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Abstract In this work, we revise the conventional descrip-
tion of J/ψ(1S), ϒ(1S), ψ ′(2S) and ϒ ′(2S) elastic photo-
and electroproduction off a nucleon target within the color
dipole picture and carefully study various sources of theoret-
ical uncertainties in calculations of the corresponding elec-
troproduction cross sections. For this purpose, we test the
corresponding predictions using a bulk of available dipole
cross section parametrisations obtained from deep inelas-
tic scattering data at HERA. Specifically, we provide the
detailed analysis of the energy and hard-scale dependencies
of quarkonia yields employing the comprehensive treatment
of the quarkonia wave functions in the Schrödinger equa-
tion based approach for a set of available c − c̄ and b − b̄
interquark interaction potentials. Besides, we quantify the
effect of Melosh spin rotation, the Q2-dependence of the
diffractive slope and an uncertainty due to charm and bottom
quark mass variations.

1 Introduction

One of the major widely used probes for interplay between
hard and soft QCD physics is by means of bound states
of heavy (charm and bottom) quarks known as quarkonia.
Among these, the most well-studied are S-wave J/ψ , ψ ′ and
ϒ states produced in high-energy particle collisions (for a
detailed review on quarkonia physics, see e.g. Refs. [1–3]).

Despite a notable progress in theoretical description of
heavy quarkonia production done over past few decades, the
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quarkonia production mechanism, as well as their propaga-
tion and dissociation in a hot medium, is considered to be
an important probe for the medium created in heavy-ion col-
lisions [4], and is still an actively developing research area.
The problem concerns highly uncertain rates of J/ψ and ψ ′
mesons production in pp and pA collisions. These processes
are also considered to be among the main tools for studying
the soft QCD effects in hard processes.

The wealth of existing experimental data and theoretical
studies show that the widely used simplifications in the anal-
ysis of exclusive quarkonia electroproduction observables
may have significant impact on theoretical predictions and
thus should be taken with care. One of the important ingredi-
ents of quarkonia production observables are the light-cone
(LC) wave functions of heavy quarkonia. A popular sim-
ple model for the quarkonia wave functions is based upon
an assumption that the potential between the bound heavy
quarks is perfectly harmonic and no spin rotation in the
quarkonia formation is considered (see e.g. Refs. [5,6]). Such
a treatment is usually performed in the conventional non-
relativistic QCD (NRQCD) framework without an account
for a non-trivial dependence on intrinsic transverse momenta
and longitudinal momentum fractions of heavy quarks. In
the case of charmonia production, a significance of non-
perturbative and relativistic effects is often underestimated
since the charm quark mass is not sufficiently large. More-
over, a spin rotation of heavy quark spinors from the QQ̄
rest frame to the infinite momentum frame known as Melosh
rotation [7,8], which influences mainly the angular part of the
wave function, has a notable impact on (in particular, S-wave)
charmonia differential observables [8,9] while it is some-
times neglected in the existing calculations. A properly for-
mulated radial part of the quarkonium wave function should
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be obtained by a numerical solution of the Schrödinger equa-
tion for a realistic QQ̄ potential and with an appropriate
boosting and spin rotation. This work is aimed, in particular,
at a proper accounting for and studying various sources of
theoretical uncertainties in modeling the elastic J/ψ , ψ ′ and
ϒ electroproduction processes in γ p collisions in the color
dipole picture [10].

One of the major problems of the QCD scattering theory is
to correctly identify the underlying degrees of freedom which
are the eigenstates of interaction. In last decades, it became
clear that such eigenstates are color dipoles [5,10–12], the
universal elementary building blocks automatically accumu-
lating both the hard and soft fluctuations [13,14]. In partic-
ular, the light-cone (LC) color dipole framework has been
developed and applied in treatment of both diffractive and
inclusive quarkonia electro- and photoproduction processes
in QCD in terms of certain superpositions of these eigen-
states [5,10]. The dipole picture has turned out to be rather
successful in describing various hard processes beyond con-
ventional QCD factorisation [15]. In particular, it is known to
give as precise predictions e.g. for the Drell–Yan cross section
as the Next-to-Leading-Order (NLO) collinear factorisation
framework (see e.g. Ref. [16] and references therein). In deep
inelastic scattering (DIS) or in vector meson production the
virtual photon is expected to produce the quark–antiquark
dipole with a transverse separation depending on the pho-
ton virtuality. The dipole formalism relies on a specific type
of factorisation (or dipole factorisation) when a scattering
cross section is written in impact parameter space as a con-
volution of the LC wave functions (for e.g. γ ∗ → cc̄ and
cc̄ → J/ψ fluctuations in the case of J/ψ electroproduction)
and the universal phenomenological dipole cross section fit-
ted to the DIS data. One of the well-known coloured medium
effects predicted by QCD is the so called colour transparency
[17], an intrinsic feature of the dipole framework, when the
medium becomes more transparent for smaller-size dipole
configurations [11,12,18].

Traditionally, exclusive (or elastic) photo (Q2 � 0) and
electro (Q2 � 0) production of heavy quarkonia receives a
lot of attention due to particularly clean signatures and preci-
sion measurements of the corresponding observables differ-
ential in hard scale, Q2, energy, W , and momentum transfer
squared, t . Such processes are highly relevant for e.g. a bet-
ter understanding of the gluon density properties and their
impact parameter profile in a target at very small x [19–25],
as well as for probing the details of the quarkonia production
and propagation processes. Indeed, the exclusive photo pro-
duction cross sections are given by the gluon density in the
second power, thus enabling us to probe it to a much better
precision than in inclusive reactions whose differential cross
sections are proportional to the first power of the (predom-
inantly, gluon) parton density function (PDF). Our current
study aims at a comprehensive analysis of these observables

and related theory uncertainties in the dipole picture against
the available data. The color dipole formalism [5,10–13],
well known for particularly successful description of vari-
ous photo and hadro production reactions in both pp and
pA collisions, enables to include systematically the QCD
factorisation breaking and nuclear coherence effects as well
as the initial-state and saturation phenomena [26,27]. Con-
sequently, there is a notable sensitivity of exclusive photo-
production observables to different gluon saturation models
at low-x that is worth a careful study providing an efficient
discriminating tool for various existing parametrisations for
the low-x gluon density at a periphery of the target nucleon.

As a starting point, we would like to test various mod-
els of the LC wave functions with different c − c̄ and
b − b̄ interquark interaction potentials and phenomenolog-
ical dipole parametrisations against the recent data on J/ψ ,
ψ ′ and ϒ photo- and electroproduction as well as to study
the impact of Melosh spin rotation in these observables. Of
particular interest for us is the study of ψ ′ production observ-
ables which are known to be highly sensitive to the shape of
the wave function (in particular, to the position of its node)
than J/ψ observables [8]. Besides, we would like to estimate
an overall theoretical uncertainty in the exclusive cross sec-
tions due to poorly known gluon density at low-x . This is
accounted for by using several representative dipole parame-
terisations widely used in the literature. Finally, such effects
as sensitivity to the heavy quark mass, to the skewness in the
gluon density, and to the diffractive slope parameterisation
are quantified.

The paper is organised as follows. In Sect. 2, we pro-
vide the basic details of the dipole approach to the exclusive
quarkonia electroproduction with proper definitions of the
kinematical variables, the elastic amplitude and the cross sec-
tion. A thorough description of the normalised LC quarkonia
wave functions, the boosting procedure and an overview of
the interquark potential models used in our analysis is given
in Sect. 3. Further on, in Sect. 4, we present a brief overview
of the most frequently used dipole parameterisations that will
be employed in our numerical analysis for estimation of the
underlined uncertainties in QCD modeling of the target gluon
density evolution at small-x . In Sect. 5 we compare our model
predictions for the photo- and electroproduction cross sec-
tions of different quarkonia with available data and analyze
the theoretical uncertainties caused by various sources and
ingredients coming into the color dipole formalism. Final
remarks and conclusions are summarized in Sect. 6.

2 Exclusive quarkonia electroproduction: dipole picture

In the framework of color dipole approach [5,10–13], the
projectile (real or virtual, with q2 = −Q2) photon under-
goes strong interactions via its Fock components containing
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Fig. 1 A schematic illustration
of the exclusive quarkonium
electroproduction process,
γ ∗ p → V p, in the dipole
picture. On the left panel, the
structure of the amplitude and
kinematic variables in impact
parameter space are depicted
while its amplitude squared for
the J/ψ electroproduction is
shown on the right panel
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quarks and gluons with the target proton in the frame where
the target proton is at rest. In the dipole picture, such inter-
actions are described by the universal dipole cross section,
which is not derivable from the first principles but, instead, is
fitted to e.g. HERA data (for more details, see below). In the
case of exclusive vector meson electroproduction illustrated
in Fig. 1 (left panel), such a lowest Fock state corresponds
to the QQ̄ dipole whose transverse size r is nearly frozen
in the high energy limit. Once the dipole scattering occurs,
a coherent QQ̄ state forms a vector meson by means of a
projection of the QQ̄ production amplitude on to a given LC
quarkonium wave function. Let us now briefly describe the
main ingredients of the dipole formulation of this process.

The forward amplitude for exclusive electroproduction of
a vector meson V with mass MV in the target rest frame is
given by (see e.g. Ref. [8] and references therein)

ImAγ ∗ p→V p
T,L (x, Q2)

=
∫

d2r

1∫

0

dz �
†
V (r, z)�γ ∗

T,L
(r, z; Q2)σqq̄(x, r), x

= M2
V + Q2

s
, (2.1)

where x is the standard Bjorken variable [19], s = Q2 +W 2

is the square of the ep center-of-mass energy (with W being
the γ ∗ p center-of-mass energy), �V (r, z) is the vector meson
V wave function, �γ ∗

T,L
(r, z; Q2) is the LC distribution (or

wave) function of a transversely (T ) or longitudinally (L)
polarized virtual photon for a QQ̄ fluctuation, �r is the trans-
verse size of the QQ̄ dipole, and z = p+

Q/p+
γ is the boost-

invariant fraction of the photon momentum p+
γ = Eγ + pγ

carried by a heavy quark (or anti-quark). The universal dipole
cross section σqq̄(x, r) describes the dipole scattering off
the target. It is typically fitted to the precision inclusive
DIS data at HERA and then is used to describe a variety
of other processes in ep and pp collisions (see below). In
the NRQCD limit, one neglects relative motion of Q and
Q̄ such that z = 1/2, and the LC wave function reduces to
�V (r, z) ∝ δ(z − 1/2) [11]. In what follows, we go beyond
this approximation.

The perturbative LC γ ∗ → QQ̄ wave function is given
by [28,29]

�
(μ,μ̄)

γ ∗
T,L

(r, z; Q2) =
√
Ncαem

2π
ZQ χ

μ†
Q ÔT,L χ̃

μ

Q̄
K0(εr),

ε2 = z(1 − z)Q2 + m2
Q, (2.2)

where ε and ZQ are the energy and the electric charge of the

heavy quark (Zc = 2/3, Zb = 1/3), χ
μ
Q and χ̃

μ̄

Q̄
≡ iσyχ

μ̄∗
Q̄

are the two-component spinors in the infinite momentum
frame normalized as follows [30],
∑
μ,μ̄

(
χ

μ†
Q Âχ̃

μ̄

Q̄

)∗ (
χ

μ†
Q B̂χ̃

μ̄

Q̄

)
= Tr( Â† B̂), (2.3)

and K0(εr) is the modified Bessel function of the second
kind. The operators ÔT,L are defined as follows,

OT = mQ �σ · �eγ + i(1 − 2z)(�σ · �n)(�eγ · �∇r ) + (�n × �eγ ) �∇r ,

OL = 2Qz(1 − z)�σ · �n, �σ = (σx , σy, σz), �∇r ≡ ∂/∂�r ,
(2.4)

where �eγ is the transverse photon polarisation vector, �n =
�pγ /| �pγ | is a unit vector along the photon momentum,
and σx,y,z are the Pauli matrices. In what follows, follow-
ing Ref. [8] we neglect the effects associated with non-
perturbative interactions within the heavy quark pair (includ-
ing charm quarks) and that are not included into the cor-
responding interaction potential since mQ provides a suffi-
ciently perturbative scale even in the photoproduction limit
Q2 → 0.

