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Abstract In this work we investigate the inflationary phe-
nomenological implications of a recently developed ghost-
free Gauss–Bonnet theory of gravity. The resulting theory
can be viewed as a scalar Einstein–Gauss–Bonnet theory
of gravity, so by employing the formalism for cosmologi-
cal perturbations for the latter theory, we calculate the slow-
roll indices and the observational indices, and we compare
these with the latest observational data. Due to the presence
of a freely chosen function in the model, in principle any
cosmological evolution can be realized, so we specify the
Hubble rate and the freely chosen function and we exam-
ine the phenomenology of the model. Specifically we focus
on de Sitter, quasi-de Sitter and a cosmological evolution in
which the Hubble rate evolves exponentially, with the last
two being more realistic choices for describing inflation. As
we demonstrate, the ghost-free model can produce inflation-
ary phenomenology compatible with the observational data.
We also briefly address the stability of first order scalar and
tensor cosmological perturbations, for the exponential Hub-
ble rate, and as we demonstrate, stability is achieved for the
same range of values of the free parameters that guarantee
the phenomenological viability of the models.

a e-mail: nojiri@gravity.phys.nagoya-u.ac.jp
b e-mail: odintsov@ieec.uab.es
c e-mail: v.k.oikonomou1979@gmail.com
d e-mail: pul.tnmy9@gmail.com

1 Introduction

Nearly 40 years ago, three of the major problems in contem-
porary cosmology, namely the Horizon Problem, the Flatness
Problem and the Magnetic-Monopoles Problem, have been
given a successful solution in the context of the inflation-
ary scenario. This scenario was firstly proposed in Ref. [1]
and was further developed in Refs. [2,4]. According to the
inflationary scenario, merely fractions of seconds after the
Big Bang, the spatial coordinates of the Universe expanded
exponentially. An expansion of this sort is supposed to last
from about 10−36s to 10−15s and the size of the Universe
is increased by a factor of 1026. The nature of this scenario
is rather bizarre for classical cosmology, since traditional
Big Bang Friedmann–Robertson–Walker (FRW) models do
not match the fast evolution of the Universe [6–8]. The first
approximation is to consider the expansion as the de Sit-
ter phase of the Universe. The standard approach to achieve
the de Sitter inflationary phase in cosmology is to use scalar
fields, and many of the initial models of inflation made use
of the scalar field formalism.

However, it is also possible to produce an inflationary
phase of the Universe in the context of modified gravity, see
Refs. [9–11,13–16] for reviews on this. In fact, the first model
of f (R) which remains viable up to date is the Starobinsky
model [17], and ever since many models have been devel-
oped in various forms of modified gravity [9–11,13–16]. In
all the modified gravities the key element is that geometric
terms are included in the gravitational Lagrangian, which are
absent in the Einstein–Hilbert gravity. These terms may dom-
inate the Universe’s evolution at early times or even at late
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times. Such models may include additional curvature terms,
namely the f (R) theories, torsional terms namely the telepar-
allel f (T ) theories, or the Gauss–Bonnet modified gravities
f (G) theories, as well as the generalized f (R,G) theories
(see [9–11,13–16]). Such theoretical formulations of grav-
ity are able to model both the early-time expansion and the
late-time acceleration, see for example [18].

Recently it was demonstrated how ghosts may disappear
from the Gauss–Bonnet modified gravity theories in gen-
eral background [19]. In [19], we have considered the per-
turbation from the general background with matter and we
have chosen the coordinate system where gtt = −1 and
gti = git = 0 (i = 1, 2, 3). Then after eliminating the per-
turbation of the scalar field, we have shown that the perturbed
equations do not include higher than second order derivatives
of the metric and therefore there no ghosts in the general
background. Actually in Ref. [19] it was thoroughly investi-
gated how ghost degrees of freedom may occur in f (G) and
f (R,G) theories, and how the theory should be modified in
order for these ghost degrees of freedom to disappear at the
equations of motion level. In this work we shall be interested
on the inflationary aspects of ghost free f (G) gravity the-
ory developed in [19]. The ghost free f (G) gravity contains
a scalar field and the resulting theory can be treated as an
effective scalar Einstein–Gauss–Bonnet theory. By employ-
ing the slow-roll approximation, we shall calculate the slow-
roll indices of the resulting theory and the corresponding
observational indices of inflation, and we shall confront the
results with the latest Planck [20] and BICEP2/Keck-Array
data [21]. Due to the freedom offered by the theory by con-
struction, we shall demonstrate that the resulting theory can
be viable. This is due to the presence of the Lagrange mul-
tiplier terms, as we show. Thus by treating the theory as the
effective Einstein–Gauss–Bonnet theory, we shall fix initially
the Hubble rate and the function h(χ), which is the coupling
of the Gauss–Bonnet term, and we shall investigate which
theory can realize the given evolution. Accordingly, we shall
investigate the phenomenological viability of the models, by
calculating the observational indices and by directly con-
fronting the theory with the latest Planck [20] data. We shall
use three different types of cosmological evolutions, namely
the de Sitter, the quasi-de Sitter and an exponential type of
cosmological evolution. As we shall demonstrate, in the last
two cases, the viability with the observational data can be
achieved by appropriately restricting the values of the free
parameters. In addition, we shall use another reconstruction
approach, in the context of which we shall fix the Hubble rate
and the scalar potential, instead of the function h(χ), and
we shall perform the same analysis in order to test the phe-
nomenological viability of the model. As we demonstrate,
the viability of the theory is also achieved in this case too,
by appropriately constraining the values of the free parame-
ters. Finally, we examine the stability of first order scalar and

tensor perturbations, for the exponential cosmological evo-
lution, and as we demonstrate these perturbations are stable
for the same range of values of the free parameters, for which
the phenomenological viability of the model is achieved.

This paper is organized as follows: In Sect. 2 we briefly
review the essential features of the ghost free f (G) gravity,
in Sect. 3 we present the inflationary dynamics formalism
of f (G) gravity which we shall use in the rest of the paper.
Accordingly in Sect. 4 we investigate how this formalism can
be applied for the case that the de Sitter evolution is chosen,
by also choosing the functional form of the function cou-
pling function h(χ). Accordingly, in Sect. 5 we discuss the
case of a quasi-de Sitter evolution. In Sect. 6, an exponen-
tial cosmological evolution is studied in detail in the same
context as in the previous sections, and also the stability of
the first order perturbations is investigated too. Finally, the
conclusions follow in the end of the paper.

2 Essential features of Ghost-free f (G) gravity

In this section we shall recall the essential features of the
ghost free f (G) gravity developed in Ref. [19]. The whole
ghost-free construction scheme is based on introducing a
Lagrange multiplier λ in the standard f (G) gravity action,
so the ghost-free action is the following,

S =
∫

d4x
√−g

(
1

2κ2 R + λ

(
1

2
∂μχ∂μχ + μ4

2

)

−1

2
∂μχ∂μχ + h (χ)G − V (χ) + Lmatter

)
, (1)

where μ is a mass-dimension one constant. Upon variation
with respect to the Lagrange multiplier λ, we obtain the fol-
lowing constraint equation,

0 = 1

2
∂μχ∂μχ + μ4

2
. (2)

Effectively, the kinetic term is a constant, so it can be
absorbed in the scalar potential in the following way,

Ṽ (χ) ≡ 1

2
∂μχ∂μχ + V (χ) = −μ4

2
+ V (χ) , (3)

and in effect, the action of Eq. (1) is rewritten as,

S =
∫

d4x
√−g

(
1

2κ2 R + λ

(
1

2
∂μχ∂μχ + μ4

2

)

+ h (χ)G − Ṽ (χ) + Lmatter

)
. (4)

The equations of motion for the action (4), are (2) and the
following,

0 = − 1√−g
∂μ

(
λgμν√−g∂νχ

)

+ h′ (χ)G − Ṽ ′ (χ) , (5)
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0 = 1

2κ2

(
−Rμν + 1

2
gμνR

)

+ 1

2
Tmatter μν − 1

2
λ∂μχ∂νχ

− 1

2
gμν Ṽ (χ) + D τη

μν ∇τ∇ηh (χ) , (6)

Upon multiplication of Eq. (6) with gμν , we get,

0 = R

2κ2 + 1

2
Tmatter + μ4

2
λ − 2Ṽ (χ)

−4

(
−Rτη + 1

2
gτηR

)
∇τ∇ηh (χ) , (7)

By solving Eq. (7) with respect to λ, we get,

λ = − 2

μ4

(
R

2κ2 + 1

2
Tmatter − 2Ṽ (χ)

−4

(
−Rτη + 1

2
gτηR

)
∇τ∇ηh (χ)

)
. (8)

Let us now see how the equations of motion become if the
metric background is a flat Friedmann–Robertson–Walker
(FRW), with line element,

ds2 = −dt2 + a(t)2
∑

i=1,2,3

(
dxi

)2
. (9)

Assuming that the functions λ and χ are only cosmic time
dependent, and also that no matter fluids are present, that is,
Tmatter μν = 0, Eq. (2) has the following simple solution,

χ = μ2t. (10)

Hence, the (t, t) and (i, j) components of Eq. (6) can be
written,

0 = −3H2

2κ2 − μ4λ

2
+ 1

2
Ṽ
(
μ2t

)
− 12μ2H3h′ (μ2t

)
,

(11)

0 = 1

2κ2

(
2Ḣ + 3H2

)
− 1

2
Ṽ
(
μ2t

)

+ 4μ4H2h′′ (μ2t
)

+ 8μ2
(
Ḣ + H2

)
Hh′ (μ2t

)
,

(12)

and in addition from Eq. (5) we get,

0 = μ2λ̇ + 3μ2Hλ + 24H2
(
Ḣ + H2

)
h′ (μ2t

)

−Ṽ ′ (μ2t
)

. (13)

By solving Eq. (11) with respect to λ we get,

λ = − 3H2

μ4κ2 + 1

μ4 Ṽ
(
μ2t

)
− 24

μ2 H
3h′ (μ2t

)
. (14)

It is easy to see that by combining Eqs. (14) and (13), we
easily obtain Eq. (12). Also by solving Eq. (12) with respect
to the scalar potential Ṽ

(
μ2t

)
, we get,

Ṽ
(
μ2t

)
= 1

κ2

(
2Ḣ + 3H2

)
+ 8μ4H2h′′ (μ2t

)

+16μ2
(
Ḣ + H2

)
Hh′ (μ2t

)
. (15)

Hence, for an arbitrarily chosen function h(χ(t)), and with
the potential Ṽ (χ) being equal to,

Ṽ (χ) =
[

1

κ2

(
2Ḣ + 3H2

)
+ 8μ4H2h′′ (μ2t

)

+ 16μ2
(
Ḣ + H2

)
Hh′ (μ2t

)]
t= χ

μ2

, (16)

then we can realize an arbitrary cosmology corresponding to
a given Hubble rate H(t). Finally, the functional form of the
Lagrange multiplier is equal to,

λ= 2Ḣ

μ4κ2 +8H2h′′ (μ2t
)

+ 8

μ2

(
2Ḣ − H2

)
Hh′ (μ2t

)
.

