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Abstract In this work, we investigate the behaviour of
Dirac particles in a class of Gödel-type space-time back-
grounds in the presence of non-minimal coupling of the
gravitational field with background curvature. We obtain the
allowed energies for this relativistic system by solving ana-
lytically the Dirac equation in flat and curved space in a
topologically trivial flat Gödel-type metric, and analyze the
effects on the energy eiegnvalues.

1 Introduction

Working on the basis of the Dirac and Klein–Gordon equa-
tions, spin-zero and spin-half particles have been extensively
discussed to calculate the eigenvalues and corresponding
wave functions via many analytical and numerical tech-
niques. The particle motions are commonly described using
either the Klein–Gordon or the Dirac equation [1,2] depend-
ing on the spin character of the particle. The spin-zero par-
ticles like mesons are described by the Klein–Gordon equa-
tion and spin-half particles such as electron is described
satisfactorily by the Dirac equation. The relativistic equa-
tions contain two objects : the four-vector linear momen-
tum operator and the scalar rest mass. The Dirac and Klein–
Gordon equations have been of interest for theoretical physi-
cists in many branches of physics [3,4]. Since the exact
solutions of the Klein–Gordon and Dirac equations play an
important role in relativistic quantum Physics as well as
in various physical applications including those in nuclear
and high energy physics [5,6]. Thus there has been an
increased interest in finding the exact solutions to these
equations with physical potentials of various kind such
as linear scalar, vector, Coulomb, Cornell, inverse square,
Hulthén, harmonic oscillator-like, electromagnetic, Hart-
mann potentials etc. (e. g. [7–24]) using different methods.
These method includes the Nikiforov–Uvarov method [25–
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29], super-symmetry (SUSY) [30], Super-symmetric WKB
approach [31], functional analysis method [32], Variational
method [33], Asymptotic Iteration method [34–39] etc. To
have a real bound state, the relationship between vector and
scalar potential must be S(r) ≥ V (r) [40]. In recent years,
many studies have been carried out to explore the relativistic
energy eigenvalues and corresponding wave functions of the
relativistic wave equations (e. g. [41–59]).

The investigations of relativistic quantum effects on scalar
and spin-half particles in Gödel-type space-times have been
addressed by several authors. Figueiredo et al. [60] first stud-
ied the Klein–Gordon and Dirac equations in Gödel-type
space-times with positive, negative and zero curvatures of
Gödel-type space-time. Furthermore, the investigation of the
close relationship between the quantum dynamics of a scalar
particle in backgrounds of the general relativity with Gödel-
type solutions and the Landau levels in the different class
of Gödel-type space-times such as flat, spherical and hyper-
bolic spaces, were studied in [61]. The authors there ana-
lyzed the similarity between the spectrum of energy of a
scalar quantum particle in the known classes of Gödel-type
space-times and the Landau levels in curved background.
This similarity has also been investigated in Ref. [62] by
solving the Klein–Gordon equation in Som–Raychaudhuri
space-time (called flat Gödel-type metrics). The scalar quan-
tum particle in a class of Gödel-type metrics with a cosmic
string passing through the space-time has been investigated
in Ref. [63]. The relativistic quantum dynamics of a scalar
particle in a class of topologically trivial flat Gödel space-
time, was investigated in Ref. [64]. The result obtained there
suggest that the energy eigenvalues depend on the vortic-
ity parameter � characterising the space-time. The linear
and Coulomb confinement of a scalar particles in a class
of topologically trivial flat Gödel space-time, was investi-
gated in Ref. [65]. A Scalar quantum particle in the back-
grounds of (1+2)-dimensions Gürses space-time, was inves-
tigated in Ref. [66] and analyzed the effects on eigen-
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values. The Klein–Gordon equation for the Klein–Grodon
oscillator in the backgrounds of (1+2)-dimensions Gürses
space-time, was investigated in Ref. [67]. In addition, the
Klein–Gordon equation for the generalised Klein–Gordon
oscillator subject to Coulomb-like scalar potnetial in the
backgrounds of (1 + 2)-dimensions Gürses space-time, was
investigated in Ref. [68]. There we have obtained compact
expression of energy eigenvalues and wave functions, in
details.