The quarkonium wave function is properly defined only in
the QQ̄ rest frame where it can be directly found by solving
the Schrödinger equation. Below, we discuss such solutions
for several distinct interquark potentials. In order to obtain
the production amplitude given by Eq. (2.1), the quarkonium
wave function should be found in the infinite momentum
frame. For a classical QQ̄ configuration, such a wave func-
tion could be computed from that in the QQ̄ rest frame by a
applying a Lorentz boost. The quantum effects, however, are
relevant such that a tower of Fock states emerges as a result of
such a transformation [8], and the lowest Fock |QQ̄〉 compo-
nents in these frames do not represent the same configuration.
This issue is further discussed in the next Section.
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In what follows, we assume a simple factorization of spa-
tial and spin-dependent parts of the vector meson V wave
function such as

�
(μ,μ̄)
V (z, �pT ) = U (μ,μ̄)(z, �pT )�V (z, pT ), (2.5)

where

U (μ,μ̄)(z, �pT ) = 1√
2
ξ

μ†
Q �σ �eV ξ̃

μ̄

Q̄
, ξ̃

μ̄

Q̄
= iσyξ

μ̄∗
Q̄

, (2.6)

in terms of the vector meson polarisation vector �eV and quark
spinors ξ in the meson rest frame. The latter are related to
spinors χ in the infinite momentum frame as follows

ξ
μ
Q = R(z, �pT )χ

μ
Q, ξ

μ̄

Q̄
= R(1 − z,− �pT )χ

μ̄

Q̄
, (2.7)

known as the Melosh spin rotation [7,8]. The R-matrix of
such a rotation is given by

R(z, �pT ) = mQ + zMV − i(�σ × �n) �pT√
(mQ + zMV )2 + p2

T

. (2.8)

Using the quarkonium wave function given by Eq. (2.5)
we assume that the vertex ψ → cc̄ differs from the photon-
like γ ∗ → cc̄ vertex with the structure ψμūγ μu used in
Refs. [5,6,31,32]. As was noticed in Ref. [8], the latter in the
cc̄ rest frame contains both S- and D-wave states whereas the
D-wave weight is correlated strongly with the structure of the
vertex and cannot be proved by any reasonable nonrelativistic
c − c̄ interaction potential.

Substituting

ξ̃
μ̄

Q̄
= iσy R

∗(1 − z,− �pT )(−i)σ−1
y χ̃

μ̄

Q̄
,

ξ
μ†
Q = χ

μ†
Q R†(z, �pT ), (2.9)

into Eq. (2.6) one gets finally

U (μ,μ̄)(z, �pT )

= 1√
2

χ
μ†
Q R†(z, �pT ) �σ · �eV σy R

∗(1 − z,− �pT ) σ−1
y χ̃

μ̄

Q̄
.

(2.10)

The resulting dipole formula for the amplitude of photo
and electroproduction of heavy quarkonia reads

ImAγ ∗ p→V p
T,L (x, Q2)=

1∫

0

dz
∫

d2r �T,L(z, �r; Q2) σqq̄(x, r)

(2.11)

where

�T,L(z, �r; Q2) =
∫

d2 pT
2π

e−i �pT �r �V (z, pT )

×
∑
μ,μ̄

U †(μ,μ̄)(z, �pT )�
(μ,μ̄)

γ ∗
T,L

(r, z; Q2).

(2.12)

The T and L amplitudes in a more explicit form are shown
in Appendix C.

The total γ ∗ p → V p cross section is conventionally rep-
resented as sum of T and L contributions [8]

σγ ∗ p→V p(x, Q2)

= σ
γ ∗ p→V p
T (x, Q2) + ε̃ σ

γ ∗ p→V p
L (x, Q2) = 1

16πB

×
(∣∣∣ImAγ ∗ p→V p

T (x, Q2)

∣∣∣2+ε̃

∣∣∣ImAγ ∗ p→V p
L (x, Q2)

∣∣∣2
)

,

(2.13)

with ε̃ = 0.99. Here, B is the slope parameter fitted to the
exclusive quarkonia electroproduction data. In the energy-
independent approximation [33] it is taken to be B =
4.73 GeV−2, while its possible energy and Q2 dependence
is discussed in more detail in Sects. 5.1.1 and 5.1.2.

Derivation of above formulas relies on the assumption that
the S-matrix is purely real and so the amplitude A is purely
imaginary. Following Refs. [5,34,35], the real part of the
amplitude can be accounted for by multiplying the cross sec-

tion σ
γ ∗ p→V p
T,L (x, Q2) by a factor 1 + tan2(πλT,L/2), where

λT,L =
∣∣∣∣
∂ ln ImAγ ∗ p→V p

T,L (x, Q2)

∂ ln x

∣∣∣∣

=
∣∣∣∣ 1

ImAγ ∗ p→V p
T,L

1∫

0

dz
∫

d2r�T,L (z, �r; Q2)
∂σqq̄(r, x)

∂ ln x

∣∣∣∣,
(2.14)

provided that only the dipole cross section depends on the
Bjorken x .

3 Light-cone quarkonia wave function

One yet missing ingredient of the formula (2.1) is the LC
quarkonium wave function �V (r, z). Alike the LC photon-
quark wave function �

T,L
γ ∗ (r, z; Q2), it is defined in the infi-

nite momentum frame. Let us discuss if and how this object
can be obtained from the first principles.

In the QQ̄ rest frame and in impact parameter representa-
tion, the quarkonia wave function is typically found by solv-
ing the Schrödinger equation for a given choice of the heavy
quark interaction potentials as discussed in Appendix B. In
this work, we have employed five well-known parametrisa-
tions for the heavy quark interaction potentials illustrated in
Fig. 2 for c− c̄ (left panel) and b− b̄ (right panel) cases and
described in detail in Appendix A.

Since, in general, there is no direct relation between the
rest-frame wave function of the lowest Fock |QQ̄〉 compo-
nent and that in the infinite-momentum frame, the problem
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Fig. 2 An illustration of five distinct c− c̄ (left panel) and b− b̄ (right panel) interaction potentials, used in this work, as functions of 3D interquark
distance r̃ . For a detailed description and characteristic parameters of these potentials, see Appendix A

of building the latter is rather difficult and there is no gener-
ally acceptable solution yet. In the literature, there are recipes
towards finding such a wave function, and in what follows we
employ one particular widely used recipe of Ref. [36] known
to give rather accurate predictions in the relevant kinematical
regions (cf. Ref. [37]).

For practical purposes, it is convenient to turn to the
momentum-space wave function,

ψ(p) = 2√
2π p

∞∫

0

dr̃ r̃ ψ(r̃) sin(p r̃),
∫

|ψ(p)|2 d3 p = 1,

(3.1)

in terms of the quark 3-momentum p ≡ | �p | and the 3D
interquark distance, r̃ ≡ |�̃r |. Since the quarkonium pro-
duction amplitude (2.1) is written in the infinite momentum
frame, the corresponding wave function ψ(p) should first be
appropriately boosted to that frame. In terms of the LC vari-
ables, z and pT , the invariant mass squared of the QQ̄ pair
reads

M2
QQ̄

= p2
T + m2

Q

z(1 − z)
, (3.2)

while the same quantity in the QQ̄ rest frame is given by

M2
QQ̄

= 4(p2 + m2
Q), p2 = p2

L + p2
T , (3.3)

where pL is the longitudinal component of the quark 3-
momentum �p. These two relations, therefore, yield

p2 = p2
T + (1 − 2z)2m2

Q

4z(1 − z)
, p2

L = (p2
T + m2

Q)(1 − 2z)2

4z(1 − z)
,

(3.4)

providing an appropriate conversion of kinematical vari-
ables between the infinite momentum and QQ̄ rest frames.

Besides, following the recipe of Ref. [36] the conservation
of probability density upon such a boosting

d3 p|ψ(p)|2 = d2 pT dz|ψ(pT , z)|2, d3 p = dpLd2 pT
(3.5)

results in the following Terent’ev relation [36] between the
LC wave function ψ(pT , z) and its counterpart in the target
rest frame ψ(p)

ψ(pT , z) =
(

p2
T + m2

Q

16(z(1 − z))3

) 1
4

ψ(p),

×
∫

|ψ(pT , z)|2d2 pT dz = 1, (3.6)

where p = p(pT , z) is given by Eq. (3.4). Note, the Ter-
ent’ev prescription for the Lorentz boosting presented above
has been discussed and compared with exact calculations
using the sophisticated Green function approach in Ref. [37].
It has been shown that for the J/ψ wave function the Ter-
ent’ev prescription gives very accurate results for the aver-
aged 〈z〉 ∼ 0.5. The LC wave function in the impact param-
eter representation is then given by

�V (r, z) =
∞∫

0

dpT pT J0(pT r) ψ(pT , z). (3.7)

In Fig. 3 we show the numerical results for the boosted LC
wave functions �V (r, z) for two charmonia states, J/ψ(1S)

and ψ ′(2S), and which are obtained starting from numeri-
cal solutions of the Schrödinger equation for two models of
the c − c̄ interaction potential – the harmonic oscillator and
Buchmüller-Tye parametrisation, discussed in Appendix A.
While the overall shape of the wave functions appears to be
consistent between the two models, they yield notable quanti-
tative differences, especially for ψ ′(2S), where the positions
of the node and the minimum are quite sensitive to the choice
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Fig. 3 The LC wave function �V (r, z) for J/ψ(1S) (left panel) and
ψ ′(2S) (right panel) mesons for different quark momentum fractions
z. The distribution function �V (r, z) is generated by two models for

the c − c̄ interaction potential: harmonic oscillator model denoted as
HAR (green dotted lines) and Buchmüller-Tye parameterisation, or BT
(black solid lines)
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Fig. 4 The LC wave function �V (r, z) for ϒ(1S) (left panel), ϒ ′(2S)

(middle panel) and ϒ ′′(3S) (right panel) mesons for different quark
momentum fractions z. The distribution function �V (r, z) is generated

by two models for the b − b̄ interaction potential: harmonic oscilla-
tor model denoted as HAR (green dotted lines) and Buchmüller-Tye
parameterisation, or BT (black solid lines)

of the potential. The corresponding LC wave functions for
ϒ(1S), ϒ ′(2S) and ϒ ′′(3S) mesons are shown in Fig. 4.

We have also performed calculations of the wave func-
tions and total elastic electroproduction cross sections for
a number of different cc̄ (1S and 2S) and bb̄ (1S, 2S and
3S) vector meson states for five distinct parameterisations of
the interquark potentials and five different parameterisations
for the dipole cross sections, σqq̄(r, x). Since the number
of possible combinations of the parameterisations and states
can be rather extensive, as a part of this project, we created
a webpage on https://hep.fjfi.cvut.cz/vm.php, where one can
find numerical datasets (grids) for each vector meson state
(Figs. 3 and 4), interquark potential (Fig. 2) and the dipole
parameterisation (Fig. 5).

The datasets are available for vector meson wave functions
in the forms of a 3D radial solution of the Schrödinger equa-
tion in the QQ̄ rest frame, ψ(r̃) [shown in Eq. (B6)], the
boosted LC wave function in momentum space, ψ(pT , z),
given by Eq. (3.6), and the boosted LC wave function in
impact parameter space, ψ(r, z), given by Eq. (3.7). An inter-
polating routine written in C++ (including also an example

for calculations) is also available on the same webpage. The
web interface enables to generate plots for the electroproduc-
tion cross sections for a selected combination of the quarko-
nium wave function generated by the explicit Q− Q̄ potential
with the explicit dipole model for σqq̄(r, x). Calculations can
be performed including or neglecting the Melosh spin rota-
tion effects. Numerical results can be presented also in the
form of a table, which can be used for practical purposes.

