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Abstract Motivated by recent experimental measurements
on flavour physics, in tension with Standard Model pre-
dictions, we perform an updated analysis of new physics
violating lepton flavour universality, by using the effective
Lagrangian approach and in the Z

′
and S3 leptoquark mod-

els. We explicitly analyze the impact of considering complex
Wilson coefficients in the analysis of B-anomalies, by per-
forming a global fit of RK and RK ∗0 observables, together
with ΔMs and Amix

CP . The inclusion of complex couplings
provides a slightly improved global fit, and a marginally
improved ΔMs prediction.

1 Introduction

At present, many interesting measurements on flavour
physics are performed at the LHC [1–14]. Some relevant
flavour transition processes in order to constrain new physics
at the LHC are the leptonic, semi-leptonic, baryonic and
radiative exclusive decays. Some of these decays allow us
to build optimized observables, as ratios of these decays,
that are theoretically clean observables and whose measure-
ments are in tension with Standard Model (SM) predictions.
One example is the case of observables in b → sll transi-
tions. Recently, the LHCb collaboration observed a deviation
from the SM predictions in the neutral-current b → s tran-
sition [1,2,5–7,11,13], hinting at lepton flavour universality
violation effects. The results for ratios of branching ratios
involving different lepton flavours are given by [2,11,13],

RK = B(B+ → K+μ+μ−)

B(B+ → K+e+e−)

= 0.745+0.090
−0.074 ± 0.0036
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(1 GeV2 < q2 < 6 GeV2)

RK ∗0 = B(B0 → K ∗0μ+μ−)

B(B0 → K ∗0e+e−)

= 0.660+0.110
−0.070 ± 0.024

(0.045 GeV2 < q2 < 1.1 GeV2)

= 0.685+0.113
−0.069 ± 0.047

(1.1 GeV2 < q2 < 6 GeV2) (1)

where the first uncertainty is statistical and the second one
comes from systematic effects. In the SM RK = RK ∗0 = 1
with theoretical uncertainties of the order of 1% [15,16], as
a consequence of Lepton Flavour Universality. The compati-
bility of the above results with respect to the SM predictions
is of 2.6 σ deviation in the first case and for RK ∗0 , in the
low q2 di-lepton invariant mass region is of about 2.3 stan-
dard deviations; being in the central−q2 of 2.4 σ . A discrep-
ancy of about 3 σ is found when the measurements of RK

and RK ∗0 are combined [17]. Anomalous deviations were
also observed in the angular distributions of the decay rate
of B → K ∗μ+μ−, being the most significant discrepancy
for the P

′
5 observable [1,6]. The Belle Collaboration has also

reported a discrepancy in angular observables consistent with
LHCb results [18]. In addition, ATLAS and CMS collabo-
rations have presented their updated results for the angular
parameters of the B meson decay, B0 → K 0μ+μ− [19–22].

A great theoretical effort has been devoted to the under-
standing of these deviations, see for example [15,17,23–42]
and references therein. From the theoretical side, the ratios
RK and RK ∗0 are very clean observables; essentially free
of hadronic uncertainties that cancel in the ratios [15]. The
experimental data has been used to constrain new physics
(NP) models. One useful way to analyze the effects of NP
in these observables and to quantify the possible deviations
from the SM predictions is through the effective Hamilto-
nian approach, allowing us a model-independent analysis of
new physics effects. In addition, one can compute this effec-
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tive Hamiltonian in the context of specific NP models. It has
been shown that Z

′
and leptoquark models could explain the

RK , RK ∗0 deviations.
On the other hand, NP models are also severely con-

strained by other flavour observables, for example in Bs-
mixing. Recently an updated computation for the Bs mesons
mass difference in the SM has been presented [43–47], which
shows a deviation with the experimental result [47,48]:

ΔMexp
s = (17.757 ± 0.021) ps−1,

ΔMSM
s = (20.01 ± 1.25) ps−1, (2)

such that ΔMSM
s > ΔMexp

s at about 2 σ . This fact imposes
additional constraints over the NP parameter space. There-
fore, a global fit is mandatory when considering all updated
flavour observables. A negative contribution to ΔMs is
needed to reconcile it with the experimental result, in the
context of some NP models (like Z

′
or leptoquarks) it implies

complex Wilson coefficients in the effective Hamiltonian of
RK , RK ∗0 [47] (see also below). To the best of our knowl-
edge, most previous works have used only real Wilson coeffi-
cients in global fits of RK and RK ∗0 observables together with
ΔMs , an exception being Ref. [34]. An effect of introduc-
ing complex couplings is the generation ofCP asymmetries.
The mixing-induced CP asymmetry in the B-sector can be
measured through Amix

CP ≡ Amix
CP (Bs → J/ψφ) ≡ sin(φcc̄s

s ),
experimentally it is measured to be [48]:

Amix
CP

exp(Bs → J/ψφ) = − 0.021 ± 0.031. (3)

In the SM it is given by Amix
CP

SM = sin(−2βs)[47,49,50],
with βs = 0.01852 ± 0.00032 [51] we obtain Amix

CP
SM =

−0.03703 ± 0.00064, which is consistent with the experi-
mental result (3) at the ∼ 0.5 σ level.

Reference [34] performed fits for the B-decay physics
observables using complex Wilson coefficients, in the model
independent and model dependent approaches. The analy-
sis of Ref. [34] performs fits for the B-decay observables
using complex couplings, without including the ΔMs or Amix

CP
observables, then Ref. [34] proceeds to provide predictions
to CP-violation observables. Reference [34] only includes
ΔMs and Amix

CP in the Z ′-model fit. Our results agree with the
ones of Ref. [34] wherever comparable.