The Dirac equation for a free particle of mass m in flat
space is given by

(i γ μ ∂μ − m)� = 0 (h̄ = 1 = c), (1)

where γ μ = γ a eμ
a (a = 0, 1, 2, 3) are the generalized

gamma matrices which satisfies the following relation

{γ μ(x), γ ν(x)} = 2 gμν(x). (2)

The gamma (γ a) matrices in flat space are

γ 0 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , γ 1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎠ ,

γ 2 =

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 i 0 0

−i 0 0 0

⎞
⎟⎟⎠ , γ 3 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ . (3)

The general class of Gödel-type metrics without a cos-
mic string in polar coordinates (t, r, φ, z) can be written as
[69–72]

ds2 = −(dt + F(r) dφ)2 + H2(r) dφ2 + dr2 + dz2. (4)

The necessary and sufficient conditions for the Gödel-type
solution (4) to be space-time homogeneous are given by
[72,73]

F ′

H
= 2 �,

H ′′

H
= 4 l2, (5)

where the prime denotes derivative with respect r , and the
parameters (�,μ) are constants such that�2 > 0 and−∞ ≤
l2 ≤ ∞. The variables (t, r, φ, z) can take, respectively the
values : −∞ < (t, z) < ∞, 0 ≤ r , φ ∈ [0, 2π). The
parameter � characterizes the vorticity of the space-time.
The Gödel-type geometries can be grouped into the following
three classes.

Case 1. Hyperbolic : l2 = const > 0.
In that case, the functions F(r) and H(r) can be express

as

F(r) = �

l2
sinh2(l r), H(r) = 1

2 l
sinh(2 l r). (6)

The original Gödel solution [74] belong to this class and can
be recovered for l2 = �2

2 .
Case 2. Trigonometric or spherical : l2 = −μ2 < 0.
In that case, the functions F(r) and H(r) are can be

express as

F(r) = �

μ2 sin2(μ r), H(r) = 1

2 μ
sin(2 μ r). (7)

Case 3. Linear or flat : l2 = 0.
In that case, the functions F(r) and H(r) can be express

as

F(r) = � r, H(r) = r. (8)

The well-known Som–Raychaudhuri space-time [75] belong
to this class of Gödel-type metrics which is also called
flat or linear class of Gödel-type metrics. So the Som–
Raychaudhuri metric can be written as

ds2 = −(dt + � r2 dφ)2 + r2 dφ2 + dr2 + dz2. (9)

This solution attracted much attention in string theory and
can be interpreted as flat Gödel-type solution. In Cartesian
coordinate system, the Som–Raychaudhuri space-time can
be written as

ds2
SR = −[dt + �(x dy − y dx)]2 + δi j dx

i dx j , (10)

by transforming r → √
x2 + y2 and φ → tan−1(

y
x )