4 Dipole cross section

The essential ingredient of the color dipole approach, the
universal dipole cross section σqq̄(r, x), has been first intro-
duced a long ago in Ref. [13]. During past three decades, its
kinematic (and energy) dependence has undergone remark-
able development largely promoted by precision experimen-
tal information from the HERA collider. While an exact the-
oretical modelling of the dipole cross section (and the cor-
responding partial dipole amplitude) is not nearly close to
its complete understanding, a number of phenomenological
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Fig. 5 Comparison of different parametrisations for the dipole cross section used in our calculations as described in the text

parametrisations accounting for the saturation phenomenon
and the QCD-inspired Bjorken x- and hard-scale evolution
have been proposed in the literature [26,38–49]) and rely on
the fits to the HERA DIS data.

Introducing the partial dipole amplitude N (�r , x, �b), one
conventionally determines the universal dipole cross section
σqq̄(r, x) as an integral over the impact parameter �b:

σqq̄(r, x) = 2
∫

d2bN (�r , x, �b), r = |�r |. (4.1)

The evolution in x- or in rapidity Y = ln(1/x) in the high-
energy (x � 1) regime is treated e.g. by an infinite hierarchy
of the so-called Balitsky-JIMWLK equations [50–55] in the
framework of the Color Glass Condensate (CGC) formalism
[56,57]. These equations reduce to the Balitsky–Kovchegov
(BK) equation [54,58] in the mean-field approximation. As
it is rather difficult to obtain the �b-dependent solutions of
the BK equation [59] while the impact-parameter profile is
determined by essentially non-perturbative QCD phenom-
ena, one usually imposes such approximations as the trans-
lational invariance of the amplitude disregarding the impact
parameter dependence in numerical solutions. An alternative
way usually admitted in the literature is to consider more
phenomenological models for the �b dependence, as well as
accounting for the saturation phenomenon and the hard-scale

evolution via DGLAP, that are fit to precision data e.g. from
HERA. A naive comparison of the predictions of the dipole
model calculations using several distinct parametrisations for
the universal dipole cross section is a standard way to roughly
estimate the associated theoretical uncertainties.

Since long ago, it was understood that at small dipole sep-
arations r the dipole cross section is essentially proportional
to the gluon PDF in the target [60–62], i.e.

σqq̄(r, x) � π2

3
αs

( �

r2

)
r2 xg

(
x,

�

r2

)
, (4.2)

with � ≈ 10 [63]. Later on, in Ref. [45] it was suggested to
merge this asymptotics with a naive saturated ansatz for the
dipole cross section. Later on, in Ref. [42] it was proposed to
introduce explicitly the �b-dependence into the corresponding
ansatz for the partial dipole amplitude. The latter yields the
following widely used parametrisation enabling for a descrip-
tion of exclusive observables at HERA and is known as the
IP-Sat model,

σqq̄(r, x) = 2
∫

d2b

×
[

1 − exp

(
− π2

2Nc
r2 αs(μ

2) xg(x, μ2)TG(b)

)]

(4.3)
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given in terms of the number of colors in QCD, Nc = 3, the
strong coupling constant αs(μ

2) determined at the hard scale
μ connected to the size of the dipole r in a simple way as
μ2 = C/r2 + μ2

0. Here, the model parameters C , μ0 and σ0

are extracted by fitting to the HERA data. Besides, the gluon
PDF in the target nucleon xg(x, μ2) at small x is found as a
solution of the conventional DGLAP equation [64–66] which
takes into account the gluon splitting function Pgg(z) only,

∂xg(x, μ2)

∂ ln μ2 = αs(μ
2)

2π

∫ 1

x
dz Pgg(z)

x

z
g
( x
z
, μ2

)
. (4.4)

Here, the starting value of the target gluon density at μ2 =
μ2

0 is given by

xg(x, μ2
0) = Agx

−λg (1 − x)5.6. (4.5)

The �b-dependence is accounted for by means of a simple
Gaussian profile

TG(b) = 1

2πBG
exp

(
− b2

2BG

)
, (4.6)

where BG is an additional free parameter in the model that can
be extracted, in particular, from the measured t-dependent
elastic electron–proton scattering. In general, BG in the IP-
Sat model is taken to be different from the slope of the
exclusive quarkonia electroproduction cross section defined
in Eq. (2.13) (see e.g. a discussion in Ref. [40]). A com-
prehensive IP-Sat model fit of the complete (inelastic and
elastic) set of HERA data has been performed in Ref. [43]
leading to

Ag = 2.373, λg = 0.052,

μ2
0 = 1.428 GeV2, BG = 4.0 GeV2, C = 4.0, (4.7)

The Golec–Biernat–Wusthoff (GBW) model [26],

σqq̄(r, x) = σ0

(
1 − e− r2Q2

s (x)
4

)
,

Q2
s (x) ≡ R−2

0 (x) = Q2
0

( x0

x

)λ

, (4.8)

where Qs(x) is the x-dependent (and μ-independent) satu-
ration scale, gives rise to a fairly good description of a large
variety of observables in high-energy ep and pp collisions.
The same conclusion concerns also nuclear targets as well
as for both inclusive and exclusive final states at not-so-large
transverse momenta (or Q2) and small x � 0.01. This model
resembles the Glauber model of multiple interactions and can
also be straightforwardly used to incorporate the saturation
effects. The global of the DIS HERA data accounting for the
charm quark contribution provides different sets of parame-
ters. We use two sets - the one taken from [27] we label as
GBWold and the one from [40] we label as GBWnew

GBWold: Q2
0 = 1 GeV2, x0 = 3.04 × 10−4,

λ = 0.288, σ0 = 23.03 mb

GBWnew: Q2
0 = 1 GeV2, x0 = 1.11 × 10−4,

λ = 0.287, σ0 = 23.9 mb. (4.9)

Following the tradition and for the sake of completeness,
we use this simple model as a reference in comparison with
other more complicated parametrisations. Besides, we will
also consider the solution to the running coupling BK equa-
tion calculated according to the procedure in Ref. [67]. The
BK equation describes the evolution in rapidity Y of the scat-
tering amplitude N (�r , x). This formulation is based on the
work of [68–70].

∂N (�r , x)
∂Y

=
∫

d�r1K (�r , �r1, �r2)

(
N (�r1, x) + N (�r2, x)

−N (�r , x) − N (�r1, x)N (�r2, x)

)
(4.10)

where �r2 = �r − �r1. The kernel incorporating the running of
the QCD coupling [70] is given by

K (�r , �r1, �r2) = αs(r2)Nc

2π2

(
r2

r2
1r

2
2

+ 1

r2
1

(
αs(r2

1 )

αs(r2
2 )

− 1

)

+ 1

r2
2

(
αs(r2

2 )

αs(r2
1 )

− 1

))
, (4.11)

with

αs(r
2) = 4π

(11 − 2
3 N f ) ln

(
4C2

r2�2
QCD

) (4.12)

where N f is the number of active flavours andC is a parame-
ter to be fixed from data. We use the fixed number of flavours
scheme with �QCD = 0.241 MeV. For the initial form of
the dipole scattering amplitude the McLerran–Venugopalan
(MV) model [71] is used:

N (�r , x = 0.01) = 1−exp

(
−

(
r2Q2

s0

)γ

4
ln

(
1

r�QCD
+ e

) )

(4.13)

with the values of the parameters Q2
s0, C and γ taken

from [70] yielding σ0 = 32.895 mb, Q2
s0 = 0.165 GeV2,

γ = 1.135 and C = 2.52. The fit was performed under the
assumption that αs(r2) freezes for values of r larger than r0

defined by αs(r2
0 ) = 0.7. This model is denoted below as

rcBK.
We have also included the collinearly improved kernel

[72] given by
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K (�r , �r1, �r2) = ᾱs Nc

2π2

(
r2

r2
1r

2
2

(
r2

min(r2
1 , r2

2 )

)±ᾱs A1

×
J1(2

√
ᾱs | ln(r2

1 /r2) ln(r2
2 /r2)|)√

ᾱs | ln(r2
1 /r2) ln(r2

2 /r2)|

)
, (4.14)

with A1 = 11/12, the positive sign refers to the situation
where r < min(r1, r2) and ᾱs = αs(min(r2, r2

1 , r2
2 )) Nc

π
.

This kernel was used with variable number of flavours
scheme [70], each flavour has its �QCD calculated from the
recurrent relation

�N f −1 = m
1−

βN f
βN f −1

f �

βN f
βN f −1

N f
, (4.15)

where βN f = (11Nc − 2N f )/3 and m f is the mass of the
quark of flavour f . As a starting point one can take measured
αs(r2 = 4C2/M2

Z ) = 0.1189 for n f = 5 at a scale of Z
boson mass MZ = 91.187 GeV. This leads to the formula

�5 = MZe
− 2π

αs (r2=4C2/M2
Z )β5 . (4.16)

A collinear version of MV initial conditions was published
in [72]

N (�r , x = 0.01)

=
[

1 − exp

(
−

[
r2Q2

s0

4
ᾱs(r

2)

(
1 + ln

(
αsat

ᾱs(r2)

))]p)]1/p

,

(4.17)

where ᾱsat = Nc
π

αsat , ᾱs(r2) = Nc
π

αs(r2) and αsat is fixed
to 1. Parameters were fitted in [72] with σ0 = 31.4055 mb,
Q2

s0 = 0.4 GeV2, C = 2.586 and p = 0.807. This model is
denoted as colBK. The dipole cross section is obtained from
the scattering amplitude as σqq̄(r, x) = σ0 N (r, x), where
the normalisation σ0 is fitted to the HERA data.

When decreasing the hard scale Q2 → �2
QCD relevant for

e.g. photoproduction, one may reach small x values even for
moderate and low energies. As was argued e.g. in Ref. [15],
the Bjorken variable x becomes inappropriate in the soft
limit. For such processes as e.g. the pion–proton scatter-
ing as well as the diffractive Drell–Yan and gluon radiation
processes the saturation scale Q2

s � Q2 becomes a func-
tion of the dipole–target collision c.m. energy squared ŝ,
and not Bjorken x . The corresponding parametrisation of the
dipole cross section based upon the same saturated ansatz
as in Eq. (4.8) is found by a replacement σ0 → σ 0(ŝ) and
R0 → R0(ŝ) where [15]

R0(ŝ) = 0.88 fm (s0/ŝ)
0.14,

σ 0(ŝ) = σ
πp
tot (ŝ)

(
1 + 3R

2
0(ŝ)

8〈r2
ch〉π

)
.

Here,σπp
tot (ŝ) = 23.6(ŝ/s0)

0.08 mb is the pion–proton total
cross section [73], 〈r2

ch〉π = 0.44 fm2 is the mean pion radius
squared [74], and s0 = 1000 GeV2. Interestingly enough,
this parametrisation known as theKSTmodel has been shown
to give the correct description of the pion–proton cross sec-
tion at scales up to Q2 ∼ 20 GeV2. This parametrisation,
together with the ones above, will be used in our analysis of
exclusive real and virtual photoproduction of quarkonia.

Another parametrization was proposed by Iancu, Itakura
and Munier [39]

σqq̄(r, x) = σ0N0

(
r Qs(x)

2

)2γe f f (r,x)

r Qs(x) ≤ 2

= σ0

(
1 − e−A ln2(BrQs (x))

)
r Qs(x) > 2

γe f f (r, x) = γ + 1

κλY
ln

(
2

r Qs(x)

)
Y = ln

(
1

x

)
,

(4.18)

where γe f f (r, x) is an effective anomalous dimension, κ =
9.9, N0 = 0.7, Q2

s (x) = ( x0
x

)λ GeV2 and σ0 = 2πR2
p.