(17)

The resulting theory with Lagrangian (4) is a form of the
scalar Einstein–Gauss–Bonnet gravity and in the next section
we shall extensively discuss the inflationary dynamics of this
model. The presence of the arbitrary function h(χ) provides
us with the freedom of realizing several viable cosmologies.

3 Inflationary dynamics of the Ghost-free f (G)Model

As we already mentioned, the ghost-free f (G) model of
Eq. (4) is a sort of scalar Einstein–Gauss–Bonnet model [22–
39], the cosmological perturbations of which were studied in
Ref. [40]. In this section we shall use the formalism, notation
and results of Ref. [40], and we shall calculate the spectral
index of primordial curvature perturbations and the tensor-
to-scalar ratio for the model (4), by specifying the functional
form of h(χ) and the Hubble rate. Then, by replacing the
cosmic time with the e-foldings number, we shall express all
the observational and slow-roll indices as functions of the
e-foldings number, and we shall put the phenomenology of
the model into test by confronting the resulting theory with
the latest observational data.

We begin by defining the functions Qi (χ) (see [40] for
more details), as follows,

Qa(χ) = 8ḣ(χ)H2, Qb(χ) = 16ḣ(χ)H,

Qc(χ) = Qd(χ) = 0,

Qe(χ) = 32ḣ(χ)Ḣ , Q f (χ) = −16
(
ḧ(χ) − ḣ(χ)H

)
,

Qt (χ) = 1 + 8ḣ(χ)H, (18)
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where H is the Hubble rate, H ≡ ȧ/a. In addition, the wave
speeds cA and cT become,

c2
A = X ∂ f

∂X + 3Ḟ2

2F

X ∂ f
∂X + 2X2 ∂2 f

∂X2 + 3Ḟ2

2F

, c2
T = 1 − Q f

2F + Qb
,

where X = −1

2
χ̇2,

∂ f

∂X
= λ

2
,

∂2 f

∂X2 = 0 and F = 1 in our

case. Note that cA is the wave speed of the perturbed field in
the context of the perturbed FRW metric, and cT is the sound
speed. For more details on this we refer the reader to [40].
The definition of the wave speeds is for the general Gauss–
Bonnet corrected f (R, χ) theory with F = ∂ f

∂R , but in our
case f (R, χ) = R and F = 1. Also the waves speeds are
affected from the Gauss–Bonnet coupling via the functions
Q f and Qb which in our case have the form (18). As a result,
the two wave speeds are further simplified with the wave
speed of the perturbed field cA being trivial as in the classical
case,

c2
A = 1, (19)

while the wave speed of the gravitational waves in non-trivial,

c2
T = 1 + 16

(
ḧ(χ) − ḣ(χ)H

)
2 + 16ḣ(χ)H

. (20)

In order to calculate the slow-roll parameters, we first need
to determine the function E(R, χ, X) which is defined as
follows [40],

E(R, χ, X) = F(R, χ)

χ̇

(
ω(χ)χ̇2 + 3

(
Ḟ(R, χ) + Qa

)2
2F(R, χ) + Qb

)

= −λχ̇ + 192ḣ(χ)2H4

2χ̇ + 16χ̇ ḣ(χ)H
. (21)

The slow-roll parameters are defined as follows [40]

ε1 = Ḣ

H2 , ε2 = χ̈

H χ̇
= 0,

ε3 = 1

2

Ḟ(R, χ)

HF(R, χ)
= 0, ε4 = 1

2

Ė(R, χ, X)

HE(R, χ, X)
,

ε5 = Ḟ + Qa

H (2F(R, χ) + Qb)
= 4ḣ(χ)H2

H
(
1 + 8ḣ(χ)H

) ,

ε6 = Q̇t

2HQt
= 4ḧ(χ)H + 4ḣ(χ)Ḣ

H
(
1 + 8ḣ(χ)H

) . (22)

The two spectral indices, for scalar and for tensor perturba-
tions in the inflationary era respectively, are defined using
the slow-roll parameters [40],

nS = 1 + 2
ε1 − ε2 + ε3 − ε4

1 + ε1
, nT = 2

ε1 − ε6

1 + ε1
. (23)

Finally, the tensor-to-scalar ratio is equal to [40],

r = 4

∣∣∣∣∣
[
ε1 − ε3 − 1

4F(R, χ)

(
1

H2 (2Qc + Qd ) − 1

H
Qe + Q f

)]

× 1

1 + Qb
2F(R,χ)

(
cA
cT

)3
∣∣∣∣∣ . (24)

The above expressions of the parameters for the slow-roll
inflationary dynamics, are in fact functions of the cosmic
time, t . However, such a description is not sufficient for our
study, since the preferable variable to perfectly quantify the
evolution during the inflationary era is the e-foldings number,
N . So we need to transform the above relations with respect to
the e-foldings numbers. At first, we consider a given Hubble
expansion rate for the inflationary era, as a function of time,
H = H(t). The e-foldings number is defined as

N =
∫ t f

ti
H(t)dt, (25)

where ti is the initial and t f the final moments of infla-
tion. Considering a given initial moment for inflation, ti ∈
[0, 10−36], and an unspecified final moment, t , the e-foldings
number is obtained via Eq. 25 as a function of time, N =
N (t). Supposing this function is reversible, time is also given
as a function of the e-foldings number, t = t (N ). Con-
sequently, the first- and the second-order derivatives with
respect to time, are transformed into first- and second-order
derivatives with respect to the e-foldings number, as follows,

d

dt
= dN

dt

d

dN
= H(N )

d

dN
,

d2

dt2 =
(
dN

dt

)2 d2

dN 2 + dN

dt

dH

dN
,

d

dN
= H(N )2 d2

dN 2 + H(N )
dH

dN

d

dN
. (26)

Since the scalar field, χ = χ(t) is a function of time, its
potential, Ṽ (χ) = Ṽ (χ(t)), and the Lagrange multiplier,
λ = λ(t), the coupling function, h(χ) = h(χ(t)), as well as
the Ricci scalar, the Gauss–Bonnet invariant and the function
E(R, χ) = E (R(t), χ(t)) are also functions of the cosmic
time. As a result, they can all be rewritten with respect to
the e-foldings number. Furthermore, the functions Qi (χ) are
also transformed, taking the following forms,

Qa(N ) = 8H(N )2h′(N ),

Qb(N ) = 16H(N )2h′(N ),

Qc(N ) = Qd(N ) = 0,

Qe(N ) = 32H(N )2H ′(N )h′(N ),

Q f (N ) = −16
(
H(N )2h′′(N )

+H(N )H ′(N )h′(N ) − H(N )2h′(N )
)

,

Qt (N ) = 1 + 8H(N )2h′(N ), (27)
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where the prime denotes differentiation with respect to the
e-foldings number. In the same manner, we may redefine the
wave speed for the gravitational waves,

c2
T = 1 − Q f (N )

2 + Qb(N )

= 1 + 8
(
H(N )2h′′(N ) + H(N )H ′(N )h′(N ) − H(N )2h′(N )

)
1 + 8H(N )2h′(N )

.

(28)

The next step is to express the slow-roll parameters, εi , with
respect to the e-foldings number, and the resulting expres-
sions are,

ε1(N ) = H ′(N )

H(N )
, ε2(N ) = χ ′′(N )

χ ′(N )
+ H ′(N )

H(N )
= 0,

ε3(N ) = 1

2

F ′(N )

F(N )
= 0, ε4(N ) = 1

2

E ′(N )

E(N )
,

ε5(N ) = Qa(N )

H(N ) (2 + Qb(N ))

= 4H(N )h′(N )

1 + 8H(N )2h′(N )
,

ε6(N ) = Q′
t (N )

Qt (N )

= H(N )
(
16H ′(N )h′(N ) + 8H(N )h′′(N )

)
1 + 8H(N )2h′(N )

. (29)

Through these, the spectral indices and the tensor-to-scalar
ratio are directly calculated with respect to the e-foldings
number, using Eqs. (23) and (24).

What remains is to define a specific coupling function,
h(χ), as well as the Hubble rate for the cosmological FRW
background, and also to calculate the spectral indices and
the tensor-to-scalar ratio and compare our results with that of
the latest Planck [20] and BICEP2/Keck-Array [21] observa-
tions. With regard to the coupling function, we shall assume
that it has either exponential or power-law forms, while with
regard to the Hubble rate, we shall firstly assume the de Sitter
evolution for a warm up study, and finally we shall assume
the quasi-de Sitter evolution.

4 The case of de Sitter background evolution

In the de Sitter case, the Hubble rate is constant as a function
of the cosmic time,

H(t) = H0, (30)

therefore the e-foldings number and the cosmic time are
related as follows,

t = N

H0
. (31)

As a result, the Ricci scalar and the Gauss–Bonnet invariant
are both constant,

R = 12H2
0 , G = 24H4

0 . (32)

Finally, the scalar field given by Eq. (10), takes the following
form,

χ(N ) = μ2

H0
N . (33)

Using, Eqs. (30), (31) and (33) and in addition a specific form
for the function h(χ), we can calculate the slow-roll indices
and the observational indices for the de Sitter evolution cos-
mology.

4.1 A power-law coupling function, h(χ) = γχb

Let us assume that the coupling function is a simple power
law,

h(χ) = γχb, (34)

where γ and b are real constants, to be used as free parameters
later. Using Eqs. (33) and (31), we can write the coupling
function first as function of time,

h(t) = γ
(
μ2t

)b
, (35)

and then as a function of the e-foldings number,

h(N ) = γ

(
μ2

H0
N

)b

. (36)

Using Eq. (16), we may derive the potential as a function of
the e-foldings number,

Ṽ (N ) =
8γ (b − 1)bH4

0

(
μ2

H0
N
)b

N 2 , (37)

as well as the Lagrange multiplier,

λ(N ) = 8γ (b − 1)bH2
0

(
μ2

H0
N

)b−2

. (38)

From the equations in (27), we can write the Qi functions
with respect to the e-foldings number, as follows,

Qa(N ) =
8γ bH3

0

(
μ2

H0
N
)b

N
,

Qb(N ) =
16γ bH2

0

(
μ2

H0
N
)b

N
,

Qc(N ) = Qd(N ) = Qe(N ) = 0,
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Q f (N ) =
16γ bH2

0 (N + 1 − b)
(

μ2

H0
N
)b

N 2 ,

Qt (N ) = 1 +
8γ bH2

0

(
μ2

H0
N
)b

N
, (39)

while the wave-speeds appearing in Eqs. (19) and (28) are,

c2
A = 1, c2

T =
8γ (b − 1)bH2

0

(
μ2

H0
N
)b + N 2

8γ bH2
0 N

(
μ2

H0
N
)b + N 2

. (40)

The function E(R, χ) is written with respect to the e-foldings
number in the following way,

E(N ) =
96a2b2H4

0

(
μ2

H0
N
)2b−2

1 + 8γ bH0μ2
(

μ2

H0
N
)b−1

−8γ (b − 1)bH2
0

(
μ2

H0
N

)b−2

. (41)