into (9).
In the present work, we are mainly interested on third case,

that is, a flat or linear class of Gödel-type space-times. We
investigate the behaviour of a Dirac particle in a class of flat
Gödel-type space-time in the presence of non-minimal cou-
pling of the gravitational field with the background curvature,
and analyze the effects on energy eigenvalues. It is worth
mentioning the studies of relativistic wave equations such
as the Klein–Gordon and Dirac equation in all three classes
of Gödel-type geometries with or without a cosmic string
have been investigated by several authors. They obtained
the solutions of the wave equations in all three classes of
Gödel-type space-times (see, e. g., Refs. [63–65,69–71,76–
79]) and observed the similarity of the energy eigenval-
ues with the Landau levels in flat space [61,62,80,81]. The
obtained eigenvalues of energy in these different classes of
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Gödel-type space-times are found different and the results
are enough significant [71,76]. Other works are the quan-
tum dynamics of Klein–Gordon scalar field subject to Cor-
nell potential [82], survey on the Klein–Gordon equation
in a class of Gödel-type space-times [83], the Dirac–Weyl
equation in graphene under a magnetic field [84], effects of
cosmic string framework on thermodynamical properties of
anharmonic oscillator [85], study of bosons for three spe-
cial limits of Gödel-type space-times [86], the Klein–Gordon
oscillator in the presence of Cornell potential in the cos-
mic string space-time [87], the covariant Duffin–Kemmer–
Petiau (DKP) equation in the cosmic-string space-time with
interaction of a DKP field with the gravitational field pro-
duced by topological defects investigated in [88], the Klein–
Gordon field in spinning cosmic string space-time with the
Cornell potential [89], the relativistic spin-zero bosons in a
Som–Raychaudhuri space-time investigated in [90], inves-
tigation of the Dirac equation using the conformable frac-
tional derivative [91], effect of the Wigner-Dunkl algebra
on the Dirac equation and Dirac harmonic oscillator inves-
tigated in [92], investigation of the relativistic dynamics of
a Dirac field in the Som–Raychaudhuri space-time, which
is described by Gödel-type metric and a stationary cylin-
drical symmetric solution of Einstein’s field equations for
a charged dust distribution in rigid rotation [93], investi-
gation of relativistic free bosons in the Gödel-type space-
times [94], investigation of relativistic quantum dynamics
of a DKP oscillator field subject to a linear interaction in
cosmic string space-time to understand the effects of gravi-
tational fields produced by topological defects on the scalar
field [95], the behaviour of relativistic spin-zero bosons in
the space-time generated by a spinning cosmic string inves-
tigated in [96], relativistic spin-0 system in the presence of
a Gödel-type background space-time investigated in [97],
study of the Duffin–Kemmer–Petiau (DKP) equation for
spin-zero bosons in the space-time generated by a cosmic
string subject to a linear interaction of a DKP field with
gravitational fields produced by topological defects investi-
gated in [98], the information-theoretic measures of (1 + 1)-
dimensional Dirac equation in both position and momen-
tum spaces are investigated for the trigonometric Rosen–
Morse and the Morse potentials investigated in [99], analyti-
cal bound and scattering state solutions of Dirac equation for
the modified deformed Hylleraas potential with a Yukawa-
type tensor interaction investigated in [100], investigation of
the Dirac equation subject to a vector and scalar potentials
in the space-time generated by a cosmic string investigated
in [101], and the covariant Dirac equation in the space–time
generated by a cosmic string in presence of vector and scalar
potentials of electromagnetic field investigated in [102] and
many more.

2 An example of a class of flat Gödel-type space-time

Consider the following stationary space-time [103] (see also
Refs. [64,65]) in the coordinates (x0 = t, x1 = x, x2 =
y, x3 = z) given by

ds2 =−dt2 + dx2 +
(

1 − α2
0 x

2
)
dy2 − 2 α0 x dt dy + dz2

=−[dt + H(x) dy]2 + dx2 + D2(x) dy2 + dz2, (11)

where α0 > 0 is a real number, and the function H(x) = α0 x
and D(x) = 1. The ranges of the coordinates are

−∞ < t < ∞, −∞ < x < ∞, −∞ < y < ∞, −∞ < z < ∞.

(12)

Using the conditions given by Eq. (5) into the metric (12),
we have

H ′

D
= α0 = 2 �,

D′′

D
= 0, (13)

where prime denotes ordinary differentiation w. r. t. x . From
the above condition Eq. (13), it is clear that the study space-
time (11) belong to a linear or flat class of Gödel-type metrics.

