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Abstract Teleparallel gravity offers a path to resolve a
number of longstanding issues in general relativity by re-
interpreting gravitation as an artifact of torsion rather than
curvature. The present work deals with cosmological solu-
tions in an extension of teleparallel gravity. A reconstruction
scheme of the theory has been proposed based on the cosmo-
logical jerk parameter. The work contains analysis of ensuing
cosmological parameters for different viable models and the
stability of the models against cosmic time through an inves-
tigation of perturbation of matter overdensity and the hubble
parameter.

1 Introduction

Observational Astronomy has developed notably over the
course of past few decades, resulting in phenomenal discov-
eries such as the accelerated expansion of the universe [1–9],
and more recently the accurate measurement of the present
time Hubble parameter [10,11]. General theory of relativity
(GR) has provided a very successful description of gravity
so far, however, to reproduce the non-trivial acceleration of
the universe, some correction or modification of GR is to be
considered. For instance, under the scope of GR, it may be
assumed that the universe is dominated at late times by a
cosmological constant. Moreover, galaxies and their clusters
ensures the existence of a large proportion of dark matter
which drives them to have a stronger effect of gravitation
and not break apart [12]. Together, these form the �CDM
model which produces late time accelerated expansion of
the universe [13] and alongwith some modifications, can pro-
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duce the correct early-time behavior of the universe as well.
However, the cosmological constant alternative has it’s own
consistency issues mainly driven by the disparity between
the cosmological constant density and it’s realization in the
quantum regime [14]. Moreover, this model fails to settle the
singularity issues surrounding black holes and the big bang,
and has a seemingly growing tension in some state parame-
ters at late times [11]. A very popular avenue to mimic the
accelerated expansion is to impose a time-varying scalar field
[15–18] in the energy-momentum distribution that may link
early time dynamics with the late time accelerated expansion.
A parallely important scheme is to consider modifications of
gravity where the action of the theory is modified to write
a general theory. The modifying terms take the form of an
effective exotic fluid or the ‘dark energy’ that drives late time
accelerating expansion of the Universe.

Teleparallel theory is an alternative theory of gravity
which is equivalent to GR at the level of the field equations
for particular choices of the Lagrangian. For a comprehen-
sive review, we refer to the monographs by Aldrovandi and
Pereira [19], Cai et al. [20]. The fundamental difference is that
while GR is characterized by expressing gravitation through
curvature by means of a Levi–Civita connection, Teleparallel
gravity uses the Weitzenbock connection to replace curva-
ture with torsion T or a generalized function f (T ). Such a
generalization of GR was discussed by Hehl et al. [21] with
the spin of matter and it’s mass playing the dynamical role.
Hayashi and Shirafuji [22] formulated the theory based on
the Weitzenböck space-time and characterized by a vanishing
curvature tensor, dubbed as the ’new general relativity’. Gen-
eralization of the theory, named as the Einstein–Hayashi–
Shirafuji theory, was examined by Flanagan and Rosenthal
[23]. This class of theories were actually first proposed by
Einstein himself [24–26]. Very recently, a reformulation of
f (T ) gravity was studied by Krssak and Saridakis [27].
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They used both tetrad and spin connection as dynamical
variables and gave a fully covariant, consistent, and frame-
independent version of f (T ) gravity. Suitable modifica-
tions of the theory can be compared with the effective fluid
approach to fix the gravitational lagrangian such that a late
time accelerated expansion is realized. For more reviews,
cosmological significance and recent progress on teleparal-
lel theories we refer the reader to the reviews of Nojiri and
Odintsov [28], Capozziello and De-Laurentis [29], Faraoni
and Capozziello [30], Bamba and Odintsov [31], Nojiri et al.
[32], Bamba et al. [33].

The advantage of modified teleparallel gravity is that it
produces field equations that remain second order irrespec-
tive of the choice of Lagrangian, a fact which also remains
true for a number of extensions of the model. The second
order nature means that the gravitational polarization modes
remain identical to those in GR, discussed by Farrugia et
al. [34]. Therefore the modifications of the theory can be
contained within the cosmological regime without interfer-
ing with the GR strong field regime of the theory. Now, in
the cosmological setup, this theory has received significant
attention in recent years with several works on producing
accelerating late time solutions, for instance by Bengochea
and Ferraro [35], Linder [36]. The goal of these works is to
replace the cosmological constant component of GR while
preserving the matter epoch contribution. It was shown by
Wu and Yu [37] that the Universe can evolve from a radiation
dominated era into a matter dominated one, and finally enter
an exponential expansion phase under the scope of a power
law f (T ) gravity. Studies on the observational constraints
of modified teleparallel gravity have also been conducted by
Wu and Yu [38] where WMAP data is used to constrain the
model parameters. In general, modified teleparallel gravity
bodes well against observational data in the cosmological
regime as discussed by Capozziello et al. [39]. Very recently
Nunes et al. [40] compared these models against Planck data
as well. Stability of extended teleparallel theory has also been
studied in details by Bamba et al. [41], Behboodi et al. [42],
Paliathanasis et al. [43], Paliathanasis et al. [44], Farrugia
and Said [45]. On an astrophysical scale, modified telepar-
allel gravity already has a weak field solution discussed by
Ruggiero and Radicella [46], which has been used to deter-
mine the galactic velocity profile by Finch and Said [47],
using a small modification to the f (T ) Lagrangian.

Principally, any modification of gravity must first evade
deviations at solar system scales since the GR field equa-
tions predict to a very high degree the results of these tests.
Despite being an alternative theory of gravity, teleparallel
gravity can produce the equivalent field equations as GR for
a specific Lagrangian. As with other modifications to grav-
ity, solar system tests allow for a broad range of Lagrangian
terms that only take effect cosmologically. In Ref. [48], these
tests were considered in turn within the context of a power-

law style modification with a Lagrangian f (T ) ∼ T +αT n .
In this work, it was found that such models do indeed pass
all solar system tests for a broad range of model parameters.
Indeed, works of this nature can set limits on setting bounds
on model parameters.

