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Abstract There are some examples in the literature, in
which despite the fact that the underlying theory or model
does not impose a lower bound on the size of black holes, the
final temperature under Hawking evaporation is nevertheless
finite and nonzero. We show that under some loose condi-
tions, the black hole is necessarily an effective remnant, in
the sense that its evaporation time is infinite. That is, the final
state that there is nonzero finite temperature despite having no
black hole remaining cannot be realized. We discuss the lim-
itations, subtleties, and the implications of this result, which
is reminiscent of the third law of black hole thermodynam-
ics, but with the roles of temperature and size interchanged.
We therefore refer to our result as the “complementary third
law” for black hole thermodynamics.

1 Introduction: the issue with temperature of black hole
remnants

In the usual picture of Hawking evaporation, an asymptoti-
cally flat Schwarzschild black hole evaporates completely in
finite time, although the time scale is extremely long for a
stellar mass black hole.1 Since the Hawking temperature is
inversely proportional to the mass, the black hole becomes
hotter as it shrinks. Eventually the energy scale becomes so
high that new physics could potentially enter and affect the
subsequent evolution. In particular, novel quantum gravity
effect may put a stop on Hawking evaporation, thus resulting
in a black hole “remnant”.

The idea of a black hole remnant can be traced back to the
work of Aharonov, Casher and Nussinov [1]. It has been sug-
gested that black hole remnants could help to ameliorate the
black hole information paradox, though there are arguments

1 A solar mass non-rotating neutral black hole takes 1067 years to evap-
orate, which far exceeds the current age of the Universe ∼ 1010 years.
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against the very existence of remnants. See [2] for a com-
prehensive discussion of the debate and a review of various
remnant scenarios.

A popular way of obtaining a black hole remnant is via
the generalized uncertainty principle (GUP), which incorpo-
rates the effect of gravity into the Heisenberg’s uncertainty
principle. Since GUP arises from various general consider-
ations involving gravity and quantum mechanics, as well as
string theory [3–11], it is usually treated as a phenomenolog-
ical approach to study various properties of quantum gravity.
The simplest form of GUP is given by

�x�p � 1

2

[
h̄ + αL2

p�p2

h̄

]
. (1)

From here onwards, we set h̄ = c = G = kB = 1, unless
when explicitly restored for clarity. Note that if α ∼ O(1), as
is usually considered in theoretical calculation, then the cor-
rection term becomes important at Planck scale. It has been
argued that this leads to a correction in the Hawking temper-
ature, resulting in a black hole remnant [12]. In this scenario
however, as the evaporation stops at some finite mass, the
temperature also stops at a finite, nonzero value, see Fig.
1 below. This is somewhat peculiar: a positive temperature
seems to suggest that the black hole continues to emit parti-
cles, how then does the evaporation completely stop? A possi-
ble interpretation is as follows: since the remnant heat capac-
ity vanishes, there is no thermodynamical interaction with its
environment. Therefore, it is thermodynamically inert and
behaves like an elementary particle [13]. The finite remnant
“temperature” should therefore be interpreted as energy of
the remnant (via E = kBT ).

If one takes α < 0 in Eq. (1), we would find that there is
no lower bound for black hole mass, so in principle the black
hole can evaporate completely. However the final tempera-
ture is finite and nonzero [14,15], also see Fig. 1.
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Fig. 1 The Hawking temperature of an asymptotically flat
Schwarzschild black hole. The middle dashed curve corresponds
to the usual picture of Hawking evaporation, which diverges as
M → 0. The divergence is removed with GUP correction. Specifically,
if α > 0, the temperature curve terminates at around M ∼ √

αMp , as
shown by the right-most curve. If α < 0, however, GUP correction no
longer imposes a lower bound on the black hole size. This corresponds
to the left-most curve: the temperature remains finite as the black hole
appears to shrink down to zero size

Such a choice of sign of α may seem unusual, but it is con-
sistent with some quantum gravity models in which physics
at the Planck scale “classicalized” and becomes determin-
istic (as the RHS of the GUP equation goes to zero when
�p · c is equal to the Planck energy) [13–16]. Specifically,
we have seen that a lattice “spacetime crystal” gives rise to
such a GUP [13]. Negative GUP parameter is also required if
one accepts that Wick-rotation can be applied to obtain GUP-
corrected black hole temperature from a Schwarzschild-like
black hole (with higher order terms) [17]. More recently, it
has also been shown that non-commutative geometry [18],
as well as corpuscular gravity, give rise to negative GUP
parameter [19].