The determinant of the metric tensor det (gμν) = −1 with
the scalar curvature R = 2 �2 and the metric tensor for the
space-time (11) to be

gμν(x) =

⎛
⎜⎜⎝

−1 0 −α0x 0
0 1 0 0

−α0x 0 1 − α2
0x

2 0
0 0 0 1

⎞
⎟⎟⎠ , (14)

with its inverse

gμν(x) =

⎛
⎜⎜⎝

α2
0x

2 − 1 0 −α0x 0
0 1 0 0

−α0x 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (15)

Using the definition of eμ

(a) and e(a)
μ in space-time (11) and

α0 = 2�, we have

e(a)
μ (x) =

⎛
⎜⎜⎝

1 0 α0 x 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (16)

eμ

(a)(x) =

⎛
⎜⎜⎝

1 0 −α0 x 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (17)

which must satisfy
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eμ

(a)(x) e
(a)
ν (x) = δμ

ν , e(a)
μ (x) eμ

(b)(x) = δab ,

gμν(x) = e(a)
μ (x) e(b)

ν (x) η(a)(b), (18)

where η(a)(b) = diag(−1, 1, 1, 1) is the Minkowski flat space
metric.

The next step is a derivation of the Christoffel symbols for
the study space-time. It is define by

�λ
μν = 1

2
gλσ (gνσ,μ − gμσ,ν − gμν,σ ), (19)

where comma denotes ordinary derivative. For the space-
time (11), we get the following non-zero components of the
Christoffel symbols

�0
01 = �0

10 = α2
0 x

2
,

�0
12 = �0

21 = α0

2
(1 + α2

0 x
2),

�1
02 = �1

20 = α0

2
= −�2

01 = −�2
10,

�1
22 = α2

0 x, �2
12 = �2

21 = −α2
0 x

2
. (20)

The spin connections can be determined using Christoffel
symbols with the definition

ωμ(a)(b)(x) = η(a)(c) e
(c)
ν eτ

(b) �ν
τμ − η(a)(c) e

ν
(b) ∂μ e(c)

ν . (21)

And these are

ωt (x) = α0

2

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

ωx (x) = −3 α0

2

⎛
⎜⎜⎝

α0 x 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

ωy(x) = α0

⎛
⎜⎜⎝

0 − 1
2 0 0

1
2 0 α0 x 0
0 −α0 x 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

ωz(x) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (22)

The spinorial affine connection �μ(x), according to the def-
inition �μ(x) = − 1

8 ωμ ab(x) [γ a, γ b], can be identified as

�t (x) = i α0

4

(
σ 3 0
0 σ 3

)
,

�x (x) = 3 α0

4

(
0 σ 2

σ 2 0

)
,

�y(x) = α0

4

(
2 i α0 x σ 3 σ 1

σ 1 2 i α0 x σ 3

)
,

�z(x) =
(
0 0
0 0

)
. (23)

The generalized gamma matrices γ μ(x) = eμ

(a)(x) γ a in
curved space-time are

γ t (x) =
(

I −α0 x σ 2

α0 x σ 2 −I

)
,

γ x (x) =
(

0 σ 1

−σ 1 0

)
,

γ y(x) =
(

0 σ 2

−σ 2 0

)
,

γ z(x) =
(

0 σ 3

−σ 3 0

)
. (24)

Here 0, I are 2×2 null and unit matrices and σ i are the Pauli
matrices given by

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
. (25)

2.1 The Dirac equation in flat space

If one includes non-minimal coupling of the gravitational
field with the background curvature, then the Dirac equation
becomes

(i γ μ(x) ∂μ − ξ R − m)� = 0, (26)

where R is the scalar curvature and ξ is the non-minimal
coupling constant.

The z-translation symmetry of Eq. (10) allows us to reduce
the four-component Dirac Eq. (26) to two two-component
spinor equations. For the positive energy solution we can
choose the following ansatz

�(t, x, y, z) = ei (−E t+l y+k z)
(

ψ(x)
χ(x)

)
, (27)

where E = i ∂t is the total energy, l = −i ∂y , and k = −i ∂z
are constants. Substituting Eq. (27) into the Eq. (26), we have
the following first order differential equations

(E − m̄) ψ = [(α0 x E + l) σ 2 + k σ 3] χ − i σ 1 χ ′, (28)

(E + m̄) χ = [(α0 x E + l) σ 2 + k σ 3] ψ − i σ 1 ψ ′, (29)

where m̄ = m + ξ α2
0

2 and prime denotes derivative w. r. to x.
Now substituting Eq. (29) into the Eqs. (28) and (28) into

the Eq. (29) and after decoupled, we get the following second
order differential equation :

d2ψi

dx2 + [λ − β2 x2 − η x] ψi = 0, i = 1, 2, (30)
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where ψ1 = ψ , ψ2 = χ and

λ = E2 − m̄2 − α0 E s − k2 − l2, β = α0 E, η = 2 β l.