An important role in generalized teleparallel theories is
played by the choice of the functional form of f (T ). The
lack of any firmly established theoretical constraint leaves
open a way for wide range of possibilities. One can put the
constraints on the choice of function by comparing different
theoretical predictions with the observational data. Alterna-
tively one can use a principle of reverse determination where
one reconstructs the expected form of the theory from the
field equations, starting from a proper cosmological dynam-
ics. Overall in the context of modifications of gravity, recon-
struction schemes are studied exhaustively over the years
(for a very good overview, we refer to the works of Nojiri and
Odintsov [50–52]). However, in f (T ) theories, the avenue of
reconstruction of lagrangian from cosmological parameters
is relatively new. Myrzakulov studied reconstruction of f (T )

models from a cosmic dynamics giving late time accelerated
expansion [53]. Dent et al. [54] gave a general formalism for
reconstructing f (T ) models for any given dynamical dark
energy scenario. A thorough reconstruction analysis of the
f (T ) models and the conditions for the equivalence of f (T )

models with purely kinetic k-essence was studied recently by
Myrzakulov [55]. Bamba et al. [56] studied reconstruction of
an f (T ) model, realizing inflation in the early universe, the
�CDM model, Little Rip cosmology and the Pseudo-Rip
cosmology. More recent attempts of studying cosmological
reconstruction in modified theories of gravity involve using
a massive scalar field (Chakrabarti et al. [57,58].

The present work deals with the field equations of a covari-
ant formulation of f (T ) gravity and attempts to reconstruct
the lagrangian from the cosmological jerk parameter j . The
basic concept of a jerk parameter comes from the second
order time evolution of Hubble parameter. Hubble parame-
ter is defined as the fractional rate of the expansion of the
universe. First order evolution of the hubble parameter H is
defined by the deceleration parameter q which was believed
to be constant only until recently. The current observational
evidence suggests that the universe shifted into a phase of
acceleration from a decelerated phase in the recent past and
this straightaway compels one to look at the evolution of q.
This includes the study of a third order time derivative of
the scale factor, defined in terms of the jerk parameter. If
the time evolution of the jerk parameter j is known, a third
order differential equation for the scale factor can be written
from the definition and hence one can find the cosmological
evolution in it’s exact form. A similar method can not be per-
formed using deceleration parameter as a tool of reconstruc-
tion alone, since the exact evolution of deceleration param-
eter is not known. Moreover, using a higher (third) order
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differential equation one allows the spectrum of solutions
to be much wider than a second order equations. This also
carries motivations from very recent works in literature on
parametric reconstruction of the jerk parameter from diverse
observational data sets [59]. Most of the attempts to build up
a dark energy model hover around finding one which in the
present epoch resembles a �CDM model. We demonstrate
the methodology of reconstruction for a �CDM model to
begin with, for which one has a constant j as j = 1. We
also present a few different cases where the jerk parameter
is considered a variable, although the degree of nonlinearity
of the differential equations for such cases is very high. No
functional form of f (T ) is assumed at the outset.

In Ref. [60], a similar scheme was used in the context
of f (R) gravity where f (R) theory forms generally fourth
order field equations. Here, the approach also included early-
and late-time considerations with interesting results for cos-
mological models in f (R) theory. This led to a broader
review in Ref. [28] that encapsulated the body of work within
the f (R) gravity framework. For instance it was proved that
any cosmic expansion history a ∼ a0eg(t) can be realized as
the solution of some specific reconstructed f (R). As a result
the need to use with auxiliary scalar fields could be avoided
which is somewhat a subtle motivation of the present work as
well. Moreover, in the present approach one does not assume
the expansion history at the outset. Rather a quantity entirely
kinematic in nature provides for the scale factor depending on
the evolution of the aforementioned parameter which there-
fore defines a novelty of the present work on it’s own as com-
pared with f (R) reconstruction schemes. The crucial differ-
ence comes in through the realisation that modified telepar-
allel gravity field equations are second order and so don’t
suffer from some of the issues that are present in f (R) grav-
ity. For this reason, this work may provide a way forward
in forming viable cosmological models within the modified
teleparallel gravity context. Reconstruction schemes in the
present case are therefore far more simple in nature and open
for further allied investigations. The examples presented in
both the cases mimic a �CDM cosmic evolution, at least
as far as late-time acceleration is concerned. In contract to
Ref. [28], we do not restrict our case only for dust, rather
we include a perfect fluid with the equation of state being
a parameter for our models which is only possible since the
field equations are second order in nature.

In the present work we first introduce the teleparallel
framework in Sect. 2, while in Sect. 3 the Friedmann equation
is discussed for a flat cosmology. In Sect. 4, this reconstruc-
tion treatment is explored for a constant jerk parameter with
a functional model of f (T ) as a result. In Sect. 5, this is done
for a jerk parameter that has an inverse square dependence
on the Hubble parameter, while in Sect. 6 a jerk parame-
ter that is slowly varying about its current value is investi-
gated. Section 7 is then dedicated to exploring the stability

of these models. In Sect. 8 we discuss the phase space por-
traits for teleparallel cosmology in brief. Finally, the results
are summarized in Sect. 9 with a short discussion on fur-
ther work. Unless stated otherwise, geometric units are used
where G = 1 = c. Also Latin indices are used to refer to
local inertial coordinates while Greek ones are used to refer
to global coordinates.

2 Introduction to f (T ) gravity

Teleparallel gravity carries a fundamental distinction from
curvature based descriptions of gravity. Here, the Levi–Civita
connection is replaced with the Weitzenbock connection,
̂�α

μν , which is a curvatureless connection and is given by

̂�ρ
νμ := e ρ

a ∂μe
a
ν + e ρ

a ωa
bμe

b
ν . (1)

eaρ is the tetrad field which represents the transformations
between arbitrary points in the tangent space. e μ

a represents
the tetrad inverse. To account for local Lorentz invariance
in the formalism, the spin connection ωa

bμ is introduced.
Together the tetrad and spin connection specify the frame
analogous to the metric tensor scenario. The Latin indices
represent coordinates on the tangent space and the Greek
indices represent general manifold coordinates.

The metric is constructed out of the tetrad fields through
[20]

gμν (x) := eaμ (x) ebν (x) ηab, (2)

where ηab is the Minkowski metric. In the following work,
we suppress the expression of the local position x .