The aim of the present work is to investigate the effects of
complex Wilson coefficients in the global analyses of NP in
B-meson anomalies. We assume a model independent effec-
tive Hamiltonian approach and we study the region of NP
parameter space compatible with the experimental data, by
considering the dependence of the results on the assumptions
of imaginary and/or complex Wilson coefficients. We com-
pare our results with the case of considering only real Wilson
coefficients. A brief summary of the NP contributions to the
effective Lagrangian relevant for b → s�� transitions and

Bs-mixing is presented in Sect. 2, where we also recall the
need to consider complex Wilson coefficients in the analy-
sis. In Sect. 3 we discuss the effects of having imaginary or
complex Wilson coefficients on RK observables. The impact
of these complex Wilson coefficients in the analysis of B-
meson anomalies in two specific models, Z

′
and leptoquarks,

is included in Sect. 4. We consider a global fit of RK and RK ∗0

observables, together with ΔMs and CP-violation observ-
able Amix

CP in this analysis. Finally, conclusions are given in
Sect. 5.

2 Effective Hamiltonians and new physics models

The effective Lagrangian for b → s�� transitions is conven-
tionally given by [52],

Leff = −4GF√
2

VtbV
∗
ts

∑

i,�

(C�
i O

�
i + C ′ �

i O ′ �
i ) + h.c., (4)

being O(′) �
i (� = e, μ) the operators and C (′) �

i the cor-
responding Wilson coefficients. The relevant semi-leptonic
operators for explaining deviation in RK observables, Eq. (1),
can be defined as,

O�
9 = e2

16π2 (s̄γμPLb)(�̄γ
μ�),

O ′ �
9 = e2

16π2 (s̄γμPRb)(�̄γ
μ�), (5)

O�
10 = e2

16π2 (s̄γμPLb)(�̄γ
μγ5�),

O ′ �
10 = e2

16π2 (s̄γμPRb)(�̄γ
μγ5�). (6)

The Wilson coefficients have contributions from the SM and
NP,

C (′) �
i = C (′) SM �

i + C (′) NP �
i .

In the present work we analyze the NP contributionsC (′) NP �
i .

In most of our analysis we will consider the left-handed Wil-
son coefficients CNP �

i , the righ-handed Wilson coefficients
C ′ NP �
i are treated briefly in the model-independent approach

of Sect. 3 (see Table 1 below). The NP contributions to Bs-
mixing are described by the effective Lagrangian [52]:

LNP
ΔB=2 = −4GF√

2
(VtbV

∗
ts)

2[CLL
bs (s̄LγμbL)2 + h.c.], (7)

where CLL
bs is a Wilson coefficient. In order to study the

allowed NP parameter space we follow the same procedure
as given in [47], comparing the experimental measurement
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of the mass difference with the prediction in the SM and NP.
Therefore, the effects can be parametrized as [47],

ΔMs

ΔMSM
s

=
∣∣∣∣∣1 + CLL

bs

Rloop
SM

∣∣∣∣∣ , (8)

where Rloop
SM = 1.3397×10−3 [47]. The NP prediction to the

CP-asymmetry Amix
CP is given by[47,49,50]

Amix
CP = sin(φΔ − 2βs) , φΔ = Arg

(
1 + CLL

bs

Rloop
SM

)
, (9)

where βs and Rloop
SM have been given above.

Since ΔMexp
s < ΔMSM

s (2), Eq. (8) tells us that to obtain
a prediction of ΔMs closer to ΔMexp

s the NP Wilson coef-
ficient CLL

bs (7) must be negative (CLL
bs < 0). In a generic

effective Hamiltonian approach, each Wilson coefficient is
independent, and setting CLL

bs < 0 has no effect on CNP μ
9 ,

CNP μ
10 , etc. However, explicit NP models give predictions on

the Wilson coefficients which introduce correlations among
them. We will concentrate on two specific models that have
been proposed to solve the semi-leptonic Bs-decay anoma-
lies: Z ′ and leptoquarks.

We start with the Z
′

model that contains a Z
′

boson with
mass MZ ′ and whose extra NP operators can involve different
chiralities. The part of the effective Lagrangian relevant for
b → sμ+μ− transitions and Bs-mixing is given by [47],

Leff
Z ′ = − 1

2M2
Z ′

(λ
Q
i j d̄

i
Lγμd

j
L + λL

αβ �̄α
Lγμ�

β
L)2 (10)

∼ − 1

2M2
Z ′

[(λQ
23)

2(s̄LγμbL)2

+2λ
Q
23λ

L
22(s̄LγμbL)(μ̄Lγ μμL) + h.c.] + · · · ,

where di and �α denote down-quark and charged-lepton mass
eigenstates, and λQ and λL are hermitian matrices in flavour
space. When matching the above equation with Eqs. (4)
and (7) one obtains the expressions for the Wilson coeffi-
cients at the tree level [47],

CNP μ
9 = −CNP μ

10 = − π√
2GFM2

Z ′α

(
λ
Q
23λ

L
22

VtbV ∗
ts

)
, (11)

and

CLL
bs = ηLL(MZ ′)

4
√

2GFM2
Z ′

(
λ
Q
23

VtbV ∗
ts

)2

, (12)

where ηLL(MZ ′) > 0 encodes the running down to the bot-
tom mass scale.

From (12) it is clear that to obtain a negative CLL
bs one

needs an imaginary number inside the square (λQ
23/(VtbV

∗
ts) ∈

I), but this is the same factor that appears inCNP μ
9 = −CNP μ

10
in (11). λL

22 ∈ R, since λ is an hermitic matrix, then it fol-

lows that CNP μ
9,10 would be imaginary (CNP μ

9,10 ∈ I). Of course,
a purely imaginary coupling (or Wilson coefficient) is just
a particular and extreme case of having a generic complex
coupling. Once one abandons the restriction of considering
real couplings it seems more natural to consider the most
generic case of complex couplings. There is, however, a
motivation to try also the extreme case of imaginary cou-
plings: an imaginary λ

Q
23/(VtbV

∗
ts) provides a real CLL

bs (12),
which in turn provides no additional contributions to theCP-
asymmetry Amix

CP (9), so imaginary couplings might provide
a way of improving the predictions on ΔMs without intro-
ducing unwanted CP-asymmetries.