(31)

Note that ψ(x) and χ(x) is an eigenfunction of σ 3 with
eigenvalues ±1, so we can write ψs = (ψ+, ψ−)T with
σ 3 ψs = s ψs , s = ± 1. This is the reason why we replaced
σ 3 by s in Eqs. (28)–(29) and obtained Eqs. (30)–(31) (see,
refs. [93,104,105]).

Transforming a new variable r = √
β x into the equation

(30), we get

ψ ′′
i (r) +

[
λ

β
− r2 − η

β
3
2

r

]
ψi (r) = 0. (32)

The asymptotic behaviour of the possible solution to the
Eq. (32) are to be determined for r → 0 and r → ∞. These
conditions are necessary since the wave functions must be
well-behaved in this limits, and thus, bound states of energy
eigenvalues can be obtained. Let us impose requirement that
the function ψi (r) is well-behaved at r → 0 and vanish at
r → ∞. Let the solution to Eq. (32) is given by

ψi (r) = r A e−(B r+D r2) H(r). (33)

Substituting the above solution (33) into the Eq. (32), we get

H ′′(r) +
[

2 A

r
− 2 B − 4 D r

]
H ′(r)

+
[
A2 − A

r2 − 2 A B

r
− 4 A D − 2 D

+ λ

β
+ B2 +

(
4 B D − η

β
3
2

)
r + (4 D2 − 1) r2

]
H(r) = 0.

(34)

Equating the coefficients of r−2, r, r2 equals to zero in the
above differential equation, we get

A2 − A = 0 ⇒ A = 1, A 
= 0,

4 B D − η

β
3
2

= 0 ⇒ B = 1

4 D

η

β
3
2

,

4 D2 − 1 = 0 ⇒ D = 1

2
. (35)

With these the above Eq. (34) can be express as

H ′′(r)+
[γ

r
− ζ − δ r

]
H ′(r)+

[
−q

r
+ θ

]
H(r) = 0, (36)

where

γ = 2 A,

ζ = 2 B,

δ = 4 D,

q = 2 A B,

θ = B2 + λ

β
− 4 A D − 2 D. (37)

Equation (36) is the biconfluent Heun’s differential equation
[106–113] and H(r) is the Heun polynomials.

Equation (36) can be easily solve by using the Frobenius
method as follow :

H(r) =
∞∑
i=0

ci r
i . (38)

Substituting Eq. (38) into the Eq. (36), we get the following
recurrence relation for the coefficient:

cn+2 = 1

(n + 2)(n + 1 + γ )
[{q+ζ (n+1)} cn+1−(θ−2 n) cn].

(39)

And the various coefficients are

c1 = q

γ
c0, c2 = 1

2 (1 + γ )
[(q + ζ )} c1 − θ c0]. (40)

The power series becomes a polynomial of degree n by
imposing the following two conditions [106–113]

cn+1 = 0, (θ − 2 n) = 0, n = 1, 2 . . . (41)

Using the above energy quantization condition we get the
following eigenvalues equation :

B2 + λ

β
− 4 A D − 2 D = 2 n. (42)

Substituting A, B, D into the above eigenvalue equation, we
get the following eigenvalues of energy

En = 1

2
[α0 (2 n + 3 + s)

±
√√√√α2

0 (2 n + 3 + s)2 + 4

{
k2 + (m + ξ α2

0

2
)2

}⎤
⎦

= �(2 n + 3 + s)