In f (T ) theories, the Riemann tensor of GR is replaced
with the torsion tensor [27]

T a
μν := ∂μe

a
ν − ∂νe

a
μ + ωa

bμe
b
ν − ωa

bνe
b
μ, (3)

which vanishes when there is no gravity. Together with the
torsion tensor, we also define the superpotential tensor as

S μν
a := 1

2

(

Kμν
a + e μ

a T αν
α − e ν

a T αμ
α

)

. (4)

The formulation is laid in such a way that the superpotential
plays a role closely related to an energy–momentum tensor of
gravity [19]. Moreover, Kμν

a defines the contorsion tensor,
written as [20]

Kμν
a := 1

2

(

T μν
a + T νμ

a − Tμν
a

)

. (5)

Together, the torsion tensor in Eq. (3) and the superpo-
tential tensor in Eq. (4) combine to produce the so-called
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teleparallel equivalent of general relativity (TEGR). The the-
ory is exactly equivalent to GR at the level of field equations
in the classical regime. The Torsion scalar is defined as

T := S μν
a T a

μν. (6)

The TEGR Lagrangian then becomes

S = 1

16πG

∫

d4x e T +
∫

d4x e Lm, (7)

where e = det
(

e A
μ

)

= √−g, and Lm represents the matter

Lagrangian. Now, in a similar manner of the generalization
of Ricci scalar in f (R) theories, the teleparallel action can
be generalized into a more general functional form, f (T ), to
write the gravitational action as

S = 1

16πG

∫

d4x e [T + f (T )] +
∫

d4x e Lm . (8)

Variation of the action with respect to the tetrads, one finds
the field equations of the theory as [27]

(1 + fT )
[

e−1∂ν

(

eS μν
a

) − T b
νa S

νμ
b + ωb

aνS
νμ

b

]

+ fT T S
μν

a ∂νT + e μ
a

(

f + T

4

)

= 4πGe μ
a

em
T ρ

μ . (9)

The stress-energy tensor in terms of the matter Lagrangian

is defined as
em

T ρ
β = 1

e
eaβ

δ (eLm)

δeaρ
.

3 Flat, isotropic and homogeneous universe in f (T )
gravity

We consider a spatially flat, isotropic and homogeneous
Friedmann–Lemaitre–Robertson–Walker (FLRW) metric
as

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

. (10)

a(t) is the cosmological scale factor. This can be equivalently
written in terms of a diagonal tetrad as

e a
μ = diag (1, a(t), a(t), a(t)) , (11)

where the spin connection turns out to vanish for this choice
of the tetrad. It is straightforward to check that for such a
tetrad, the torsion scalar T = −6H2, where H(t) = ȧ

a .
From Eq. (9), one finds the field equations for the current
setup as

f − T − 2T fT = 2κ2ρ, (12)

Ḣ = − κ2 (ρ + p)

2 (1 + fT + 2T fT T )
, (13)

where the second equation is written as a combination of the
first and second Friedmann equations.

The trace of the field equations leads one to the continuity
equation

ρ̇ + 3H (ρ + p) = 0, (14)

which is equivalent to its GR analogue. Defining an equation
of state parameter ω such that

p = ωρ, (15)

Equation (14) can be solved straightaway to write

ρ = ρ0a(t)−3(1+ω). (16)

These equations can be interpreted as a TEGR cosmology
with an additional cosmic driver, where the exotic compo-
nents would be defined through

κ2ρexo := T fT − f

2
, (17)

κ2 pexo := −κ2ρexo + 2Ḣ ( fT + 2T fT T ) . (18)

Naturally, these components can be related by an Equation
of State, ωexo defined as

ωexo ≡ pexo

ρexo
= −1 − 4Ḣ

fT + 2T fT T
f − 2T fT

. (19)

Using Eqs. (12) and (13) again, the EoS parameters can
be written as

ωexo = −1 + (1 + ω)
( f − T − 2T fT ) ( fT + 2T fT T )

(1 + fT + 2T fT T ) ( f − 2T fT )
.

(20)

Using the fact that T = −6H2, one can easily write Eq.
(20) as a function of H so that

ωexo = −1 − (1 + ω)

12

(

f + 6H2 − H fH
)

fHH
(

1 − 1
12 fHH

)(

f − H fH
) . (21)

Therefore, the effective Friedmann equations in their usual
form alongwith an exotic fluid part coming from the torsion
scalar can be written as

−T = 2κ2 (ρ + ρexo) , (22)

2Ḣ = −κ2 (ρ + p + ρexo + pexo) . (23)
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4 Reconstruction from a constant jerk

In this section, we study cosmological reconstruction from a
constant jerk parameter. For simplicity, we set this to unity,
so that

j = d3a(t)

dt3

a(t)2

(
da(t)
dt )3

= 1. (24)

The general solution of Eq. (24) can be given by

a(t) =
(

Aeλt + Be−λt
) 2

3
, (25)

where A, B and λ are constant parameters that would be fixed
by the growth profile of the universe. It is straightforward to
note that, the term Aeλt dominates over Be−λt at late times.
Also, the Hubble parameter can be calculated as

H(t) = 2λ

3

(

Aeλt − Be−λt
)

(

Aeλt + Be−λt
) . (26)

We plot the time evolution of the scale factor in Fig. 1
to show the accelerating behavior for a particular case, λ =
1, A = 0.2 and B = −0.1 which generically shows late-
time accelerating expansion. Moreover, in Fig. 2, we plot the
evolution of the deceleration parameter q as a function of
redshift z for the constant jerk case, choosing three different
set of parameters, (i) λ = 1, A = 0.2 and B = −0.1; (ii) λ =
1, A = 0.2 and B = −0.5; (iii) λ = 1, A = 0.2 and B = −1.
While the particular values of negative deceleration at current
times is different, the behavior easily gives an accelerating
Universe at late-times.
The torsion scalarT can also straightforwardly be determined
as

Fig. 1 Evolution of the scale factor for constant jerk parameter Eq.
(25) with cosmic time, for λ = 1, A = 0.2 and B = −0.1

Fig. 2 Evolution of the deceleration parameter for constant jerk param-
eter Eq. (25) with redshift z, for λ = 1 and A = 0.2. The blue curve
represents a choice of the parameter B = −0.1 while yellow corre-
sponds to B = −0.5 and green refers to B = −1

T = −6H2 = −8λ2

3

(Aeλt − Be−λt )2

(Aeλt + Be−λt )2 . (27)

For p = ωρ, Eqs. (12) and (13) can be rewritten as

f − T − 2T fT = 2κ2ρ, (28)

4Ḣ (1 + fT + 2T fT T ) = −2κ2(1 + ω)ρ, (29)

which can then be combined to get

f − T − 2T fT + 1

(1 + ω)