Parameters A and B are chosen to ensure continuity between
both parts of the parametrization at r Qs(x) = 2 as

A = − N 2
0 γ 2

(1 − N0)2 ln(1 − N0)

B = 1

2
(1 − N0)

− 1−N0
N0γ . (4.19)

Parameters σ0, Rp, γ, x0 and λ have to be fitted to data. We
use the fit performed in [41] with γ = 0.7376, λ = 0.2197,
x0 = 0.1632 × 10−4 and σ0 = 27.33 mb. This model will
be denoted as IIM.

The last parametrization used in our analysis was proposed
in Refs. [40,75] as a modification of the IIM parametrization
to include the explicit impact parameter dependence by intro-
ducing the modified saturation scale

Q2
s (x) → Q2

s (x, b) =
( x0

x

)λ
(
e
− b2

2BG

) 1
γ

. (4.20)

Parameters BG, N0, γ, x0 and λ has to be fitted to data.
The most recent set of parameters comes from [44] and sets
γ = 0.6492, N0 = 0.3658, λ = 0.2023, x0 = 0.00069 and
BG = 5.5 GeV−2. This model is denoted as b-CGC.

In order to get the impact parameter independent dipole
cross section from IPSat and b-CGC parametrizations an inte-
gral over the impact parameter was performed. As an illustra-
tion, in Fig. 5 we show the shape of different parametrisations
for σqq̄(r, x) as a function of the dipole transverse separations
r as two fixed values of the Bjorken variable x = 10−2 (left
panels) and x = 10−4 (right panels).

At large dipole separations, we observe a substantial vari-
ation between both the shapes and magnitudes of σqq̄(r, x),
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Fig. 6 The dependence of the diffractive slope on c.m. energy B(W )

given by Eq. (5.1) for the process γ ∗ p → J/ψ p with two characteristic
parameters B0 and α′(0) determined by the fit to combined H1 [76,77]

and ZEUS [78,79] data for two distinct Q2 regions – low-Q2 (photo-
production domain, left) and high-Q2 (electroproduction domain, right)

and the differences in dipole models tend to rise with decreas-
ing x . Quite interestingly, such differences become also large
at very small dipole sizes r � 0.05 ÷ 0.06 fm, i.e. in the
perturbative region. Thus, the measurements of exclusive
electroproduction of quarkonia at very large scales Q2 �
300 ÷ 400 GeV2 may provide additional constraints on the
dipole parametrizations and means to further reduce theo-
retical uncertainties in the small-x treatment of the gluon
density. Using the precision data in the hard and soft limits,
one could ultimately start ruling out the models.

5 Numerical results vs data

5.1 Theoretical uncertainties caused by determination of
the diffraction slope

Let us turn to discussion of numerical results on the γ ∗ p →
V p process in comparison with the data available from
HERA. In order to calculate the total photo- and electro-
production cross section Eq. (2.13) with amplitudes given
by Eqs. (C1) and (C2) one should know the magnitudes of
the slope parameter as a function of the photon energy W
and virtuality Q2.

5.1.1 Diffraction slope for the process γ ∗ p → J/ψ(ϒ) p

For the c.m. energy behavior of the diffraction slope B(W )we
use the standard form based on the Regge phenomenology,

B(W ) = B0 + 4 α′(0) ln
( W

W0

)
, W0 = 90 GeV, (5.1)

where α′(0) represents the slope of the Pomeron trajectory.
Both parameters B0 and α′(0) for the process γ ∗ p →

J/ψ p have been obtained by a fit to data from H1 [76,77]

Table 1 Parameters B0 and α′(0) of the diffraction slope B obtained
by a fit to different data sets at HERA in photo- (Q2 < 1 GeV2) and
electroproduction (Q2 > 1 GeV2) of ground-state 1S-charmonium

Parameters Q2 < 1 GeV2 Q2 > 1 GeV2

B0 α′(0) B0 α′(0)

Fixed B [8] 4.73 0 3.86 0

H1 [76] 4.63 0.164 3.86 0.019

ZEUS [78] 4.15 0.116 4.72 0.07

This work 4.62 0.171 4.42 0.031

and ZEUS [78,79] collaborations at HERA as well as by our
overall fit to the combined data from both collaborations as
is shown in Fig. 6. Our fit resulted with χ2/nd f = 0.6 for
photoproduction and χ2/nd f = 3.75 for electroproduction.
The corresponding values are presented in Table 1.

The values of α′(0) extracted from the available HERA
data are in accordance with theoretical predictions in Ref. [80]
based on the color dipole formalism and presented already
in 1994. It was shown that the slope of the Pomeron trajec-
tory is strongly correlated with the magnitude of the gluon
correlation radius.

Since the data for the diffraction slope at Q2 � 0 are
scarce, for the Q2 dependence of the slope parameter B(Q2)

we use the empirical parametrization from Ref. [81] based on
the color dipole model calculations and valid for production
of J/ψ and ϒ within the range of Q2 � 500 GeV2,

B(W, Q2) ≈ B(W, Q2 = 0) − B1 ln
(Q2 + M2

V

M2
J/ψ

)
, (5.2)

where the energy dependence of B(W, Q2 = 0) is deter-
mined using Eq. (5.1) with parameters found in Table 1, and
B1 = 0.45 GeV−2. We tested that such a parametrization
gives values of the slope parameter in a reasonable agree-
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ment with the existing data [76,78] on electroproduction of
J/ψ at HERA.

Here we would like to emphasize that for the photo-
and electroproduction of 1S bottomonium the correspond-
ing diffraction slope can be estimated also from Eq. (5.2) as
Bϒ(W, Q2) ≈ BJ/ψ(W, Q2 + M2

ϒ).

5.1.2 Diffraction slope for the process γ ∗ p → ψ ′(ϒ ′) p

Detailed analysis of the diffraction slope in photo- and elec-
troproduction of 2S-radially excited heavy quarkonia ψ ′(2S)

and ϒ ′(2S) is presented in Ref. [81]. It was shown within the
color dipole formalism that the inequality B(2S) < B(1S)

comes from the nodal structure of corresponding quarkonium
wave functions. This is a direct consequence of the destruc-
tive interference of the contributions to the production ampli-
tude coming from regions of small and large dipole separa-
tions. For production of bottomonia states, the node effect
is negligibly small and one can safely use the same magni-
tudes of the slope parameter for both 1S and 2S states, i.e.
Bϒ ′(2S) ∼ Bϒ(1S).

However, for production of 2S-radially excited charmo-
nium, the difference of diffraction slopes �B = B(1S) −
B(2S) can not be neglected. Model calculations within the
color dipole formalism [81] at W = 90 GeV give the val-
ues �T

B ∼ 0.25 GeV−2 and �L
B ∼ 0.45 GeV−2 for pho-

toproduction of T and L polarized ψ ′(2S), respectively,
as a clear manifestation of the node effect. The quantity
�B gradually vanishes with Q2 and can be neglected at
Q2 � 20 GeV2 as a result of a weak node effect at small
dipole sizes. However, �B rises towards small energies and
at W = 15 GeV reaches much higher values, i.e. �T

B ∼ 0.38

and �L
B ∼ 0.9 GeV−2 [81] for photoproduction of T and L

polarized ψ ′(2S), respectively.
In our calculations, we employ the following parametriza-

tion of the color dipole model predictions of the positive-
valued part of �B [81],

�
T,L
B (W, Q2) = cT,L(W )

[
1 − d(W ) ln

(Q2 + M2
ψ ′

M2
ψ ′

)]
≥ 0.

(5.3)

Otherwise, B(1S) = B(2S) for �
T,L
B (W, Q2) � 0

is adopted. Here, the energy-dependent coefficients are
cT (W ) = 0.24 − 0.08 ln(W/W0) GeV−2 and cL(W ) =
0.45 − 0.24 ln(W/W0) GeV−2 for production of T and L
polarized ψ ′(2S) state, respectively, and the factor d(W ) =
1.65 + 0.3 ln(W/W0).

In what follows, in all figures we denote by “our fit” the
model calculations that use the parametrization of the slope
parameter given by Eq. (5.2), where the first term B(W, Q2 =
0) is determined from Table 1.

First, we test how uncertainties in determination of the
diffraction slope for the process γ ∗ p → J/ψ p lead to uncer-
tainties in model predictions for the real and virtual photopro-
duction cross sections. For this purpose, we use the realistic
BT potential [82] (see also Appendix A) in determination of
the charmonium wave functions as well as the phenomeno-
logical KST dipole cross section [15], which provides a good
description of hadronic processes, also at small scales corre-
sponding to the nonperturbative region of large dipole sizes.

Figure 7 shows the color dipole model calculations ver-
sus the HERA data on the photo- and electroproduction
cross sections as a function of the c.m. energy W at fixed
Q2 = 0.05 GeV2 (left panel) and the scaling variable
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Fig. 7 The exclusive J/ψ electroproduction cross section as a function
of c.m. energy W at fixed Q2 = 0.05 GeV2 (left panel) and the scaling
variable Q2 + M2

J/ψ at fixed W = 90 GeV (right panel). The model
calculations were performed with the J/ψ wave function, obtained by
using the BT potential [82], and with the phenomenological KST dipole
cross section [15]. Here and below, the Q2-dependent slope parameter

labeled as “our fit” is determined from Eq. (5.2) with the energy behav-
ior at Q2 → 0 found in Table 1 and indicated there as “this work”. The
results also incorporate the Melosh spin rotation effects. The data are
provided by H1 [76,77], ZEUS [78,79], ALICE [83], E401 [84] and
E516 [85] Collaborations
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Fig. 8 The same as Fig. 7 but for the photo- and electroproduction of ϒ(1S) state. The model predictions for σγ ∗ p→ϒ p(W, Q2) are compared
with the existing data from H1 [33], ZEUS [86,87], CMS [88] and LHCb [89] experiments

Q2 +M2
J/ψ at fixed W = 90 GeV (right panel) using the dif-

ferent parametrizations for the diffraction slope as depicted in
Table 1. Corresponding amplitudes (C1) and (C2) for produc-
tion of T and L polarized charmonia, entering the expression
(2.13) for the electroproduction cross section, contain correc-
tions for the Melosh spin rotation effects. Since the data on
the Q2 behavior of the diffraction slope are very scarce we
took the results of model calculations [81], which can be
simply parametrized by Eq. (5.2) and provide a reasonable
description of the HERA data.

One can see from the left panel of Fig. 7 that model
predictions using the constant value for the slope parame-
ter B = 4.73 GeV−2 underestimate the data at lower c.m.
energies W � 100 GeV. However, they lead to an over-
estimation of the ALICE experimental value [83] at higher
W ∼ 700 GeV. An agreement with the data can be improved
by taking the energy-dependent diffraction slope with param-
eters from Table 1. All these parametrizations lead to very
similar values for the diffraction slope at small energies but
start to differentiate from each other at higher energies corre-
sponding to the LHC energy range. Here, the best description
of the data is achieved by the fit to only H1 data, as well as
by our fit to the combined H1 and ZEUS data sets.

The right panel of Fig. 7 shows the model predictions
for electroproduction cross section σγ ∗ p→J/ψ p(W, Q2) as
a function of the scaling variable Q2 + M2

J/ψ at fixed value

of c.m. energy W = 90 GeV. The Q2 dependence of the
slope parameter is given by the empirical formula Eq. (5.2),
whereas for B(W = 90 GeV, Q2 = 0) we take different
parametrizations from Table 1. As a result, the shape of the
corresponding theoretical curves is almost identical describ-
ing the available data from H1 and ZEUS collaborations rea-
sonably well.

Note that differences in model predictions using various
parametrizations for the diffraction slopes can be treated as
a measure of the underlined theoretical uncertainty.