±
√

�2 (2 n + 3 + s)2 + k2 + (m + 2 ξ �2)2. (43)

The corresponding eigen functions

ψi n(r) = r e
− |l|√

2 � En
r
e− r2

2 H(r), (44)

where l = 0,± 1,± 2 . . . ∈ Z is integer.
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In the absence of non-minimal coupling constant ξ = 0,
we have the following energy eigenvalues

En = �(2 n+3+s)±
√

�2 (2 n + 3 + s)2 + k2 + m2. (45)

For m = 0 = k and considering the non-minimal coupling
constant (ξ 
= 0), the energy eigenvalues becomes

En = � [ (2 n + 3 + s) ±
√

(2 n + 3 + s)2 + 4 ξ2 �2]. (46)

which shows that the presence of the term 4 ξ2 �2 causes an
asymmetry in the energy levels. The energy levels are equally
spaced by 4 � in absence of the non-minimal coupling con-
stant (ξ = 0), and the allowed energies are not analogous to
the relativistic Landau levels for a Dirac particle in a cosmic
string space-time [106].

In Ref. [104], the energy eigenvalues of Dirac oscillator
in the cosmic string space-time is given by

E2 = M2 + 4 M ω

{
n + | l + 1

2 (1 ∓ α)

2 α
|

−
[
l + 1

2 (1 ∓ α)

2 α

]
+ 1 − s

2

}
+ k2, (47)

where s = ±1, and ω is the oscillator frequency.
In Ref. [105], the energy eigenvalue equation of Dirac

oscillator in the spinning cosmic string space-time is given
by

E2 − M2 = 4 M ω

[
n + 1

2
|m
α

+ 1

2 α
(1 − α) s + a E

α
|

− s

2

(
m

α
+ 1

2 α
(1 − α) s + a E

α

)]
. (48)

By imposing different condition, the authors there obtained
the various energy eigenvalues of the system (Please see Eqs.
(46)–(50) in Ref. [105]).

For α0 = 0, the space-time (8) reduces to Minkowski
metric

ds2 = −dt2 + δi j dx
i dx j . (49)

Therefore, we have the following differential equations

d2ψi

dx2 + (E2 − k2 − l2 − m2) ψi = 0, i = 1, 2, (50)

which is the Schrödinger time-independent wave equation
with zero potential and whose solution are well-known in
quantum mechanics. The energy eigenvalues are given by

E2
n = k2 + l2 + m2 + n2 π2

L2 , n = 1, 2, 3 . . . (51)

which are not the same the result obtained for the Dirac oscil-
lator in the Minkowski space-time in cylindrical symmetry
system with a cosmic string [77] for zero oscillator frequency.
Here L is the length of a box where the particle is assuming
moves in 1-d with zero potential inside it.

2.2 The Dirac equation in curved space

For the Dirac equation in curved space, partial derivatives
∂μ are replaced by the covariant derivatives ∇μ = ∂μ + �μ

where, �μ are called the spinorial affine connection. There-
fore the Dirac equation in curved space with non-minimal
coupling of the field becomes

[i γ μ(x) (∂μ + �μ(x)) − m − ξ R] � = 0, (52)

where we have derived γ μ(x) and �μ(x) earlier. We have

i γ μ(x) �μ(x) = α0

4

(−3 σ 3 −i α0 x σ 1

i α0 x σ 1 3 σ 3

)
. (53)

Choosing the wave functions given by ansatz (27) into the
Eq. (52), we get the following first order differential equa-
tions :
(
E − m̄ − 3 α0

4
σ 3

)
ψ

=
[
(α0 E x + l) σ 2 + k σ 3 + i

α2
0 x

4
σ 1

]
χ − i σ 1 χ ′,

(54)(
E + m̄ − 3 α0

4
σ 3

)
χ

=
[
(α0 E x + l) σ 2 + k σ 3 + i

α2
0 x

4
σ 1

]
ψ − i σ 1 ψ ′.