[

4Ḣ (1 + fT + 2T fT T )
] = 0. (30)

To proceed, Eq. (30) must be solved for an f (T ) model
or, equivalently, for f (H) by using the relation in Eq. (27)
between the Hubble parameter and Torsion scalar that will
then determine the reconstruction scheme. The terms of this
equation can be written in terms of H as

Ḣ = 2λ2

3
− 3H2

2
, (31)

fT = − 1

12H

d f

dH
, (32)

fT T = 1

144H2

d2 f (H)

dH2 − 1

144H3

d f (H)

dH
. (33)

Thus, the combined Friedmann equation in Eq. (30) trans-
forms into

d2 f (H)

dH2 − 2(1 + ω)H d f (H)
dH

(

4λ2

9 − H2
) − 2(1 + ω) f (H)

( 4λ2

9 − H2)

− 2(18ωH2 + 8λ2)

3
(

4λ2

9 − H2
) = 0. (34)
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In its current form, Eq. (34) is intractable, and so we trans-
form it under

H = 2λ

3
cosG, (35)

d f (H)

dH
= − 3

2λ
cosecG

d f (G)

dG
, (36)

d2 f (H)

dH2 = 9

4λ2 cosec2G

[

d2 f (G)

dG2 − cot G
d f (G)

dG

]

, (37)

and rewrite Eq. (34) as

d2 f (G)

dG2 − cot G
d f (G)

dG
− 2(1 + ω) cot G

d f (G)

dG

− 2(1 + ω) f (G) − 16

3
ωλ2 cos2 G − 16

3
λ2 = 0. (38)

We study the equation for specific choices of the equation
of state parameter ω.

1. For ω = 0, i.e., for a dust solution, one can solve Eq.
(38) to find

f (H) = −8λ2

3
+ C1

(

1 − 3H

2λ

)
3
2
(

3H

2λ
− 1

)
1
2

+ C2
3H

2λ

(

1 − 3H

2λ

)
3
2
(

3H

2λ
− 1

)
1
2

. (39)

or in terms of H = (− T
6 )

1
2 ,

f (T )=−8λ2

3
+C1

(

1 − 3(− T
6 )

1
2

2λ

)
3
2
(

3(− T
6 )

1
2

2λ
− 1

)
1
2

+ C2
3(− T

6 )
1
2

2λ

(

1 − 3(− T
6 )

1
2

2λ

)
3
2

×
(

3(− T
6 )

1
2

2λ
− 1

)
1
2

. (40)

2. For ω = −1, meaning the EoS of dark energy [11], the
reconstruction procedure gives

f (H) = C1 + 3C1

2λ
H + 6H2. (41)

or

f (T ) = C1 + 3C1

2λ

(

− T

6

) 1
2 − T . (42)

3. For ω � −1, one can find out that

f (H) = C1 + 3C2

2λ
H + 1

30

[

77λ2 + 77λ2
(

3H

2λ

)2

− 3λ2
(

3H

2λ

)

ln(1 − 3H

2λ
) + 3λ2

(

3H

2λ

)

× ln

(

1 + 3H

2λ

)

+ 3λ2 ln

(

9H2

4λ2 − 1

)]

. (43)

or

f (T ) = C1 + 3C2

2λ

(

−T

6

) 1
2 + 1

30

[

77λ2

+77λ2

⎛

⎜

⎜

⎝

3
(

− T
6

) 1
2

2λ

⎞

⎟

⎟

⎠

2

− 3λ2

⎛

⎜

⎜

⎝

3
(

− T
6

) 1
2

2λ

⎞

⎟

⎟

⎠

ln

⎛

⎜

⎜

⎝

1 −
3
(

− T
6

) 1
2

2λ

⎞

⎟

⎟

⎠

+ 3λ2

⎛

⎜

⎜

⎝

3
(

− T
6

) 1
2

2λ

⎞

⎟

⎟

⎠

ln

⎛

⎜

⎜

⎝

1 +
3
(

− T
6

) 1
2

2λ

⎞

⎟

⎟

⎠

+ 3λ2 ln

⎛

⎝

9
(

− T
6

)

4λ2 − 1

⎞

⎠

⎤

⎥

⎥

⎦

.

(44)

However, we also make an attempt to comment on the
general behavior of f (T ) (or f (H)) without any a priori
choice of the EoS but making certain reasonable approxima-
tions at late times. We assume that the parameter λ is small
such that the terms involving λ2 in Eq. (38) can be neglected
with respect to the other terms. Thus the equation for recon-
struction is slightly simplified, and a solution for f (H) can
be written in terms of a hypergeometric function such that

f (H) = 3C1

2λ
H − 3C2

2λ
H

[

3H

2λ
2F1

(

1

2
,−ω,

3

2
,

9H2

4λ2

)

+ 2λ

3H
2F1

(

− 1

2
,−ω,

1

2
,

9H2

4λ2

)]

. (45)

In terms of H = (− T
6 )

1
2 ,

f (T ) = 3C1

2λ

(

− T

6

) 1
2 − 3C2

2λ

(

− T

6

) 1
2

×
[

3(− T
6 )

1
2

2λ
2F1

(

1

2
,−ω,

3

2
,

9(− T
6 )

4λ2

)

+ 2λ

3(− T
6 )

1
2

2F1

(

−1

2
,−ω,

1

2
,

9(− T
6 )

4λ2

)]

. (46)
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As discussed in Sect. 3, the EoS of the exotic fluid can
be written as a function of torsion scalar and therefore as a
function of H as given by Eq. (21). We plot the exotic equa-
tion of state as a function of cosmic time in Fig. 3. The plots
vary over matter EoS parameters. It also scales for differ-
ent choices of λ, however, the qualitative behavior remains
the same. For all the cases, ωexo at early time lies within
the range −1 < ωexo < 1. However, at late times, the equa-
tion of state approaches a phantom behavior for this analysis.
This is interesting given the suggestions by the recent Planck
collaboration in this regard [11].

