if we use option 4 then
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the above shift (6.19) in (m2)HH is automatically transferred
into the definition of tan β. However, we must treat vS to be
small and non-vanishing, and thus we would need to com-
pute all of the loop functions with modified couplings (which
would not affect the quartics, but would affect the cubic cou-
plings, fermion masses etc.). Since we still treat tS as small,
however, we can regard vS as being of one-loop order, and
we obtain exactly the same result as (6.21) once we identify
vS = − δtS

m2
SR

.

7 Comparing two approaches to mixing-angle
renormalisation

A last useful illustration of our results is to compare for a
simple toy model the “perturbative” and “non-minimal coun-
terterm” approaches to the renormalisation of the mixing
between light and heavy states.

We therefore consider a model of 3 scalars, two of them
mixing that we call h1, h2 and a third scalar S that does not
mix with the other two. We also define two Z2 symmetries:
Z
A
2 under which h1, h2 are charged andZB

2 under which only
S is charged, i.e.

(h1, h2, S)
Z
A
2−→ (−h1,−h2, S) and

(h1, h2, S)
Z
B
2−→ (h1, h2,−S). (7.1)

With these symmetries, the most general Lagrangian is

L = 1

2

(
∂μhi

)2 + 1

2

(
∂μS

)2 − 1

2
m2

i j hi h j − 1

2
m2

S S
2

− 1

24
λ̃i jklhi h j hkhl − 1

4
λ̃i j SShi h j S

2 − 1

24
λ̃SSSS S4.

(7.2)

We define new mass-diagonal states h, H and rewrite the
Lagrangian as

L = 1

2

(
∂μh

)2 + 1

2

(
∂μH

)2 + 1

2

(
∂μS

)2

− 1

2
m2

hh
2 − 1

2
m2

H H2 − 1

2
m2

S S
2

− 1

24
λ̃hhhhh4 − 1

6
λ̃hhhHh3H − 1

4
λ̃hhHHh2H2

− 1

6
λ̃hHHHhH3 − 1

24
λ̃HHHH H4

− 1

4
λ̃hhSSh2S2 − 1

2
λ̃hHSShHS2

− 1

4
λ̃HHSSH2S2 − 1

24
λ̃SSSS S4. (7.3)

We will consider that H and S are heavy fields and we will
consider the matching of the quartic coupling λhhhh of the
light scalar h in the low-energy theory.

7.1 “Perturbative masses” approach

We first derive the matching relation for λhhhh in the “pertur-
bative masses” approach, as described in Sect. 3. The absence
of trilinear couplings in this toy model simplifies greatly the
expressions of the matching condition – see Eq. (3.10) – and
of the different terms contributing to it. Using the general
results given in Appendix B, we obtain the following IR-safe
contributions for the relevant terms

δZi j = 0 ∀i, j ∈ {h, H, S},
κ−1δm2

hH = 1

2
λ̃hHHH A0(m

2
H ) + 1

2
λ̃hHSS A0(m

2
S),

κ−1δλ̃hhhh = 3

2
(λ̃hhHH )2PSS(m

2
H ,m2

H )

+ 3

2
(λ̃hhSS)2PSS(m

2
S,m

2
S) + 3(λ̃hhhH )2PSS(0,m2

H ).

(7.4)

The matching condition we find is then

λhhhh = λ̃hhhh + 3

2
κ

[
(λ̃hhHH )2PSS(m

2
H ,m2

H )

+ (λ̃hhSS)2PSS(m
2
S,m

2
S) + 2(λ̃hhhH )2PSS(0,m2

H )

]

− 2κ
λ̃hhhH

m2
H

[
λ̃hHHH A0(m

2
H ) + λ̃hHSS A0(m

2
S)

]
.

(7.5)

7.2 “Non-minimal counterterm” approach

We may instead choose to use the modified scheme presented
in Sect. 48 to simplify the matching relation by eliminating
the mixing term between light and heavy states δm2

hH – see
in particular Eq. (4.5). In this modified scheme, the one-loop
matching condition becomes

λhhhh = λ̃hhhhc.t. + 3

2
κ

[
(λ̃hhHH

c.t. )2PSS(m
2
H ,m2

H )

+ (λ̃hhSSc.t. )2PSS(m
2
S,m

2
S) + 2(λ̃hhhHc.t. )2PSS(0,m2

H )

]

(7.6)

The subscript “c.t.” on the couplings in the high-energy
theory indicates that these are computed in this non-minimal
counterterm scheme. Indeed the masses and the mixing angle
between h and H are modified in the counterterm scheme,
which in turn changes the couplings. If the rotation matrix

8 Note that in Sect. 4, we discussed the choice of counterterm for the
heavy masses, however, as there are no trilinear couplings in this model
we do not need to worry about this here for the matching condition for
the quartic coupling.
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Fig. 7 Quartic coupling λhhhh between four light states obtained after
integrating out the heavy scalars H and S, as a function of λ1122. Dashed
curves show the results obtained at tree level – i.e. λhhhh = λ̃hhhh –
in the “perturbative” (light-red) and “non-minimal counterterm” (blue)
schemes, while solid and dot-dashed curves are the results at one-loop
order in the two schemes – found using Eqs. (7.5) and (7.6). For the val-
ues in the “counterterm” scheme, the (blue) solid and dot-dashed curves
differ by the choice of couplings used in the one-loop corrections (see
Eq. (7.6)): the dot-dashed line corresponds to using couplings computed
in the standard “perturbative” approach at one loop, and the solid one
corresponds to using couplings computed in the modified scheme. The
difference between these two choices is formally a two-loop effect

that diagonalises the matrix m2
i j in the “perturbative masses”

approach is denoted R ≡ R(βpert) – i.e. Rii ′m2
i ′ j ′ R

T
j ′ j =

[diag(m2
h,m

2
H )]i j – then the modified mixing angle is found

by diagonalising the matrix

RT
(

m2
h δm2

hH
δm2

hH m2
H

)
R. (7.7)

Once we have this modified angle, we can compute couplings
in the non-minimal counterterm scheme. Note however that
as λ̃hhHH

c.t. , λ̃hhSSc.t. , and λ̃hhhHc.t. only appear in the one-loop
correction in Eq. (7.6), the change of scheme for these cou-
plings is only a two-loop effect in the matching – and only
the change in λ̃hhhhc.t. is relevant at one-loop order.