In addition, even without GUP, the situation that
�x�p ∼ 0 is compatible with other scenarios that have
been proposed in the literature, such as the possibility that
h̄ is a dynamical field that flows to zero in high energy
limit [20,21]; and with Planck mass fixed in 4-dimensions,
Asymptotically Safe Gravity with G → 0 is equivalent to
h̄ → 0 [22] (see also a similar proposal in f (R) gravity [23]).
Incidentally, although some of the very first GUP scenarios
came from string theory, in which α is naturally positive, it is
not clear that negative α is incompatible with string theory.
For example, low energy limit of string theory gives rise to
charged dilaton black hole, with string coupling being weak
near the singularity. Though we have no right to trust this
solution near the singularity, as Horowitz put it [24], it is

Fig. 2 The Hawking temperature of an asymptotically flat
Schwarzschild black hole with α = − 1, here in black dash-dotted
curve, as a function of time, shows that the temperature tends to a
constant value. The mass of the black hole, in red solid curve, tends
to zero asymptotically. In order to display both curves in the same
diagram, we have multiplied the Hawking temperature by a factor of
120, so that the temperature curve tends to 120T ∗ = 120/4π ≈ 9.549

tempting to speculate whether “contrary to the usual picture
of large quantum fluctuations and spacetime foam near the
singularity, quantum effects might actually be suppressed.”
This would then be, at least naively, compatible with the
�x�p ∼ 0 scenario at high energy.

This can be seen as a virtue of GUP as a phenomenologi-
cal tool: by taking different signs of α, it can accommodate
different kinds of quantum gravity models. The question is:
How does one make sense of a nonzero black hole tempera-
ture if the black hole has completely evaporated? A possible
interpretation is that this is the temperature of the Hawking
radiation at the final moment just before the black hole disap-
pears [14]. This parallels the explanation for the α > 0 case,
but instead of interpreting the temperature as energy of the
remnant (since there is no radiation), one now takes it to be
the temperature of the final emission of radiation (since there
is no black hole). An alternative interpretation as “vacuum
fluctuation” is discussed further in Sect. 2.

However, in [15], a more detailed study of the evapora-
tion process reveals that the α < 0 GUP-corrected black hole
actually takes an infinite amount of time to evaporate com-
pletely, so there is no need to resort to the aforementioned
interpretation; the black hole simply continues to evaporate
indefinitely (indeed its heat capacity is always negative and
so it interacts thermodynamically with the environment),
with temperature asymptotes to a finite nonzero value. This
value is T ∗ = 1/(4π

√|α|) [14,15] (note the typo in [15]).
Thus even though black hole mass is not bounded below, the
black hole behaves effectively as a meta-stable remnant at
late times. See Fig. 2. This behavior is due to the fact that
dM/ dt , though always negative, is not monotonic, and tends
to zero as M → 0.

123



Eur. Phys. J. C (2019) 79 :513 Page 3 of 10 513

Indeed, the fact that the black hole lifetime is infinite
can be shown analytically [15]. The evolution equation is
(a minus sign in missing in [15]):

dM

dt
= − M6

(4|α|π)4

(
1 −

√
1 + |α|

M2

)4

. (2)

so as M becomes sufficiently small, we have

dM

dt
∼ − M2

(4π)4α2 , (3)

which leads to

M = M0

(
256π4α2

256π4α2 + M0t

)
, (4)

where M0 is the “initial” (small) mass.
This leads to a natural question: how generic is this behav-

ior of having an infinite evaporation time when the final
temperature is finite and nonzero? Are there any condition
required to ensure this?Black holes are known to behave like
thermodynamical systems, in particular the third law states
that a black hole (of course of nonzero mass) cannot reach
zero temperature state in finite number of steps. Here we are
claiming a complementary result: a black hole cannot reach
a state with nonzero temperature but zero mass. This is the
complementary third law of black hole thermodynamics.