(55)

Substituting Eq. (55) into the Eq. (54) and (54) into the Eq.
(55) and after decoupled, we get the following second order
differential equations :

ψ ′′
i (x) − α2

0

2
x ψ ′

i + [λ0 − ω̄2 x2 − η x] ψi = 0, (56)

where

λ0 = E2 − m̄2 − 5

2
α0 E s − k2 − l2 + 5

16
α2

0,

ω̄2 = β2 − α4
0

16
. (57)

Note that here we have used
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(
E − 3 α0

4
σ 3

)2

ψs = E2 ψs − 3

2
α0 E σ 3 ψs + 9

16
α2

0 ψs

=
(
E2 − 3

2
α0 E s + 9

16
α2

0

)
ψs .

(58)

where σ 3 ψs = ± 1 ψs = s ψs , s = ±1 (see, Refs. [93,104,
105]).

Now we do the following transformation

ψi (x) = e
α2

0
8 x2

�(x). (59)

into the Eq. (56), we get

�′′(x) + [λ̃ − β2 x2 − η x] �(x) = 0, (60)

where

λ̃ = λ0 + 1

4
α2

0 . (61)

Replacing the variable r = √
β x into the Eq. (60), we get

�′′(r) + [ λ̃
β

− r2 − η

β
3
2

r ] �(r) = 0. (62)

Let us impose the requirement that the function �(r) is well-
behaved at r → 0 and vanish at r → ∞. Suppose the solution
to Eq. (62) is given by

�(r) = r A e−(B r+D r2) H(r), (63)

where H(r) is an unknown function. Substituting the above
solution into the Eq. (62), we get

H ′′(r) +
[

2 A

r
− 2 B − 4 D r

]
H ′(r)

+
[
A2 − A

r
− 2 A B

r
− 4 A D − 2 D

+ λ̃

β
+ B2 +

(
4 B D − η

β
3
2

)
r + (4 D2 − 1) r2

]
H(r) = 0,

(64)

Equating the coefficients of r−2, r, r2 equals to zero into the
above equation, we get

A2 − A = 0 ⇒ A = 1, A 
= 0,

4 D2 − 1 = 0 ⇒ D = 1

2
,

4 B D − η

β
3
2

= 0 ⇒ B = 1

4 D

η

β
3
2

. (65)

With these the above Eq. (64) can be express as

H ′′(r) +
[γ

r
− ζ − δ r

]
H ′(r) +

[
−q

r
+ θ0

]
H(r) = 0.

(66)

where

θ0 = B2 + λ̃

β
− 2 D − 4 A D. (67)

Equation (66) is the bi-confluent Heun’s differential equation
[106–113] and H(r) is the Hen polynomials.

The above Eq. (66) can be solved using the power series
method as done in the previous section. Substituting the
power series solution (38) into the Eq. (66), we get the fol-
lowing recurrence relation for the coefficients :

cn+2 = 1

(n + 2)(n + 1 + γ )
[{q + ζ (n + 1)}

cn+1 − (θ0 − 2 n) cn]. (68)

And the various coefficients are

c1 = q

γ
c0, c2 = 1

2 (1 + γ )
[(q + ζ ) c1 − θ0 c0]. (69)

Bound state solution can be achieved by imposing that the
power series expansion becomes a polynomial of degree n.
Thereby we guarantee that � is finite at the origin r → 0
and vanish at r → ∞. Therefore the power series becomes
a polynomial of degree n by imposing the following two
conditions [106–113]

cn+1 = 0, θ0 = 2 n, (70)

where n = 1, 2, 3 . . .. Hence, there are two conditions that
must be satisfied in order that the series terminates. Note
that n = 1, 2, 3 . . . is the quantum number associated with
the radial modes. By analysing the condition θ0 = 2 n, we
obtain

B2 + λ̃

β
− 2 D − 4 A D = 2 n, n = 1, 2 . . . (71)

Substituting various term into the above equation, we get the
following energy eigenvalues En as

E2 − m̄2 − 5

2
α0 E s − k2 + 9

16
α2

0 = (2 n + 3) α0 E

⇒ En = 1

2

[
α0 (2 n + 3 + 5

2
s)

±
√

α2
0

(
2 n + 3 + 5

2
s

)2

+ 4

(
m̄2 + k2 − 9

16
α2

0

)⎤
⎦
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= �

(
2 n + 3 + 5

2
s

)

±
√

�2

(
2 n + 3 + 5

2
s

)2

+ (m + 2 ξ �2)2 + k2 − 9

4
�2.