7.3 Numerical example

To compare the different results obtained in the “perturba-
tive” and “non-minimal counterterm” schemes, we consider
the parameter points defined – in the non-diagonal basis of
Eq. (7.2) – as

m2
11 = (100 GeV)2, m2

12 = (400 GeV)2,

m2
22 = (2000 GeV)2, m2

S = (5000 GeV)2,

λ1111 = 1, λ1112 = 2, λ1122 ∈ [−4, 4],
λ1222 = 1.5, λ2222 = 0.5,

λ11SS = 0, λ12SS = 3.5, λ22SS = 0. (7.8)

In the above inputs, we have chosen a small value for m2
12

with respect tom2
22 in order to have a small mixing between h

and H at tree level in the “perturbative” scheme, and we have
also taken large values for m2

S and λ12SS (and thus λhHSS)
to maximise the effect of the off-diagonal loop-level mixing
term proportional to δm2

hH in Eq. (7.5). Moreover, from the
mass parameters in Eq. (7.8), we can derive the mass eigen-
values to be mh = 60 GeV and m2

H = 2002 GeV, indeed
ensuring that our EFT approach of integrating out the heavy
mass eigenstate H and the additional scalar S is valid. We will
consider that the input values given in Eq. (7.8) are defined
at renormalisation scale equal to mH .

Figure 7 shows the values that we find for λhhhh respec-
tively in the “perturbative” (light-red curves) and the “non-
minimal counterterm” (blue curves) schemes, at tree level
(dashed lines) and one-loop level (solid lines), as a function
of the coupling λ1122 of the non-diagonal basis. At tree level,
one can observe a large difference between the quartic cou-
plings obtained in the two schemes. This can be understood
because the mixing between h and H is small at tree level,
but the loop-level mixing δm2

hH is large, therefore the rela-
tive effect of the loop-induced mixing is large and the mixing
angle is modified significantly between the two schemes.

At one-loop, we see that the loop corrections are much
larger in the “perturbative” scheme than the “non-minimal
counterterm” scheme; again, this comes from the fact that
the loop-level mixing term – proportional to δm2

hH – is large
for the parameter points we considered. However, while the
loop corrections differ in magnitude, the one-loop results for
λhhhh in the two approaches are close. The differences that
appear for increasing λ1122 can be interpreted as indications
of the importance of two-loop corrections. A simple way to
estimate the typical size of the two-loop corrections to the
matching is to compute the matching relation (7.6) using
for the couplings appearing in the one-loop terms the values
obtained in the “perturbative” scheme – i.e. we use Eq. (7.6)
with λ̃hhhhc.t. , λ̃hhHH , λ̃hhSS , and λ̃hhhH – as the difference with
using all couplings computed in the “counterterm” scheme is
a two-loop effect. Doing so, we obtain the dot-dashed curve
in Fig. 7, which is still close to the result of the “perturba-
tive masses” scheme and only differs significantly for large
|λ1122| – this indeed confirms missing two-loop corrections
as the origin of the difference between the solid curves for
λhhhh .

Before ending this section, a final comment is at hand
about the choice of inputs and of scheme when integrating
out heavy fields. If we had proceeded naively – or incorrectly
– and had not specified the scheme in which the diagonal-
basis couplings are given, or in which they are computed from
other inputs (such as in Eq. (7.8)), we could have obtained
widely different results for λhhhh . Indeed for a given value
of λ̃hhhh , depending on the scheme that it is considered to be
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given (or computed) in, the loop corrections that are added
to it change drastically – as we saw in the above.

8 Threshold corrections to Yukawa couplings

Finally9 we discuss threshold corrections to Yukawa cou-
plings, which are much simpler than those to quartic scalar
couplings. Since we are not considering heavy gauge bosons,
there are no contributions to the matching proportional to
gauge couplings (as before, provided we use the same renor-
malisation scheme both above and below the matching scale).
However, we must take mixing effects into account:

y I J pEFT = y I J pHET + δy I J p + y I JRδURp

− 1

2
y I JrδZrp +

[
y I

′ J p(δUF )II ′ + (I ↔ J )

]
.

(8.1)

Here we use capitals {I, J } for fermions (see Appendix A for
all our conventions). We provide the expressions for δy I J p

in Appendix B.2.2 and δURp is given either by (3.7) in the
“perturbative masses” approach or 0 in the “counterterm”
approach. However, we have so far not discussed fermion
mixing, which may be important in models e.g. with heavy
top partners, or the FSSM [21,22]. The derivation is very
similar to the scalar case: we give the corrections to the kinetic
and mass terms (in two-component spinor notation)


HET ⊃ i(δZHET
F )IJψIσ

μ∂μψ
J

−
(

1

2
(δMI J + δct M

I J )ψIψJ + h.c.

)
, (8.2)

in Eq. (B.4) (or see [70]), and we can divide the fermions
into heavy and light states, then make the identification again
	ZF ≡ δZHET

F − δZLET
F and

(ψI )
HET ≡ (UF )JI (ψJ )

EFT

=
(

1 − 1

2
	ZF + δRF

)J

I
ψ EFT

J . (8.3)

Here (	ZF )† = 	ZF , (δRF )† = −δRF . The differ-
ence from scalars is that we should diagonalise the matrix
MI I ′MI ′ J (note that Dirac fermions do not have diag-
onal matrices MI J in two-spinor notation); if we write
{L , L ′}, {H, H ′, H ′′} as indices for light and heavy fermions
respectively, then we have

9 Scalar trilinears ai jk are of order ζ and as we have taken the limit
ζ → 0, there are no scalar trilinear couplings in our setting and hence no
corrections to them either – note that these corrections could in principle
be obtained easily from the results in Appendix B.2.1 together with the
modified loop functions defined in Appendix A.2.

MLL = MLH = 0, MHH ′′MH ′′H ′ = δH
′

H m2
H ,

0 = −1

2
(	ZF )LHm

2
H + (δRF )LHm

2
H

+ (δM + δct M)LH
′
MH ′H (8.4)

which leads to

(δRF )LH = 1

2
(	ZF )LH − (δM + δct M)LH

′ MH ′H
m2

H

(δUF )LL ′ = −1

2
(	ZF )LL ′

(δUF )LH =
{

−δMLH ′ MH ′H
m2

H
perturbative masses approach

0 counterterm approach
.

(8.5)

9 Outlook

We have described how to match renormalisable couplings
between general theories and explained the different choices
that can be made. Our aim is to simplify the calculation of
the matching as much as possible, since already at one loop
the expressions are rather long; we provide what we expect
to be the simplest possible prescription for matching onto the
SM using only two-point scalar amplitudes in Sect. 5.1, and
the simplest general prescription in Eq. (4.10).