Now we focus on leptoquark models. Specifically, we
consider the scalar leptoquark S3 ∼ (3̄, 3, 1/3). The
quantum number in brackets indicate colour, weak and
hypercharge representation, respectively. The interaction
Lagrangian reads [47]

LS′
3

= −M2
S3

|Sa3 |2 + yQL
iα Qci (εσ a)LαSa3 + h.c., (13)

where σ a are the Pauli matrices, ε = iσ 2, and Qi and Lα

are the left-handed quark and lepton doublets. In this case,
the contribution to the Wilson coefficients CNP μ

9,10 arises at the
tree level and is given by [47],

CNP μ
9 = −CNP μ

10 = π√
2GFM2

S3
α

(
yQL

32 yQL∗
22

VtbV ∗
ts

)
. (14)

For CLL
bs the contribution appears at the one loop level and

can be written as [47,53]:

CLL
bs = ηLL(MS3)

4
√

2GFM2
S3

5

64π2

(∑
α yQL

3α yQL∗
2α

VtbV ∗
ts

)2

, (15)

where α = 1, 2, 3 is a lepton family index. Again, in
order to obtain CLL

bs < 0 in (15), the couplings must

comply
∑3

α=1 y
QL
3α yQL∗

2α /(VtbV ∗
ts) ∈ I. If the combinations

yQL
3α yQL∗

2α /(VtbV ∗
ts) ∈ I, then the expression in Eq. (14) sug-

gests CNP μ
9,10 ∈ I. Of course, the expression (15) is a sum

over all generations, so it is possible to set up a model with
yQL

32 yQL∗
22 /(VtbV ∗

ts) ∈ R, and to have a cancellation such that
the sum in Eq. (15) is imaginary, but this would be a highly
fine-tuned scenario. If the sum in (15) has an imaginary part,
it would be most natural if all its addends have some imagi-
nary part.

Here we have shown two examples of new physics mod-
els which justify the choice of imaginary (or complex) values
for the Wilson coefficients CNP μ

9,10 . In the next section we take
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Fig. 1 Values of RK and RK ∗0 with a imaginary and b real Wilson coefficients

an effective Hamiltonian approach and explore whether an
imaginary or complex NP Wilson coefficients can accommo-
date the experimental RK deviations.

3 Imaginary Wilson coefficients and RK observables

Several groups have analyzed the predictions for the ratios (1)
based on different global fits [17,29,30,34–40], extracting
possible NP contributions or constraining it. As it is well
known, an excellent fit to the experimental data is obtained
when CNP �

9 = −CNP �
10 ; corresponding to left-handed lep-

ton currents. By considering this relation, we investigate
the effects of having imaginary Wilson coefficients on RK

observables. For the numerical evaluation we use inputs val-
ues as given in [54]. The SM input parameters most relevant
for our computation are:

αs(MZ ) = 0.1181(11),

GF = 1.1663787(6) × 10−5 GeV−2,

MW = 80.385(15) GeV,

mt = 173.1(0.6) GeV,

MBs = 5.36689(19) GeV,

Vtb = 0.9991022 ,

Vts = −0.04137511 − 7.74823325 × 10−4 i, (16)

note that the product VtbV ∗
ts , which appears in the computa-

tion of Wilson coefficients in NP models (11), (12), (14), (15)
is approximately a negative real number (VtbV ∗

ts 	 −0.04).
Figure 1 shows the values of the ratios RK and RK ∗0 , in

their respective q2 ranges, when both Wilson coefficients
CNP μ

9 and CNP μ
10 are imaginary (Fig. 1a) and when they

are real (Fig. 1b), by assuming that CNP μ
9 = −CNP μ

10 . If
these two coefficients are imaginary, in all cases the mini-
mum value for the ratio is obtained at the corresponding SM

point CNP μ
9 = −CNP μ

10 = 0. The addition of non-zero imag-
inary Wilson coefficients results in larger values of RK and
RK ∗0 , at odds with the experimental values Rexp

K (∗0) < RSM
K (∗0) .

This behaviour was already pointed out in Ref. [26], where
it is shown that the interference of purely imaginary Wilson
with the SM vanishes, and therefore they can not provide
negative contributions to RK , RK ∗0 (see also below). In con-
trast, as shown in the right panel, values of RK (∗0) ∼ 0.7
(as in the experimental measurements) are possible when the
Wilson coefficients are real.

We have done a global fit by including the ratios RK and
RK ∗0 , and the angular observables P ′

4 and P ′
5 [6,19,21,22].1

Results are shown in Fig. 2. The allowed regions for imagi-
nary values ofCNP μ

9 andCNP μ
10 when fitting to measurements

of a series of b → sμ+μ− observables are presented in
Fig. 2a, by assuming all other Wilson coefficients to be SM-
like. The numerical analysis has been done by using the open
source code flavio 0.28 [55], which computes the χ2 function
with each (CNP μ

9 ,CNP μ
10 ) pair. The χ2 difference is evaluated

with respect to the SM point, Δχ2
SM = χ2

SM−χ2
min. Then, the

pull in σ is defined as
√

Δχ2
SM, in the case of only one Wilson

coefficient, and for the two-dimensional case it can be evalu-
ated by using the inverse cumulative distribution function of a
χ2 distribution having two degrees of freedom; for instance,
Δχ2 = 2.29 for 1 σ . The darker red shaded regions in Fig. 2
correspond to the points with Δχ2 = χ2 −χ2

min ≤ 2.29, that
is, they are less than 1 σ away from the best fit point, whereas
the lighter red shaded regions correspond to Δχ2 ≤ 6.18
(≡ 2 σ ). The crosses mark the position of the best fit points.
In Fig. 2a the χ2 function has a broad flat region centered
around the origin, with two nearly symmetric minima found

1 For the P ′
4, P ′

5 observables we include all q2 bins, except the ones
around to the charm resonances q2 ∈ [8.7, 14] GeV2, where the theo-
retical computation is not reliable. In total we include 15 measurements
for P ′

4 [6,19,22] and 21 measurements for P ′
5 [6,19,21,22].
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Fig. 2 Best fit and 1 σ and 2 σ contours to semi-leptonic B-decays observables, RK , RK ∗0 , P ′
4 and P ′