We found that this behavior is in fact rather general, and
can be stated as

Theorem Consider an n-dimensional neutral static black
hole spacetime, with areal radius r , and horizon at r = rh.
Assume that the Hawking temperature T and the black hole
mass M are analytic functions of rh. Suppose dM/ dt =
−CAT n, where C > 0 is a constant, and T → T ∗ ∈ (0,∞)

as rh → 0, then rh → 0 only if t → ∞, provided that the
k-th derivative M (k), for k < n − 1, do not all vanish when
rh = 0.

We have assumed that there is no problem with convergence
of the series expansion. In particular, since T and M are
defined only in the domain [0,∞), all the associated limits
and differentiability at 0 are to be understood as being one-
sided (rh → 0+). Note that Hawking temperature of the
usual kind T ∝ 1/M is not differentiable at rh = 0.

This result reminded us of the (“Nernst version” of)
third law of black hole thermodynamics: zero temperature
(extremal) black hole, which is of nonzero size, is unattain-
able in finite number of steps. Here we have the oppo-
site scenario, zero mass/size2 black hole is unattainable in

2 Zero mass and zero size are not always interchangeable, see Sect. 4.

finite time3 under Hawking evaporation if the temperature
is nonzero. We therefore refer to this theorem as a “comple-
mentary third law”. See Sect. 4 for more discussions.

Here we assume that the Stefan-Boltzmann law for arbi-
trary spacetime dimension n � 4 holds during the entire
evolution [25,26], which of course need not be the case;
see, e.g., [27–30], for a different viewpoint. Note that we
assumed that the Hawking evaporation is governed by the
simple Stefan-Boltzmann law only. This means, for exam-
ple, we do not study asymptotically de-Sitter spacetimes, in
which Gibbons-Hawking temperature from the cosmologi-
cal horizon would contribute. Likewise, in an asymptotically
locally anti-de Sitter spacetime, the usual reflective bound-
ary condition would complicate the situation (see, however,
Sect. 4 for more discussions). A denotes the horizon area,
with the constant C incorporating the Boltzmann constant
and the greybody factor. The effect of greybody factor, as
well as the discreteness of the Hawking radiation (the spar-
sity [31–33]) can be ignored since their effects would result in
an even longer evaporation time [15]. In the geometric optic
approximation, it is the geometric optic cross section that
goes into the Stefan-Boltzmann law, but we also absorb this
correction into C , as it will not affect the qualitative behavior
of the solution.

In the following, we will first illustrate the theorem with
another concrete example, before proving the theorem for the
general case. Unlike the GUP-corrected black hole studied
in [14] discussed above, the following example is obtained
from classical modified gravity (the Hawking radiation itself
is of course semi-classical).

2 Another example: a black hole remnant in massive
gravity

Note that the theorem is quite generic: it does not need the
underlying theory to be general relativity. Here for explicit-
ness we show an example in the context of dRGT (de Rham-
Gabadadze-Tolley) massive gravity [34–37], in which gravi-
ton has nonzero mass.

A dyonic black hole solution in this theory was found in
[38], with metric coefficient given by

− gtt = k + r2

l2
− 2m0

r
+ q2

E + q2
M

r2 + m2
(cc1

2
r + c2c2

)
,

(5)

where m0 is related to the physical mass of the black hole.
Likewise, qE and qM are related to the electric and magnetic
charges, respectively. In addition, m is essentially the gravi-
ton mass, c is a positive constant, while c1, c2 and k (the

3 A finite time is equivalent to a finite number of steps, with each
Hawking particle emission counted as one “step”.
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sectional curvature of the horizon) can be positive or neg-
ative. The Hawking temperature for this black hole is [38]

T = 1

4π

[
k

r+
+ 3r+

l2
− q2

E + q2
M

r3+
+ m2

(
cc1 + c2c2

r+

)]
.