The logical extension is to pursue our approach(es) at two
loops. Beyond one loop, we expect the use of mass countert-
erms to become more important to simplify the removal of
infra-red divergences: in particular, if the hierarchy between
ζ and M is comparable to or greater than one loop order (so
that the scales are highly tuned) then we expect the “naive
perturbative” approach should break down, because we will
not be able to treat the “light” states in the loops as massless.
Investigating this and its relationship to the Goldstone Boson
Catastrophe [47,71–73] will be the subject of future work.
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A Conventions and loop functions

We shall work with a theory of scalars, fermions and massless
gauge bosons (i.e. we shall assume for this work that the
SM gauge group is not extended). The general Lagrangian
interaction terms are

L = LS + LSF + LSV + LFV + Lgauge + LSghost. (A.1)

We use indices {i, j, k, l} for general real scalars, {I, J, K , L}
for Weyl fermions, and {a, b, c, d} for gauge bosons. The
interactions are

LS ≡ −1

6
ai jk�i� j�k − 1

24
λ̃i jkl�i� j�k�l

LSF ≡ −1

2
y I JkψIψJ�k − 1

2
yI Jkψ

I
ψ

J
�k

LFV ≡ gaJI Aa
μψ

I
σμψJ

LSV ≡ 1

2
gabi Aa

μA
μb�i

+ 1

4
gabi j Aa

μA
μb�i� j + gai j Aa

μ�i∂
μ� j

Lgauge ≡ gabc Aa
μA

b
ν∂

μAνc

− 1

4
gabegcde Aμa Aνb Ac

μA
d
ν + gabc Aa

μc
b∂μcc

LSghost ≡ −1

2
ξ ĝabi�i c

acb. (A.2)

These differ a little from the conventions of e.g. [74] because
we use the metric (+,−,−,−). With the assumption that
the gauge groups are unbroken, LSghost = 0. The mass terms
of fermions are

LF ⊃ −1

2
MI JψIψJ − 1

2
MI Jψ

I
ψ

J

where MI J = M∗
I J is not necessarily diagonal (indeed it

cannot be for Dirac fermions) but

MI J MJK ≡ δ IKm
2
I .

We will also make use of the effective potential Veff, which
we can expand perturbatively to one-loop order as

Veff = V (0) + κV (1) = V (0) + κ
(
V (1)
S + V (1)

F + V (1)
V

)
,

(A.3)

where V (0) is the tree-level potential, and V (1)
S , V (1)

F , V (1)
V are

respectively the scalar, fermion, and gauge-boson contribu-
tions to the one-loop potential, with the loop factor denoted

κ ≡ 1

16π2 . (A.4)

A.1 One-loop functions

We shall use loop functions that mostly coincide with those
of [75]: the one-loop integrals are defined in d = 4 − 2ε

dimensions, in terms of Euclidean momenta

A(x) ≡ C
∫

ddk

k2 + x
(A.5)

B(p2; x, y) ≡ C
∫

ddk

(k2 + x)((p − k)2 + y)
(A.6)

C0(x, y, z) ≡ C
∫

ddk

(k2 + x)(k2 + y)(k2 + z)
(A.7)

D0(x, y, z, u) ≡ C
∫

ddk

(k2 + x)(k2 + y)(k2 + z)(k2 + u)

(A.8)

where

C = 16π2 μ2ε

(2π)d
. (A.9)

We then define

Q2 ≡ 4πe−γEμ2, logx ≡ log x/Q2. (A.10)

From these, we use the finite parts, namely

A0(x) ≡ lim
ε→0

[
A(x) + x

ε

]
= x

(
logx − 1

)

B(p2; x, y) ≡ lim
ε→0

[
B(p2; x, y) − 1

ε

]

PSS(x, y) ≡ − lim
ε→0

[
B(0; x, y) − 1

ε

]

= A0(x) − A0(y)

x − y
= −B(0; x, y)

PSS(x, x) = logx . (A.11)

The functions C0,D0 are UV-finite, so we can safely take the
limit ε → 0 when there are no IR poles:

C0(x, y, z) ≡ lim
ε→0

C0(x, y, z)

= 1

x − y

[
PSS(x, z) − PSS(y, z)

]

D0(x, y, z, u) ≡ lim
ε→0

D0(x, y, z, u)

= 1

y − x

[
C0(x, z, u) − C0(y, z, u)

]
.

(A.12)
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In the case of coincident masses, one can take the limit as
y → x in the above. Note that PSS,C0, D0 are symmetric
under permutation of all masses.

Finally, for the kinetic terms we require the derivatives
of the B function evaluated at zero external momentum; we
denote throughout with a prime the derivative with respect
to external momentum squared:

B ′(0; x, y) ≡ d

dp2 B(p2; x, y)
∣∣∣∣
p2=0

= 1

2(x − y)3

[
x2 − y2 + 2xy log(y/x)

]

B ′(0; x, x) = 1

6x

B ′(0; 0, x) = 1

2x
. (A.13)

A.2 Infra-red safe loop functions

Throughout the text we require infra-red safe loop func-
tions, which can be defined in several ways (as described in
Sect. 3.1) but the simplest of which is just using dimensional
regularisation. We have

PSS(0, 0) ≡ 0 ≡ C0(0, 0, 0) ≡ D0(0, 0, 0, 0)

C0(0, 0, X) ≡ 1

X
PSS(0, X) = A0(X)

X2

D0(0, 0, X,Y ) ≡ − 1

X − Y

[
C0(0, 0, X) − C0(0, 0,Y )

]

D0(0, 0, X, X) ≡ logX − 2

X2 . (A.14)

If we want to retain the infra-red divergences, we have, noting
for example that B(0; 0, 0) = 0 = 1

εUV
− 1

εI R
+ O(ε):

PSS(0, 0) = 1

εI R

C0(0, 0, 0) = D0(0, 0, 0, 0) = 0

C0(0, 0, X) = − 1

X

1

εI R
+ C0(0, 0, X)

D0(0, 0, X,Y ) = − 1

X − Y

[
C0(0, 0, X) − C0(0, 0,Y )

]

= − 1

XY

1

εI R
+ D0(0, 0, X,Y )

D0(0, 0, 0, X) = 1

X2

1

εI R
+ D0(0, 0, 0, X). (A.15)

B One-loop threshold corrections

Here we give all of the corrections to all necessary n-point
functions in the limit of vanishing expectation values and

external momenta in a general theory with massless gauge
bosons. For the matching procedure we need to compute
these in the high-energy theory and use them as described
in the body of the paper.