Using Eqs. (29), (30), (36) and (41), we obtain the slow-roll
parameters of the de Sitter evolution case, which are,

ε1(N ) = ε2(N ) = ε3(N ) = 0,

ε4(N ) =
−

3072a3(b−1)b3H4
0 μ4

(
μ2

H0
N

)3b−4

(
16γ bH0μ2

(
μ2
H0

N
)b−1+2

)2 +
192a2b2(2b−2)H3

0 μ2
(

μ2N
H0

)2b−3

16γ bH0μ2
(

μ2N
H0

)b−1+2
− 8γ (b − 2)(b − 1)bH0μ

2
(

μ2

H0
N
)b−3

2

(
192a2b2H4

0

(
μ2
H0

N
)2b−2

16γ bH0μ2
(

μ2
H0

N
)b−1+2

− 8γ (b − 1)bH2
0

(
μ2

H0
N
)b−2

) ,

ε5(N ) =
4γ bH0μ

2
(

μ2

H0
N
)b−1

1 + 8γ bH0μ2
(

μ2

H0
N
)b−1 , ε6(N ) =

8γ (b − 1)bμ4
(

μ2

H0
N
)b−2

1 + 8γ bH0μ2
(

μ2

H0
N
)b−1 . (42)

Using the above results, we can proceed in calculating the
spectral indices, from Eqs. (23),

nS = 1 + (b − 1)

[
64a2(b − 2)b2H4

0

(
μ2

H0
N

)2b

+ N 2

(
b − 2 − 24γ bH2

0

(
μ2

H0
N

)b
)

−16γ bH2
0 N

(
μ2

H0
N

)b
(
b

(
6γ H2

0

(
μ2

H0
N

)b

− 1

)
+ 2

)]

×
{
N

(
8γ bH2

0

(
μ2

H0
N

)b

+ N

)

×
[
N

(
b

(
12γ H2

0

(
μ2

H0
N

)b

− 1

)
+ 1

)

−8γ (b − 1)bH2
0

(
μ2

H0
N

)b
]}−1

,

nT =
16γ b(b − 1)H2

0

(
μ2

H0
N
)b

N

(
8γ bH2

0

(
μ2

H0
N
)b + N

) . (43)

and the tensor-to-scalar ratio, from Eq. (24),

r = 16

∣∣∣∣∣∣∣∣∣∣∣∣∣

abH2
0 (−b + N + 1)

(
μ2

H0
N
)b

N

(
8γ bH2

0

(
μ2

H0
N
)b + N

)⎛
⎝ 8γ (b−1)bH2

0

(
μ2
H0

N
)b+N2

N

(
8γ bH2

0

(
μ2
H0

N
)b+N

)
⎞
⎠

3/2

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(44)

Having these at hand, we can compare them directly to the
Planck [20] and the BICEP2/Keck-Array data [21], which
indicate that nS = 0.9649 ± 0.0042 and r < 0.064. It can

be shown that the viability of the theory is achieved for a
restricted range of values of the free parameters. Actually,
if we set N = 50 (or N = 60) to indicate the end of the
inflationary era, it is easy to see that the values of H0, γ

and μ do not affect the resulting values. In effect, we choose
γ = 1 and μ = 1 s−1 for simplicity and H0 = 1026 s−1 (or
H0 = 1027 s−1). The tensor-to-scalar ratio is constantly close
to zero, while the spectral index coincides with the Planck
data only for μ ∼ 4 s−1. Namely, nS = 0.9644 only for
b = 3.78 when N = 50, or b = 4.136 for N = 60 for the
same values, r ∈ [10−50, 10−20]. In Fig. 1 we present the
plots of the spectral index and of the tensor-to-scalar ratio as
a function of b.
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Fig. 1 The spectral index nS (left plot) and the tensor-to-scalar ratio r
(right plot), for the power-law function h(χ) = γχb in the case of a de
Sitter evolution, with respect to b, for N = 50, γ = 1 and μ = 1012 s−1.
The different colors correspond to different values of H0, varying from
H0 = 1026 s−1 (the blue curve) to H0 = 1029 s−1 (the darker green

curve). The horizontal dark red line stands for nS = 0.9649, while
the horizontal dashed red lines for the limits of its confidence interval,
according to Planck 2018 results. The horizontal black line sets the limit
r = 0.064 from the same results, while the dashed black an older upper
boundary of r = 0.07 from the BICEP2/Keck-Array

As a result, a power-law coupling function for the de Sit-
ter background evolution, may generate a viable inflationary
model, only under the strict assumption of h(χ) ∼ χ4.

4.2 An exponential coupling function, h(χ) = γ ebχ

In this case, we assume that the coupling function h(χ) has
the following exponential form,

h(χ) = γ ebχ , (45)

where γ and b are real constants, to be used as free parameters
later. Using Eqs. (33) and (31), we can write the coupling
function first as function of time,

h(t) = γ ebμ
2t , (46)

and then as a function of the e-foldings number,

h(N ) = γ e
bμ2

H0
N
. (47)

At this point, by using Eq. (16), we may derive the potential
as a function of the e-foldings number,

Ṽ (N ) = 8γ b2H2
0 μ4e

bμ2

H0
N
, (48)

as well as the Lagrange multiplier,

λ(N ) = 8γ b2H2
0 e

bμ2

H0
N
. (49)

Accordingly from Eqs. (27), we derive the Qi functions with
respect to the e-foldings number, as follows,

Qa(N ) = 8γ bH2
0 μ2e

bμ2

H0
N
,

Qb(N ) = 16γ bH0μ
2e

bμ2

H0
N
, Qc(N ) = Qd(N ) = Qe(N ) = 0,

Q f (N ) = 16γ bμ2(H0 − bμ2)e
bμ2

H0
N
,

Qt (N ) = 1 + 8γ bH0μ
2e

bμ2

H0
N
, (50)

while the wave-speeds appearing in Eqs. (19) and (28), take
the following form,

c2
A = 1, c2

T = 1 + 8γ bH2
0 μ4e

bμ2

H0
N

1 + 8γ bH0μ2e
bμ2
H0

N
. (51)

The function E(R, χ) is written with respect to the e-foldings
number as follows,

E(N ) = 96a2b2H4
0 e

bμ2

H0
N

1 + 8γ bH0μ2e
bμ2
H0

N
− 8γ bH2

0 e
bμ2

H0
N
. (52)

Using Eqs. (29), (30), (47) and (52), we obtain the slow-roll
parameters for the de Sitter evolution case with an exponen-
tial coupling function, which is,

ε1(N ) = ε2(N ) = ε3(N ) = 0,

ε4(N ) =

− 3072a3b4H4
0 μ4e

3bμ2
H0

N

(
16γ bH0μ2e

bμ2
H0

N+2

)2 + 384a2b3H3
0 μ2e

2bμ2
H0

N

16γ bH0μ2e
bμ2
H0

N+2

− 8γ b3H0μ
2e

bμ2

H0
N

2

⎛
⎝ 192a2b2H4

0 e
2bμ2
H0

N

16γ bH0μ2e
bμ2
H0

N+2

− 8γ b2H2
0 e

bμ2
H0

N

⎞
⎠

,

ε5(N ) = 4γ bH0μ
2e

bμ2

H0
N

1 + 8γ bH0μ2e
bμ2
H0

N
, ε6(N ) = 8γ b2μ4e

bμ2

H0
N

1 + 8γ bH0μ2e
bμ2
H0

N
. (53)
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Fig. 2 The spectral index nS on the left and the tensor-to-scalar ratio r on the right for the exponential function h(χ) = γ ebχ in the case of a de
Sitter evolution, with respect to b, for N = 50, γ = 1 and μ = 1012 s−1. The color conventions are the same as in Fig. 1

By using the above results, we can proceed in calculating the
spectral indices, from Eqs. (23),

nS = 1 + bμ2

⎛
⎜⎝− 1

8γ bH2
0 μ2e

bμ2
H0

N + H0

+ 1

H0 − 4γ H2
0

(
3H0 − 2bμ2

)
e
bμ2
H0

N
− 1

H0

⎞
⎟⎠ ,

nT =
2bμ2

(
1

8γ bH0μ2e
bμ2
H0

N+1

− 1

)

H0
, (54)

and the tensor-to-scalar ratio, from Eq. (24),

r = 16e
bμ2

H0
N

∣∣∣∣∣∣∣∣∣
abμ2

(
bμ2 − H0

)√
8γ be

bμ2
H0

N
H0μ2 + 1

(
1 + 8γ b2e

bμ2
H0

N
μ4

)3/2

∣∣∣∣∣∣∣∣∣
.

(55)

In order to examine the viability of the model, we need to
calculate the numerical values for the spectral index nS and
the tensor-to-scalar ratio r , for various values of the parame-
ters H0, γ , b and μ at the end of inflation (for N ∈ [50, 60])
and compare these values to the observational results of the
Planck collaboration [20] and the BICEP2/Keck-Array [21].
However in this case, no simultaneous compatibility with the
observations can be obtained, and more specifically, the val-
ues of nS and r do not depend on the choice of γ , so we set
it equal to one for simplicity. They also do not depend on the
number of e-foldings, so N = 50 and N = 60 are used in
the same manner. They depend on H0, b and μ, though, thus
assuming that H0 ∼ 1027 s−1 and setting μ = 1012 s−1, we
get b = 35.6 so that nS = 0.9644 (Planck’s previous result)

however, the resulting value of the tensor-to-scalar ratio is
excluded. This can also be seen in Fig. 2.

5 A flat quasi-de Sitter Vacuum as background

Now we assume that the Universe’s evolution is described
by the quasi-de Sitter Hubble rate,

H(t) = H0 − H1t. (56)

Integrating Eq. (56) with respect to the cosmic time, we
obtain

N = H0t − H1

2
t2,

and solving with respect to time, we may write the latter with
respect to the e-foldings number as follows,

t =
H0 ±

√
H2

0 − 2H1N

H1
. (57)

As a result, the Hubble rate with respect to the e-foldings
number becomes,

H(N ) = ±
√
H2

0 − 2H1N , (58)

while the Ricci scalar and the Gauss–Bonnet scalar are equal
to,

R = 12
(
H2

0 − 2H1N
)

∓ 6H1√
H2

0 − 2H1N
,

G = 24
(
H2

0 − 2H1N
) (

H2
0 − H1(2N + 1)

)
. (59)

Finally, we also express the scalar field of Eq. (10) with
respect to the e-foldings number as follows,

χ(N ) = μ2
H0 ±

√
H2

0 − 2H1N

H1
. (60)

123



Eur. Phys. J. C (2019) 79 :565 Page 9 of ?? 565

As in Sect. 4, the Eqs. (30), (31) and (33) and a coupling
function allow us to reveal the phenomenological implica-
tions of the model by calculating the observational indices
of inflation.