(6)

We emphasize that these black holes are “physical”, in the
sense that they have well-behaved thermodynamical proper-
ties, as shown in [38]. Of course, dRGT massive gravity has
two metric tensors: a dynamical one, gμν , and a fixed back-
ground fiducial metric fμν . The first and foremost require-
ment (and the entire purpose of dRGT theory) is that the
theory should be ghost-free. This is not guaranteed for an
arbitrary choice of the fiducial metric. In most applications
in the context of holography, a degenerate fiducial metric is
chosen (as opposed to a Minkowski metric). Such metric was
also applied in [38] to obtain the black hole solution above.
Such a choice of fμν has been demonstrated to also lead to a
ghost-free massive gravity theory [39]. Thus, the theory (and
hence the solution) is also physical in the sense that there is
no ghost.

In the absence of magnetic charge, the authors showed
that by tuning the various parameters such that

m2c2c
2 + k − �2

E = 0, (7)

where �E is the electric potential, one could have a solution
with Hawking temperature of the form

T = 2rh P + m2cc1

4π
, (8)

where P = −�/(8π) is the pressure term in the extended
black hole thermodynamics in an asymptotically locally anti-
de Sitter spacetime. In the limit of vanishing horizon rh → 0,
we see that 0 < T = m2cc1/(4π) < ∞. The authors inter-
preted this as a fluctuation in the temperature of the back-
ground spacetime after the black hole has evaporated. That
is to say, there is a trace of the black hole left behind if we
look at the energy fluctuation of the vacuum. This is of course
tiny because graviton mass m is miniscule, although m of
order unity was studied in [38] in the context of holography.
(Of course, large AdS black holes with the usual reflective
boundary condition will not evaporate in the first place; but
see below.)

The simplest way to achieve Eq. (7) is by considering the
neutral case and set �E = 0. Take also � = 0 so that the
pressure term vanishes. We choose k = 1 (this is enforced by
a topological theorem in general relativity once � = 0 [40],
but this may not be the case for massive gravity). Since c2

can be negative, one can set c2 = −1/
(
m2c2

)
. This yields,

surprisingly, a constant Hawking temperature regardless of
the black hole size, namely T ≡ m2cc1/(4π), independent
of rh .

To further simplify the calculation, we set the numerical
values m = c = 1, so c2 = −1. We remind the readers that
our purpose is only to illustrate the aforementioned theorem.
It is possible that with this choice of the parameter values the
black hole becomes unstable or other problems might arise.4

The readers are referred to [38] for detailed study of the black
hole solutions. (Massive gravity also admits a more conven-
tional black hole remnant that tends to zero temperature with
finite size [45].)

The physical mass (the mass that appears in the first law
of thermodynamics) is [38]

M = rh
2

[
k + r2

h

l2
+ q2

E + q2
M

r2 + m2
(cc1

2
rh + c2c2

)]
,

(9)

which, with our choice of the parameter values, reduces to
M = r2

h/4. In Fig. 3, we set the initial condition rh = 1000,
and obtain a plot which shows that the horizon tends to zero
size only asymptotically.

The analytic proof is straightforward: with M = r2
h/4 and

T = 1/(4π), we have

dM

dt
= rh

2

drh
dt

= −Cr2
h

1

(4π)4 , (10)

which yields, with C̃ = 2C/(4π)4,

drh
dt

= −C̃rh �⇒
∫ ε

rh(0)

drh
rh

= −C̃
∫ t∗

0
dt, (11)

where rh(0) is the initial horizon size, and t∗ is the time at
which the horizon has shrunk to ε. Integrating yields

ε = rh(0) exp
[
−C̃t∗

]
. (12)

Therefore, in order to shrink to zero size, ε → 0, one must
have an infinite evaporation time t∗ → ∞.

The caveat here is that in this particular example, we have
assumed that the area that appears in the Stefan-Boltzmann
law is the horizon area. However due to the metric function
being −gtt = r/2 − 2M/r ∼ r/2 at large r , the asymptotic
structure is not flat. We know that in AdS, the effective emit-
ting area of black holes with genus g � 1 (k = − 1, 0) is
a constant (essentially the square of AdS length scale) and

4 There are indications that dRGT gravity is problematic, since it is
plagued with superluminal propagation. In addition, there exist arbi-
trarily small closed causal curves that result in a lack of well-posed
Cauchy problem [41–44].
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Fig. 3 The evolution of the massive gravity black hole event horizon
radius as function of time. Here we choose rh(0) = 1000. The black hole
parameters are m = k = c = 1, c2 = − 1. The black hole asymptotes
to zero size as time goes to infinity