B.1 Two-point couplings

B.1.1 Scalar self-energies

The full expressions for scalar self-energies at one loop were
given, for example, in [74]. Here we give the zero-momentum
limit:

κ−1i j (0) = 1

2
λ̃i j xx A0(m

2
x ) + 1

2
aixya jxy PSS(m

2
x ,m

2
y)

− ξgaikgajk A0(m
2
k)

− Re[yK Li yK L j ]G(0;m2
K ,m2

L )

− 2Re[yK Li yK
′L ′ j MKK ′ MLL ′ ]PSS(m2

K ,m2
L ),

κ−1′
i j (0) = −1

2
aixya jxy B

′(0;m2
x ,m

2
y)

+ gaikgajk [1

2
(ξ + 5) − (3 − ξ)logm2

k ]
− Re[yK Li yK L j ]G ′(0;m2

K ,m2
L )

+ 2Re[yK Li yK
′L ′ j MKK ′ MLL ′ ]B ′(0;m2

K ,m2
L ),

(B.1)

where

G(p2; x, y) ≡ (p2 − x − y)B(p2; x, y) + A0(x) + A0(y).
(B.2)

We have included the gauge dependent parts, although we do
not need them for ′

i j because they will be the same in both
the low- and high-energy theories.

B.1.2 Fermion self-energies

The full expressions for fermion self-energies at one-loop
were given, for example, in [70]. Here we simply state the
formulae that we need: the zero-momentum and zero gauge
coupling limit contributions to the effective action terms


 ⊃ i(δZF )IJψIσ
μ∂μψ

J −
(

1

2
δMI JψIψJ + h.c.

)
,

(B.3)

and we find

(δZF )IJ |g→0 = κy I K i yJ K i B1(0;m2
K ,m2

i ),

δMI J |g→0 = κy I K i y J K
′i MKK ′ PSS(m

2
K ,m2

i ), (B.4)
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where

B1(0; x, y) = 1

2
[(x − y)B ′(0; x, y) − PSS(x, y)]. (B.5)

B.1.3 Gauge-boson self-energies

In the absence of heavy gauge bosons, the threshold correc-
tions to gauge boson self-energies come only from fermions
and scalars and are given by

	ab(p
2) = HET

ab (p2) − EFT
ab (p2)

= ̂HET
ab (p2) − ̂EFT

ab (p2),

κ−1̂ab(p
2) ≡ 2gai j gbi j B̃22(p

2;m2
i ,m

2
j )

+ 2Re(gaIJ gbI
′

J ′ MI I ′MJ J ′
)B(p2;m2

I ,m
2
J )

− gaIJ gbJI H0(p
2;m2

I ,m
2
J ). (B.6)

The hat indicates that the pure gauge parts have already been
removed. The definitions for the functions H0 and B̃22 are
the same as those of PBMZ [68] and, as they are long, we
do not repeat them here. The required limits for the general
case are

B̃22(0;m2
i ,m

2
j ) = 1

4
(m2

i − m2
j )

2B ′(0;m2
i ,m

2
j ).

H0(0;m2
I ,m

2
J ) = (m2

I − m2
J )

2B ′(0;m2
I ,m

2
J )

+ (m2
I + m2

J )PSS(m
2
I ,m

2
J ). (B.7)

These identities can be used to prove (5.25) at one loop. In
the limit of an unbroken gauge group, we have

̂ab(p
2) = κg2δab

[
2S2(i)B̃22(p

2;m2
i ,m

2
i )

− S2(I )

(
2m2

I B(p2;m2
I ,m

2
I ) + H0(p

2;m2
I ,m

2
I )

)]
,

̂ab(0) = 0,

̂′
ab(0) = κg2δab

[
1

6
S2(i)logm2

i + 2

3
S2(I )logm2

I

]
, (B.8)

where S2 is the Dynkin index of the representation of the
scalars or fermions, and g is the gauge coupling for the unbro-
ken gauge group. The final expression gives the well-known
one-loop corrections to gauge thresholds:

g2
EFT δab = g2

HET δab + g2
[
(̂′

ab(0))HET − (̂′
ab(0))EFT

]
.

(B.9)

B.2 Three-point couplings

The only relevant three-point couplings that we need are
cubic scalar couplings and Yukawa couplings, all those

involving gauge bosons just being given by the gauge cou-
plings.

B.2.1 Scalar couplings

For a term in the effective action


 ⊃ −1

6
δai jk�i� j�k (B.10)

recall that we have

δai jk = κ
∂3V (1)

∂�i∂� j∂�k
, V (1) ≡ V (1)

S + V (1)
F + V (1)

V .

(B.11)

Then

∂3V (1)
S

∂�i∂� j∂�k
= 1

4
λ̃i j xyakxy PSS(m

2
x ,m

2
y)

+ 1

6
akxya jyzaizxC0(m

2
x ,m

2
y,m

2
z ) + (i jk),

(B.12)

∂3V (1)
F

∂�i∂� j∂�k
= −2

3
Re(y I J i y J

′K j yK
′ I ′kMI I ′MJ J ′MKK ′)

× C0(m
2
I ,m

2
J ,m

2
K )

− 2Re(y I J i y J
′K j yK IkMJ J ′)

F3(m
2
I ,m

2
J ,m

2
K ) + (i jk), (B.13)

where

F3(m
2
I ,m

2
J ,m

2
K ) ≡ lim

ε→0

[
C

∫
ddk(−k2)

⎛
⎝ ∏

I∈{I,J,K }

1

k2 + m2
I

⎞
⎠ + 1

ε

]

= m2
I C0(m

2
I ,m

2
J ,m

2
K ) + PSS(m

2
J ,m

2
K ).

(B.14)

Note that the function F3 could also have been written in a
form where it is manifestly symmetric under the exchange of
any two of its arguments. It only has an infra-red divergence
for all three arguments vanishing, so we can define

F3(0, 0, 0) = 0;
F3(x, y, z) = F3(x, y, z) (x, y, z) = (0, 0, 0). (B.15)

Finally for contributions from massless gauge bosons:

∂3V (1)
V

∂�i∂� j∂�k
= − 1

2
ξgail gajmalmk PSS(m

2
l ,m

2
m)+(i jk)+O(g3).

(B.16)

The O(g3) pieces automatically cancel between high- and
low-energy theories, so we do not include them.
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B.2.2 Yukawa couplings

With our assumptions of having no heavy gauge bosons, the
only vertex corrections to Yukawa couplings come from tri-
angle diagrams with scalars and fermions in the loop. The
result is that


 ⊃ −1

2
δy I J iψIψJ�i ,

κ−1δy I J i = MKK ′ai jk y
K Ik yK

′ J jC0(m
2
j ,m

2
k ,m

2
K )

− yK Ik yK
′ Jk yK K ′i F3(m

2
k ,m

2
K ,m2

K ′)

+ MKLMK ′L ′ yLL
′i yK Ik yK

′ JkC0(m
2
k ,m

2
K ,m2

K ′).
(B.17)

To find the matching condition, we need to supplement this
with corrections from the scalar and fermion self-energies
and insert them all in Eq. (8.1). Note that the infra-red diver-
gences are much more simply tamed than in the pure scalar
couplings: the difference between the HET and EFT is auto-
matically infra-red safe and corresponds just to replacing
F3 → F3 in the HET. The other two terms are always infra-
red safe, because the first term can only diverge for the case of
j, k both light fields, so the coupling ai jk must vanish when
i is also light; while the last term has mass prefactors that
vanish for light fermions.