5.1 An exponential coupling function, h(χ) = γ ebχ

At first, we shall assume that the function h(χ) has the func-
tional form given in Eq. (45), which in the case at hand is
written in terms of the e-foldings number as follows,

h(N ) = γ e
b

(
H0±

√
H2

0 −2H1N

)

H1 . (61)

By using Eq. (16), we may derive the potential as a function
of the e-foldings number,

Ṽ (N ) = 8γ b2μ4
(
H2

0 − 2H1N
)

× exp

⎛
⎜⎜⎜⎜⎝bμ

2
H0 ±

√
H2

0 − 2H1N

H1

±16γ b2μ2H1
(
H2

0 − 2H1N
)

e
bμ2

(
H0±

√
H2

0 −2H1N

)

H1√
H2

0 ± 2H1

(
N +

√
H2

0 − 2H1N

)

⎞
⎟⎟⎟⎟⎠

−
2H1

√
H2

0 − 2H1N

κ2

√
H2

0 − 2H1

(
3
√
H2

0 − 2H1N + N

) , (62)

as well as the Lagrange multiplier,

λ(N ) = 8γ b2 (H2
0 − 2H1N

)

× exp

⎛
⎜⎜⎜⎝±

⎛
⎜⎜⎜⎝bμ2

H0 ±
√
H2

0 − 2H1N

H1

−
16γ b2H1

√
(2H1 + 1)

(
H2

0 − 2H1N
)
e

bμ2
(
H0±

√
H2

0 −2H1N

)

H1

(2H1 + 1)μ2

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

± 2
H1

κ2μ4
√
H2

0 − 2H1N
. (63)

The functions Qi with respect to the e-foldings number are
derived from the Eqs. (27),

Qa(N ) = Qb(N ) = Qc(N ) = Qd(N ) = Qe(N )

= Q f (N ) = 0, Qt (N ) = 1, (64)

while the wave-speeds are

c2
A = 1, c2

T = 1. (65)

Interestingly, both the Qi functions and the wave-speeds have
a trivial form in the case of the quasi-de Sitter expansion.
This triviality is independent of the coupling function, as we
see later on, and should be attributed to this specific FRW
background.

The function E(R, χ) with respect to the e-foldings num-
ber takes the form,

E(N ) = ±2
H1

κ2μ4
√
H2

0 − 2H1N
− 8γ b2 (H2

0 − 2H1N
)

× exp

⎛
⎜⎜⎜⎝bμ2

(
H0 ±

√
H2

0 − 2H1N

)

H1

±
16γ b2H1

√
(2H1 + 1)

(
H2

0 − 2H1N
)
e
bμ2

(
H0±

√
H2

0 −2H1N

)

H1

(2H1 + 1)μ2

⎞
⎟⎟⎟⎠ .

(66)

Using Eqs. (29), (30), (47) and (52), we obtain the slow-roll
parameters of the flat quasi-de Sitter case with an exponen-
tial coupling function. Interestingly, the five of them take the
following trivial form, that seems independent of the cou-
pling function, while the fourth has a long and complex form
depending on the coupling function,

ε1(N ) = − H1

H2
0 − 2H1N

, ε2(N ) = ε3(N ) = 0,

ε4(N ) = εexp(N , H0, H1, a, b, μ), ε5(N ) = ε6(N ) = 0,

(67)

where εexp is some notation for the complicated functional
form of the slow-roll index ε4. Similarly, the spectral indices
and the tensor-to-scalar ratio are also long and complex func-
tions of the e-foldings number, the mass μ and the model
parameters, H0 and H1 due to the expansion rate and γ and
b due to the coupling function, thus we do not present them
in close form. What is interesting to note is that the spectral
indices and the tensor-to-scalar ratio yield the same values
independently of which case of Eq. (57) we will use.

Again, we perform comparisons using the observable val-
ues for nS and r obtained by the Planck with their latest
data [20], along with [21]. As we stated before, the spec-
tral index of the scalar modes must be within the interval
[0.9607, 0.9691] and meannS = 0.9649; the tensor-to-scalar
mode, on the other hand, is restricted below 0.1 by [21],
while [20] restricts further as r < 0.064. In our case, the
parameters γ and b, as well as the mass μ of the scalar
field seem not to affect the numerical values of the spec-
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Fig. 3 The spectral index nS with respect to H0 the left, and to H1 in
the right, for N = 50 and γ = b = 1 and μ = 1 s−1. The plots are
identical for N = 60 and any other values of γ , b and μ. The blue, cyan,
green and darker green curves correspond to different values of H1 and

H0, respectively. The horizontal dark red line stands for nS = 0.9649,
while the horizontal dashed red lines for the limits of its confidence
interval, according to Planck 2018 results

1013 1014 1015 1016 1017
0.00

0.02

0.04

0.06

0.08

0.10

H0

r

1013 1014 1015 1016 1017
0.00

0.02

0.04

0.06

0.08

0.10

H0

r

Fig. 4 The tensor-to-scalar ratio with respect to H0 the left, and to
H1 in the right, for N = 50 and γ = b = 1 and μ = 1 s−1. The
plots are identical for N = 60 and any other values of γ , b and μ. The
blue, cyan, green and darker green curves correspond to different values

of H1 and H0, respectively. The horizontal dashed black line sets the
limit r < 0.07, while the horizontal black line the limits r < 0.064,
according to Planck 2015 and Planck 2018 results, respectively

tral index or the tensor-to-scalar ratio. As a result, we con-
sider them equal to unity (γ = b = 1 and μ = 1 s−1),
so that the analysis is simplified and focused on the rest of
the parameters. The e-foldings number is chosen N = 50
and N = 60, so as to indicate the end of inflation, but
this also does not alter the results. As for the expansion
rate, given that H0 ≥ 1014 s−1 for H1 ≈ 1026 s−2 (or that
H0 ≥ 5 × 1014 s−1 for H1 ≈ 1027 s−2), the spectral index
approaches unity, restricting our choices. We consider H0

to be in the interval [1012, 1015] s−1 and H1 in the respec-
tive interval [1026, 1029] s−2, where the spectral index of our
model equals to the observable value, as we can see in Fig. 3.

For the majority of these cases, the tensor-to-scalar ratio
is close to zero, as we can see in Fig. 4.

As an example, choosing N = 50 (or N = 60) and H1 =
1027 s−2, then for H0 = 4.91375 × 1014 s−1, we have nS =
0.9644 and r = 0.0282787, which comply with the latest

data of the Planck collaboration. What we need to notice is
that these two parameters (H0 and H1) need careful fine-
tuning and cannot differ significantly for the set of values we
gave, otherwise the model collapses before the data.

5.2 A power-law coupling function, h(χ) = γχb

Now let us assume that the function h(χ) takes the form
given in Eq. (34), which in terms of the e-foldings number is
expressed as follows,

h(N ) = γ e
b

(
H0±

√
H2

0 −2H1N

)

H1 . (68)

From here, using Eq. (16), we may derive the potential as a
function of the e-foldings number,
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Ṽ (N ) = 8γ (b − 1)bμ4 (H2
0 − 2H1N

)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ2
(
H0 ±

√
H2

0 − 2H1N

)

H1

±
16γ bH1μ

2
(
H2

0 − 2H1N
)
⎛
⎝μ2

(
H0±

√
H2

0 ±2H1N

)

H1

⎞
⎠

b−1

√
H2

0 ± 2H1

(√
H2

0 − 2H1N + N

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

b−2

−
2H1

√
H2

0 − 2H1N

κ2

√
H2

0 − 2H1

(
3
√
H2

0 − 2H1N + N

) , (69)

as well as the Lagrange multiplier,

λ(N ) = ±8γ (b − 1)b
(
H2

0 − 2H1N
)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ2
(
H0 ±

√
H2

0 − 2H1N

)

H1

±
16γ bH1

√
(2H1+1)

(
H2

0 −2H1N
)
⎛
⎝ μ2

(
H0±

√
H2

0 −2H1N

)

H1

⎞
⎠

b−1

(2H1 + 1)μ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

b−2

− 2H1

κ2μ4
√
H2

0 − 2H1N
. (70)

The Qi functions with respect to the e-foldings number have
the same trivial form given in Eqs. (64) and (65). The func-
tion E(R, χ) with respect to the e-foldings number takes the
form,
E(N ) = ∓ 2H1

κ2μ4
√
H2

0 − 2H1N
− 8γ (b − 1)b

(
H2

0 − 2H1N
)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ2
(
H0 ±

√
H2

0 − 2H1N

)

H1

±
16γ bH1

(
H2

0 − 2H1N
)
⎛
⎝μ2

(
H0±

√
H2

0 −2H1N

)

H1

⎞
⎠

b−1

μ2
√
H2

0 − 2H1
(−H2

0 + 2H1N + N
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

b−2

.

(71)

Using Eqs. (29), (30), (68) and (71), we obtain the slow-roll
parameters of the flat quasi-de Sitter case with an exponential
coupling function. Except from the fourth one, which has a
long and complex expression,

ε4(N ) = εpow(N , H0, H1, a, b, μ), (72)

the rest are given in Eqs. (67). The spectral indices and the
tensor-to-scalar ratio have the same form as in the case of
the exponential coupling function, presented above. Again,
we perform comparisons using the observable values for nS
and r obtained by the Planck with their latest data [20],
along with [21]. We assume that the parameters γ and b,
as well as the mass μ are equal to unity (γ = b = 1 and
μ = 1 s−1), so that the analysis is simplified and focused
on the rest of the parameters. The e-foldings number is
chosen N = 50 and N = 60, and as for the expansion
rate, given that H0 ≥ 1014 s−1 for H1 ≈ 1026 s−2 (or that
H0 ≥ 5 × 1014 s−1 for H1 ≈ 1027 s−2), the spectral index
approaches unity, restricting our choices. We consider H0 to
be in the interval [1012, 1015]s−1 and H1 in the respective
interval [1026, 1029]s−2, where the spectral index value of
our model becomes equal to the observable value, as we can
see in Fig. 5.

For the majority of these cases, the tensor-to-scalar ratio
is close to zero, as we can see in Fig. 6.

Setting N = 50 (or N = 60) and H1 = 1027 s−2, then
for H0 = 8.43822 × 1011 s−1 (or H0 = 1012 s−1), we have
nS = 0.9644 and r = 0.0400002 (or r = 0.0333335), that
match the latest data of the Planck collaboration. Again, these
two parameters (H0 and H1) need careful fine-tuning and
cannot differ significantly from the above values.