Fig. 4 The evolution of the black hole event horizon radius as function
of time. Here we choose initial radius rh(0) = 10. The black hole
parameters are m = 1 = c, c2 = − 1, l = 1. The black hole also
asymptotes to zero size as time goes to infinity

independent of the black hole mass [46]. Thus, for our exam-
ple with unusual asymptotic structure, a similar study along
the line of [46] should be carried out to determine its effective
emitting area, which might not simply be the horizon area up
to some factors. In other words, our example above may not
be correct, but we use it to illustrate how the theorem would
work if the emission surface is indeed the horizon area.

We can also choose other values for the various parame-
ters so that the black hole is asymptotically AdS-like, and
then modify the boundary conditions to allow the black
hole to evaporate (see Sect. 4 for details). An example with
m = 1 = c, c2 = − 1, k = l = 1 are shown in Fig. 4.
Its evolution time is also infinite, but the rate of Hawking
evaporation is different from the previous example without
the cosmological constant term (the “pressure” term). The
difference will become clear in the next section after the the-
orem is proved.

3 Proof of the theorem

We now proceed to prove the theorem. As in the previous
example, we will work with rh in place of M , since M is an
increasing function of rh . (Though this does not imply that
rh = 0 ⇐⇒ M = 0). The dimensionality of spacetime is
n � 4. We assume that r is the areal radius (if not, change to
an appropriate coordinate system under which this is true),
thus A ∝ rn−2

h . Absorb the proportional constant into C . It
suffices to consider the late stages of the evolution. Assum-
ing analyticity of the Hawking temperature, we can Taylor
expand around rh = 0 to obtain

T (rh) = T (0)︸︷︷︸
�=0

+T ′(0)rh + T ′′(0)

2
r2
h + O

(
r3
h

)
, (13)

where T (0) = T ∗ ∈ (0,∞) in the statement of the theorem,
and prime denotes derivative with respect to rh . Similarly,

M(rh) = M(0) + M ′(0)rh + M ′′(0)

2
r2
h + O

(
r3
h

)
. (14)

Taking the derivative yields

dM(rh)

dt
=

[
M ′(0) + M ′′(0)rh + O(r2

h )
] drh

dt
. (15)

Then, if M ′(0) �= 0, we have

drh
dt

=
[
M ′(0) + M ′′(0)rh + O(r2

h )
]−1

·
[
−Crn−2

h (T ∗)n + O(rn−1
h )

]
= −M ′(0)−1Crn−2

h (T ∗)n + O(rn−1
h ). (16)

To lowest order in rh , the differential equation is

drh
dt

= −M ′(0)−1Crn−2
h (T ∗)n . (17)

Since M increases with r , M ′ > 0. In particular, M ′(0) > 0.
So K := M ′(0)−1C = const. Consequently,

∫ ε

rh(t0)
r2−n
h drh = −K (T ∗)n

∫ t∗

t0
dt, (18)

where t0 � 1 is the initial condition at a sufficiently late time
where the series approximation is valid. Integrating yields

1

n − 3

(
rh(t0)

3−n − ε3−n
)

= K (T ∗)n(t0 − t∗). (19)

It is now clear that if ε → 0, t∗ must tend to infinity (since
n � 4).
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In particular, in 4-dimensions, we get,

1

rh(t0)
− 1

ε
= K (T ∗)4(t0 − t∗). (20)

This is the case for the GUP-corrected black hole in [15] with
negative GUP parameter α, since rh = 2M , the same as the
usual Schwarzschild black hole; c.f. Eq. (4).

If M ′(0) = 0, Eq. (16) would lead to, to lowest order of
rh , the differential equation

drh
dt

= −M ′′(0)−1Crn−3
h (T ∗)n . (21)

This leads to∫ ε

rh(0)

r3−n
h drh = −K̃ (T ∗)n

∫ t∗

t0
dt, (22)

where K̃ := M ′′(0)−1C . Integrating yields

1

n − 4

(
rh(t0)

4−n − ε4−n
)

= K̃ (T ∗)n(t0 − t∗). (23)

The evaporation time is clearly infinite for n � 5. In 4-
dimensions, ε is exponential in −t∗. Thus, we again obtain
an infinite evaporation time. This is the case for the massive
gravity black hole example illustrated in Fig. 3.