5 Reconstruction from a variable jerk: inverse hubble
parameter

In this section we study the cosmological dynamics for a
variable jerk such that the jerk parameter is proportional to
the Hubble parameter by an inverse square relation. In general
equation, the jerk parameter can be represented by

j = d3a(t)

dt3

a(t)2

(
da(t)
dt )3

= g(t), (47)

which is extremely non-trivial to tackle without any a priori
assumptions on the function g(t). We assume g(t) to be a
function of the Hubble parameter H . A particular case in
this regard is where the jerk parameter is proportional to the
inverse square of this parameter, meaning that

d3a(t)

dt3

a(t)2

(
da(t)
dt )3

= s2

H2 , (48)

where s is an arbitrary constant.
Solving equation Eq. (48), the solution turns out to be

a(t) = 1

s

(

mest − ne−st
)

+ p. (49)

m, n, s and p are constant parameters.
In Fig. 4, we plot the scale factor as a function of cos-

mic time to visualize the late-time cosmic acceleration, for
a particular set of representative parameters. For example, if
s is fixed to unity and p is chosen to be 0.5, for a choice of
m >> n we expect the exponential term to dominate at late
times.

5.1 Comparison with supernovae data

In section I V , we reconstructed cosmological models from a
constant value of jerk j = 1, which gives exactly the �CDM
cosmic history, with already a known plethora of articles on
the comparison of model parameters with observational data.

Fig. 3 Equation of state of the exotic fluid for reconstructed f (T )

model from a constant jerk parameter. λ is fixed at 0.035 and A = 2,
B = 1. The top graph represents plot of ω = 0, the second from the top
is for ω = 1, third is for ω = 1

2 , while the graph on the bottom is for
ω = − 1

2
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Fig. 4 Scale factor as a function of cosmic time for jerk parameter in
Eq. (48); m >> n, s = 1, p = 0.5

Fig. 5 Observed SNeIa Hubble free luminosity distance data along
with the fitted curve for the best fit parameter value μ ∼ 0.39.
χ2
min/d.o. f = χ2

min/(N − n) ∼ 0.93 and therefore the fitting is good

However, the present section has dealt with a new ansatz on
the aforementioned jerk parameter as a function of hubble
parameter (Fig. 5). Thus, we fit the available Supernova data
Union2.1 of Hubble free luminosity distance with the results
obtained from the model given by Eq. (49).

At the present time, a0 = 1 and ȧ0 = H0 which is the
present day value of the Hubble parameter. Therefore from
Eq. 49, we have

H2
0 = s(1 − p)2 + 4mn. (50)

Defining a dimensionless parameter μ = s(1−p)2

H2
0

and writing
4mn
H2

0
= 1 − μ, we rewrite the hubble parameter as

H(a) = H0

a

[

(1 − μ) + μ
(a − p)2

p2

]
1
2

. (51)

Fig. 6 Deceleration parameter, q, as a function of redshift for jerk
parameter in Eq. (48); Blue is s = 0.8, Yellow is s = 1.0 and Green is
s = 1.2. m and n take the same values as in Fig. 4

We define the Hubble free luminosity distance dL using
DL = cH−1

0 dL , where DL is the luminosity distance, H0

is the present day observed value of the Hubble parameter
and c is the speed of light. The expression of the Hubble free
luminosity distance is given by

dL(z) = (1 + z)
∫ z

0
dz′ H0

H(z′)
. (52)

Using Eq. (51) this can be written as

dL(z;μ)

= (1 + z)
∫ z

0

dz′
(1+z′)

[

(1 − μ) + μ

p2

(

1
(1+z′) − p

)2] 1
2

. (53)

We fit the available Supernova data Union2.1 using the
model Eq. (53) and obtain the best fit value of the parameter
μ ∼ 0.39 for p = 1

2 . For the analyzed data, we impose a
constraint such that χ2

min/d.o. f = χ2
min/(N − n) � 1 (N :

number of data points, n: number of parameters) such that the
fitting is good and the data are consistent with the considered
model. For the present model χ2

min/d.o. f ∼ 0.93.
In Fig. 6, we plot the evolution of the deceleration param-

eter q as a function of redshift z for three different choices of
parameters. m and n are similarly chosen as in Fig. 4, while
the parameter s is varied with choices 0.8, 1.0 and 1.2. As
expected, for these values we regain generic deceleration at
current times.

In Fig. 7, we plot the evolution of the jerk parameter j
as a function of redshift z for these three different choices
of parameters. m and n are similarly chosen as in Fig. 4,
while the parameter s is varied with choices 0.85, 0.90 and
0.95. These plots are very interesting since they all return
jerk parameters at current times close to unity which is not
very dissimilar to its observational value.
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Fig. 7 Jerk parameter, j , as a function of redshift for jerk parameter in
Eq. (48); Blue is s = 0.85, Yellow is s = 0.90 and Green is s = 0.95

Together, Figs. 6 and 7 can produce current observational
values for specific choice of parameters such that n << m. In
this limit, the Hubble parameter can be written approximately
as

Ḣ = sH − H2. (54)

This approximation is then used in the combined Fried-
mann relation in Eq. (30), but the approximation turn out to
give

Ḣ = sH − H2, (55)

fT = − 1

12H

d f

dH
, (56)

fT T = 1

144H2

d2 f (H)

dH2 − 1

144H3

d f (H)

dH
. (57)

Thus Eq. (30) in this setup becomes

d2 f (H)

dH2 + 3(1 + ω)

(s − H)

d f (H)

dH
− 3(1 + ω) f (H)

(s − H)H

− 18(1 + ω)H

(s − H)
− 12 = 0. (58)

As in the previous scenario, to analytically solve Eq. (58),
we implement the transformation

H = s cos2(G), (59)

(s − H) = s sin2(G), (60)

d f (H)

dH
= −1

s
cosec(2G)

d f (G)

dG
, (61)

d2 f (H)

dH2 = 1

s2

(

cosec2(2G)
d2 f (G)

dG2

−2cosec2(2G)cot (2G)
d f (G)

dG

)

, (62)

and rewrite Eq. (58) as

d2 f (G)

dG2 − (2 cot(2G) + 6(1 + ω) cot(G))
d f (G)

dG
− 12(1 + ω) f (G) − 72(1 + ω)s2 cos4(G)

− 12s2 sin2(2G) = 0. (63)

Due to the high non-linearity of Eq. (63), a general solution
in closed form cannot be found. We solve the equation for
different choices of ω below.