6 The case of an exponential hubble evolution

Finally, let us assume that the evolution of our Universe is
described by the following Hubble rate,

H = H0e−t , (73)

where H0 and  are model parameters with both having
mass dimension [+1]. The Hubble rate of Eq. (73) becomes
approximately a quasi de-Sitter like evolution at early times,
when t → 0, that is,

H ∼ H0 − H0t, (74)

and also the exit from the inflationary epoch occurs at a finite
time t f , which is,

t f = 1


ln [H0/]. (75)

Moreover such exponential type Hubble parameter has been
used in previous works, in the context of f (R) gravity [41,
42] as well as in different theoretical frameworks [43,44].
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Fig. 5 The spectral index nS with respect to H0 the left, and to H1 in
the right, for N = 50 and γ = b = 1 and μ = 1 s−1. The plots are
identical for N = 60 and any other values of γ , b and μ. The blue, cyan,
green and darker green curves correspond to different values of H1 and

H0, respectively. The horizontal dark red line stands for nS = 0.9649,
while the horizontal dashed red lines for the limits of its confidence
interval, according to Planck 2018 results [20]
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Fig. 6 The tensor-to-scalar ratio with respect to H1 in for N = 50 and
γ = b = 1 and μ = 1 s−1. The plots are identical for N = 60 and
any other values of γ , b and μ. The blue, cyan, green and darker green
curves correspond to different values of H1 and H0, respectively. The

horizontal dashed black line sets the limit r < 0.07, while the horizontal
black line the limits r < 0.064, according to Planck 2015 and Planck
2018 results, respectively

Motivated by such properties of H = H0e−t , here we use
it in the context of ghost free f (G) gravity to describe the
inflationary phase of our Universe we will test the viability of
the model by confronting it with the Planck 2018 constraints.
Also, we can express the cosmic time as a function of the e-
foldings number N , by using the definition of the latter,

N =
∫ t f

th
Hdt = H0


e−th − 1, (76)

where th is the horizon crossing time instance. Inverting
Eq. (76), we get th in terms of N as follows,

th = χh/μ
2 = 1


ln

[
H0

(1 + N )

]
. (77)

This expression of th is important, since the inflationary
parameters will be calculated at the horizon crossing time
instance. In the following we will calculate the slow-roll
indices and the observational indices of inflation by speci-
fying the function h(χ).

6.1 Exponential coupling: h(χ) = e−αχ

Let us assume that h(χ) = e−αχ where α is a model param-
eter having mass dimension [−1]. For this exponential func-
tion h(χ), and also for the Hubble rate chosen as in Eq. (73),
the scalar potential is equal to,
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Ṽ (χ) = 3H2
0

κ2 e−2χ/μ2 − 2H0

κ2 e−χ/μ2

−8αH3
0 μ2e−(3/μ2+α)χ , (78)

while the Lagrange multiplier is equal to,

λ(t) = −2H0

κ2μ4 e−t − 8αH3
0

μ2 e−(3+αμ2)t . (79)

Accordingly, the function E defined in Eq. (21) evaluated
at the horizon crossing time instance, so by expressing it in
terms of the e-foldings number, this reads,

E(th) = 2

κ2

[
− 2(1 + N ) − 8(1 + N )3κ22

(
αμ2



)
T αμ2/

+96(1 + N )4κ44
(

αμ2



)2

T 2αμ2/

]
. (80)

We also need to evaluate the expression of Ė (= dE/dt) as
it will be needed for the calculation of the slow-roll indices.
In terms of the e-foldings number, this reads,

Ė

H

∣∣∣∣
th

= 2

κ2

[
2 + 8(1 + N )2κ22

(
αμ2



)2

T αμ2/

+ 24(1 + N )2κ22
(

αμ2



)
T αμ2/

− 192(1 + N )3κ44
(

αμ2



)3

T 2αμ2/

−384(1 + N )3κ44
(

αμ2



)2

T 2αμ2/

]
, (81)

with T = (1+N )
H0

. Furthermore, by using Eq. (18), we
explicitly determine the functions Qi in terms of e-foldings
number,

Qa(th) = −83(1 + N )2
[
αμ2


T αμ2/

]
,

Qb(th) = −162(1 + N )

[
αμ2


T αμ2/

]
,

Qc(th) = Qd(th) = 0,
Qe

H

∣∣∣∣
th

= 162
[
αμ2


T αμ2/

]
,

Q f (th) = −82T αμ2/

[(
αμ2



)2

+ (1 + N )

(
αμ2



)]
,

Qt (th) = 1 − 82(1 + N )

[
αμ2


T αμ2/

]
. (82)

Having the above expressions at hand, we can easily calculate
the spectral index ns and tensor-to-scalar ratio, which are,

ns = 1 − 4

1 + N
− A1(/H0, αμ2/, κH0, N )

B1(/H0, αμ2/, κH0, N )
, (83)

and

r =
∣∣∣∣∣−

4

1 + N
+ 8κ22T αμ2/

×
[(

αμ2



)2

+ (3 + N )

(
αμ2



)]∣∣∣∣∣ , (84)

where A1 and B1 are defined as follows,

A1(/H0, αμ2/, κH0, N )

=
[

2 + 8(1 + N )2
(

αμ2



)2
2

H2
0

κ2H2
0 T

αμ2/

+ 24(1 + N )2
(

αμ2



)
2

H2
0

κ2H2
0 T

αμ2/

− 192(1 + N )3
(

αμ2



)3
4

H4
0

κ4H4
0 T

2αμ2/

−384(1 + N )3
(

αμ2



)2
4

H4
0

κ4H4
0 T

2αμ2/

]
,

and

B1(/H0, αμ2/, κH0, N )

=
[
−2(1 + N ) − 8(1 + N )3 αμ2



2

H2
0

κ2H2
0 T

αμ2/

+96(1 + N )4
(

αμ2



)2
4

H4
0

κ4H4
0 T

2αμ2/

]
.

It may be noticed that ns and r depend on the parame-
ters /H0, αμ2/, κH0 and N . We can now directly con-
front the spectral index and the tensor-to-scalar ratio with
the Planck 2018 constraints and the BICEP-2 Keck-Array
data, which recall that constraint the observational indices
as: ns = 0.9649 ± 0.0042 and r < 0.064, as shown ear-
lier. For the model at hand, ns and r lie within the Planck
constraints for the following ranges of parameter values:
0 � /H0 ≤ 0.035, 0 � αμ2/ ≤ 1.5 with κH0 ∼ 0.01
and N = 60 and this behavior is depicted in Fig. 7.

At this stage it deserves mentioning that an exponential
coupling function in a scalar GB theory (without scalar field
potential) admits, at early times, slowly expanding solutions
of the form a(t) = (At + B)1/5 (see [45]) and thus exhibits
an epoch of deceleration. However here, we show that in the
presence of ghost free f (G) gravity, the exponential coupling
function may be considered as a “good inflationary” model,
which allows an early acceleration and also it is compatible
with observations.
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Fig. 7 Parametric plot of ns vs r for 0 � /H0 ≤ 0.035, 0 �
αμ2/ ≤ 1.5 with κH0 ∼ 0.01 and N = 60

Before closing, we can also notice that if some sort of
slow-roll conditions are employed in the model, viability with
the observational data can also be achieved. The slow-roll
conditions in the ghost free Gauss–Bonnet scenario are the
following,
∣∣Ḣ ∣∣  H2,

∣∣ḣH ∣∣  1/κ2,
∣∣ḧ∣∣  1/κ2. (85)

The first condition carries the information about the slow-
evolution of the Hubble rate, while the last two demand a
slowly evolving of the function h(χ). These conditions, and
especially the last two can significantly constrain the param-
eter space. For the exponential function h(χ) we are consid-
ering, the parameters the effectively control the evolution are
/H0, αμ2/, κH0 and N . The slow-roll conditions in the

case at hand imply that, 
H0

 1 and
(


H0

) (
αμ2/

)  1
κH0

.

Thereby, it is clear that the viable parametric range i.e
0 � /H0 ≤ 0.035, 0 � αμ2/ ≤ 1.5 with κH0 ∼ 0.01
that we considered, is in agreement with the slow-roll con-
ditions.

6.2 Power law coupling: h(χ) = ( χ
M

)n

Let us now assume that the function h(χ) has the following
form h(χ) = ( χ

M

)n , where n is a positive integer and M is a
model parameter with mass dimension [+1]. In this case the
scalar potential is,

Ṽ (χ) = 3H2
0

κ2 e−2χ/μ2 − 2H0

κ2 e−χ/μ2

+8H3
0 μ2

Mn
nχn−1e−3χ/μ2

, (86)

and the Lagrange multiplier is,

λ(t) = 8nH3
0

μ4

(
μ2

M

)n

tn−1e−3t − 2H0

κ2μ4 e−t . (87)

Furthermore, the function E(R) and consequently its deriva-
tive, evaluated initially at the horizon crossing time instance,

and expressed eventually in terms of the e-foldings number,
are equal to,

E(th) = 2

κ2

[
−2(1 + N ) − 8n(1 + N )3κ22

(
μ2

M

)n

Sn−1

+96n2(1 + N )4κ44
(

μ2

M

)2n

S2n−2

]
, (88)

and

Ė

H

∣∣∣∣
th

= 2

κ2

[
2 + 8n(n − 1)(1 + N )2κ22

(
μ2

M

)n

Sn−2

−24n(1 + N )2κ22
(

μ2

M

)n

Sn−1

+ 192n2(1 + N )3κ44
(

μ2

M

)2n

S2n−3

−384n2(1 + N )3κ44
(

μ2

M

)2n

S2n−2

]
, (89)

with S = ln
[

H0
(1+N )

]
. Accordingly, the functions Qi , in

terms of e-folding number, are equal to,

Qa(th) = 8(1 + N )2n

(
μ2

M

)n

3Sn−1,

Qb(th) = 16(1 + N )n

(
μ2

M

)n

2Sn−1,

Qc(th) = Qd(th)=0,
Qe

H

∣∣∣∣
th

= −16n

(
μ2

M

)n

2Sn−1,

Q f (th) = −82
(

μ2

M

)n

×
[
n(n − 1)Sn−2 − n(1 + N )Sn−1

]
,

Qt (th) = 1 + 8(1 + N )n

(
μ2

M

)n

2Sn−1. (90)

Hence, the spectral index becomes in this case,

ns = 1 − 4

1 + N
− A2(/H0, μ

2/(M), n, κH0, N )

B2(/H0, μ2/(M), n, κH0, N )
,

(91)

and the tensor-to-scalar ratio is equal to,

r =
∣∣∣∣∣−

4

1 + N
+ 8κ22

(
μ2

M

)n

×
[
n(n − 1)Sn−2 − n(3 + N )Sn−1

]∣∣∣∣∣ , (92)

respectively, with A2 and B2 being defined as follows,

123



Eur. Phys. J. C (2019) 79 :565 Page 15 of ?? 565

Fig. 8 3D plot of r vs /H0 and μ2/(M) for κH0 ∼ 0.01 and
N = 60

A2(/H0, μ
2/(M), n, κH0, N )

=
[

2 + 8n(n − 1)(1 + N )2
(

μ2

M

)n
2

H2
0

κ2H2
0 S

n−2

− 24n(1 + N )2
(

μ2

M

)n
2

H2
0

κ2H2
0 S

n−1

+ 192n2(1 + N )3
(

μ2

M

)2n
4

H4
0

κ4H4
0 S

2n−3

−384n2(1 + N )3
(

μ2

M

)2n
4

H4
0

κ4H4
0 S

2n−2

]
,

and

B2(/H0, μ
2/(M), n, κH0, N )

=
[
−2(1 + N ) − 8n(1 + N )3

(
μ2

M

)n
2

H2
0

κ2H2
0 S

n−1

+96n2(1 + N )4
(

μ2

M

)2n
4

H4
0

κ4H4
0 S

2n−2

]
.