B.3 Four-point couplings

For a term in the effective action


 ⊃ − 1

24
δλ̃i jkl�i� j�k�l (B.18)

recall that we have

δλ̃i jkl = κ
∂4V (1)

∂�i∂� j∂�k∂�l
,

V (1) ≡ V (1)
S + V (1)

F + V (1)
V . (B.19)

Then

∂4V (1)
S

∂�i∂� j∂�k∂�l
= 1

16
λ̃i j xy λ̃klxy PSS(m

2
x ,m

2
y)

+ 1

4
λ̃i j xyakyzalzxC0(m

2
x ,m

2
y,m

2
z )

− 1

8
aixya jyzakzualux

D0(m
2
x ,m

2
y,m

2
z ,m

2
u) + (i jkl). (B.20)

∂4V (1)
F

∂�i∂� j∂�k∂�l
= 1

2
Re(y I J i y J

′K j yK
′Lk yL

′ I ′l

× MI I ′ MJ J ′ MKK ′ MLL ′ )D0(m
2
I ,m

2
J ,m

2
K ,m2

L )

+ 2Re(y I J i y J
′K j yK

′Lk yL I l MJ J ′ MKK ′ )

× F4(m
2
I ,m

2
J ,m

2
K ,m2

L )

+ Re(y I J i y J
′K j yK Lk yL ′ I l MJ J ′ MLL ′

)

× F4(m
2
I ,m

2
J ,m

2
K ,m2

L )

+ 1

2
Re(y I J i yJ K j y

K Lk yL I l )

× H4(m
2
I ,m

2
J ,m

2
K ,m2

L ) + (i jkl), (B.21)

where F4 and H4 are defined in terms of Euclidean momenta
as

F4(m
2
I ,m

2
J ,m

2
K ,m2

L)

≡ lim
ε→0

C
∫

ddk(−k2)

⎛
⎝ ∏
I∈{I,J,K ,L}

1

k2 + m2
I

⎞
⎠

= m2
I D0(m

2
I ,m

2
J ,m

2
K ,m2

L) − C0(m
2
J ,m

2
K ,m2

L)

H4(m
2
I ,m

2
J ,m

2
K ,m2

L)

≡ lim
ε→0

⎡
⎣C

∫
ddk(k4)

( ∏
I∈{I,J,K ,L}

1

k2 + m2
I

)
− 1

ε

⎤
⎦

= −PSS(m
2
K ,m2

L) + (
m2

I + m2
J

)
F4(m

2
I ,m

2
J ,m

2
K ,m2

L)

− m2
I m

2
J D0(m

2
I ,m

2
J ,m

2
K ,m2

L), (B.22)

and, as before, (i jkl) denotes the 24 possible permutations
of {i, j, k, l}. Note that to pass to infra-red safe expressions
we replace PSS,C0, D0 by PSS,C0, D0 in the above.

Finally the contributions from massless gauge bosons are:

∂4V (1)
V

∂�i∂� j∂�k∂�l

∣∣∣∣
O(g2)

= −1

4
ξgaimgajn λ̃mnkl PSS(m

2
m,m2

n)

− 1

2
ξgaimgajr amnkanrlC0(m

2
m,m2

n,m
2
r ) + (i jkl).

(B.23)

We omit the terms of higher order in the gauge coupling,
which automatically cancel between high- and low-energy
theories except when they are given in different schemes.

C Cancellation of infra-red divergences

In this appendix we explicitly show the cancellation of infra-
red divergences in the matching of quartic scalar couplings.
We start by considering the case of purely scalar contribu-
tions to the different terms in the matching, before turning
to the case of fermionic contributions in Appendix C.1. We
have already demonstrated the complete cancellation of con-
tributions from gauge interactions in Sect. 3.3.
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For the diagrams with only scalars in the loops, let us
first summarise the infra-red divergent parts of the necessary
quantities in the high-energy theory:

κ−1δm2
PQ = 1

2
aPxyaQxy PSS(m

2
x ,m

2
y) + IR safe,

κ−1δaPqr = 1

2
aPxyaqyQarQxC0(m

2
x ,m

2
y,m

2
Q)

+ 1

4
λ̃qrxyaPxy PSS(m

2
x ,m

2
y) + (q ↔ r) + IR safe,

κ−1δλ̃pqrs = 1

16
λ̃pqxy λ̃rsxy PSS(m

2
x ,m

2
y)

+ 1

4
λ̃pqxyaryQasQxC0(m

2
x ,m

2
y,m

2
Q)

− 1

4
apxQaqQzarzRasRx D0(m

2
x ,m

2
Q,m2

z ,m
2
R)

+ (pqrs) + IR safe. (C.1)

These must cancel against the calculation of δλpqrs in the
low-energy theory:

κ−1δλpqrs = 1

16
PSS(m

2
x ,m

2
y)λpqxyλrsxy + (pqrs)

= 1

16
PSS(m

2
x ,m

2
y)

[
λ̃pqxy λ̃rsxy

− 2

m2
P

(aP pqaPxy + 2aP pxaPqy)λ̃rsxy

+ 1

m2
Pm2

Q

(
aP pqaQrsaPxyaQxy

+ 4aP pqaPxyaQr xaQsy + 4aP pxaPqyaQr xaQsy

)]

+ (pqrs). (C.2)

Collecting these together in the matching relation for the
scalar quartic coupling, Eq. (3.10), one finds for the poten-
tially divergent terms:

κ−1	λpqrs ⊃ 1

4
λ̃rsxyaP pxaPqy

×
[
C0(m

2
x ,m

2
y,m

2
P ) + 1

m2
P
PSS(m

2
x ,m

2
y)

]

− 1

4
aP pxaPqyaQr xaQsy

1

m2
P

×
[
C0(m

2
x ,m

2
y,m

2
Q) + 1

m2
Q
PSS(m

2
x ,m

2
y)

]

− 1

4
aP pxaPqyaQr xaQsy

×
[
D0(m

2
x ,m

2
P ,m2

y,m
2
Q)

+ 1

m2
Pm

2
Q
PSS(m

2
x ,m

2
y)

]
+ (pqrs) (C.3)

The terms in square brackets are all finite as we take the
limit mx ,my → 0, and could be taken as the defini-
tions of the functions C0(0, 0, X), D0(0, 0, X,Y ) which
agree with our dimensional-regularisation definitions (A.14).
Note that these do not give the limiting expressions for
C0(0, 0, 0), D0(0, 0, 0, 0) which, as mentioned in Sect. 3.1,
remain ambiguous but give no net contribution when we sub-
tract the contribution of the LET from that of the HET in the
matching.