However, if both M ′(0) and M ′′(0) vanish, and M ′′′(0) �=
0, then the integration gives

1

n − 5

(
rh(t0)

5−n − ε5−n
)

= const.(t0 − t∗). (24)

Note that in 4-dimensions, the corresponding result is

ε − rh(t0) = K̃ (T ∗)4(t0 − t∗) (25)

for some constant K̃ . Therefore t∗ is now finite as ε → 0:

t∗[ε = 0] = K̃ (T ∗)4t0 + rh(t0)

K̃ (T ∗)4
< ∞. (26)

In n � 5 the evaporation time is still infinite.
Indeed, in general, one can see that as long as the lowest

order of nonzero M (k)(0) is k = n − 1, the evaporation time
will be finite. This completes the proof. In particular, this
implies that in 4-dimensions, the evaporation is infinite if
M ′(0) and M ′′(0) do not both vanish.

4 The complementary third law: applicability and
subtleties

To summarize our findings so far: in this work, we inves-
tigated the conditions for a black hole to have “left-over”

nonzero and finite temperature at the end of Hawking evap-
oration, at which point the black hole shrinks to zero size.
To our knowledge (and that of the authors of [38]), the mas-
sive gravity black hole discussed in Sect. 2 is the only known
example in classical modified gravity with such a property.
The GUP corrected black hole studied in [14–16] provided
another example from a quantum gravitational correction.
This result parallels the third law of black hole thermodynam-
ics in which (nonzero mass) extremal black hole with zero
temperature cannot be attained in finite time, but with the role
of mass and temperature reversed, we therefore dubbed it the
“complementary third law of black hole thermodynamics”.

To be more specific, we found that if the first and the
second derivative of M(rh) do not both vanish at rh = 0,
then the evaporation time in 4-dimensions is actually infinite
(analogously in higher dimensions), and so the black hole
behaves as an effective, meta-stable remnant. This result does
not assume the underlying theory to be general relativity. It
is simply a consequence of the mathematical properties of
the Stefan-Boltzman differential equation. Our proof relies
on the assumption that M(rh) and T (rh) are both real ana-
lytic functions, which are infinitely differentiable at rh = 0.
Although most calculations in physics literature make use of
Taylor expansion almost ubiquitously, this assumption might
be too strong. Perhaps one could relax it and the theorem
would still remain true. An alternative proof without the use
of series expansion would be welcomed so the issues of con-
vergence can be avoided altogether. Now we shall discuss a
few more aspects of the complementary third law.

4.1 Charged and Dilaton black holes: nonzero mass vs.
nonzero size

It is worth emphasizing that this phenomenon is somewhat
opposite to that of the third law of black hole thermodynam-
ics, in which the black hole size remains finite (and nonzero)
and T = 0 cannot be achieved; whereas here the temper-
ature remains finite (and nonzero) and rh = 0 cannot be
achieved. The main difference is that our theorem only con-
cerns neutral black holes, whereas for the third law, it applies
to charged and rotating black holes (the only way to get zero
temperature in general relativity5). In the presence of elec-
trical charges and other gauge fields, more analysis would
be required to study whether the complementary third law
holds, since the evolution under Hawking evaporation would

5 One could have a zero temperature black hole in the zero size limit,
if, for example, higher order curvature terms are included in the action
[47]. It is also possible to obtain zero temperature black hole at some
nonzero mass without any gauge field in modified gravity theories,
e.g., asymptotically safe gravity with higher derivative terms [48] and
in conformal (Weyl) gravity [49] (note that entropy vanishes does not
always imply zero area for modified gravity black holes). The usual
third law applies to these black holes – they have infinite lifetime.

123



Eur. Phys. J. C (2019) 79 :513 Page 7 of 10 513

be considerably more complicated. Even for asymptotically
flat Reissner-Nordström black holes, Hiscock and Weems
showed that there are charge loss and mass loss regimes, so
the ratio Q/M is not necessarily monotonic in time (the evo-
lution is governed by coupled differential equations in certain
range of the parameters) [50].