5, using a imaginary and b real Wilson
coefficients

at (CNP μ
9 = 0.72 i , CNP μ

10 = 0.74 i) and (CNP μ
9 = −0.75 i ,

CNP μ
10 = −0.74 i). The pull of the SM, defined as the prob-

ability that the SM scenario can describe the best fit assum-
ing that Δχ2

SM follows a χ2 distribution with 2 degrees

of freedom, is of just
√

Δχ2
SM = 1.42 (≡ 0.91 σ ) and

√
Δχ2

SM = 1.38 (≡ 0.87 σ ) respectively, and both of them

have the same χ2
min/d.o.f. = 2.25, that is, purely complex

couplings do not provide a good description of the data.
For completeness, the fit to real values of the Wilson coef-
ficients are included in Fig. 2b. Now the confidence regions
are much tighter and do not include the SM point. In fact,
the best fit point (CNP μ

9 = −1.09, CNP μ
10 = 0.481) improves

the SM by
√

Δχ2
SM = 6.28 (≡ 5.95 σ ), and a much lower

χ2
min/d.o.f. = 1.24.

Reference [26] showed that imaginary Wilson coefficients
do not interfere with the SM amplitude, an therefore imag-
inary CNP μ

9,10 can not decrease the prediction for RK , RK ∗0 .
This is numerically shown in the above analysis, where imag-
inary Wilson coefficientsCNP μ

9,10 are not able to reduce signifi-
cantly the prediction for RK , RK ∗0 . To further investigate this
question we have analytically computed a numerical approx-
imation to RK ∗0 as a function of CNP μ

9 , CNP μ
10 in the region

1.1 ≤ q2 ≤ 6.0 GeV2. After integration and some approxi-
mations regarding the scalar products of final state momenta,
we obtain:

RK ∗0 	 0.9875 + 0.1759 ReCNP μ
9 − 0.2954 ReCNP μ

10 +
1 + 0.1760 ReCNP e

9 − 0.3013 ReCNP e
10 + · · ·

· · · +0.0212|CNP μ
9 |2 + 0.0350|CNP μ

10 |2
+0.0212|CNP e

9 |2 + 0.0357|CNP e
10 |2

(1.1 ≤ q2 ≤ 6.0 GeV2). (17)

We have checked that this approximation reproduces the
flavio-computed value of RK ∗0 to better than 4% in a large
region of the parameter space. Now, if we assume that NP
does not affect the electron channel (CNP e

9 = CNP e
10 = 0),

it is clear that to obtain RK ∗0 < RSM
K ∗0 one needs to intro-

duce CNP μ
9 and CNP μ

10 with a non-zero real part: the only

possible negative contributions come from the ReCNP μ
9 ,

ReCNP μ
10 terms, whereas the |CNP μ

9 |2, |CNP μ
10 |2 terms have a

positive-defined sign, and can not reduce the value of RK ∗0 .
Thus, purely imaginary values of CNP μ

9,10 contribute only to
the modulus (positive-definite) and not to the real part, and
can not bring the prediction of RK ∗0 closer to the experimen-
tal value. In addition, this expression tells us that the better
option to reduce the prediction of RK ∗0 is using a real neg-
ative CNP μ

9 , and a real positive CNP μ
10 . This is actually the

result that we have obtained in our numerical analysis. Fig-
ure 1b shows that, for real Wilson coefficients, the lowest
prediction for RK ∗0 is obtained for CNP μ

9 = −CNP μ
10 < 0,

and Fig. 2b shows that the best fit is obtained for negative
CNP μ

9 and positive CNP μ
10 . Figure 1a shows that, in general,

imaginary Wilson coefficients give positive contributions to
RK , RK ∗0 , in accordance with Eq. (17). Of course, the full
expression is richer than Eq. (17), and we expect some devi-
ations, Fig. 2a shows that the best fit point is not the SM
(CNP μ

9 = CNP μ
10 = 0), but the best fit regions are centered

around it, and the SM pull with respect the best fit points is
small.

We conclude that, actually, a NP explanation for RK , RK ∗0

requires thatCNP μ
9 ,CNP μ

10 have a non-zero real part, whereas
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Table 1 Best fit Wilson
coefficients complex values to
semi-leptonic decay observables
RK , RK ∗0 , P ′

4 and P ′
5, allowing

only one free coefficient at a
time. Shown are also the
corresponding pulls, and
χ2

min/d.o.f.

Best fit(s) Pull (
√

Δχ2
SM) Pull (σ ) χ2

min/d.o.f.

CNP μ
9 −1.11 − 0.02 i 5.94 5.60 σ 1.35

CNP μ
10 1.66 + 1.99 i 5.02 4.65 σ 1.62

1.67 − 2.01 i

CNP μ
9 = −CNP μ

10 −1.16 + 1.14 i 6.06 5.72 σ 1.31

−1.18 − 1.18 i

C
′NP μ
9 −0.24 − 0.003 i 1.07 0.57 σ 2.27

C
′NP μ
10 0.33 − 0.014 i 2.22 1.72 σ 2.17

CNP e
9 −3.29 + 5.02 i 4.85 4.47 σ 1.67

−3.35 − 5.04 i

CNP e
10 −0.27 + 3.48 i 4.72 4.34 σ 1.70

−0.27 − 3.48 i

CNP e
9 = −CNP e

10 −3.29 + 4.58 i 4.85 4.47 σ 1.67

−3.35 − 4.59 i

C
′NP e
9 −0.59 + 3.89 i 4.81 4.43 σ 1.68

−0.59 − 3.89 i

C
′NP e
10 0.52 + 3.88 i 4.81 4.43 σ 1.68

0.53 − 3.88 i

Table 2 RK , RK ∗0 predictions with 1 σ uncertainties corresponding to
the best fit Wilson coefficients of Table 1

RK R[0.045,1.1]
K ∗0 R[1.1,6]