1. For ω = 0,

f (H) = −C2

2
+

(

C1

s
− 9s

)

H +
(

6 + 3C2

s2

)

H2

− C2

4s2 H
3 − 3C2

2s
H ln

(

H

s

)

. (64)

or in terms of H = (− T
6 )

1
2 ,

f (T ) = −C2

2
+

(

C1

s
− 9s

)(

− T

6

)
1
2

+
(

6 + 3C2

s2

)(

− T

6

)

− C2

4s2

(

− T

6

)
3
2

− 3C2

2s

(

− T

6

)
1
2

ln

⎡

⎣

(− T
6

)
1
2

s

⎤

⎦ . (65)

2. For ω = −1,

f (H) = C1 + C2

2s
H + 6H2. (66)

or

f (T ) = C1 + C2

2s

(

− T

6

) 1
2 − T . (67)

3. For ω = −0.5,

f (H) =
(

C1

s
+ 18s

)

H + 6H2

+ C2

2

[

−
(

1 − H

s

)1/2 (

1 + 2H

s

)

−3H

s
ln

(

1 + (

1 − H
s

)1/2

( H
s

)1/2

)]

.

(68)

123



454 Page 10 of 17 Eur. Phys. J. C (2019) 79 :454

or

f (T ) =
(

C1

s
+ 18s

)(

− T

6

)
1
2

− T

+ C2

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−

⎛

⎜

⎜

⎝

1 −
(

− T
6

) 1
2

s

⎞

⎟

⎟

⎠

1
2

⎛

⎜

⎜

⎝

1 +
2
(

− T
6

) 1
2

s

⎞

⎟

⎟

⎠

−
3
(

− T
6

) 1
2

s
ln

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +
⎛

⎜

⎝1 −
(

− T
6

) 1
2

s

⎞

⎟

⎠

1
2

⎛

⎜

⎝

(

− T
6

) 1
4

s
1
2

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (69)

4. For ω = 0.5,

f (H) =
(

C1

s
− 108s

35

)

H + 6H2

+ C2

70

[

−
(

1 − H

s

)1/2
(

− 35

−388H

s
+ 156H2

s2 − 58H3

s3 + 10H4

s4

)

−315H

s
ln

(

1 + (

1 − H
s

)1/2

( H
s

)1/2

)]

. (70)

or

f (T ) =
(

C1

s
− 108s

35

)(

− T

6

)
1
2

− T + C2

70

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
⎛

⎝1 −
(− T

6

)
1
2

s

⎞

⎠

1
2

⎛

⎝−35 − 388
(− T

6

)
1
2

s

+156
(− T

6

)

s2 − 58
(− T

6

)
3
2

s3 + 10
(− T

6

)2

s4

⎞

⎠

−315
(− T

6

)
1
2

s
ln

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +
⎛

⎜

⎝1 −
(

− T
6

) 1
2

s

⎞

⎟

⎠

1
2

⎛

⎜

⎝

(

− T
6

) 1
4

s
1
2

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (71)

5. For ω = 1,

f (H) =
(

C1

s
− 9s

5

)

H + 6H2

+ C2

20

[

−10 + 150

s2 H2 − 100

s3 H3

+50

s4 H4 − 15

s5
H5 + 2

s6 H
6

−60

s
H ln

(H

s

)

]

. (72)

or

f (T ) =
(

C1

s
− 9s

5

)(

− T

6

)
1
2

− T

+ C2

20

⎡

⎣−10 + 150

s2

(

− T

6

)

− 100

s3

(

− T

6

)
3
2

+50

s4

(

− T

6

)2

− 15

s5

(

− T

6

)
5
2

+ 2

s6

(

− T

6

)3

−60

s

(

− T

6

)
1
2

ln

⎛

⎝

(− T
6

)
1
2

s

⎞

⎠

⎤

⎦ . (73)

The exotic EoS, ωexo, given by Eq. (21) is plotted as a
function of cosmic time in Fig. 8. ωexo depends on the choice
of the EoS of the matter fluid ω. It scales for different choices
of m, n and s, however the qualitative behavior remains the
same. The top plot shows the evolution of ωeos for ω = 0.
One can see from the graph that the exotic fluid approaches
a zero equation of state at late times, although in early times
ωexo > 0. The plot second from the top shows the evolu-
tion for ω = 1 and as it appears, the evolution starts from
ωeos = 1, decreases with time before crossing the ω = 0
mark and thereafter asymptotically settles at ω = −1. As the
plot second from the bottom shows, for ω = 1

2 the exotic
fluid reaches a ωexo = 1

2 at late times. Similar behavior is
seen for ω = − 1

2 , shown in the bottom plot, where the ωexotic

asymptotically reaches − 1
2 .

6 Reconstruction from a variable jerk : a slowly
varying jerk parameter

In this section, we study a scenario where the jerk parameter
is a slowly varying function of redshift z. We represent this
scenario by the jerk parameter

j (z) = 1 − ε f (z), (74)
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Fig. 8 EoS of the exotic fluid as a function of cosmic time. m and n
are chosen as in Fig. 4, while the parameter s is fixed at 0.1. The graph
on the top shows evolution of ωexo for ω = 0; the graph second from
the top shows the evolution for ω = 1; the graph second from the top
shows the evolution for ω = 1

2 . The graph on the bottom is for ω = − 1
2

where ε is a small parameter and f (z) is a slowly varying
function of z. Then, writing the derivative of f (z) as

d f

dz
= d f

dH

dH

dt

dt

da

da

dz
, (75)

and using the relation z = 1
a − 1, we write the functional

form of f (z) as a function of a through the approximation
below,

f (a) = ε1 + ε0

a
. (76)

Here, ε1 is a constant of integration and we have used ε0 =
d f
dz , which we take as a very small parameter, such that f (z)
is a slowly varying function of z. Thus, it follows that

...
a

ȧ
a3 + (εε1 − 1)ȧ2a + εε0ȧ

2 = 0. (77)

After simplification, and two integrations, Eq. (77) turns
out to give

H2 = ȧ2

a2 = C1a
1
2 −β2−2 + C2a

1
2 +β2−2, (78)

where β2 = 1
2 (1 − 8α)

1
2 and α = (εε1 − 1).

This can straightforwardly be integrated to yield a gen-
eral expression for the scale factor, however, we are also
interested in the expression of Ḣ in terms of H . For such a
purpose we use a particular value of ε1 for which β2 = 0.
From that we can write

Ḣ ∼ λH2, (79)

where λ is a constant written in terms of C1 and C2.
However, for β2 = 0, given the form of Eq. (78), one

can easily deduce that the resulting solution for the scale

factor fails to describe an accelerated expansion (a(t) ∼ t
4
5 ).