Now we shall confront the resulting theory with the observa-
tional constraints, by assuming two different values for the
parameter n, namely, n = 2 and n = 3. For n = 2, the tensor-

to-scalar ratio acquires a minimum value rmin =
∣∣∣− 4

(1+N )

∣∣∣
which is equal to rmin = 0.065 for N = 60 ( and to
rmin = 0.078 for N = 50 ). The behavior of the tensor-
to-scalar ratio as a function of the free parameters, is given
in Fig. 8.

As it can be seen in Fig. 8 the minimum value of the
tensor-to-scalar ratio is rmin � 0.065, so the present model
is not viable when the Planck 2018 constraints are taken into
account. For n = 3, the theoretical values of ns and r are

0.030 0.035 0.040 0.045 0.050 0.055 0.060

0.955

0.960

0.965

0.970

Fig. 9 Parametric plot of ns vs r for 0 � /H0 ≤ 0.01, −4 �
μ2/(M) ≤ 1.0 with κH0 ∼ 0.01 and N = 60

found to lie within the Planck 2018 constraints, when the
values of the free parameters satisfy 0 � /H0 ≤ 0.01,
−4 � μ2/(M) ≤ 1.0 with κH0 = 0.01 and N = 60.

In Fig. 9 we can see that the spectral index and the tensor-
to-scalar ratio can be simultaneously compatible with the
observational data, for a wide range of values of the free
parameters.

In addition, the cubic coupling function immediately leads
to the slow-roll conditions in terms of the model parame-

ters, which are, 
H0

 1 and
(


H0

)2 (
μ2

M

)3  1
3κ2H2

0 (1+N )
,

which in turn indicate that the constraints of values of the
free parameters that lead to a viable phenomenology, which
recall are, 0 � /H0 ≤ 0.01, −4 � μ2/(M) ≤ 1.0 with
κH0 = 0.01 and N = 60, indeed also satisfy the slow-roll
conditions.

Before closing this subsection, we need to comment that
it was shown in [45] that a quadratic coupling function in a
scalar GB theory (without scalar field potential) gives either
a pure de-Sitter evolution of our Universe or a de-Sitter solu-
tion at early times connected by a Milne phase at late times,
while the cubic and higher order coupling functions describe
contracting cosmological solutions with a final singularity
at asymptotically infinite time. Thus none of the power law
coupling function corresponding to n ∈ [2, 3] admits a suc-
cessful inflationary model in scalar GB theory in the absence
of scalar potential. However in the context of ghost free f (G)

gravity, we demonstrated that h(χ) ∼ χn with n ∈ [2, 3] can
realize an accelerating Universe at early times, although only
the cubic coupling function h(χ) ∼ χ3 produces a viable
inflationary phenomenology, in contrast to the models stud-
ied in [45].

6.3 A different reconstruction approach

In this subsection we shall consider an alternative approach
in comparison to the previous cases, by providing the scalar
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potential and the Hubble rate, and we seek for the function
h(χ) that may realize the cosmology with Hubble rate (73).
We shall consider two types of potentials, namely exponential
and power law potentials and we shall confront the resulting
theories with the observational data.

6.3.1 Exponential scalar potential: Ṽ (χ) = V0e−βχ

Let us first consider an exponential scalar field potential of the
form Ṽ (χ) = V0e−βχ , whereV0 andβ are parameters having
mass dimensions [+4] and [−1] respectively. Using the field
equations along with the Hubble parameter H = H0e−t ,
one can reconstruct the coupling function h(χ), which is in
this case,

h(χ) = 1

8κ2μ2H3
0

∫
dχ
[
2H0eχ/μ2

−3H2
0 + κ2V0e−βχ e2χ/μ2

]
eχ/μ2

= 1

8κ2H3
0

[
H0e2χ/μ2 − 3H2

0


eχ/μ2

+
(

κ2V0

3 − βμ2

)
e(3/μ2−β)χ

]
, (93)

and the Lagrange multiplier is,

λ(t) = 1

μ4

[
V0e−βμ2t − 3H2

0

κ2 e−2t

]
. (94)

With the above expressions of h(χ) and λ, we get the function
E(R) as well as its derivative, which are,

E(th) = 2

κ2

[
κ22T

βμ2

 − 3(1 + N )2 + 3

2(N + 1)2

×
(

κ22T
βμ2

 − (N + 1)(3N + 1)

)2
]

,

Ė

H

∣∣∣∣
th

= 2

κ2

⎡
⎢⎣6(1 + N ) − κ22T

βμ2



(1 + N )

(
βμ2



)
T

βμ2



− 6

(1 + N )3

(
κ22T

βμ2

 − (N + 1)(3N + 1)

)2

+ 3

(
κ22T

βμ2

 − (N + 1)(3N + 1)

)

×
⎛
⎜⎝−κ22

T

βμ2



(1 + N )3
(

βμ2



)

− (3N − 1)

(1 + N )2 + 3κ22T
βμ2



(1 + N )3

⎞
⎠
⎤
⎦ , (95)

respectively, with T = (N+1)
H0

, defined earlier. In addi-
tion, the functions Qi as functions of the e-foldings number
become in this case,

Qa(th) = −(1 + N )2

×
[
− V0

2(1 + N )3 T
βμ2

 + (3N + 1)

κ2(N + 1)2

]
,

Qb(th) = −2(1 + N )

×
[
− V0

2(1 + N )3 T
βμ2

 + (3N + 1)

κ2(N + 1)2

]
,

Qc(th) = Qd(th) = 0,

Qe

H

∣∣∣∣
th

= 2

[
− V0

2(1 + N )3 T
βμ2

 + (3N + 1)

κ2(N + 1)2

]
,

Q f (th) = μ2V0β

3(1 + N )3 T
βμ2

 + V0(N − 2)

2(1 + N )3 T
βμ2



− (3N 2 + N + 2)

κ2(N + 1)2 ,

Qt (th) = 1 − (1 + N )

×
[
− V0

2(1 + N )3 T
βμ2

 + (3N + 1)

κ2(N + 1)2

]
. (96)

Having the above expressions in hand, we determine the
explicit expressions of the spectral index and of the tensor-
to-scalar ratio, which are,

ns = 1 − 4

(1 + N )
− C1(/H0, βμ2/, κH0, N )

D1(/H0, βμ2/, κH0, N )
, (97)

r = 3N

(N + 1)
− 1

(N + 1)3 κ22
(

βμ2



)
T

βμ2



− N

(N + 1)3 κ22T
βμ2

 , (98)

respectively, where we took V0 = 4. Moreover C1, D1

appearing in Eq. (97)) are defined as follows,

C1(/H0, βμ2/, κH0, N )

=
⎡
⎢⎣6(1 + N ) −

κ22T
βμ2

 (1 + N )
(

βμ2



)

−

× 6

(1 + N )3

(
κ22T

βμ2

 − (N + 1)(3N + 1)

)2

+ 3

(
κ22T

βμ2

 − (N + 1)(3N + 1)

)

×
⎛
⎝−κ22T

βμ2



(1 + N )3

(
βμ2



)
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Fig. 10 Parametric plot of ns vs r (x axis ≡ r and y axis ≡ 10ns ) for
0.001 ≤ /H0 ≤ 0.02, 82 ≤ βμ2/ ≤ 83 with κH0 ∼ 0.01 and
N = 60

− (3N − 1)

(1 + N )2 + 3κ22T
βμ2



(1 + N )3

⎞
⎠
⎤
⎦ ,

D1(/H0, βμ2/, κH0, N ) =
[
κ22T

βμ2



−3(1 + N )2 + 3

2(N + 1)2

(
κ22T

βμ2

 − (N + 1)(3N + 1)

)2
]

.

From Eqs. (97) and (98), it easily follows that the spectral
index of scalar perturbation and the tensor-to-scalar ratio
depend on the dimensionless parameters : /H0, βμ2/,
κH0 and N . These theoretical expressions of ns and r should
be confronted with the latest Planck constraints in order to
check the viability of the model. As a consequence, it is found
that the compatibility with the observational data occurs for
a narrow range of values of the free parameters, and par-
ticularly for 0.001 ≤ /H0 ≤ 0.02, 82 ≤ βμ2/ ≤ 83,
κH0 ∼ 0.01 and N = 60. This can also be seen in Fig. 10
where we present the parametric plot of ns and r .

With regard to the exponential potential, the classical sin-
gle scalar theory has no inherent mechanism to trigger the
graceful exit from inflation, since the slow-roll indices are
constant and field-independent. However the ghost free f (G)

theory has the slow-roll index ε4 which is field dependent,
and thus the slow-roll phase ends when this index becomes
of order O(1). Moreover we have already shown that the
model with V = V0e−βχ in f (G) gravity, is also in agree-
ment with Planck observational constraints. Hence the ghost
free f (G) gravity can make the exponential scalar potential
a phenomenologically appealing model for inflation, in con-
trast to the single scalar canonical exponential theory.

6.3.2 Power law scalar potential

As a final consideration, we shall assume that the scalar field
potential has the form,

Ṽ (χ) = V0χ
n, (99)

where n is a positive integer. For such power law potential,
the function h(χ) and Lagrange multiplier are equal to,

h(χ) = 1

8κ2μ2H3
0

∫
dχ
[
2H0eχ/μ2

−3H2
0 + κ2V0χ

ne2χ/μ2
]

eχ/μ2

= 1

8κ2H3
0

[
H0e2χ/μ2 − 3H2

0 eχ/μ2

+
(

κ2V0

31+n
χn (−χ/μ2)−n

�
(
1 + n,−3χ/μ2))] ,

(100)

and

λ(t) = 1

μ4

[
V0μ

2tn − 3H2
0

κ2 e−2t

]
, (101)

respectively. Accordingly the function E(R) expressed in
terms of the e-foldings number is equal to,

E(th) = V0

(
μ2



)n

Sn − 32

κ2 (N + 1)2 + 3κ2

22(1 + N )2

×
(
V0

(
μ2



)n

Sn − 2

κ2 (N + 1)(3N + 1)

)2

,

(102)

and also its derivative is,

Ė

H

∣∣∣∣
th

= μ2V0n

(1 + N )

(
μ2



)n−1

Sn−1 + 62

κ2 (1 + N )

− 6κ2

2(1 + N )3

(
V0

(
μ2



)n

Sn−2

κ2 (N + 1)(3N + 1)

)2

+ 3κ2

(
V0

(
μ2



)n

Sn − 2

κ2 (N + 1)(3N + 1)

)

×
(

μ2V0n

3(1 + N )3

(
μ2



)n−1

Sn−1

+ 3V0

2(1 + N )3

(
μ2



)n

Sn − (3N − 1)

κ2(1 + N )2

)
.

For the Hubble rate given in Eq. (73) and with the expression
of h(χ) we found above, we can easily find the Qi functions
expressed in terms of the e-foldings number,
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Qa(th) = −

[
− V0

2(1 + N )

(
μ2



)n

Sn + (1 + 3N )

κ2

]
,

Qb(th) = −2

[
− V0

2(1 + N )2

(
μ2



)n

Sn + (1 + 3N )

κ2(1 + N )

]
,

Qc(th) = 0,

Qd(th) = 0,

Qe

H

∣∣∣∣
th

= 2

[
− V0

2(1 + N )3

(
μ2



)n

Sn + (1 + 3N )

κ2(1 + N )2

]
,

Q f (th) = − nμ2V0

3(1 + N )3

(
μ2



)n−1

Sn−1

+ V0(N − 2)

2(1 + N )3

(
μ2



)n

Sn − (3N 2 + N + 2)

κ2(1 + N )2 ,

Qt (th) = 1 −
[
− V0

2(1 + N )2

(
μ2



)n

Sn + (1 + 3N )

κ2(1 + N )

]
.