Theoretical uncertainties in predictions of the real and vir-
tual photoproduction cross sections of the elastic process
γ ∗ p → ϒ(1S) p inherent for determination of the slope
parameter are depicted in Fig. 8. Here, similarly to the case
of 1S-charmonium production, we compare the model pre-
dictions for different parametrizations of the slope parameter
from Table 1. In the case of electroproduction of 1S bottomo-
nium, the corresponding diffractive slope can be approxi-
mately estimated from Eq. (5.2) as follows: Bϒ(W, Q2) ≈
BJ/ψ(W, Q2 + M2

ϒ). This is a consequence of the scaling
properties in production of different vector mesons [81].
Here, we assume a similar value of the Pomeron trajectory
slope α′(0) describing the energy dependence of the diffrac-
tive slope, see Eq. (5.1), for charmonium as well as for bot-
tomonium production. This is supported by calculations of
α′(0) performed in Ref. [80] within the color dipole formal-
ism.

The left panel of Fig. 8 clearly demonstrates that inclusion
of the energy dependent slope parameters brings our model
predictions to a better agreement with the available data. As
was already emphasized above, the differences in model pre-
dictions corresponding to different parametrizations of the
diffractive slope can be considered as a good measure of the
underlined theoretical uncertainty.

For the photo- and electroproduction of 2S radially-
excited ψ ′(2S) and ϒ ′(2S) states the nodal structure of the
corresponding wave functions (see Figs. 3, 4) causes an
inequality B(2S) � B(1S). The corresponding difference
B(1S) − B(2S) was calculated in Ref. [81] within the color
dipole formalism and can be parametrized as is given by
Eq. (5.3). For the photo- and electroproduction of ϒ ′(2S)

the node effect can be neglected and we can safely take
the same slope parameter as for the ϒ(1S) state, namely,
Bϒ ′(2S) ∼ Bϒ(1S). The corresponding model predictions,
taking four different parametrizations for the diffraction
slope from Table 1, are presented in Fig. 9.
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Fig. 9 The same as Fig. 7 but for the real and virtual photoproduction of ϒ ′(2S) bottomonia
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Fig. 10 The same as Fig. 7 but for the real and virtual photoproduction of ψ ′(2S) charmonium

In comparison with ϒ ′(2S) eletroproduction, a stronger
node effect in production of 2S radially-excited charmo-
nium causes a larger difference of diffractive slopes given
by Eq. (5.3) such that it can not be neglected. Consequently,
one expects that BJ/ψ(1S) � Bψ ′(2S) [81]. The correspond-
ing model predictions for σγ ∗ p→ψ ′(2S) p(W, Q2) including
the different parametrizations for the slope parameter from
Table 1, as well as the corrected diffraction slope in eletro-
production of 2S radially-excited charmonium, Bψ ′(2S) =
BJ/ψ(1S) − �B , are shown in Fig. 10. One can see that the
node effect leads to an enhancement of the J/ψ(2S) photo-
production cross section, especially at small c.m. energiesW ,
as well as at small values of Q2 enabling a better agreement
with the data (see also Fig. 11).

We would like to emphasize that one should distin-
guish between manifestations of the node effect in ampli-
tude for production of 2S radially-excited quarkonia and in
the magnitude of the corresponding diffraction slope. The
nodal structure of the wave function for radially-excited
states causes cancellations in the production amplitude from
regions of large and small transverse sizes above and below
the node position. Here, investigation of the ratio R ≡

R(W, Q2) of the ψ ′(2S)-to-J/ψ(1S) photo- and electro-
production cross sections allows to minimize the theoreti-
cal uncertainties connected to a determination of the cor-
responding slope parameters for γ ∗ p → J/ψ(1S) p and
γ ∗ p → ψ ′(2S) p processes.

Neglecting the impact of the node effect on the magni-
tude of the slope parameter Bψ ′(2S), one can safely use
the approximate equality BJ/ψ(1S) ∼ Bψ ′(2S) with a rather
good accuracy. Consequently, BJ/ψ(1S) and Bψ ′(2S) cancel
in the ratio R(W, Q2). Then the rise of R with c.m. energy
W and Q2 depicted by dashed lines in Fig. 11 is a charac-
teristic manifestation of the node effect. Since the size of
ψ ′(2S) is larger than J/ψ(1S), one should naturally expect
a stronger energy dependence for the J/ψ(1S) electropro-
duction cross section because dipoles with a smaller trans-
verse size have a steeper rise with energy. As a result, the
ratio R(W ) should decrease with energy. However, despite
of this expectation, the nodal structure of the wave function
for 2S radially-excited states causes an opposite effect, i.e.
the rise of R(W ) with energy. The steeper energy depen-
dence at smaller dipole sizes below the node position dimin-
ishes the node effect at higher energies. This is a result of
reduction of a cancellation in the 2S production amplitude
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Fig. 11 The color dipole model predictions for the ψ ′(2S)-to-J/ψ(1S)

ratio of electroproduction cross sections as functions of c.m. energy W
at fixed Q2 = 0.05 GeV2 (left panel), as well as functions of Q2 at
fixed W = 90 GeV (right panel) versus the existing data from H1
[90,91], ZEUS [92] and fixed target experiments [93–97]. The solid
and dashed lines correspond to calculations with and without the cor-

rection �B given by Eq. (5.3) in determination of the slope parameter
for the process γ ∗ p → ψ ′(2S) p, respectively. The model calcula-
tions were performed with the charmonium wave functions obtained by
using the BT potential [82] and with the phenomenological KST dipole
cross section [15]. The Melosh spin rotation effects are included in this
calculation
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Fig. 12 The same as Fig. 7 but for different realistic c − c̄ interaction potentials as described in Appendix A

from regions below and above the node position. This then
leads to a steeper energy dependence of ψ ′(2S) compared
to J/ψ(1S) production cross section (compare Fig. 7 with
Fig. 10). The rise of the ratio R(W ) with c.m. energy W is
depicted in the left panel of Fig. 11 where the model pre-
dictions are in accordance with the data, especially at higher
energies W � 50 GeV. Similarly, the node effect becomes
weaker at larger Q2 causing a rise of the ratio R(Q2) in a rea-
sonable agreement with the existing data as is demonstrated
in the right panel of Fig. 11.

The node effect has some impact also on the magni-
tude of the diffractive slope for electroproduction of 2S
radially-excited charmonium as was presented in Ref. [81]
and discussed above. This leads to the following inequality
B(2S) � B(1S). The corresponding difference�B was com-
puted within the color dipole model in Ref. [81] and can be
parametrized by Eq. (5.3). This correction �B rises towards
small W and Q2 since the onset of the node effect becomes
stronger and leads to an enhancement of the ratio R(W, Q2)

as shown in Fig. 11 by solid lines. Notably, such an effect

brings our predictions to a better agreement with the data at
smaller energies W � 20 GeV.

5.2 Theoretical uncertainties caused by a shape of the c − c̄
(b − b̄) interaction potential

Here we analyze how determination of the quarkonium wave
functions generated by various interquark interaction poten-
tials leads to a different behavior of the photo- and electropro-
duction cross sections. The results for J/ψ and ϒ are shown
in Figs. 12 and 13 in comparison with the available data. Our
calculations were performed using the phenomenological
KST parametrization for the dipole cross section and for the
1S quarkonium wave functions determined from the COR,
HAR, LOG, POW and BT potentials described in Appendix
A. Our observations are as follows:

(i) The potentials labeled as HAR, BT and LOG well
describe the photoproduction J/ψ data, whereas the
potential POW slightly overestimates the data while the
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Fig. 13 The same as Fig. 8 but for different realistic b − b̄ interaction potentials as described in Appendix A

potential COR significantly underestimates them by a
factor of about 2 ÷ 2.5.

(ii) Such a different behavior originates from different
charm quark masses used in various potentials. The
potentials BT and LOG usemc = 1.5 GeV, while HAR
adopts mc = 1.4 GeV, POW – mc = 1.3 GeV and
COR takes mc = 1.84 GeV. Different potentials have
only a small impact on the shape of wave functions for
1S-state charmonium (see Fig. 28). However, the pho-
ton wave function, Eq. (2.2) is extremely sensitive to
the value of mc that enters the argument of the Bessel
function K0.

(iii) The model predictions for the photoproduction cross
section, quite expectedly, exhibit the following hier-
archy: the smaller c-quark mass used in the realistic
potential leads to higher values of the cross sections
(see also Figs. 17, 18).

(iv) Dependence of the J/ψ electroproduction cross section
(see the right panel of Fig. 12 on the scaling variable
Q2 +M2

J/ψ follows from the structure of ε2 in Eq. (2.2).
As was analyzed in Ref. [5] the nonrelativistic approx-
imation with z = 0.5 can be safely used for produc-
tion of charmonia and, especially, bottomonia. In this
approximation, ε2 takes the value ∝ Q2 + (2mc)

2 ≈
Q2 + M2

J/ψ .
(v) Similarly to photoproduction of 1S charmonium, the

right panel of Fig. 12 shows a reasonable agreement
of the data with our calculations using the COR, HAR,
LOG and BT potentials. Differences in model predic-
tions gradually decrease with Q2 since the variation
between the corresponding realistic potentials is weaker
at smaller dipole transverse separations r (see Fig. 2).
Only the HAR potential leads to much smaller values
of the cross sections at large Q2 due to a lack of the
Coulomb-like behavior at small r .

(vi) Model predictions for the ϒ(1S) photoproduction cross
section depicted in the left panel of Fig. 13 exhibit a

rather good description of the data with the use of all
five realistic potentials considered in this work. Thus,
we confirm the universality property of the quarkonia
production cross sections as functions of the scaling
variable Q2 + M2

V . Here, due to such universality the
theoretical uncertainty given by a spread between the
results obtained with different interquark potentials (see
the left panel of Fig. 13) directly corresponds to the
results for 1S charmonia electroproduction at Q2 ∼
M2

ϒ (compare with the right panel of Fig. 12).
(vii) A small variance of the model predictions made also for

1S bottomonia electroproduction using different real-
istic potentials is demonstrated in the right panel of
Fig. 13. However, this variance rises with Q2 due to
growing differences between the considered b−b̄ inter-
action potentials at small r̃ � 0.1 fm (see the right
panel of Fig. 2).

5.3 Theoretical uncertainties caused by different
parametrizations of the color dipole cross section

The calculations performed in the framework of color
dipole approach are strongly correlated with the shape of the
dipole cross section, σqq̄(r, x). In our predictions using the
BT realistic potential for determination of the quarkonium
wave functions, in Figs. 14, 15 and 16 we test the eight main
phenomenological parametrizations for σqq̄(r, x) found in
the literature and discussed in Sect. 4. Here, the main obser-
vations are the following:

(i) In the case of 1S charmonium photoproduction, the
KST and GBWold dipole models give almost the same
cross section at c.m. energies W � 200 GeV describ-
ing the available data reasonably well. The other phe-
nomenological parametrizations denoted as GBWnew,
rcBK, coIBK, IM, bCGC and IPSat strongly underes-
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Fig. 14 The same as Fig. 7 but for different phenomenological dipole cross sections described in Sect. 4
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Fig. 15 The same as Fig. 8 but for different phenomenological dipole cross sections described in Sect. 4

timate the data by a factor of 2 ÷ 3 (see the left panel
of Fig. 14.

(ii) In the electroproduction of 1S charmonia, the KST and
GBWold dipole cross sections lead to the cross sec-
tions that differ from each other by a factor of 2 ÷ 3 at
high Q2 (see the right panel of Fig. 14). Here, the KST
parametrization provides the best description of Q2-
dependent data. Other six parametrizations used in our
study grossly underestimate the data within the whole
considered Q2 interval.

(iii) A similar conclusion as above can be made also from
Fig. 16 where we studied the energy dependence of 1S
charmonium electroproduction cross section at differ-
ent fixed values of Q2.

(iv) In analogy to electroproduction of 1S charmonia, the
model calculations using the KST phenomenological
parametrization for the dipole cross section provide the
best description of the available data on photoproduc-
tion of 1S bottomonia as shown in Fig. 15. Except
for the rcBK parametrization at large W , all other
parametrizations lead to a significant underestimation
of these data in the whole range of W .