We present the equations of reconstruction for the sake of
completeness. First, we again consider the form of the model
derivatives as

fT = − 1

12H

d f

dH
, (80)

fT T = 1

144H2

d2 f (H)

dH2 − 1

144H3

d f (H)

dH
. (81)

The equation for reconstruction is given by

d2 f (H)

dH2 + 3(1 + ω)

λH

d f (H)

dH
− 3(1 + ω) f (H)

λH2

−
(

18(1 + ω)

λ
+ 12

)

= 0. (82)

123



454 Page 12 of 17 Eur. Phys. J. C (2019) 79 :454

Fig. 9 Equation of state of the exotic fluid ωexo as a function of
time. ω for the fluid distribution is chosen to be 0, and plotted for a
negative λ

A general solution of the Eq. (82) can be written in
the form of combinations of power-functions of H , i.e.,
f (H) ∼ �Ci Hi . The coefficients consist of ω, λ and inte-
gration constants. We here present only a couple of simple
examples.

1. For ω = 0,

f (H) = C1H + 6H2 + C2H
− 3

λ . (83)

or

f (T ) = C1

(

− T

6

)
1
2

− T + C2

(

− T

6

)− 3
2λ

. (84)

2. For ω = −1,

f (H) = C1 + C2

2s
H + 6H2. (85)

or

f (T ) = C1 + C2

2s

(

− T

6

)
1
2

− T . (86)

In Fig. 9, the exotic EoS is plotted against time, which
tends to a constant negative value far from the necessary −1
value to produce a viable model.

7 Stability of reconstructed models

In this section, we explore the stability of the models that have
been found in this work by taking matter density and Hubble
perturbations. In particular, the perturbations are described
by (for a similar discussion we refer to the work of Farrugia

and Said [49])

H(t) → H(t) (1 + δ) , ρ(t) → ρ(t) (1 + δm) , (87)

where δ is the deviation of the Hubble parameter H and δm

denotes the deviation of matter over-density. All the devia-
tions are isotropic in nature. These perturbations also infil-
trate the arbitrary functional Lagrangian through the expres-
sions

δ f = fT δT, δ fT = fT T δT, (88)

where δ f gives the first-order perturbation of f (T ) and so
on. In this way, it follows that δT = 2T δ. Thus, the per-
turbed forms of the Friedmann equation in Eq. (12) and the
continuity equation Eq. (14) become

− T
(

1 + fT − 12H2 fT T
)

δ = κ2ρδm, (89)

δ̇m + 3H(1 + w)δ = 0, (90)

which govern the evolution of the system.
δ and δm are related in terms of T , as can be shown from

Eqs. (12) and (89)

δ = 1

2T

T + 2T fT − f

1 + fT + 2T fT T
δm. (91)

Therefore from Eq. (90) one can deduce

δ̇m + 3H

2T
(1 + w)

T + 2T fT − f

1 + fT + 2T fT T
δm = 0, (92)

which can be solved to write

δm = exp

[

−3

2
(1 + w)

∫

H

T

T + 2T fT − f

1 + fT + 2T fT T
dt

]

, (93)

which seems to show a dependence on f (T ), but this appar-
ent dependence will vanish to reveal the model independent
nature of this dependence.

Using the continuity equation Eq. (14) and the t t-
component of the field equation Eq. (12) with Eq. (13) the
integral can be reduced using

Ḣ = 1

4
(1 + w)

T + 2T fT − f

1 + fT + 2T fT T
. (94)

Therefore, from Eq. (93) one finds that

δm = exp

[∫

Ḣ

H
dt

]

= exp

[∫

dH

H

]

= kH, (95)

where k is an integration constant. k can be evaluated from δm

evaluated at the present times. Therefore, k = δm (t0) /H0.
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Fig. 10 Evolution of perturbation of matter overdensity as a function
of cosmic time. The blue curve represents the constant jerk parameter
model reconstruction. The yellow curve represents the variable jerk
parameter model reconstruction where jerk parameter j ∼ 1

H2 . The
blue curve shows the evolution for the reconstructed models from a
slowly varying jerk

Using Eq. (91), δ is determined to be

δ = − δm (t0)

3(1 + w)H0

Ḣ

H
, (96)

which is indeed model independent.
One must note that, the evolution of δ and δm depend on the

current value of δm. Moreover, it is easy to see that w = −1
gives a singularity for δ. Cosmological stability is present if
and only if δm and δ both are a decreasing function of cosmic
time. We investigate different models studied in the present
manuscript to comment on the stability.

In Fig. 10, the evolution of δm is plotted against cosmic
time for the various reconstructed models in the preceding
sections. While they differ in value, they all tend asymptot-
ically to a constant value which indicates stability. More-
over, in the case of the slowly varying jerk parameter model,
the model decays in the same way as the �CDM model. In
Fig. 11, δ is shown against cosmic time for all the models
under consideration. Again, in this case the models tend to
decay with cosmic time.

We also note that the cases involving ω = −1 indicate
that there is an absence of matter and the model carries a
cosmological constant. This may not be that physical since
normal matter is absent and the model contains only gravity.
This is well in agreement with the study of cosmological
perturbations in f (T ) gravity by Chen et al. [61].

8 Cosmological phase portraits in f (T ) cosmology

We briefly discuss the method of phase portraits in f (T )

cosmology before ending the manuscript. The phase space
analysis in fact can provide a qualitative idea of the overall

Fig. 11 Perturbation of the Hubble parameter against cosmic time.
The yellow curve represents the evolution for both (i) the constant jerk
parameter case and (ii) the jerk proportional to inverse square of hub-
ble parameter case. The green curve represents the evolution for the
reconstructed models from a slowly varying jerk

cosmological behavior, even if an exact solution can not be
found. In the present case, we have found exact solutions
in each case depicting a late-time cosmological dynamics.
However, we present the phase space analysis anyway, as
toy models for some set of arbitrarily chosen parameters,
atleast to serve some pedagogical purpose.

f (T ) gravity allows one to write the torsion scalar T as a
function of Hubble H . Moreover, from the field equations it
is straightforward to see that the physical quantities can also
be written in terms of H for example, the torsional energy
density, matter energy density. For an equation of state p =
p(ρ) assumed at the outset, the pressure is a function of H
as well. Thus Ḣ can be written as

Ḣ = F(H), (97)

which is the principle motivation for a phase portrait analysis.
This indicates that the cosmological equations can be written
as a one-dimensional autonomous system. For details on such
a phase space analysis in f (T ) theories, we refer to the work
of Awad et al. [62].