(103)

Let us use the above results in order to investigate the viabil-
ity of a power-law class of potentials. According to the latest
Planck data, the cubic and quartic potentials are not com-
patible with the Planck data, so let us investigate whether
compatibility with the observations is obtained if the ghost
free f (G) theory is used. Let us first assume that n = 3 so
we consider the cubic potential first. Using V (χ) = V0χ

3

along with the explicit expressions of Qi functions (see the
equations in 103, we determine the spectral index and tensor
to scalar ratio in terms of the model parameters as follows,

ns = 1 − 4

(1 + N )
− C2(/H0,

μ2

2 (κH0)
2/3, N )

D2(/H0,
μ2

2 (κH0)2/3, N )
, (104)

and

r = 3N

(N + 1)
+ 3

(N + 1)3

(
μ2

2 (κH0)
2/3
)3



H0
S2

− N

(N + 1)3

(
μ2

2 (κH0)
2/3
)3



H0
S3, (105)

where we assumed that V0 = H0 (for the cubic potential,
V0 has mass dimension [+1]). Moreover C2 and D2 have the
following form,

C2

(
/H0,

μ2

2 (κH0)
2/3, N

)

= 3

(N + 1)

(
μ2

2 (κH0)
2/3
)3



H0
S2 + 6(N + 1)

− 6

(N + 1)3

[(
μ2

2 (κH0)
2/3
)3



H0
S3 − (N + 1)(3N + 1)

]2
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Fig. 11 Parametric plot of ns vs r (x axis ≡ r and y axis ≡ 10ns ) for

0.001 ≤ 
H0

≤ 0.003, 50 � μ2

2 (κH0)
2/3 � 52 with N = 60

+ 3

[(
μ2

2 (κH0)
2/3
)3



H0
S3 − (N + 1)(3N + 1)

]

×
[

3

(N + 1)3

(
μ2

2 (κH0)
2/3
)3



H0
S2 − (3N − 1)

(N + 1)2

]
,

and

D2

(
/H0,

μ2

2 (κH0)
2/3, N

)

=
(

μ2

2 (κH0)
2/3
)3



H0
S3 − 3(N + 1)2 + 3

2(N + 1)2

×
[(

μ2

2 (κH0)
2/3
)3



H0
S3 − (N + 1)(3N + 1)

]2

.

It is evident that ns and r depend on the parameters /H0,
μ2

2 (κH0)
2/3 and N . As a result, it is found that the simultane-

ous compatibility of ns , r with Planck 2018 constraints can
be achieved for a narrow range of the free parameters, and in

particular for 0.001 ≤ 
H0

≤ 0.003, 50 � μ2

2 (κH0)
2/3 � 52

and N = 60, as shown in Fig. 11.
We should note that the single canonical scalar field model

with cubic potential without the Gauss–Bonnet coupling
yields ns � 0.9089 and r � 0.01, so the spectral index
is not compatible with the Planck data. Hence, the presence
of the ghost free f (G) gravity can make the cubic poten-
tial scalar field class of models to be compatible with the
observations. This kind of result is also shown in a different
context [39]. Let us now consider the n = 4 case, in which
case the potential is V = V0χ

4. In this case, the spectral
index of the primordial scalar curvature perturbations and
the tensor-to-scalar ratio are equal to,

ns = 1 − 4

(1 + N )
− C3(/H0,

μ2

2 (κH0)
1/2, N )

D3(/H0,
μ2

2 (κH0)1/2, N )
, (106)
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and

r = 3N

(N + 1)
+ 4

(N + 1)3

(
μ2

2 (κH0)
1/2
)4

2

H2
0

S3

− N

(N + 1)3

(
μ2

2 (κH0)
1/2
)4

2

H2
0

S4, (107)

respectively, where C3 and D3 are defined as follows,

C3

(
/H0,

μ2

2 (κH0)
1/2, N

)

= 4

(N + 1)

(
μ2

2 (κH0)
1/2
)4

2

H2
0

S3 + 6(N + 1)

− 6

(N + 1)3

[(
μ2

2 (κH0)
1/2
)4

2

H2
0

S4 − (N + 1)(3N + 1)

]2

+ 3

[(
μ2

2 (κH0)
1/2
)4

2

H2
0

S4 − (N + 1)(3N + 1)

]

×
[

4

(N + 1)3

(
μ2

2 (κH0)
1/2
)4

2

H2
0

S3 − (3N − 1)

(N + 1)2

]
,

and

D3

(
/H0,

μ2

2 (κH0)
1/2, N

)

=
(

μ2

2 (κH0)
1/2
)4

2

H2
0

S4 − 3(N + 1)2 + 3

2(N + 1)2

×
[(

μ2

2 (κH0)
1/2
)4

2

H2
0

S4 − (N + 1)(3N + 1)

]2

.

From Eqs. (106) and (107) we can see that ns and r depend on

/H0, μ2

2 (κH0)
1/2 and N . In order to examine whether the

potential under consideration provides a viable phenomenol-
ogy, we need to find the parametric ranges, if any, for which
the theoretical values of ns and r match with the latest
Planck constraints. A thorough study of the free parame-
ter values, we found that for 0.001 � /H0 � 0.0026,

109 � μ2

2 (κH0)
1/2 � 110.9 and N = 60, the inflationary

observational indices lie within 0.960 ≤ ns ≤ 0.970 and
0.049 ≤ r ≤ 0.065 respectively. Thus the model becomes
viable (with respect to the Planck 2018 constraints) for such
narrow parameter space. However as may be noticed that
μ2

2 (κH0)
1/2 must be fine-tuned within the values 109 and

110.9 to keep the model compatible with Planck constraints.
The simultaneous compatibility of ns and r is illustrated in
Fig. 12.

However the single canonical scalar field theory with a
quartic potential yields ns � 0.8677 and r � 0.066 for 60
e-foldings, so the spectral index of the corresponding canon-
ical scalar field theory is excluded by the latest observational
data. Hence, the presence of ghost free f (G) theory modifies

Fig. 12 Parametric plot of ns vs r (x axis ≡ r and y axis ≡ ns ) for

0.001 � /H0 � 0.0026, 109 � μ2

2 (κH0)
1/2 � 110.9 with N = 60

the quartic scalar field theory and enhances the phenomeno-
logical viability of the model.

6.4 Stability of first order perturbations for the exponential
cosmological evolution

In this subsection we shall study stability of the first order
perturbation cosmological perturbations, following the work
of [46–51] where scalar, vector and tensor perturbations are
calculated in the context of Gauss–Bonnet theory. Scalar,
vector and tensor perturbations are decoupled, as in general
relativity, so that we can focus our attention to tensor and
scalar perturbations separately, as discussed in what follows.
Let us consider first tensor perturbations, which the flat FRW
perturbed line element has the form,

ds2 = −dt2 + a2(t)
[
δi j + fi j

]
dxidx j , (108)

where fi j (t, �x) is the tensorial perturbation satisfying f ii =
f i j, j = 0. Plugging back the above metric into the origi-

nal action and expanding, keeping terms up to O( f 2) (to
obtain the first order equations), we get the following per-
turbed action [46,50,51],

δS f =
∫

d4xa3(t)

[ (
1 + 8κ2ḣH

)
ḟi j ḟ

i j

− 1

a2

(
1 + 8κ2ḧ

)
fi j,k f

i j,k
]

, (109)

where we use the background equations of motion. With the
Fourier decomposition as fi j (t, �x) = ∫

dk f̃i j (t)ei
�k.�x , the

above perturbed action takes the following form,

δS f =
∫

d�kdta3(t)

[ (
1 + 8κ2ḣH

) ˙̃fi j ˙̃f i j

− 1

a2

(
1 + 8κ2ḧ

)
f̃i j,k f̃

i j,k
]

. (110)
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Thereby, the tensor perturbation is ghost free and stable if
the following two conditions hold true,

1 + 8κ2ḣH > 0,

1 + 8κ2ḧ > 0, (111)

and are satisfied simultaneously. If we assume that the slow-
roll conditions of Eq. (85) hold true, the coupling function
h(χ) rolls slowly if it obeys

∣∣ḣH ∣∣  1/κ2 and
∣∣ḧ∣∣  1/κ2.

We have shown in previous sections that a phenomenologi-
cally viable cosmological evolution also satisfies these con-
straints if the free parameters are chosen appropriately, so in
view of Eq. (111) we may conclude that the tensor perturba-
tions are ghost free and stable, at least at first order. So the
theory is compatible with the observational data and stable
up to first order cosmological tensor perturbations.

Now let us turn our focus to scalar perturbations on the
FRW background spacetime, in which case the line element
is,

ds2 = −(1 + 2�)dt2 + a2(t)(1 − 2�)δi j dx
i dx j , (112)

with �(t, �x) being the scalar perturbation. Following [46],
the perturbed action up to order O(�2) is equal to,

δS� = 1

2

∫
d4xa3(t)Z1

[
�̇2 − Z2

a2 (∂i�)2
]

, (113)

where Z1 and Z2 are defined as follows,

Z1 =
−μ4λ + 3(8κ2ḣH2)2

2κ2(1+8κ2ḣH)(
H − 4κ2ḣH2

1+8κ2ḣH

)2 ,

Z2 = 1 + 4
(ḧ − ḣH)

(
8κ2ḣH2

1+8κ2ḣH

)2

−μ4λ + 3(8κ2ḣH2)2

2κ2(1+8κ2ḣH)

. (114)

Clearly the scalar perturbation is ghost free and stable if Z1

and Z2 are both positive. With the slow-roll criteria taken into
account, and the corresponding field equations, the positivity
of Z1, Z2 is guaranteed if the following two conditions hold
true,

Ḣ < 0, ḧ − ḣH > 0. (115)

Now let us proceed to explore whether, for our considered
choice of coupling or potential function, the above two condi-
tions are in agreement with the Planck 2018 constraints. The
first condition is satisfied for  > 0 ( as Ḣ = −H0e−t )
and simply gives the information that the Hubble parameter
must decrease with cosmic time at the early universe, which
is also expected in an inflationary scenario. On the other hand,
it is shown that all the previous four cases (see Sections from
[6.1] to [6.3.2]) need  > 0 in order to be compatible with
Planck constraints and thus one of the stability condition of

0 10 20 30 40 50 60

0.2

0.4

0.6

0.8

Fig. 13 ḣH
ḧ

vs. e-folding number for h(χ) ∼ χ3 and with 
H0

= 0.001

and μ2/(M) = 0.5

scalar perturbation is ensured. Now let us investigate the sec-
ond condition case by case: for the exponential coupling i.e.
h(χ) = e−αχ , ḧ − ḣH becomes positive for α > 0 which
is also needed to make the model observationally viable (as
shown in Section [6.1]). To investigate what happens in the
power-law case of h(χ), we provide the plot of ḣH

ḧ
as a func-

tion of the e-foldings number in Fig. 13.
As it can be seen in Fig. 13, the ratio ḣH

ḧ
remains less

than unity for all the parameter values that render the theory
compatible with the latest Planck data. Thus this ensures
numerically the stability of the scalar perturbations.