(v) A huge variance of the model predictions for the pho-
toproduction (Q2 → 0) cross sections of ϒ(1S) using
various parametrizations for the dipole cross section
remains also in the case of electroproduction results
shown in the right panel of Fig. 15. Here, the spread
between the results rises with Q2 as a direct conse-
quence of the growing differences between the dipole
parametrizations at small transverse separations r �
0.1 fm. The latter is demonstrated by bottom panels of
Fig. 5.

5.4 Sensitivity of model predictions to quark mass

The quark mass has a strong impact on magnitudes of the
model predictions as was presented and discussed earlier in
Sect. 5.2. Different realistic potentials (see Appendix A) used
in our analysis of the quarkonium wave functions contain
distinct values of quark masses ranging within the interval
mc ∈ (1.3 − 1.84) GeV, for the charm quark, and mb ∈
(4.2−5.17) GeV, for the bottom quark. Here we test, taking
the BT potential as a reference point with mc = 1.48 GeV
and mb = 4.87 GeV, how much our model predictions are
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Fig. 16 The exclusive J/ψ electroproduction cross section as a func-
tion of energy W at several fixed values of Q2 = 3.1 GeV2 (top left
panel), Q2 = 6.8 GeV2 (top right panel), Q2 = 16.0 GeV2 (bottom
left panel), and Q2 = 22.4 GeV2 (bottom right panel). The model pre-

dictions, including the Melosh spin rotation effects, were performed
with the J/ψ wave function using the BT potential [82] and for differ-
ent phenomenological dipole cross sections described in Sect. 4. The
data are taken from H1 [76] and ZEUS [79] Collaborations at HERA
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Fig. 17 The same as Fig. 7 but for the test of sensitivity of the model predictions to the typical charm quark mass mc variations

modified by changing the quark mass from the minimal to
maximal values corresponding to these intervals.

Figure 17 clearly demonstrates the sensitivity of model
results, taking the realistic BT potential and KST parametriza-
tion of the dipole cross section, to different quark mass val-
ues. Whereas our calculations, using the BT potential with
mc = 1.48 GeV, lead to a reasonable description of the

data, a modification of the charm quark mass to the lower
(mc = 1.3 GeV) and higher (mc = 1.84 GeV) value causes
a gross overestimation and underestimation of these data,
respectively. Such a strong sensitivity to the value of the
charm quark mass comes from the photon wave function,
Eq. (2.2), which contains mc in the argument of the Bessel
function K0.
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Fig. 18 The same as the left panel of Fig. 8 but for the test of sensitivity of the model predictions to the bottom quark mass mb

The sensitivity of model predictions to quark mass values
gradually decreases with Q2 since, in comparison to pho-
toproduction limit Q2 → 0, the quark mass scale plays a
weaker role and can be neglected at large Q2 � m2

c . Then,
the model calculations naturally give very similar values
for the 1S charmonium electroproduction cross section as
is demonstrated in the right panel of Fig. 17.

A variation of the model predictions with quark mass is
presented in Fig. 18 for the case of photo- and electropro-
duction of ϒ(1S). In comparison to charmonium production,
here the sensitivity of the cross section to bottom quark mass
variations is weaker due to a smaller relative change in mb

and also gradually decreases with Q2 at large Q2 � m2
b as

expected.

5.5 Spin rotation effects in electroproduction of 1S
quarkonia

The effects of the Melosh spin rotation [see Eqs. (C1) and
(C2) in Appendix C] in diffractive electroproduction of S-
wave heavy quarkonia have been studied in detail in the
framework of color dipole formalism in Ref. [9]. For this rea-
son, we present here only the main features of the spin rota-
tion and demonstrate how much the spin effects can modify
the corresponding photo- and electroproduction cross sec-
tions.

The role of spin effects in photo- and electroproduction of
1S charmonium is presented in Fig. 19. It leads to an enhance-
ment of the photoproduction cross section by ≈ 20 ÷ 30%
leading a better agreement with the data (see the left panel
of Fig. 19). This fact clearly supports an importance of the
Melosh spin transformation, which is obviously neglected in
many present studies of diffractive photo- and electroproduc-
tion of heavy quarkonia.

The right panel of Fig. 19 demonstrates that the onset of
spin effects gradually diminishes with the scaling variable

Q2 + M2
J/ψ and leads to a better description of the data,

especially at small and medium Q2 � 20 ÷ 30 GeV2.
As was analyzed recently in Ref. [9], the universal prop-

erties in production of different vector mesons cause a simi-
lar onset of spin rotation effects in production of charmonia
and bottomonia at the same fixed values of the scaling vari-
able Q2 + M2

V . For this reason, we predict a weak onset of
these effects also in the photoproduction of ϒ(1S) state cor-
responding to electroproduction of J/ψ(1S) at Q2 ∼ M2

ϒ

(compare the right panel of Fig. 19 with the left panel of
Fig. 20). The weak onset of the Melosh spin transformation
in ϒ(1S) photoproduction decreases further with Q2 as is
demonstrated in the right panel of Fig. 20.

5.6 Theoretical uncertainties in predictions for the
ψ ′(2S)-to-J/ψ(1S) and ϒ ′(2S)-to-ϒ(1S) ratios

The theoretical uncertainties presented above in Sects. 5.2,
5.3, 5.4 and 5.5 can be tested by investigating also the ratios
R2S/1S for charmonia ψ ′(2S)-to-J/ψ(1S) and bottomonia
ϒ ′(2S)-to-ϒ(1S) photo- and electroproduction cross sec-
tions. Such a study enables us to minimize the uncertainties
providing with more stable and accurate predictions, which
can be verified by the future measurements.

5.6.1 Dependence on c − c̄ and b − b̄ interaction potentials

In Fig. 21, using the KST phenomenological parametriza-
tion (see Sect. 4) for the dipole cross section, we test the
sensitivity of model predictions for the ψ ′(2S)-to-J/ψ(1S)

and ϒ ′(2S)-to-ϒ(1S) ratios with respect to the choice of
interaction potentials which are employed in deriving the
corresponding quarkonium LC wave functions.

One can notice in top panels of Fig. 21 a good agreement
of our calculations with the experimental data for all realistic
potentials (COR, LOW, POW and BT), except for the HAR
potential, which grossly overestimates the data at largeW and
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Fig. 19 The same as Fig. 7 but showing the effect of the Melosh spin rotation in the exclusive J/ψ electroproduction cross section shown as a
function of c.m. energy W (left panel) and the scaling variable Q2 + M2

J/ψ (right panel)
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Fig. 20 The same as Figs. 8 and 19 but for exclusive electroproduction of ϒ(1S) bottomonium

Q2. It is caused by the lack of Coulomb-like behavior in the
HAR potential, which amplifies the role of the node effect.
This is based upon a stronger enhancement of the small-r
domain of the ψ ′(2S) and ϒ ′(2S) wave functions below the
node position, therefore leading to a stronger reduction of
the cancellation between low-r and high-r domains in the
2S production amplitude. Since the role of the Coulomb-
like behavior increases in production of bottomonia, the bot-
tom panels of Fig. 21 clearly demonstrate a huge difference
in predictions between the HAR potential and all the other
potentials. The latter generate only a small variance in the
corresponding results for the ϒ ′(2S)-to-ϒ(1S) ratio.

5.6.2 Dependence on the phenomenological dipole cross
sections

In Sect. 5.3 we studied a correlation of the model predic-
tions for photo- and electroproduction of 1S quarkonium
with a shape of the color dipole cross section, σqq̄(r, x). We
found a huge variance in the model predictions for the elec-

troproduction cross section by using eight different popular
parametrizations for σqq̄(r, x) discussed in Sect. 4. Here, we
test how large is the theoretical uncertainty in the model pre-
dictions for the ratio R2S/1S(W, Q2) caused by such a variety
of different treatments of the target gluon density encoded in
these parametrizations.

The results of our calculations are depicted in Fig. 22. One
can see that, in comparison to the electroproduction cross
section, the study of R2S/1S ratio (utilizing, for example,
the realistic BT potential) allows to reduce substantially the
uncertainty of our predictions stemming from different exist-
ing parametrizations for σqq̄(r, x) (compare Fig. 22 with the
results of Sect. 5.3).

On the other hand, such a study makes it possible to ana-
lyze how the node effect manifests itself for different shapes
of the color dipole cross section. The onset of the node effect
is controlled by an increase of the ratio R2S/1S with energy
W and photon virtuality Q2. The stronger is the cancella-
tion in 2S production amplitude, the steeper is the rise of
R2S/1S(W, Q2) with a rate, which is slightly different for
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Fig. 21 The color dipole model predictions for the ψ ′(2S)-to-J/ψ(1S)

(top panels) and ϒ ′(2S)-to-ϒ(1S) (bottom panels) ratios of electro-
production cross sections as functions of c.m. energy W at fixed
Q2 = 0.05 GeV2 (left panels) and Q2 at fixed W = 90 GeV (right
panels) versus the data from H1 [90,91], ZEUS [92] and fixed target

experiments [93–97]. The calculations were performed for the quarko-
nium wave functions generated by different realistic c − c̄ and b − b̄
interaction potentials as depicted in Appendix A and with the phe-
nomenological KST dipole cross section [15]. The results include the
Melosh spin rotation

various dipole parametrizations. For production of 2S bot-
tomonia the node effect is much weaker as one can see in the
bottom panels of Fig. 22.

Note, that the rise of such variations in the model pre-
dictions towards small energies can be influenced by a worse
accuracy in dipole phenomenological parametrizations at the
corresponding (large) values of Bjorken x � 0.1. This is due
to a natural limitation of the color dipole approach that is
expected to fail at sufficiently large Bjorken x .

5.6.3 Dependence on the mass of charm and bottom quark

The study of R2S/1S(W, Q2) ratios in production of quarko-
nia also allows to minimize the underlined theoretical uncer-
tainties in our knowledge of the corresponding quark mass
value. In Fig. 23, we test a variance in the model predictions
taking values ofmc andmb determined from the BT potential
used in the calculations as well as the minimal and maximal
mc andmb values occurring along all the other realistic poten-
tials studied in this work as was described above in Sect. 5.4.
One can see that the sensitivity of R2S/1S to different values
of mc and mb is much weaker in comparison to the results
for the photo- and electroproduction cross sections (compare
with Figs. 17 and 18).

5.6.4 Importance of spin effects

In comparison to production of 1S quarkonia (see Sect. 5.5),
as a consequence of the node effect leading to a cancella-
tion in the production amplitude from regions below and
above the node position, the onset of spin rotation effects is
much stronger in proto- and electroproduction of radially-
excited ψ ′(2S), ϒ ′(2S) and ϒ ′′(3S) as was recently dis-
cussed in detail in Ref. [9]. Here, we predict a dramatic effect
of the Melosh spin transformation in charmonium electro-
production causing an increase of the R2S/1S(W, Q2) ratio
by a factor of 2 ÷ 3 as is demonstrated in the top panels of
Fig. 24.

One can see that such a substantial enhancement of R2S/1S

due to the spin effects brings our predictions, using the
KST dipole parametrization and the realistic BT potential,
to the values close to the experimental data. Here, the rise
of R2S/1S(W, Q2) with c.m. energy W and with Q2 is yet
another manifestation of the node effect as was discussed in
Ref. [9].