C.1 Absence of IR divergences from massless fermions

We can now show that vanishing fermion masses cause no
divergence in the fermion contributions to the matching of
three- and four-point functions – see Eqs. (B.13) and (B.21).
First of all, it should be noted that terms in which all the
fermion masses vanish do not pose a problem in the matching
because they appear in both the high- and low-energy parts
of the matching.

Then, considering the three-point contribution in
Eq. (B.13), one can notice immediately that the first term
– of the form MI I ′MJ J ′MKK ′C0(m2

I ,m
2
J ,m

2
K ) – cannot be

divergent, because by itself the function C0 diverges at most
as an inverse mass-squared if all its three arguments tend to
0 – recall that C0(δ, δ, δ) = 1/2δ. For the second term, in
the case where MJ J ′ vanishes, the overall term is also zero,
however there remains to verify that F3(m2

I ,m
2
J ,m

2
K ) is reg-

ular in the limit where m2
I and m2

K go to zero (if only one of
these two masses is zero, the PSS and C0 functions are not
divergent). We have then

F3(δ,m
2
J , δ) = δC0(δ,m

2
J , δ) + PSS(m

2
J , δ) −→

δ→0

A0(m2
J )

m2
J

,

(C.4)

as we know that C0(δ, δ,m2
J ) diverges as log δ.

Turning now to the four-point couplings, for which the
fermion contribution is given in Eq. (B.21), we have three
types of terms to verify. First, the term MI I ′MJ J ′MKK ′MLL ′
D0(m2

I ,m
2
J ,m

2
K ,m2

L) is not divergent even if all four mass
arguments are zero because D0(δ, δ, δ, δ) = 1/6δ2. Sec-
ond, we must consider the terms involving the function
F4(m2

I ,m
2
J ,m

2
K ,m2

L): if three (or four) of the masses are
zero, the mass prefactors ensure that the contributions to the
four-point coupling are not divergent. However, it is neces-
sary to verify what happens when only two mass arguments
vanish, say m2

I and m2
J . We find

F4(δ, δ,m
2
K ,m2

L) = δD0(δ, δ,m
2
K ,m2

L) − C0(δ,m
2
K ,m2

L)

→
δ→0

−C0(0,m2
K ,m2

L), (C.5)

as D0(δ, δ,m2
K ,m2

L) diverges like log δ.
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There remains to show that H4(m2
I ,m

2
J ,m

2
K ,m2

L) is not
divergent when one or several of its arguments are zero. For
only one vanishing mass, this is apparent from its definition in
Eq. (B.22). Then, we can consider the case of two vanishing
masses, say m2

I and m2
J :

H4(δ, δ,m
2
K ,m2

L ) = −PSS(m
2
K ,m2

L )

+ 2δF4(δ, δ,m
2
K ,m2

L ) − δ2D0(δ, δ,m
2
K ,m2

L )

−→
δ→0

−PSS(m
2
K ,m2

L ) (C.6)

The case with three zero masses is also simple to verify,
requiring only the intermediate results

D0(δ, δ, δ,m
2
L ) →

δ→0

1

2m2
Lδ

+ logδ

m4
L

− A0(m2
L)

m6
L

+ 1

2m4
L
(C.7)

F4(δ, δ, δ,m
2
L ) →

δ→0

logδ

m2
L

− A0(m2
L)

m4
L

+ 1

2m2
L

(C.8)

and we find

H4(δ, δ, δ,m
2
L ) = −PSS(δ,m

2
L) + 2δF4(δ, δ, δ,m

2
L )

− δ2D0(δ, δ, δ,m
2
L )

−→
δ→0

− A0(m2
L)

m2
L

(C.9)

Finally, if all four of its mass arguments are zero, the func-
tion H4(δ, δ, δ, δ) does diverge, but this does not cause a
problem for the matching because a term with all fermion
masses vanishing would appear both in the EFT and the UV-
complete sides of the matching condition.

D Threshold corrections to the electroweak gauge
couplings

We present in this appendix details about the derivation of
the threshold corrections to gY and g2 – the gauge couplings
of U (1)Y and SU (2)L , respectively – given in Eq. (5.5). The
radiative corrections to gauge couplings are obtained as the
corrections to the gauge-boson kinetic term, i.e.

1

4g2 FμνF
μν −→ 1

4g2 (1 + 	ZA) FμνF
μν, (D.1)

where Aμ is the gauge boson of some gauge group, Fμν the
associated field-strength tensor, and g the gauge coupling.
In the above relation we have 	ZA = −′

AA(0), the latter
being the derivative with respect to external momentum of
the transverse part of the gauge-boson self-energy. Applying

this to U (1)Y , the threshold correction to gY is found with
the relation

1

4g2
Y

(
1 − HET ′

BB (0)
)
BμνB

μν

= 1

4(g2
Y + 	g2

Y
)

(
1 − SM ′

BB (0)
)
BμνB

μν, (D.2)

where Bμ is the gauge boson of U (1)Y and Bμν the corre-
sponding field-strength, and the self-energies on the left and
on the right are computed in the high-energy theory and in
the SM, respectively. We thus obtain

	g2
Y

= g2
Y

[
HET ′

BB (0) − SM ′
BB (0)

]
. (D.3)

Similarly, for SU (2)L , we obtain

	g2
2

= g2
2

[
HET ′

W3W3
(0) − SM ′

W3W3
(0)

]
, (D.4)

where W3 is the third component of the SU (2)L gauge boson.
Now, expressing the Z -boson mass eigenstate in terms of W3

and B, we have

(g2
Y + g2

2)Z Z = g2
2W3W3 − 2gY g2W3B + g2

YBB .

(D.5)

Finally, as we need in Sect. 5 the gauge threshold corrections
in the limit v → 0, we know from gauge invariance that
in this limit the W3B term should vanish. Taking all these
intermediate results together, we obtain

	g2
Y

+ 	g2
2

∣∣∣
v=0

= (g2
Y + g2

2)

[
HET ′

Z Z (0) − EFT ′
Z Z (0)

]
v=0

,

(D.6)

which is Eq. (5.5).