(72)

Hence, Eq. (72) corresponds to the allowed energies of Dirac
particle in a flat Gödel-type space-time in curved space. The
corresponding eigen functions are given by

�n(r) = r e
− |l|√

2 � En
r
e− r2

2 H(r). (73)

For m = 0 = k, the energy eigenvalue reduces to

En = �

[(
2 n + 3 + 5

2
s

)

±
√(

2 n + 3 + 5

2
s

)2

+ 4

(
ξ2 �2 − 9

16

)⎤
⎦ , n = 1, 2 . . .

(74)

We have seen in Eq. (74) that the presence of term 4 (ξ2 �2 −
9
16 ) causes an asymmetry in the energy levels that are no
longer Landau-type energy levels, which differs from the
results obtained in Refs. [60,76].

3 Conclusions

In Ref. [76], the behavior of a Dirac particle in a class of
Gödel-type space-time backgrounds with a cosmic string in
the Einstein–Cartan theory, were investigated. They obtained
the corresponding Dirac equations with a torsion in all three
classes of Gödel-type space-time backgrounds, namely, flat
or linear case which is also called the Som–Raychaudhury
class of space-time with torsion that contain a cosmic string
passing through z-axis, spherical symmetric Gödel-type
space-time, and in hyperbolic coordinates and solved them
analytically. In the case of Som–Raychaudhury space-time
with a cosmic string, they obatined the allowed energies
for this relativistic quantum system and shown an analogy
between the relativistic energy levels and the Landau levels,
where the rotation plays the role of a uniform magnetic field
on the z-direction. In torsion free case, the allowed energies
are analogous to the relativistic Landau levels for a Dirac par-
ticle in the cosmic string space-time [106], where the param-
eter associated with rotation plays the role of the cyclotron
frequency. The presence of the topological defect breaks the
degeneracy of the relativistic energy levels. In addition, they
have solved analytically the Dirac equation in presence of
topological defects in spherical and hyperbolic Gödel-type
space-time with a torsion.

In this article, we have studied the Dirac equation and
Dirac oscillator in curved space considering the line ele-
ment in a class of Gödel-type geometries called flat Gödel-
type space-time. We have obtained the allowed energies for
this relativistic quantum system in the presence of non-
minimal coupling of the gravitational field with the back-
ground curvature. In Sect. 2.1, we have studied the Dirac
equation in flat space and seen that the allowed energies
(43) depend on the vorticity parameter characterizing the
space-time, and the non-minimal coupling constant (ξ ). The
allowed energies of the system are not same to the relativistic
Landau levels of a Dirac particle with cosmic string space-
time [106]. In the absence of non-minimal coupling constant
andm = 0 = k, the energy levels are En = 2 �(2 n+3+s),
where n = 1, 2, 3. In the limit of zero vorticity parameter,
� → 0, the energy levels Eq. (51) are not the same with
the relativistic energy levels of bound states for the Dirac
oscillator in the Minkowski space-time in cylindrical sym-
metry system with a cosmic string [77]. In Sect. 2.2, we
have solved analytically the Dirac equation in curved space
in the presence of non-minimal coupling of the gravitational
field with the background curvature. We have obtained the
energy eigenvalues of the system by Eq. (72) and seen that
the energy levels depend on the vorticity parameter (�), and
the non-minimal coupling constant (ξ ). The obtained energy
levels are no longer Landau-type energy levels, differs from
the results obtained in Ref. [60] and to the result with cosmic
string obtained in Ref. [76].
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