Due to a weaker node effect at larger Q2, we predict that
the spin rotation effects gradually diminish with Q2 as is
demonstrated in the right panels of Fig. 24 for charmonium
and bottomonium ratios R2S/1S . Since the same values of

123



Eur. Phys. J. C (2019) 79 :495 Page 21 of 29 495

Fig. 22 The same as Fig. 21 but for the quakonium wave functions generated by the realistic BT potential and for different dipole cross section
parametrizations described in Sect. 4
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Fig. 23 The same as Fig. 21 but for the test of sensitivity of the dipole model model predictions to the charm mc and bottom mb quark mass
variations

the scaling variable Q2 + M2
V lead to a similar onset of vari-

ous effects in production of different quarkonia, we predict a
weak onset of spin effects also in photo- and electroproduc-

tion of bottomonia (see also Ref. [9]) at the corresponding
photon virtuality Q2(ϒ) ≈ Q2(J/ψ) + M2

J/ψ as is shown in
the bottom panels of Fig. 24.
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Fig. 24 The same as Fig. 21 but for demonstration of the importance of the Melosh spin rotation effects

]2 [GeV2
ΨJ/+M2Q

10 210

)2
(W

,Q
 p

Ψ
 J

/
→

 pγ Tσ)/2
(W

,Q
 p

Ψ
 J

/
→

 pγ Lσ

3−10

2−10

1−10

1

10

COR
HAR
LOG
POW
BT

H1(2006)
ZEUS(2004)

W=90GeV KST & our fit

]2 [GeV2
 (1S)Υ+M2Q

100 150 200 250 300

) [
1]

2
(W

,Q
 (1

S
) p

Υ
→

 p γ Tσ )/2
(W

,Q
 (1

S
) p

Υ
→

 pγ Lσ

3−10

2−10

1−10

1

COR
HAR
LOG
POW
BT

W=90GeV KST & our fit

Fig. 25 The ratio of integrated cross sections for elastic electropro-
duction of longitudinally (L) and transversely (T ) polarized J/ψ(1S)

(left panel) and ϒ(1S) (right panel) as a function of the scaling variable
Q2 + M2

J/ψ (left panel) and Q2 + M2
ϒ (right panel) at fixed c.m. energy

W = 90 GeV. The data are taken from H1 [76] and ZEUS [79] collab-

orations. The results, including also the Melosh spin rotation effects,
were obtained using the phenomenological KST dipole cross section
[15] and five different c − c̄ and b − b̄ interaction potentials described
in Appendix A

5.7 Theoretical uncertainties in predictions for the ratio

σ
γ ∗ p→J/ψ(ϒ) p
L /σ

γ ∗ p→J/ψ(ϒ) p
T

The theoretical uncertainties in predictions, presented above
in Sects. 5.2, 5.3, 5.4 and 5.5, can be eliminated to a large
extent by investigating the ratio of the elastic electropro-
duction cross sections of longitudinally and transversely
polarized quarkonia. In Fig. 25 we present our results for

such ratios RJ/ψ
LT = σ

γ ∗ p→J/ψ p
L /σ

γ ∗ p→J/ψ p
T and Rϒ

LT =
σ

γ ∗ p→ϒ p
L /σ

γ ∗ p→ϒ p
T as functions of the scaling variables

Q2 +M2
J/ψ and Q2 +M2

ϒ , respectively. One can see a rather

good agreement of RJ/ψ
LT with the existing data for all consid-

ered c − c̄ potentials. Our predictions for the ratio Rϒ
LT (Q2)

can be tested by future measurements.
Here we would like to emphasize that the variation in

model predictions for the ratio RLT using different quarko-
nium wave functions generated by distinct potentials is much
less pronounced than that observed in Sect. 5.2 for the
standard photo- and electroproduction cross sections (see
Figs. 12, 13).
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Fig. 26 The same as Fig. 7 but for illustration of the onset of the skew-
ness effect as a function of c.m. energy W and the scaling variable
Q2 +M2

J/ψ . The model calculations were performed with the J/ψ wave

function generated by the BT potential [82] and with the phenomeno-
logical GBWnew dipole cross section [40] including the Melosh spin
rotation

5.8 The skewness effect in electroproduction of quarkonia

The skewness correction is frequently interpreted in the liter-
ature as an effect when the gluons attached to the QQ̄ fluctu-
ation of the photon carry (very) different light-front fractions
x and x ′ of the proton momentum [98,99]. The correspond-
ing expression for the correction factor Rg has the following
form [98],

Rg(λT,L) = 22λT,L+3

√
π

�(λT,L + 5/2)

�(λT,L + 4)
, (5.4)

with λT,L determined by Eq. (2.14) for both the photon
polarizations T and L . Consequently, the skewness correc-
tion is then accounted for by multiplying the cross section

σ
γ ∗ p→V p
T,L (x, Q2), Eq. (2.13), by a factor of R2

g(λT,L).
However, the shape of the correction factor in Eq. (5.4)

has been derived in Ref. [98] within the next-to-leading order
approximation assuming the strong inequalities x ′ � x � 1
in the small-t region and for the specific power-law form of
the diagonal gluon density of the target. Here, such a small-x
shape of the gluon density is not fully probed within kine-
matic regions studied in the present paper, and consequently,
may not be fully consistent with those extracted from differ-
ent dipole models used in our calculations.

The statement from Ref. [44] that the skewness correction
given by Eq. (5.4) can be incorporated into the bCGC dipole
model is not fully consistent for the case of electroproduc-
tion of heavy quarkonia. The dipole amplitude is related to
the gluon structure function of the target only at sufficiently
large Q2 ∼ �/r2 [see also Eq. (4.2)], where the dipole
sizes r � r0 ∼ 0.3 fm (r0 is the gluon propagation radius
[100,101]) and the large numerical factor � ≈ 10 have been
estimated in Ref. [63]. In the case of quarkonium produc-
tion, this condition requires rather large values of the satura-
tion scale squared corresponding to the bCGC dipole model,

Q2
s (x). This leads to rather small values of the Bjorken vari-

able x � 10−5 ÷10−6 necessary for justification of Eq. (5.4)
for the skewness correction. Such small x-values correspond
to way too large c.m. energies W � 103 GeV, which are far
beyond the energy range studied in the present paper. The
same conclusion concerns also the other dipole models since
the corresponding saturation scales are similar to that in the
bCGC parametrization.

Since the exact analytical expression for Rg is not avail-
able in the literature, we present here only a phenomenolog-
ical estimation of the onset of the skewness effect in electro-
production of heavy quarkonia relying on the known approx-
imate relation, Eq. (5.4). The results are depicted in Figs. 26
and 27 for the case of electroproduction of charmonia and
bottomonia in the ground state, respectively.

The model calculations have been performed, as an exam-
ple, with the phenomenological GBWnew dipole cross sec-
tion [40] and with the quarkonium wave functions gener-
ated by the realistic BT potential [82]. One can see from
Figs. 26 and 27 that the skewness correction increases the
photo- and electroproduction cross section of quarkonia by a
factor of ∼ 1.5÷1.6. As was analyzed in Sect. 5.3, neglecting
the skewness correction, only the KST and GBWold dipole
parametrizations lead to the best description of the available
data on quarkonium electroprodution, whereas other phe-
nomenological dipole cross sections grossly underestimate
these data. Consequently, one can expect that the onset of the
factor Rg in our calculations should cause a slight overesti-
mation of data for the KST but would lead to an improvement
of the data description using not only GBWnew but also other
dipole parametrizations. Namely, such an effort to obtain a
better agreement with the data typically generates the main
reason to include formally the skewness effects adopting only
an approximate relation (5.4) based on assumptions, which
can not be naturally adopted or justified for an arbitrary pro-
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Fig. 27 The same as Fig. 26 but for exclusive electroproduction of 1S bottomonia. The data are taken from from H1 [33], ZEUS [86,87], CMS
[88] and LHCb [89] Collaborations

cess. This is the basic motivation for us not to include the
skewness factor in the rest of the calculations in the previ-
ous sections, instead, showing the more justified color dipole
model predictions and estimates for the underlined theoreti-
cal uncertainties.

6 Conclusions

We have presented an exploratory and comprehensive study
of elastic photo- and electroproduction of heavy quarkonia
within the color dipole formalism. The main motivation is
based on a growing interest in this topic, mainly in connection
with an extensive ongoing investigation of quarkonium pro-
duction processes in ultra-peripheral collisions at the RHIC
and LHC facilities. Although the color dipole approach is
well-known already of about thirty years and a wealth of
research has been done, it is frequently used in the literature
without a deeper understanding of the underlined theoreti-
cal uncertainties in predictions caused by various effects and
properties of particular ingredients entering into the produc-
tion amplitudes. Consequently, in order to obtain a better
agreement with the data, this leads to an ongoing effort to
include some additional new phenomena or additional ingre-
dients instead of a better understanding the corresponding
uncertainties or performing more accurate calculations. For
this reason, in this paper we try to describe and analyze
various sources of theoretical uncertainties and study their
impact on the magnitude of the corresponding electropro-
duction cross sections for a large variety of quarkonia states
and physics inputs.

In the color dipole formalism the production amplitude,
given by the factorized light-cone expression (2.1), has the
following ingredients: (i) the perturbative light-cone wave
functions for the heavy QQ̄ fluctuation of the photon, (ii) the
light-cone wave functions for the S-wave quarkonia states,
and (iii) a phenomenological dipole cross section σqq̄(r, x)

describing the interaction of the QQ̄ fluctuation with a proton
target.

A description of the photon wave function is well-known
and quite well understood, so it should not cause major uncer-
tainties in calculations of the production amplitude. On the
other hand, the determination of the quarkonium light-cone
wave functions remains rather uncertain. Here, we adopted
the frequently used prescription from Ref. [36] for the tran-
sition from the QQ̄ rest frame to the infinite momentum one.
The corresponding quarkonium wave functions in the QQ̄
rest frame have been obtained by solving the Schrödinger
equation for various Q − Q̄ interaction potentials. Such an
ambiguity in determination of quarkonium wave functions
represents one of more relevant sources of theoretical uncer-
tainties.

The essential ingredient in our calculations of the photo-
and electroproduction cross sections of heavy quarkonia is
the dipole cross section σqq̄(r, x). Here, we adopted the
total of eight main phenomenological parametrizations for
σqq̄(r, x) found in the literature that exhibit a saturated
form at large transverse separations (dipole sizes) r as
well as roughly satisfy the characteristic small-r behavior,
σqq̄(r, x) ∝ r2 for r → 0 (color transparency). The dif-
ferences in the corresponding parametrizations for σqq̄(r, x)
represent another source of theoretical uncertainties in cal-
culations of dipole amplitudes and, subsequently, of the cor-
responding electroproduction cross sections.

In order to avoid a double counting, the effect of higher
Fock states, QQ̄G, QQ̄GG, …, containing gluons in the
photon wave function can be reabsorbed into the energy
(Bjorken x) dependence of σqq̄(r, x). On the other hand, the
dipole cross section has a steeper rise with energy at smaller
dipole sizes due to more intensive gluon radiation. Here all
cross sections at different dipole sizes are expected to fol-
low the universal asymptotic properties at very large energies
controlled by the Froissart bound.
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The model predictions for the exclusive quarkonium elec-
troproduction cross sections depend on the magnitude of
the diffraction slope B [see Eq. (2.13)] for the correspond-
ing elastic process γ ∗ p → V p, where the vector meson
V = J/ψ(1S), ψ ′(2S), ϒ(1S), ϒ ′(2S), ϒ ′′(3S), etc. The
energy dependence of B(W ) has been obtained by the fit
to the available data at HERA [see Eq. 5.1 and Table 1].
Since the data on the Q2 behavior of the slope parameter
are very scarce, we adopted a phenomenological model from
Ref. [81] leading to an empirical parametrization (5.2), which
gives the values of B(Q2) in a reasonable agreement with the
data. Within the same model, we have included also the dif-
ferences in slope parameters B(1S)− B(2S), corresponding
to production of the 1S-ground state and 2S-radially excited
quarkonia. These differences come as a direct manifestation
of the node effect in the quarkonium wave functions, in par-
ticular, leading to a cancellation in the production amplitude
coming from regions in r below and above the node posi-
tion. We have verified that different parametrizations of the
energy evolution, with modelled Q2 behavior of the slope
parameter, cause only rather small uncertainties in the model
predictions using various combinations of the quarkonium
wave functions and phenomenological dipole parametriza-
tions for σqq̄(r, x).