K ∗0

CNP μ
9 0.77 ± 0.03 0.887 ± 0.009 0.82 ± 0.04

CNP μ
10 0.78 ± 0.05 0.87 ± 0.03 0.80 ± 0.10

CNP μ
9 = −CNP μ

10 0.59 ± 0.08 0.83 ± 0.03 0.63 ± 0.09

C
′NP μ
9 0.95 ± 0.05 0.96 ± 0.03 1.09 ± 0.09

C
′NP μ
10 0.92 ± 0.07 0.95 ± 0.03 1.07 ± 0.09

CNP e
9 0.76 ± 0.09 0.69 ± 0.12 0.52 ± 0.17

CNP e
10 0.69 ± 0.06 0.77 ± 0.06 0.59 ± 0.13

CNP e
9 = −CNP e

10 0.76 ± 0.09 0.70 ± 0.10 0.52 ± 0.17

C
′NP e
9 0.75 ± 0.09 0.71 ± 0.10 0.52 ± 0.18

C
′NP e
10 0.75 ± 0.09 0.80 ± 0.09 0.66 ± 0.14

we saw above that NP explanation for ΔMs requires that
CNP μ

9 ,CNP μ
10 have a non-zero imaginary part. Then, to have a

NP explanation for both observables CNP μ
9 , CNP μ

10 should be
general complex numbers. Following this reasoning we have
performed a global fit to the semi-leptonic decay observables
RK , RK ∗0 , P ′

4 and P ′
5 using generic complex Wilson coeffi-

cients allowing only one free Wilson coefficient at a time.

Table 1 shows the best fit values, pulls (defined as
√

Δχ2
SM)

and χ2
min/d.o.f., for scenarios with NP in one individual com-

plex Wilson coefficient, and Table 2 shows the prediction
for RK , RK ∗0 for the corresponding central values of each

fit, together with the 1 σ uncertainties. The primed Wilson
coefficients are also included. We found that the best fit of
RK and RK ∗0 and the angular distributions is obtained for
CNP μ

9 = −1.11 − 0.02 i , for CNP μ
10 we find two points

with similar minimum value for χ2 with opposite signs of
the imaginary part, CNP μ

10 = 1.66 + 1.99 i and CNP μ
10 =

1.65 − 2.10 i . Assuming CNP μ
9 = −CNP μ

10 we also obtain

a double minimum CNP μ
9 = −CNP μ

10 = −1.16 + 1.14 i

and CNP μ
9 = −CNP μ

10 = −1.18 − 1.18 i with a pull of√
Δχ2

SM = 6.06 (≡ 5.72 σ ) and a χ2
min/d.o.f. = 1.31. By

looking at χ2
min/d.o.f. we see that the scenarios with only

CNP μ
9 or CNP μ

9 = −CNP μ
10 provide the best description of

experimental data, whereas the scenarios with C
′NP μ
9 and

C
′NP μ
10 provide the worst description. If only real Wilson

coefficients are chosen the best fit of RK and RK ∗0 yields
CNP μ

9 = −1.59, CNP μ
10 = 1.23 or CNP μ

9 = −CNP μ
10 =

−0.64, with a pull around 4.2 σ [36].
Reference [34] also provides fits for complex generic Wil-

son coefficients. Their scenario I corresponds to our first
line in Table 1, our best fit value agrees with their result
(CNP μ

9 = (−1.1±0.2)+(0±0.9 i)), within the large uncer-
tainties they give for the imaginary part, but we obtain larger
pulls (5.6 σ vs. 4.2 σ of Ref. [34]). Their scenario II corre-
sponds to our third line in Table 1 (CNP μ

9 = −CNP μ
10 ), we

agree with the main features of their fit, for the real part they
obtain Re(CNP μ

9 ) = Re(CNP μ
10 ) = −0.8 ± 0.3, we obtain

a slightly smaller real part, but they agree within uncertain-
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Fig. 3 Fit on Z ′ parameter space in the MZ ′ -Im λ
Q
23 plane (see text)

ties, both of us obtain a double minimum for the imaginary
part ∼ ±(1.1 − 1.2) i , again, we obtain a slightly larger pull
(5.72 σ vs. 4.0, 4.2 σ of Ref. [34]).

Choosing complex Wilson coefficients also implies addi-
tional constraints from CP-violating observables. This fact
has not been considered in the previous analysis. In the next
section we study the consequences of having these coeffi-
cients in the analysis of B-meson anomalies on some NP
models and we consider a global fit of both the ratios RK

and RK ∗0 and the angular observables P ′
4 and P ′

5, and also
the CP-mixing asymmetry.

4 Bs-mixing and NP models

Several NP models that are able to explain the lepton flavour
universality violation effects are constrained by other flavour
observables like Bs-mixing. In particular the parameter space
of Z

′
and leptoquark models are severely constrained by

the present experimental results of ΔMs [47]. Besides, as
already mentioned, additional constraints emerge from CP-
violating observables when considering complex couplings.
Reference [47] argues that nearly imaginary Wilson coeffi-
cients could explain the discrepancies with the ΔMs experi-
mental measurement, but a global fit of RK and RK ∗0 observ-
ables, together with ΔMs andCP-violation observable Amix

CP
in Bs → J/ψφ decays should be performed. In the next
subsections we investigate these issues for the case of Z

′
and

leptoquark models.

4.1 Z
′

fit

From now on, a global fit of RK and RK ∗0 observables, ΔMs

and theCP-violation observable Amix
CP is included in our anal-

ysis.
Figure 3 shows the fits on the Z ′ mass MZ ′ and the imagi-

nary coupling λ
Q
23 (setting λL

22 = 1) imposed by b → sμ+μ−

decays and Bs-mixing. The red lines (dotted, dash-dotted)
correspond to the fit using only semi-leptonic B-meson
decays, i.e. b → sμ+μ− as in Fig. 2 plus the branching
ratios BR(Bs → μ+μ−) and BR(B0 → μ+μ−). The best fit
region is the one between the curves; dotted lines: Δχ2 = 1,
dash-dotted lines: Δχ2 = 4. Blue lines (solid, dashed) cor-
respond to the fit to Bs-mixing observables ΔMs and Amix

CP .
The best fit region is the one between the lines; solid lines
Δχ2 = 1, dashed lines Δχ2 = 4, there are two regions with
Δχ2 < 1, but between them Δχ2 is always smaller than 4.
The green regions are the combined global fit: dark region
Δχ2 ≤ 1, medium Δχ2 ≤ 4 and light Δχ2 ≤ 9.