E Dirac gaugino contributions

In this appendix we collect the various contributions nec-
essary for matching the Higgs quartic coupling from the
MDGSSM assuming that the low-energy theory is the SM
plus higgsinos, in the limit that μ is small compared to M
and the other masses. We split each term up according to the
fields contributing: the Higgs and S/T scalars δS ; fermions
δF ; and sfermions (squarks and sleptons) δ f̃ . Hence the cor-
rections to the Higgs quartic in the MDGSSM become

δλ̃HH
HH = δS λ̃

HH
HH + δF λ̃HH

HH + δ f̃ λ̃
HH
HH , (E.1)
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and so on for the other corrections appearing in Eq. (6.21);
while the derivatives of the self-energies with respect to exter-
nal momentum are expanded as

(′)HH (0) = (′
S)

H
H (0) + (′

F )HH (0) + (′
f̃
)HH (0). (E.2)

E.1 Corrections to the singlet tadpole

The singlet tadpole term obtains a contribution from the
heavy Higgs and the squarks and sleptons

κ−1δtS = mDY gY c2β A0(m
2
H) + mDY gY

×
3∑

i=1

[
A0(m

2
Qi

) − 2A0(m
2
Ui

) + A0(m
2
Di

)

− A0(m
2
Li

) + A0(m
2
Ei

)

]
(E.3)

where H is the heavy Higgs doublet, the sum on the last
line is over all generations i , and Q,U, D, L , E represent
the sfermion partners of the left-handed quarks, right-handed
up-type quarks, right-handed down-type quarks, left-handed
leptons and right-handed leptons. Note that we explicitly set
the singlet expectation value vS to zero at tree level along the
lines of option 3.

E.2 Contributions from Higgs and S/T scalars

E.2.1 Corrections to the Higgs quartic coupling

The scalar contributions to the one-loop Higgs quartic cou-
pling in the MDGSSM read

κ−1δS λ̃
HH
HH = −4g4

Ym
4
DY

[
D0(m

2
H,m2

H,m2
SR,m2

SR)s4
2β

+ 2D0(0,m2
H,m2

SR,m2
SR)c2

2βs
2
2β

+ D0(0, 0,m2
SR,m2

SR)c4
2β

]
− 8g2

2g
2
Ym

2
D2m

2
DY

[
D0(m

2
H,m2

H,m2
SR,m2

T P )s4
2β

+ 2D0(0,m2
H,m2

SR,m2
T P )c2

2βs
2
2β

+ D0(0, 0,m2
SR,m2

T P )c4
2β

]
− 12g4

2m
4
D2

[
D0(m

2
H,m2

H,m2
T P ,m2

T P )s4
2β

+ 2D0(0,m2
H,m2

T P ,m2
T P )c2

2βs
2
2β

+ D0(0, 0,m2
T P ,m2

T P )c4
2β

]
+ 4g2

Ym
2
DYλ2

S

[
s2

2βC0(m
2
H,m2

SR,m2
SR)

+ c2
2βC0(0,m2

SR,m2
SR)

]
− 8g2gYmD2mDYλSλT

[
s2

2βC0(m
2
H,m2

SR,m2
T P )

+ c2
2βC0(0,m2

SR,m2
T P )

]
+ 12g2

2m
2
D2λ

2
T

[
s2

2βC0(m
2
H,m2

T P ,m2
T P )

+ c2
2βC0(0,m2

T P ,m2
T P )

]

+ 1

2
g2
Ym

2
DY

[
g2

2 + g2
Y + 2(λ2

S + λ2
T )

− 3
(
g2

2 + g2
Y − 2(λ2

S + λ2
T )

)
c4β

]
× s2

2βC0(m
2
H,m2

H,m2
SR)

+ 1

2
g2

2m
2
D2

[
7g2

2 − g2
Y − 2(λ2

S − 15λ2
T )

− 5
(
g2

2 + g2
Y − 2(λ2

S + λ2
T )

)
c4β

]
× s2

2βC0(m
2
H,m2

H,m2
T P )

+ 2(g2
2 + g2

Y − 2(λ2
S + λ2

T ))c2
2βs

2
2β

× [
3g2

Ym
2
DYC0(0,m2

H,m2
SR)

+ 5g2
2m

2
D2C0(0,m2

H,m2
T P )

]
+ (

(g2
2 + g2

Y )c2
2β + 2(λ2

S + λ2
T )s2

2β

)
c2

2β

× [
3g2

Ym
2
DYC0(0, 0,m2

SR) + 5g2
2m

2
D2C0(0, 0,m2

T P )
]

+ 1

32

[
(−3g2

2 + g2
Y + 2λ2

S − 14λ2
T

+ (g2
2 + g2

Y − 2(λ2
S + λ2

T ))c4β)2

+ 4(−2(λ2
S + λ2

T ) + (g2
2 + g2

Y

− 2(λ2
S + λ2

T ))c4β)2

+ 4(g2
2 + g2

Y − 2(λ2
S + λ2

T ))2s4
2β

]
× PSS(m

2
H,m2

H)

+ 3

2
(g2

2 + g2
Y − 2(λ2

S + λ2
T ))2c2

2βs
2
2β × PSS(0,m2

H)

+ λ4
S

(
PSS(m

2
SR,m2

SR) + PSS(m
2
SI ,m

2
SI )

)
+ 3λ4

T

(
PSS(m

2
T P ,m2

T P ) + PSS(m
2
T M ,m2

T M )
)

+ (g2
2 − 2λ2

T )2c2
2β PSS(m

2
T P ,m2

T M )

+ 2λ2
Sλ

2
T

(
PSS(m

2
SR,m2

T P ) + PSS(m
2
SI ,m

2
T M )

)
(E.4)

E.2.2 Corrections to cubics

The relevant non-zero cubic couplings are SR |H |2 and
T 0
P |H |2; these are at tree level

aSRHH = −gYmDY c2β + √
2λSμ,

a
T 0
P H

H = g2mD2c2β + √
2λTμ. (E.5)

In the following we shall set μ = 0.
The shifts are then

κ−1δSa
SR H
H = −2gYmDYλ2

Sc2β PSS(0,m2
SR)

− g3
Ym

3
DY c

3
2βC0(0, 0,m2

SR)

+ 6g2mD2λSλT c2β PSS(0,m2
T P )

− 3g2
2gYm

2
D2mDY c

3
2βC0(0, 0,m2

T P )

+ g3
Ym

3
DY c2βs

2
2β

×
(
C0(m

2
H,m2

H,m2
SR) − 2C0(0,m2

H,m2
SR)

)

+ 3gY g
2
2mDYm

2
D2c2βs

2
2β
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×
(
C0(m

2
H,m2

H,m2
T P ) − 2C0(0,m2

H,m2
T P )

)

+ 1

8
gYmDY c2β

(
3g2

2 − g2
Y + 2λ2

S + 18λ2
T

− 3(g2
2 + g2

Y − 2(λ2
S + λ2

T ))c4β

)
PSS(m

2
H,m2

H)