Another source of uncertainties studied in this work refers
to the effect of the Melosh spin rotation, which is often
neglected in the literature. We found that such spin effects
are very important, especially in elastic photoproduction of
quarkonia. They lead to a ≈ 20 ÷ 30% rise of the J/ψ(1S)

photoproduction cross section contributing to a better agree-
ment of the model predictions with the data. However, they
cause even more dramatic effect in ψ ′(2S) photoproduction
substantially increasing the corresponding cross sections, as
well as the ψ ′(2S)-to-J/ψ(1S) ratio, by a factor of 2÷3 (see
also Ref. [9]).

We have also presented and discussed a large sensitivity
of the model predictions to the value of heavy quark mass
mQ which is caused by the photon wave function, Eq. (2.2)
containing mQ in the argument of the Bessel function K0.

Although the skewness correction is frequently used in
calculations of the quarkonium photo- and electroproduc-
tion cross sections, only an approximate relation, Eq. (5.4),
is known for the corresponding correction factor Rg . Since
the exact analytical formula for Rg is not available in the
literature, we estimated a magnitude of this effect relying
on the known expression (5.4) and found that the skewness
correction increases the quarkonium electroproduction cross
section by a factor of ∼ 1.5÷1.6. However, it is questionable
to what extent and with what accuracy the approximate rela-
tion, Eq. (5.4), can be applied to quarkonium electroproduc-
tion within the kinematic ranges studied in the present paper.

Finally, we have found that all these sources of theo-
retical uncertainties can be reduced to a large extent when

investigating the ratios of the cross sections such as
R2S/1S(W, Q2) = σγ ∗ p→ψ ′(2S)(ϒ ′(2S)) p(W, Q2)/

σ γ ∗ p→J/ψ(1S)(ϒ(1S)) p(W, Q2), as well as RL/T (W, Q2) =
σ

γ ∗ p→J/ψ(ϒ) p
L (W, Q2)/σ

γ ∗ p→J/ψ(ϒ) p
T (W, Q2). We have

demonstrated that, in comparison to the standard quarkonium
electroproduction cross sections, the ratios R2S/1S and RL/T

exhibit much smaller variations generated by these uncer-
tainties and thus produce more stable and accurate results,
which can be tested by the future experiments.

To summarize, in our current analysis performed within
the color dipole formalism we have used for the first time a
combination of several new ingredients simultaneously, such
as the proper light-cone wave functions of heavy quarko-
nia generated by realistic interquark interaction potentials,
together with the Melosh spin rotation and the most recent
models for the saturated dipole cross section. We have suc-
cessfully described the existing J/ψ , ψ ′ and ϒ photo- and
electroproduction data off the nucleon target. This encour-
ages us to extend consequently such an analysis, going
beyond the NRQCD approximation, also for nuclear targets
and verify our predictions for vector meson photoproduc-
tion by comparing with the recent data obtained from ultra-
peripheral heavy-ion collisions at RHIC and LHC. The cor-
responding new predictions can be tested then by the future
(e.g. LHeC) measurements.

Finally, we would like to emphasize that the most of the
results presented in the current paper can also be obtained
interactively on our webpage https://hep.fjfi.cvut.cz/vm.php,
where the model predictions for the photo- and electropro-
duction cross sections can be readily computed for vari-
ous combinations of the quarkonium wave functions with
particular dipole parametrizations for σqq̄(r, x) including or
neglecting the Melosh spin rotation effects. Such an online
tool is expected to be very useful for QCD practitioners and
experimentalists working in the research areas connected to
quarkonia physics.
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Appendix A: Quarkonia potentials

In order to compute the quarkonium wave function, one needs
to specify an interaction potential between heavy quarks.
Here, we provide the details of several distinct models for
interquark potentials used in our numerical analysis.

1. Harmonic oscillator

The potential for harmonic oscillator (denoted as HAR)

V (r̃) = 1

2
mQ ω2 r̃2, ω = 1

2
(M2S − M1S), (A1)

is the simplest and the most common choice that leads to the
Gaussian shape of the wave function. The masses of charm
c and bottom b quarks are taken to be mc = 1.4 GeV and
mb = 4.2 GeV, respectively. The parameter ω is fixed to
0.3 GeV, for charmonia, and to 0.28 GeV, for bottomonia.
The Schrödinger equation with this potential has an analytic
solution

u(r̃) = exp

[
−1

4
mQ ω r̃2

]
, (A2)

however, we obtain a solution of the Schrödinger equation
for the harmonic oscillator numerically.

2. Cornell potential

The Cornell potential (COR) given by

V (r̃) = −k

r̃
+ r̃

a2 k = 0.52 a = 2.34 GeV−1, (A3)

with mc = 1.84 GeV and mb = 5.17 GeV, was initially
proposed in Refs. [102,103] and was also used in quarkonia
photoproduction studies in Refs. [8,42].

3. Logarithmic potential

The logarithmic potential (LOG) given by

V (r̃) = −0.6635 GeV + (0.733 GeV) log
(
r̃ · 1 GeV

)
,

(A4)

with mc = 1.5 GeV and mb = 5.0 GeV, is motivated by
Ref. [104] and was also used in quarkonia photoproduction
studies in Ref. [8].

4. Power-law potential

The effective power-law potential (POW ) is given by

V (r̃) = −6.41 GeV + (6.08 GeV) (r̃ · 1 GeV)0.106, (A5)

with mc = 1.334 GeV and mb = 4.721 GeV, is motivated
by Ref. [105,106] and the values were taken from Ref. [107].

5. Buchmüller-Tye potential

The Buchmüller-Tye potential (BT ) [82] has a Coulomb-like
behaviour at small r̃ and a string-like behaviour at large r̃ . Its
structure is similar to the Cornell potential but with additional
corrections, particularly effective at small r̃ . Namely,

V (r̃) = k

r̃
− 8π

27

v(λr̃)

r̃
, (A6)

for r̃ ≥ 0.01 fm, and

V (r̃) = − 16π

25

1

r̃ ln
(
w(r̃)

)

×
⎛
⎝1 + 2

(
γE + 53

75

)
1

ln
(
w(r̃)

) − 462

625

ln
(

ln
(
w(r̃)

))

ln
(
w(r̃)

)
⎞
⎠ ,

(A7)

for r̃ < 0.01 fm. Here,

w(r̃) = 1

λ2
MS r̃

2
, λMS = 0.509 GeV,

k = 0.153 GeV2, λ = 0.406 GeV, (A8)

γE = 0.5772 is the Euler constant, and the function v(x)
is provided numerically in Ref. [82]. This potential uses the
following quark mass values: mc = 1.48 GeV and mb =
4.87 GeV.

Appendix B: Spatial quarkonium wave function in the
Q Q̄ rest frame

The spatial part of the quarkonium wave function satisfies
the Schrödinger equation [8]

(
− �

2μ
+ V (r̃)

)
�nlm(�̃r) = Enl�nlm(�̃r), μ = mQ

2
,

(B1)
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where μ is the reduced mass of the QQ̄ pair, and the operator
� acts on the coordinate r̃ and has the following form

� =
3∑

i=1

∂2

∂x2
i

= 1

r̃2

∂

∂ r̃

(
r̃2 ∂

∂ r̃

)

+ 1

r̃2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r̃2 sin2 θ

∂2

∂ϕ2 . (B2)

Factorizing the spatial wave function into the radial and
angular parts,

�nlm(�̃r) = ψnl(r̃) Ylm(θ, ϕ) (B3)

the Schrödinger equation (B1) with (B2) can be expressed as
the following two equations,

1

r̃

∂2

∂ r̃2

(
r̃ψ(r̃)

)

+ mQ
(
E − V (r̃)

)
ψ(r̃) = l(l + 1)

r̃2 ψ(r̃)

1

sin θ

∂

∂θ

(
sin θ

∂Y (θ, ϕ)

∂θ

)

+ 1

sin2 θ

∂2Y (θ, ϕ)

∂ϕ2 = −l(l + 1)Y (θ, ϕ) (B4)

with l = 0 for S-wave states, l = 1 for P-waves, etc. The
first differential equation for the radial wave function ψ(r̃)
in the QQ̄ rest frame can be rewritten in a more convenient
form

∂2u(r̃)

∂ r̃2 = (Veff
(
r̃) − εQ

)
u(r̃),

Veff(r̃) = mQV (r̃) + l(l + 1)

r̃2 , εQ = mQ E . (B5)

where the new radial wave function u(r̃) is related to ψ(r̃)
satisfying the following normalization,

u(r̃) = √
4π r̃ψ(r̃),

×
∞∫

0

|u(r̃)|2dr̃ = 1,

∫
|ψ(r̃)|2d3r̃ = 1. (B6)
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Fig. 28 The radial part of the wave function ψ(r̃) for the J/ψ(1S) (left panel) and ψ ′(2S) (right panel) mesons as a solution of the Schrödinger
equation for five distinct c − c̄ interaction potentials described in the Appendix A
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Fig. 29 The radial part of the wave function ψ(r̃) for the ϒ(1S) (left panel) and ϒ ′(2S) (right panel) mesons as a solution of the Schrödinger
equation for five distinct b − b̄ interaction potentials described in the Appendix A
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The Schrödinger equation (B5) can be solved numerically,
e.g. as a special case of the second-order differential equation
by means of the Numerov method [108] or converting this
equation into a set of the first-order differential equations by
means of the Runge–Kutta method [109], for each of the five
distinct Q − Q̄ interaction potentials discussed in Appendix
A. The numerical results for the radial wave function ψ(r̃)
generated by various c− c̄ interaction potentials are shown in
Fig. 28 for the J/ψ(1S) (left panel) and ψ ′(2S) (right panel)
states. The corresponding results for the ϒ(1S) and ϒ ′(2S)

radial wave functions are depicted in Fig. 29.
One can see that the variation in the results for ψ(r̃), using

various interaction potentials, increases towards small r̃ in the
region where a Coulomb-like behavior of potentials becomes
important. The enhanced sensitivity of numerical results to
the choice of the Q − Q̄ interaction potential appears espe-
cially for the 2S radially-excited charmonium state due to the
nodal structure of the corresponding radial wave function.

Appendix C: Expressions for amplitudes AL,R

The resulting expressions for the amplitudes of quarkonia
photo- and electroproduction in the polarised photon-nucleon
scattering read [8]

ImAL(x, Q2) =
1∫

0

dz
∫

d2r �L(z, r; Q2) σqq̄(x, r),

�L = Zq

√
Ncαem

2π
√

2
4Qz(1 − z)K0(εr)

×
∫

pT dpT J0(pT r)�V (z, pT )
mTmL + m2

Q

mQ(mT + mL)
,

(C1)

for a longitudinally polarised photon,1 and

ImAT (x, Q2) =
1∫

0

dz
∫

d2r
[
�

(1)
T (z, r; Q2)σqq̄(x, r)

+�
(2)
T (z, r; Q2)

dσqq̄(x, r)

dr

]
,

�
(1)
T = Zq

√
Ncαem

2π
√

2
2K0(εr)

×
∫

dpT J0(pT r)�V (z, pT )pT

×m2
T + mTmL − 2p2

T z(1 − z)

mT + mL
,

1 Here, we have found an additional factor of
√

2 which was not
included in similar calculations of Ref. [8].

�
(2)
T = Zq

√
Ncαem

2π
√

2
2K0(εr)

×
∫

dpT J1(pT r)�V (z, pT )
p2
T

2

×mT + mL + mT (1 − 2z)2

mT (mT + mL)
, (C2)

for a transversely polarised photon. In the above formulas,

m2
T = m2

Q + p2
T , m2

L = 4m2
Q z(1 − z), (C3)

such that the meson mass squared reads

M2
V = m2

T

z(1 − z)
. (C4)
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