6.5 Reheating mechanism for the exponential cosmological
evolution

Before moving to the conclusion section, here we discuss the
phenomenological implications of the theory we studied in
the reheating era, and the possible effects of Gauss–Bonnet
coupling on it. Needless to say that reheating describes the
production of Standard Model matter after the period of
accelerated expansion. For this purpose, we assume that the
inflaton field (i.e the field χ ) is coupled to another scalar field
ζ , given by the interaction Lagrangian,

Lint = −gλχζ 2, (116)

where g is a dimensionless coupling constant and λ is a mass
scale. The scalar field ζ quantifies Standard Model particles
in our case study. With this interaction Lagrangian, the decay
rate of the inflaton into ζ particles becomes,
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� = g2λ2

8πm
, (117)

where m denotes the mass of the inflaton field and can be
obtained from the effective potential Vef f (χ) = Ṽ (χ) −
24H2(H2 + Ḣ)h(χ) through which the Gauss–Bonnet cou-
pling function (h(χ)) affects indirectly the reheating mech-
anism. Moreover, the presence of Gauss–Bonnet term also
affects the self-potential function Ṽ (χ) as may be noticed in
Eq. (16) ( see the terms dependent on h(χ) in the right hand
side of Eq. (16)). Generally during the reheating epoch, the
inflaton losses energy due to the expansion of the Universe,
and due to transfer of energy to the ζ particles, controlled by
the Hubble parameter and the decay rate respectively. As a
result the production of ζ particles becomes effective when
the Hubble parameter becomes less or comparable to �, oth-
erwise the energy loss into particles is negligible compared
to the energy loss due to the expansion of space as occurred
during the early phases of the inflation. Therefore, the time
scale th (let us call it the reheating time) after when the pro-
duction of ζ becomes effective is given by,

H(th) = � = g2λ2

8πm
. (118)

Thus the reheating time depends on the mass of the inflaton
field. For the purpose of determining the inflaton mass explic-
itly, we consider two different coupling functions, namely the
exponential coupling i.e h(χ) = h0e−αχ and the cubic cou-
pling i.e h(χ) = h0

( χ
M

)3, recall that h(χ) ∼ χ2 does not
fit well with the Planck 2018 constraints and that is why we
do not consider the quadratic coupling in the present section.
The exponential coupling along with H = H0e−t leads to
the following effective potential,

Vef f (χ) = 3H2
0

κ2 e−2χ/μ2 − 2H0

κ2 e−χ/μ2

−8h0αH
3
0 μ2e−(3/μ2+α)χ

−24h0H
4
0 e

−(4/μ2+α)χ , (119)

where we used the form of the function Ṽ (χ) as obtained in
Eq. (78). Consequently the stable point (< χ >(ec), where
the notation “ec” stands for “exponential coupling”) of Vef f
can be determined by the following algebraic equation,

2H0

κ2 − 6H2
0

κ2 e
− 

μ2 <χ>(ec)

+ 24h0H
3
0 αμ2e

− 2

μ2 <χ>(ec)

+96h0H
4
0 e

− 3

μ2 <χ>(ec)

= 0. (120)

The presence of h0 in the above expression entails that the
Gauss–Bonnet coupling indeed affects the stability of the
inflaton. In order to understand the effect of the GB coupling
more clearly, we write < χ >(ec)=< χ >0 + < δχ >(ec),
where < χ >0 is the stable point of χ in absence of GB term
(h0 = 0) i.e.,

2H0

κ2 − 6H2
0

κ2 e
− 

μ2 <χ>0 = 0

⇒ e
− 

μ2 <χ>0 = 

3H0
. (121)

Thus < δχ >(ec) is the deviation of stable point from
χ >0 solely due to the presence of the Gauss–Bonnet term.
Expanding Eq. (120) in terms of < χ >(ec)=< χ >0 + <

δχ >(ec), we get the following expression for < δχ >(ec),

< δχ >(ec)= −μ2



4
3h0κ

22
( 4

3 + αμ2/
)

1 − 8
3h0κ22

(
2 + αμ2/

) , (122)

where we kept terms up to first order in < δχ >(ec) and
we also assumed 

αμ2 > 1, which is also consistent with the
Planck observations, as mentioned earlier in Section [6.1].
Clearly < δχ >(ec) becomes zero as h0 → 0, as expected.
Equations (121) and (122) immediately lead to the stable
point of Vef f in presence of Gauss–Bonnet coupling, which
is,

< χ >(ec) =< χ >0 + < δχ >(ec)

= μ2



[
ln
(
3H0/

)−
4
3h0κ

22
( 4

3 + αμ2/
)

1 − 8
3h0κ22

(
2 + αμ2/

)
]
.

(123)

Using the above expression for < χ >(ec), we determine the
mass squared of the inflaton (m2

(ec)) for the case of exponen-
tial coupling function, which is,

m2
(ec) = 24

μ4κ2

[
1 +

8
3h0κ

22
( 4

3 + αμ2/
)(

1 − 4h0κ
22

( 4
3 + αμ2/

)
1 − 8

3h0κ22
(
2 + αμ2/

)
]
.

(124)

Thus in the absence of the Gauss–Bonnet term (i.e for h0 =
0),m2

(ec) becomesm2
(ec) = 24

μ4κ2 which is also consistent with
Eq. (121). However the presence of exponential coupling
affects the inflaton mass by the factor proportional to h0, as
is evident from Eq. (124), in particular the mass increases due
to the presence of the Gauss–Bonnet term, compared to the
case where h0 = 0. Having the explicit expression of m2

(ec)
(see Eq. (124)) at hand, now we can determine the reheating
time by using Eq. (118), which is,

t (ec)h = 1


ln

[
8πm(ec)H0

g2λ2

]
. (125)

Thus we can argue that the presence of the exponential GB
coupling function, enhances the mass of the inflaton which in
turn makes the reheating time larger compared to the situation
where the Gauss–Bonnet term is absent.
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For the cubic coupling (h(χ) = h0
(
χ/M

)3), the effective
potential of the inflaton is equal to,

Vef f (χ) = 3H2
0

κ2 e−2χ/μ2 − 2H0

κ2 e−χ/μ2

+24h0H3
0 μ2

M3 χ2e−3χ/μ2 − 24h0H4
0

M3 χ3e−4χ/μ2

(126)

Following the same procedure as above, we determine the
stable point of the effective potential and the mass of the
inflaton field, in the case of cubic coupling, which are,

< χ >(cc) = μ2



[
ln
(
3H0/

)

−
8
3h0κ

22
(
μ2/M

)3(
x0 + x2

0 + 2
3 x

3
0

)
1 − 4h0κ22

(
μ2/M

)3( 4
3 x0 + x2

0 − 4
3 x

3
0

)
]
,

(127)

and

m2
(cc) = 24

3μ4κ2

[
1 +

16
3 h0κ

22
(
μ2/M

)3(
x0 + x2

0 + 2
3 x

3
0

)(
1 + 12h0κ

22
(
μ2/M

)3(
x2

0 − 8
9 x

3
0

))

1 − 4h0κ22
(
μ2/M

)3( 4
3 x0 + x2

0 − 4
3 x

3
0

)
]
, (128)

respectively, where x0 = ln
(
3H0/

)
and the notation ’cc’

stands for “cubic coupling“. Thereby, the presence of cubic
GB coupling function makes the inflaton mass larger rela-
tive to the situation where the GB term is absent. As a con-

sequence, the reheating time t (cc)h = 1


ln

[
8πm(cc)H0

g2λ2

]
also

increases due to the effect of the cubic coupling function,
similar to the case of the exponential coupling we discussed
earlier.

Before closing, let us comment on an interesting issue,
related to previous works in the field. In Ref. [52], the authors
calculated the observational indices of inflation for a gener-
alized Galileon theories, however these theories are quanti-
tatively different to a great extent from the theory we devel-
oped in this paper. Particularly, the theory at hand with action
(4) can be treated at a quantitative level as an generalized
Einstein–Gauss–Bonnet theory of gravity, which is entirely
different from the Galileon models studied in Ref. [52]. At a
quantitative level, the theories developed in Ref. [52], allow
the derivation of general forms of the observational indices,
however in our case, and in Einstein–Gauss–Bonnet mod-
els, it is hard to derive general relations for the observational
indices. This is because the latter depend strongly on the
choice of the Gauss–Bonnet scalar coupling function h(φ).
Thus the results are strongly model dependent, as we evinced
in the previous sections, for example in Section VI A with
h(χ) = e−αχ or in Section VI B with h(χ) = (

χ/M
)n . As

we have shown, the quadratic coupling is not viable although

the exponential one in Section VI A is viable. We have further
extended our discussion to investigate the possible effects
of GB coupling function on reheating mechanism, unlike to
[52].

7 Conclusions

In this work we studied the inflationary phenomenology of
a recently developed ghost-free f (G) model of gravity. Par-
ticularly, the form of the model mimics the scalar Einstein–
Gauss–Bonnet theory, so we employed the formalism of cos-
mological perturbations for the latter theory, in order to cal-
culate the slow-roll indices and the corresponding observa-
tional indices for the theory at hand. The model has rich
phenomenology due to the presence of a freely chosen func-
tion h(χ), in which case by choosing this function and the
Hubble rate, the observational indices can be calculated eas-
ily. We examined three types of inflationary cosmic evolu-

tion and functional forms of the function h(χ), and as we
demonstrated it is possible to have a viable inflationary era,
compatible with the latest observational data. Particularly we
used de Sitter, quasi-de Sitter and exponential cosmological
evolutions, and also exponential and power-law functional
forms for the function h(χ). The simple de Sitter evolution
leads in some cases to problematic phenomenology, however
no realistic cosmology gives the exact de Sitter evolution,
so we investigated the quasi-de Sitter case, in which case
the viability of the theory with the observational data comes
more easily. The same applies for the exponential cosmo-
logical evolution. For the exponential Hubble rate case, we
also tested the stability of the first order scalar and tensor
cosmological perturbations, and as we demonstrated these
are stable for the same range of values of the free parame-
ters, for which the phenomenological viability of the model
is ensured. Finally we explore the reheating mechanism and
the possible effects of Gauss–Bonnet term on it for the case
of exponential Hubble rate. As a result we found that the
presence of GB coupling, in particular the exponential and
cubic coupling function, enhance the mass of the inflaton
which in turn makes the reheating time larger compared to
the situation where the Gauss–Bonnet term is absent. In this
work we mainly focused on realizing inflationary evolutions,
however it is also possible to realize non-singular cosmolog-
ical evolutions, such as cosmological bounces, however we
defer this task to future work.
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