− 3

2
gYmDY c2βs

2
2β

(
g2

2 + g2
Y

− 2(λ2
S + λ2

T )
)
PSS(0,m2

H) (E.6)

κ−1δSa
T 0
P H

H = −2λSλT gYmDY c2β PSS(0,m2
SR)

+ g2g
2
YmD2m

2
DY c

3
2βC0(0, 0,m2

SR)

+ 2λ2
T g2mD2c2β PSS(0,m2

T P )

− g3
2m

3
D2c

3
2βC0(0, 0,m2

T P )

− g2g
2
YmD2m

2
DY c2βs

2
2β

(
C0(m

2
H,m2

H,m2
SR)

− 2C0(0,m2
H,m2

SR)

)

+ g3
2m

3
D2c2βs

2
2β

(
C0(m

2
H,m2

H,m2
T P )

− 2C0(0,m2
H,m2

T P )

)

+ 1

8
g2mD2c2β

(
3g2

2 − g2
Y − 6λ2

S + 10λ2
T

+ (
g2

2 + g2
Y − 2(λ2

S + λ2
T )

)
c4β

)
PSS(m

2
H,m2

H)

+ 1

2
g2mD2c2βs

2
2β

(
g2

2 + g2
Y

− 2(λ2
S + λ2

T )
)
PSS(0,m2

H) (E.7)

Note that due to our choice of working around the tree-level
value of the singlet VEV vS = 0 – following the option
3 described in Sect. 2 – there is an additional shift to the
trilinear coupling aSRHH not included in Eq. (E.6), as shown in
Eq. (6.20). However, as can be see in the last line of Eq. (6.21),
we have already included this shift separately in the threshold
correction to the Higgs quartic coupling.

E.2.3 Self-energy correction

The derivative of the Higgs self-energy with respect to
momentum is

κ−1(′
S)

H
H (0) = −g2

Ym
2
DY c

2
2βB

′(0; 0,m2
SR)

− 3g2
2m

2
D2c

2
2βB

′(0; 0,m2
T P )

− g2
Ym

2
DY s

2
2βB

′(0;m2
H,m2

SR)

− 3g2
2m

2
D2s

2
2βB

′(0;m2
H,m2

T P ) (E.8)

E.2.4 Corrections to masses

The corrections to the masses of SR and T 0
P are

κ−1δSm
2
SR = 2λ2

S A0(m
2
H)

+ 2g2
Ym

2
DY

(
c2

2β PSS(m
2
H,m2

H)

+ 2s2
2β PSS(0,m2

H)
)

κ−1δSm
2
T 0
P

= 2λ2
T A0(m

2
H)

+ 2g2
2 A0(m

2
TM ) + 2g2

2m
2
D2

(
c2

2β PSS(m
2
H,m2

H)

+ 2s2
2β PSS(0,m2

H)
)

(E.9)

E.3 Contributions from fermions

E.3.1 Corrections to the Higgs quartic coupling

In the limit of μ → 0, we have

κ−1δF λ̃HH
HH = (

g4
Y + 4λ4

S

)
H4(0, 0,m2

DY ,m2
DY )

+ 2(g2
2g

2
Y + 4λ2

Sλ
2
T )H4(0, 0,m2

D2,m
2
DY )

+
[

4(g4
2 + g2

2λ2
T + 4λ4

T ) + (g2
2 − 2λ2

T )2c4β

]

× H4(0, 0,m2
D2,m

2
D2)

+ 4g2
Ym

2
DYλ2

S F4(0, 0,m2
DY ,m2

DY )

− 8gY g2λSλTmDYmD2F4(0, 0,m2
D2,m

2
DY )

+ 4g2
2m

2
D2λ

2
T (3 + 2c4β)F4(0, 0,m2

D2,m
2
D2).

(E.10)

E.3.2 Self-energies and cubic terms

The fermionic contribution to the derivative of the Higgs
self-energy is given (still in the limit μ → 0) by

κ−1(′
F )HH (0) = − 1

2
(g2

Y + 2λ2
S)G

′(0; 0,m2
DY )

− 3

2
(g2

2 + 2λ2
T )G ′(0; 0,m2

D2)

= −1

4

[
g2
Y + 2λ2

S + 3g2
2 + 6λ2

T

− 2(g2
Y + 2λ2

S)logm2
DY −6(g2

2 +2λ2
T )logm2

D2

]

(E.11)

and for the cubic couplings we have

κ−1δFa
SR H
H = √

2λS

[(
g2
Y + 2λ2

S + √
2gYλSc2β

)
F3(0, 0,m2

DY )

− (
g2

2 + 2λ2
T + 3

√
2g2λT c2β

)
F3(0, 0,m2

D2)

]

κ−1δFa
T 0
P H

H = √
2λT

[(
g2
Y + 2λ2

S + √
2gYλSc2β

)
F3(0, 0,m2

DY )
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+ (
3g2

2 + 6λ2
T + √

2g2λT c2β

)
F3(0, 0,m2

D2)

]

− 4g2
(√

2g2λT + (g2
2 + 2λ2

T )c2β

)
F3(0,m2

D2,m
2
D2)

(E.12)

E.4 Contributions from sfermions

Here we give the contributions to the different terms in
the matching of the Higgs quartic coupling arising from
sfermions, in the approximation that yt – the top Yukawa cou-
pling in the MDGSSM – is the only non-vanishing Yukawa
coupling.

E.4.1 Corrections to the Higgs quartic coupling

The contribution to δ f̃ λ̃
HH
HH is unchanged from the MSSM,

see for example the result in [20] – but note that the tree-level
expressions therein are given in terms of the SM electroweak
couplings, and not in terms of the couplings of the high-
energy theory as in this appendix.

E.4.2 Corrections to cubics

κ−1δ f̃ a
SR H
H ⊃ y2

t sβ

[
− 3

√
2λS Atcβ PSS(m

2
Q3

,m2
U3

)

+ gYmDY sβ
(
A2
t

[
C0(m

2
Q3

,m2
Q3

,m2
U3

)

− 4C0(m
2
Q3

,m2
U3

,m2
U3

)
]

+ PSS(m
2
Q3

,m2
Q3

) − 4PSS(m
2
U3

,m2
U3

)
)]

− 1

6
g3
YmDY c2β

3∑
i=1

[
PSS(m

2
Qi

,m2
Qi

)

+ 8PSS(m
2
Ui

,m2
Ui

) + 2PSS(m
2
Di

,m2
Di

)

+ 3PSS(m
2
Li

,m2
Li

) + 6PSS(m
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E.4.3 Higgs self-energy corrections

The sfermion contribution to the derivative of the Higgs self-
energy (with respect to momentum) is
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E.4.4 Corrections to masses
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