To work out the application of this dynamical-system anal-
ysis for a general f (T ) cosmology, one can express the
energy density and pressure in term of H from the field equa-
tions and write them as

ρ = 1

2κ2

[

f (H) − H
d f (H)

dH

]

, (98)

and

p = 1

6κ2 Ḣ
d2 f (H)

dH2 − ρ. (99)

For a matter distribution with a pre-defined equation of
state p = ωρ, one can then write
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Fig. 12 Phase plot, or Ḣ vs H for different values of ω: The figure on
the top is for (i) ω = −0.9, λ = 0.01, C1 = C2 = 1, the second from
the top is for (ii) ω = 1, λ = 100, C1 = C2 = 1, third is for (iii) ω = 0,
λ = 100, C1 = C2 = 1, and bottom plot is for (iv) ω = 0.5, λ = 100,
C1 = C2 = 1

Fig. 13 Phase plot, or Ḣ vs H for different values of ω. For all the
cases, C1 = C2 = s = 1 (i). Phase plot for ω = 0. (ii). Phase plot for
ω = 1. (iii). Phase plot for ω = 1

2 . (iv). Phase plot for ω = − 1
2
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Fig. 14 Phase plot for C1 = C2 = 0. s = 1

Ḣ = 3(1 + ω)

⎡

⎣

f (H) − H d f (H)
dH

d2 f (H)

dH2

⎤

⎦ = F(H). (100)

In the present work we do not consider the cases where
d2 f (H)

dH2 = 0. In fact, the d2 f (H)

dH2 = 0 case corresponds to

the trivial f (T ) = α
√
T + β case, which does not carry

any effect of f (T ) and the field equations become trivial
[20]. Equation (100) serves as the principle equation of the
phase space analysis in f (T ) cosmology,pointing out the
fixed points or sudden singularities.

Case 1: Constant jerk parameter
In Fig. 12, we plot the phase portraits for some choices

of the parameters that describe the solution for the Hubble
evolution. This allows the different families of solutions to be
described in terms of the expansion evolution as trajectories
in this phase space. In (i), i.e., for ω = −0.9, a stable de Sitter
attractor solution is shown while an eternally accelerating
solution is also found. This picture is completely changed
for (ii), for ω = 1 where an unstable de Sitter point is present
along with a stable H > 0 point in this scenario. While
(iii) shows an unrealistic contracting universe for ω = 0,
(iv) gives a combination of disjoint evolutions that include
both behaviors in (ii) along with an unrealistic contracting
universe for ω = 0.5.

Case 2: Variable jerk parameter j ∼ 1
H2

In Fig. 13, plots (i, ii, iii) show a behavior where an
unstable Minkowski fixed point is accompanied with an eter-
nally contracting Universe. In (iv), the flow of the unstable
Minkowski point has a second fixed point which is an attrac-
tor de Sitter point, while the other evolution turns out to have
a fixed point that is stable. In Fig. 14, the special case of
C1 = 0 = C2 is explored where a semi-stable Minkowski
point is found.

Case 3: Slowly varying jerk parameter
The phase plots are explored for two separate EoS sce-

narios, where in the first instance (Fig. 15) ω = 0 and two

Fig. 15 Phase plot for ω = 0. The yellow curve is for λ = 1 and the
blue curve is for λ = −1. C1 and C2 are chosen to be unity

Fig. 16 Phase plot for ω = −1. C1 and C2 are chosen to be unity

behaviors follow one of which has a stable de Sitter point;
in the second scenario (Fig. 16) ω = −1 and a semi-stable
Minkowski fixed point follows.

9 Conclusion

In the present work, the possibility of using the cosmolog-
ical jerk parameter to reconstruct the modified teleparal-
lel lagrangian has been explored analytically. This parallel
avenue of torsion based modification of gravity is experienc-
ing a fast growing interest amongst the community with a
particular focus on cosmological models, given the recent
results by the Planck Collaboration [11]. While teleparallel
gravity reproduces GR in some limit, it is not equivalent in
terms of other behavior and may solve some of the outstand-
ing theoretical issues of GR.

Three different analytical models have been considered
in this work which present a scheme of reverse engineer-
ing the cosmological parameters from a choice of the jerk
parameter. The constant jerk parameter case is inspired by
the �CDM model and produces a more general setup when
compared with the TEGR Lagrangian. This limits to TEGR
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for a particular choice of parameters but can produce a much
more general parameter space for comparison against data
in further work. The second model presupposes a particu-
lar dependence on the Hubble parameter such that there is
an inverse square relation dependence. While the system is
intractable in general, it can be solved for particular choices
of the matter EoS parameter with an interesting exotic EoS
parameter profile which can produces models not dissimilar
to current observations. The Hubble free luminosity distance
data is fitted with the corresponding observational data to
find a good fit. Finally, in the third model, we consider a
slowly varying jerk parameter, which are certainly applica-
ble in late-time cosmology. The system of equation in this
case turns out to be difficult to solve in general and we solve
for a very particular set of parameters (β2 = 0). Although
this instance does not actually inspire a late time accelerating
solution, a general analysis (β2 �= 0) of the slowly varying
jerk parameter case may produce more significant solutions
and will be a part of future work.

The present work is basically a reconstruction of theoret-
ical cosmology from the kinematical variables only, without
knowing any apriori expansion history. In the present case
the kinematic variable being the jerk parameter, higher order
parameters (such as snap parameter, involving a′′′′(t)) can be
used for a more general reconstruction scheme as well, pro-
vided the mathematics can be addressed. A reconstruction
from kinematic quantity alone is exciting in the sense that it
can in principle also be applied in order to reconstruct f (T )

for a jerk parameter that corresponds to a bounce behavior
[63]. Cosmological reconstruction offers an interesting store
of possibilities, providing new models of gravity. The mod-
els presented in the manuscript are simple, realistic and easy
to work with for further investigations. However, we note
here that the models only present some special cases while
the general picture may consist of far more plausible set of
solutions for a complete general jerk parameter.
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