However, one special charged black hole solution – the
GHS black hole (see below) – is worth a separate mention,
since it gives us the opportunity to point out that the com-
plementary third law is really stating that the final state with
zero mass but nonzero temperature cannot be attained, not
zero size. Usually zero mass also coincides with zero size,
but this is not always the case, and therefore the distinction
is important.

The charged dilatonic “GHS” (Garfinkle-Horowitz-Stro-
minger) black hole [51–53], obtained in a low energy limit
of string theory, with metric tensor in a Schwarzschild-like
coordinate system {t, r, θ, ϕ}:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+ r

(
r − Q2

M

)(
dθ2 + sin2 θ dϕ2

)
. (27)

The Hawking temperature is always T = 1/(8πM) indepen-
dent of the charge, even in the zero size limit. Note that the
horizon stays fixed at r = 2M , but r is not an areal radius,
so one has to transform via r2 �→ R2 := r(r − Q2/M)

to a coordinate {t, R, θ, ϕ} in which the areal radius is
R = √

4M2 − 2Q2, which goes to zero in the extremal limit
|Q| = √

2M , with nonzero temperature (the temperature is
not affected under this change of coordinate). This is very dif-
ferent from extremal Reissner-Nordström black hole which
has zero temperature.

Despite dM/ dt being independent of Q, charge loss
can occur from spontaneous charge particle emission à la
Schwinger, and as shown by Hiscock and Weems [50], this
may affect the evolution under Hawking evaporation just like
in the Reissner-Nordström case. Thus our theorem does not
strictly apply.

Nevertheless, if we ignore these subtleties,6 and consider
the mass loss of GHS black hole to be governed only by
Stefan-Boltzmann law, then our theorem does apply. Numer-
ically the results are shown in Fig. 5. Note the peculiarity
that R → 0 but M tends to a finite value, as the black hole
approaches a null singularity of zero size, which somehow
supports the mass.

6 However, since T does not depend on Q here, as opposed to the
Reissner-Nordström case, the Schwinger process is not expected to
affect the result by much, at least for large enough M , in the regime
where it is suppressed [54]. This requires a further investigation beyond
the scope of the current work, and will be addressed elsewhere.

Fig. 5 The evolution of the areal radius (blue dashed curve) and the
mass (red solid curve) of a charged dilatonic GHS black hole as func-
tions of time, assuming that there is no charge loss. Here we choose
initial mass to be M(0) = 10 and Q = 1. The mass thus asymptotes to
its lower bound M = Q/

√
2 ≈ 0.7071. The evolution takes an infinite

amount of time

4.2 Non-examples of complementary third law: anti-de
Sitter black holes

It might be illuminating to also discuss here some non-
examples that do not satisfy the premise of the complemen-
tary third law (note that this is not the same as “violating” the
law). In view of the popularity of holography, asymptotically
locally AdS spacetimes are an important class of solutions.
As we mentioned in the Introduction, we assumed that the
evolution is governed by the simple Stefan-Boltzmann law. In
asymptotically locally AdS spacetimes, our analysis can be
carried over by replacing the usual reflective boundary con-
dition with an absorbing boundary condition, which allows
large black holes to evaporate (see, e.g., [55–57]). In holog-
raphy, this can be done by coupling the boundary field theory
with an auxiliary system (“AUX” [56]), such as another field
theory.

It was previously found that regardless of their horizon
topologies, neutral AdS black holes in such spacetimes take
about the same amount of time to evaporate down to the same
size of order l, the AdS length scale [58,59]. For positively
curved (k = 1) case, the black hole takes about the same
amount of time to completely evaporate regardless of its ini-
tial mass [58,59]. For flat (k = 0) case, the evaporation time
is infinite.