The best fit for the b → sμ+μ− observables in the region
under study is MZ ′ = 11 TeV, λ

Q
23 = 0.015 i , with a tiny√

Δχ2
SM = 0.23, which makes it statistically indistinguish-

able from the SM, and a large χ2
min/d.o.f. = 2.92 which

indicates that it does not provide a good fit to the data.
For the Bs-mixing observables, the best fit is found at the
maximum allowed mass MZ ′ = 12 TeV, λ

Q
23 = ±0.05 i ,

which corresponds to CLL
bs = −1.54 × 10−4. The SM

has a pull of
√

Δχ2
SM = 1.73 (≡ 1.21 σ ), and the min-

imum has a χ2
min/d.o.f. = 0.52. The best fit when all

observables are considered, in the MZ ′ region of our anal-
ysis, and λ

Q
23 being a pure imaginary coupling, is found at

MZ ′ = 12 TeV, λ
Q
23 = ±0.047 i , and the pull of the SM is√

Δχ2
SM = 1.61(≡ 1.09 σ) and χ2

min/d.o.f. = 2.12. Larger
values of MZ ′ do not improve the pull of the SM. Actu-
ally, if one allows larger values for MZ ′ the best fit point
has a linear relation between the coupling and the maximal
allowed mass: λQ

23 	 i (3.95×Mmax
Z ′ / TeV)×10−3. This lin-

ear relation produces a (approximately) constant CLL
bs (12),

with a ΔMs prediction close to the experimental value (2),
while the contributions to |CNP μ

9,10 | decrease as M−1
Z ′ (11).

Since imaginary couplings worsen the RK , RK ∗0 prediction,
the larger MZ ′ provides better predictions for them, bringing
them closer to the SM value. The best fit Δχ2

SM grows very
slowly with growing allowed MZ ′ . Table 3 summarizes the
best fit values for λ

Q
23 and MZ ′ , and corresponding pulls, to

RK and RK ∗0 observables, ΔMs and Amix
CP ; considering real,

imaginary and complex Wilson coefficients. Results for the
above observables in each scenario are included in this table.
It is clear that RK and RK ∗0 observables prefer real Wilson
coefficients, as expected. For real couplings the description
is better than the SM, with a pull of 5.39 σ but it does not
improve the prediction for ΔMs . Contrary, to improve the
prediction for ΔMs imaginary couplings are required in the
Z

′
model, however the pull with respect the SM is small,

and it has a large χ2
min/d.o.f.. When allowing generic com-

plex couplings (third column in Table 3) we find that the best
fit point is close to the best fit point using only real cou-
plings (first column in Table 3), and the pull with respect the
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Table 3 Best fits, and
corresponding pulls, to
RK , RK ∗0 ,ΔMs and Amix

CP ;
considering real, imaginary and
complex Wilson coefficients on
the Z

′
model. Shown are also

the corresponding pulls,
χ2

min/d.o.f., and the predictions
for semi-leptonic decay
observables RK , RK ∗0 ; ΔMs
and Amix

CP with 1 σ uncertainties

Best fits Real Imaginary Complex

λ
Q
23 − 0.002 ±0.047 i −0.0020 − 0.0021 i

MZ ′ 1.31 TeV 12 TeV 1.08 TeV

Pull (
√

Δχ2
SM) 5.70 1.61 6.05

Pull (σ ) 5.39 σ 1.09 σ 5.43 σ

χ2
min/d.o.f. 1.41 2.12 1.34

RK 0.66 ± 0.05 1.00 ± 0.01 0.65 ± 0.07

R[0.045,1.1]
K ∗0 0.849 ± 0.013 0.93 ± 0.02 0.84 ± 0.02

R[1.1,6]
K ∗0 0.68 ± 0.05 1.00 ± 0.01 0.68 ± 0.07

ΔMs 20.41 ± 1.26 ps−1 18.0 ± 1.7 ps−1 19.95 ± 1.27 ps−1

Amix
CP −0.0369 ± 0.0002 −0.041 ± 0.002 −0.035 ± 0.003

−0.0100 −0.0075 −0.0050 −0.0025 0.0000 0.0025 0.0050 0.0075 0.0100

Re λQ
23
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Im
λ
Q 23

b → sμ+μ−

ΔMs

Amix
CP

Global fit

Fig. 4 Fit on Z ′ parameter space in the λ
Q
23 complex plane for the best

fit Z ′ mass MZ ′ = 1.08 TeV (see text)

SM improves slightly (5.43 σ versus 5.39 σ ), and the pre-
dictions for the observables are also close to the pure real
couplings case, showing a slight improvement in the predic-
tion for ΔMs .

Figure 4 shows the best fit regions in the complex λ
Q
23

plane for the best fit mass value MZ ′ = 1.08 TeV (Table 3).
The red region shows the 2-dimensional 1 and 2-σ allowed
values (Δχ2 = 2.29, 6.18) including only the b → sμ+μ−
observables, the blue region shows the 1 and 2-σ allowed
values including only ΔMs , and the green region show the 1
and 2-σ allowed values including only Amix

CP , the violet region
shows the combined fit. Here we see the tension between the
b → sμ+μ− and ΔMs fits. b → sμ+μ− selects a region
around the real axis of the coupling, whereas ΔMs selects
regions away from it. There are two small intersection regions
for the 1-σ allowed values of both fits. The Amix

CP fit selects
one of these regions, and breaks the degeneracy. Actually, the
b → sμ+μ− fit selects fixed values of CNP μ

9 = −CNP μ
10 ,

Eq. (11), since CNP μ
9 = −CNP μ

10 scale as ∼ λ
Q
23/M

2
Z ′ , for

fixed CNP μ
9 = −CNP μ

10 the allowed values of λ
Q
23 (red region

in Fig. 4) around the real axis will grow as M2
Z ′ , but, at the

same time, the allowed region will move away from the imag-
inary axis as M2

Z ′ . On the other hand, the fit on ΔMs selects

fixed values of CLL
bs , Eq. (12), since CLL

bs ∼ (λ
Q
23)

2/M2
Z ′ , for

fixed CLL
bs the 1-σ unfavored region around the origin (light

blue region in Fig. 4) will grow as λ
Q
23 ∼ MZ ′ . As MZ ′ grows,

the red region moves away from the origin as M2
Z ′ , but the

blue region expands only as MZ ′ , so that at some MZ ′ value
their 1-σ regions do not longer intersect. This is the reason
why we obtain a relatively low MZ ′ in the fits of Table 3.