Nevertheless these black holes do not satisfy the premise
of the theorems. This is because their temperature, in n-
dimensional spacetime, is given by [60]

T = 1

4πl2rh

[
(n − 1)r2

h + (n − 3)kl2
]
, (28)

which either goes to zero (for k = 0) or diverges (for k = 1)
as rh → 0. (For k = −1 case, the black hole tends to a min-
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imum size as the temperature goes to zero.) [59] In addition,
for k ∈ {− 1, 0}, the effective emitting surface area of the
black hole is independent of the mass, and is completely fixed
by the cosmological constant [46]. The complementary third
law therefore does not apply to AdS black holes, at least the
simplest ones addressed here.

4.3 Comparison with conventional thermodynamics

It came at a surprise when Bardeen, Carter and Hawking
[61] discovered that black holes satisfy properties that are
analogous to thermodynamics. Subsequent discovery that
black holes do radiate when quantum mechanics is taken
into account, established that black holes are thermodynam-
ical system. In particular, black holes satisfy a form of third
law: zero temperature configuration cannot be reached in a
finite number of step. This parallels the “Nernst version” of
third law in conventional thermodynamics. What about the
complementary third law? Is there an analogous phenomenon
in other thermodynamical system?

By definition, in classical thermodynamics, the tempera-
ture is related to the entropy by 1/T = (∂S/∂U )|V,N , where
U is the internal energy of the system, and the volume V , as
well as particle number N , are held fixed. It would seem that
nonzero temperature (with nonzero internal energy) always
corresponds to nonzero entropy. In the context of black holes,
nonzero entropy means nonzero area.

The complementary third law essentially says that black
holes with zero entropy yet with nonzero temperature cannot
be attained. This is therefore consistent with conventional
thermodynamics.

Note that if we consider quantizing the system, the entropy
can be zero for small temperature if the first excited state of
the system has energy higher than kBT . This does not concern
us since black hole thermodynamics is analogous to classical
ordinary thermodynamics.

5 Discussions: some remaining puzzles

The question remains for the case M ′(0) = M ′′(0) in 4-
dimensions (and analogously in higher dimensions). Black
holes that satisfy this property will evaporate in a finite time,
and leave behind a nonzero finite temperature. What is the
correct interpretation for such a temperature? Is it the tem-
perature of the last bit of radiation, or an energy fluctuation
of the ambient spacetime (now without a black hole – so it
would be a kind of “vacuum memory”)?

Presumably if the final temperature is very low, the sec-
ond interpretation (to our knowledge, first proposed in [38])
is plausible, but what if the temperature is “high”, say 1◦C
(note that the theorem does not constrain the value of T ∗ other
that it is nonzero and finite), how can this be a “fluctuation”

of the vacuum? It would be good to have an explicit black
hole solution of this type for a detailed study, if it exists.

Let us speculate on a possibility: since black holes con-
tain an enormous volume [62,63] (which does not decrease
even as the black hole evaporates [64–66]), the end state of
the evolution could be a baby universe that pinches off from
the original universe. Perhaps such a pinch-off leaves a finite
temperature signature behind in the parent universe. On the
other hand, we could turn this around and say that, if the com-
plementary third law is true generically, then maybe there
is no 4-dimensional black hole solution that would satisfy
M ′(0) = M ′′(0), and similarly for higher dimensions.

Another issue concerns the singularity of the black hole.
As black hole evaporates, does it leave behind a naked sin-
gularity? In the usual Schwarzschild case, since temperature
becomes extremely high, one may invoke new physics and
hope that the even if singularity wasn’t already cured by quan-
tum gravity in the first case, will evaporate away together with
the horizon. However, if the final temperature remains mild,
it leaves open the possibility that naked singularity may form,
thus violating the cosmic censorship conjecture.

To summarize, the complementary third law is more
restricted than the standard third law in two ways: firstly,
we only study Hawking evaporation, not other physical pro-
cesses. We restricted our study to the static case in n �
4 spacetime dimensions, and only to neutral black holes
(though the result might hold in more general cases). Sec-
ondly, if we express the black hole mass M as a function
of its horizon M(rh), the complementary third law can be
violated if the derivatives M (k)(0) = 0 for k < n − 1, but
then the standard third law may also be violated under cer-
tain circumstances [67–70]. In a way, the shortcoming of the
complementary third law is a virtue since it gives a clear
condition for its violation. A further study into these condi-
tions and their physical interpretations could yield a deeper
understanding into black hole thermodynamics.
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