Reference [34] provides also a fit for the Z ′ model, using
a fixed MZ ′ = 1 TeV, this value is close to our best fit value
of Table 3. For λL

22 = 1 they obtain the best fit coupling

λ
Q
23 = (−0.8 ± 0.3) × 10−3 + (−0.4 ± 3.1) × 10−3 i with

a pull of 4.0 σ . Our best fit values agree with them within
uncertainties. Note that we do not provide uncertainties for
the best fit values, the reason being that the parameters are
not independent, the 2-dimensional best fit regions in Fig. 4
are not ellipses, and the best fit points are not on the center of
the figures, so that giving a central value with 1-dimensional
uncertainties overestimates the uncertainty and leads to con-
fusion about the meaning and position of the best fit point.

We conclude that, in the framework of Z ′ models, RK −
RK ∗0 observables are better described than in the SM, with
a pull >∼ 5.39 σ for MZ ′ 	 1 − 1.3 TeV, and a coupling
with a real part Re(λQ

23) 	 −0.002. The presence of a sim-

ilar imaginary part for the coupling Im(λ
Q
23) 	 − 0.0021

improves slightly the fit, as well as the ΔMs prediction.

4.2 Leptoquark fit

The leptoquark model has three independent couplings con-
tributing to ΔMs (15). For the global fits we will assume
that the dominant coupling is the muon coupling yQL

32 yQL∗
22 ,

which is the one contributing to RK , RK ∗0 (14). The fits
on the S3 leptoquark mass MS3 and the imaginary coupling
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yQL
32 yQL∗

22 imposed by b → sμ+μ− decays and Bs-mixing
are presented in Fig. 5. The observables used in the respec-
tive fits are the same as in Fig. 3. The red lines (dotted,
dash-dotted) correspond to the fit using only semi-leptonic
B-meson decays, i.e. b → sμ+μ− plus the branching ratios
BR(Bs → μ+μ−) and BR(B0 → μ+μ−), the best fit region
is the one between the curves; dotted lines: Δχ2 = 1, dash-
dotted lines: Δχ2 = 4. Blue lines (solid, dashed) corre-
spond to the fit to Bs-mixing observables ΔMs and Amix

CP .
The best fit region is the one between the lines; solid lines
Δχ2 = 1, dashed lines Δχ2 = 4, there are two regions
with Δχ2 < 1, but between them Δχ2 is always smaller
than 4. The green regions are the combined global fit: dark
region Δχ2 ≤ 1, medium Δχ2 ≤ 4 and light Δχ2 ≤ 9.
In the b → sμ+μ− fit the best fit parameters for imaginary
couplings is yQL

32 yQL∗
22 = −0.2 i , MS3 = 40.8 TeV. The lep-

toquark fit to Bs-mixing observables has a double minimum,
located at MS3 = 44.9 TeV, yQL

32 yQL∗
22 = ±2 i , with a SM

pull of
√

Δχ2
SM = 1.74 (≡ 1.22 σ ) and χ2

min/d.o.f. = 0.51.
These points correspond to a value for the Wilson coeffi-
cient of CLL

bs = −1.39 × 10−4. The global fit, including all

observables, and considering only imaginary yQL
32 yQL∗

22 cou-

plings, is located at MS3 = 50 TeV, yQL
32 yQL∗

22 = −1.67 i ;

with a SM pull of only
√

Δχ2
SM = 1.1(≡ 0.6 σ) and a large

χ2
min/d.o.f. = 2.16. Larger MS3 masses provide similar val-

ues for the best fit couplings, and observable predictions,
and the pulls improve slowly. The situation is similar than
in the Z ′ case: by allowing larger MS3 masses the best fit
coupling reaches an asymptotic straight line, where the con-
tribution to ΔMs is constant (15), whereas the contribution to
|CNP μ

9,10 | (14) decreases as M−1
S3

, the best fit coupling behaves

as yQL
32 yQL∗

22 	 i (4.43 × 10−2 × MS3/ TeV). Table 4 shows
the best fit parameters for the leptoquark model considered in
this work, corresponding pulls, predictions to the observables
RK , RK ∗0 , ΔMs and Amix

CP and χ2
min/d.o.f., considering real,

imaginary and complex Wilson coefficients. Table 4 shows
that only imaginary couplings do not improve the results,
they cannot explain the RK (∗) anomaly. However, when com-
plex couplings are considered, we found a better global fit of
RK , RK ∗0 observables, the best global fit parameters emerge
at MS3 = 4.1 TeV and yQL

32 yQL∗
22 = 0.033 + 0.034 i , with√

Δχ2
SM = 5.90 (≡ 5.27 σ ). The best fit point MS3 and the

coupling real part are similar to the real couplings case. The
imaginary part of the coupling is similar to the real part.
The pull with respect the SM is marginally better in the

case of complex couplings (
√

Δχ2
SM = 5.9 versus 5.82),

but it actually worsens in units of σ , since the complex cou-
pling fit has one more free parameter. The χ2

min/d.o.f. is
similar in both scenarios. The predictions for the B-meson
physics observables are similar than in the real couplings
case.

Figure 6 shows the best fit regions in the complex
yQL

32 yQL∗
22 plane, for the best fit mass parameter MS3 =

4.1 TeV, Table 4. The meaning of each region is as in Fig. 4.
In this model there is no intersection between the 1-σ best fit
regions of the b → sμ+μ− and the ΔMs fits. Here we also

Table 4 Best fits, and
corresponding pulls, to
RK , RK ∗0 ,ΔMs and Amix

CP ;
considering real, imaginary and
complex Wilson coefficients on
the S3 leptoquark. Shown are
also the corresponding pulls,
χ2

min/d.o.f. and the predictions
for semi-leptonic decay
observables RK , RK ∗0 ; ΔMs
and Amix

CP with 1 σ uncertainties

Best fits Real Imaginary Complex

yQL
32 yQL∗

22 0.04 −1.67 i 0.033 + 0.034 i

MS3 5.19 TeV 50 TeV 4.10 TeV

Pull (
√

Δχ2
SM) 5.82 1.10 5.90

Pull (σ ) 5.47 σ 0.60 σ 5.27 σ

χ2
min/d.o.f. 1.38 2.16 1.39

RK 0.64 ± 0.06 1.00 ± 0.01 0.62 ± 0.14

R[0.045,1.1]
K ∗0 0.835 ± 0.015 0.93 ± 0.02 0.84 ± 0.04

R[1.1,6]
K ∗0 0.66 ± 0.06 1.00 ± 0.01 0.66 ± 0.14

ΔMs 20.07 ± 1.27 ps−1 18.8 ± 1.7 ps−1 20.0 ± 1.2 ps−1

Amix
CP − 0.0374 ± 0.0006 − 0.039 ± 0.002 − 0.032 ± 0.003
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plane for the best fit leptoquark mass MS3 = 4.1 TeV (see text)

find the tension between the b → sμ+μ− and ΔMs observ-
ables, and the different evolution of the best fit regions with
the leptoquark mass MS3 . The ΔMs fit moves the best fit
point away from the real axis, and the Amix

CP fit selects of the
of the signs for the imaginary part, however the global best
fit region lies outside the 1-σ region for ΔMs , and the ΔMs

prediction does not improve with respect the SM.
Reference [34] also provides a fit for the leptoquark sce-

nario, our model corresponds to their Δ1/3[S3] model. Ref-
erence [34] performs a fit fixing the leptoquark mass to
MS3 = 1 TeV, and they obtain a two nearly degenerate mini-
mums with positive and negative imaginary parts. The reason
for that is that they do not include the Amix

CP observable in the

fit. Since the CNP μ
9 = −CNP μ

10 Wilson coefficient scales like

∼ yQL
32 yQL∗

22 /M2
S3

(14) we can compare both results by scal-
ing the best fit coupling with the mass squared, by taking
their central value for the positive imaginary part, we obtain
yQL

32 yQL∗
22 = (1.4+1.7 i)×10−3×(4.1)2 = 0.023+0.029 i ,

which is similar to our third column in Table 4, and is inside
the best fit region of Fig. 6. Again, we obtain a larger pull

(
√

Δχ2
SM = 5.9 versus 4.0).

If one relaxes the condition yQL
33 yQL∗

23 	 yQL
31 yQL∗

21 	 0

then the leptoquark contributions to ΔMs (15) andCNP μ
9,10 (14)

are no longer correlated, it would be possible to choose: a
purely real coupling to muons, such that it fulfils the first col-
umn of Table 4; a vanishing coupling for electrons, such that
it does not contribute to RK , RK ∗0 ; and a complex coupling
for taus, such that yQL

33 yQL∗
23 + yQL

32 yQL∗
22 is purely imaginary,

and provides a good prediction for ΔMs like in the second
column of Table 4. Of course, this would be a quite strange
arrangement for leptoquark couplings! Another option would
be to take an specific model construction for the relations
among the leptoquark couplings, and make a global fit on
these parameters. This analysis is beyond the scope of the
present work.

5 Conclusions

In this work, we have updated the analysis of New Physics
violating lepton flavour universality, by using the effective
Lagrangian approach and also in the Z

′
and leptoquark mod-

els. By considering generic complex Wilson coefficients we
found that purely imaginary coefficients do not improve sig-
nificantly B-meson physics observable predictions, whereas
complex coefficients (Table 1) do improve the predictions,
with a slightly improved pull than using only real coeffi-
cients [36]. We have analyzed the impact of considering com-
plex Wilson coefficients in the analysis of B-meson anoma-
lies in two specific models: Z

′
and leptoquarks, and we have

presented a global fit of RK and RK ∗0 observables, together
with ΔMs and CP-violation observable Amix

CP when these
complex couplings are included in the analysis. We confirm
that real Wilson coefficients cannot explain the Bs-mixing
anomaly; but also only imaginary Wilson coefficients cannot
explain the RK , RK ∗0 anomaly. Contrary, complex couplings
offer a slightly better global fit. For complex couplings the
predictions for RK , RK ∗0 and ΔMs are similar than for real
couplings (Tables 3, 4). For Z ′ models the best fit in both
cases is obtained for MZ ′ 	 1–1.3 TeV, a negative real part
of the coupling Re(λQ

23) 	 −0.002, with possibly a similar

imaginary coupling part Im(λ
Q
23) 	 − 0.0021. For lepto-

quark models the situation is similar, with a best fit mass of
MS3 = 4–5 TeV and a coupling with a positive real part
yQL

32 yQL∗
22 	 0.03–0.04, the presence of a similar imaginary

part does not improve significantly the fit. One can obtain bet-
ter fits in the leptoquark models by relaxing the assumption
on the leptoquark couplings, or providing specific models for
leptoquark couplings, this analysis is beyond the scope of
the present work. In summary, new physics Z ′ or leptoquark
models with complex couplings provide a slightly improved
global fit to B-meson physics observables as compared with
models with real couplings.

Note added

After the completion of this work, Ref. [56] appeared also
analysing the presence of complex couplings in the B-
system. Our results agree with Ref. [56] wherever compa-
rable.
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