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Abstract We investigate the self-consistency and Lorentz
covariance of the covariant light-front quark model (CLF
QM) via the matrix elements and form factors (F = g,
a± and f ) of P → V transition. Two types of corre-
spondence schemes between the manifest covariant Bethe–
Salpeter approach and the light-front quark model are stud-
ied. We find that, for a−(q2) and f (q2), the CLF results
obtained via λ = 0 and ± polarization states of vector
meson within the traditional type-I correspondence scheme
are inconsistent with each other; and moreover, the strict
covariance of the matrix element is violated due to the non-
vanishing spurious contributions associated with noncovari-
ance. We further show that such two problems have the same
origin and can be resolved simultaneously by employing the
type-II correspondence scheme, which advocates an addi-
tional replacement M → M0 relative to the traditional type-
I scheme; meanwhile, the results of F(q2) in the standard
light-front quark model (SLF QM) are exactly the same as the
valence contributions and equal to numerally the full results
in the CLF QM, i.e., [F]SLF = [F]val.

.= [F]full. The numer-
ical results for some P → V transitions are updated within
the type-II scheme. Above findings confirm the conclusion
obtained via the decay constants of vector and axial-vector
mesons in the previous works.

1 Introduction

The form factor and decay constant are important physical
quantities in understanding the internal structure of hadrons,
and play crucial roles for predicting the observables of meson
decays. It is well-known that they must be treated with a non-
perturbative method. There are many different candidates for
this purpose, such as Wirbel–Stech–Bauer model [1], lat-
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tice calculations [2], vector meson dominance model [3,4],
perturbative QCD with some nonperturbative inputs [5,6],
QCD sum rules [7,8] and light-front quark models (LF QMs)
[9–13]. The traditional LF QM, i.e., the so-called standard
light-front quark model (SLF QM), proposed by Terentev
and Berestetsky [9,10] is a relativistic quark model based on
the LF formalism [14] and LF quantization of QCD [15]. It
provides a conceptually simple and phenomenologically fea-
sible framework for the determination of form factor, decay
constant and distribution amplitude et al., which are further
applied to phenomenological researches [16–39]. However,
in the SLF QM, the Lorentz covariance of the matrix element
is lost since it contains a spurious dependence on the orien-
tation of the light-front (LF) defined in term of the light-like
four-vector ω by ω · x = 0, and moreover the zero-mode
contributions can not be determined.

In order to treat the complete Lorentz structure of a matrix
element and evaluate the zero-mode contributions, many
efforts have been made in the past years [11–13,40–43].
In Ref. [12], Carbonell, Desplanques, Karmanov and Math-
iot (CDKM) have developed a method based on the covariant
LF framework to identify and separate the spurious contri-
butions and to determine the ω-independent physical contri-
butions, while the zero-mode contributions are not fully con-
sidered still. In Ref. [13], a basically different technique is
developed by Jaus to deal with the covariance and zero-mode
problems with the help of a manifestly covariant Bethe–
Saltpeter approach as a guide to the calculation. In the Jaus’
prescription for the covariant light-front quark model (CLF
QM), the zero-mode contributions can be well determined,
and the result of the matrix element is expected to be covari-
ant because the spurious contribution proportional ω can be
eliminated by the inclusion of zero-mode contributions [13].
This CLF QM has been used extensively to study the weak
and radiative decays, as well as the other features, of hadrons
[44–71].
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However, it has been noted that there still exist some prob-
lems about the self-consistency [72–74] and strict covariance
[13,74] in the CLF QM. In Ref. [72], the authors have found
that the CLF results for the vector (V ) meson decay constant
obtained receptively via the longitudinal (λ = 0) and the
transverse (λ = ±) polarization state are inconsistent with
each other, [ fV ]λ=0

CLF �= [ fV ]λ=±
CLF , because the former receives

an additional contribution characterized by the B(2)
1 func-

tion [the B functions are given by Eq. (28)], which provides
about 10% correction. This inconsistency problem exists not
only in the vector system but also in the axial-vector (A) sys-
tem [74]. Besides, the strict Lorentz covariance is another
challenge to the CLF QM [13,74]. A known example is the
matrix element, Aμ

V ≡ 〈0|q̄2γ
μq1|V 〉 [74]. Although the

main ω dependences are associated with the C functions and
can be eliminated by the zero-mode contributions [13], there
are still some residual ω dependences due to the nonvan-
ishing spurious contributions associated with B(2)

1 function,
which violate the covariance of CLF result for Aμ

V [13,74].
In order to resolve these problems, some efforts have been
made.

In the CLF QM, a manifestly covariant Bethe–Salpeter
(BS) approach is used to guide the corresponding light-front
calculation, but still using the same vertex functions and oper-
ators as employed in the SLF QM [13]. Taking the vector
meson as an example, the correspondence scheme (type-I)
[13,72,73]

√
2Nc

χV (x, k⊥)

1 − x
→ ψV (x, k⊥)√

x(1 − x)M̂0
,

DV,con → DV,LF , (type-I) (1)

between the covariant BS model and the LF QM is used in
the traditional CLF QM, where the factors DV,con = M +
m1 + m2 and DV,LF = M0 + m1 + m2 appear in the vertex
operator. Within this type-I correspondence scheme, the CLF
result for fV suffers from above-mentioned self-consistency
and covariance problems [72,73]. It should be noted that a
significant difference between the covariant BS approach and
the LF QM is that the constituent quarks of a bound-state are
allowed to be off mass-shell in the former, but are required
be on their respective mass-shell in the latter. Therefore, a
generalized correspondence scheme (type-II)

√
2Nc

χV (x, k⊥)

1 − x
→ ψV (x, k⊥)√

x(1 − x)M̂0
,

M → M0 . (type-II) (2)

is suggested by Choi and Ji [73]. It is interesting that this
new correspondence scheme provides a solution to the self-
consistency problem of fV [73].

In our previous work [74], we have studied the self-
consistency and the strict covariance simultaneously via the
decay constants of pseudoscalar, vector and axial-vector
mesons. It is found that [74]: (i) the problem of self-
consistency exists not only in the vector system but also
in the axial-vector system when the type-I correspondence
scheme is used, but both of them can be resolved by employ-
ing the type-II scheme, which confirms Choi’s findings [73];
the replacement M → M0 in the type-II scheme plays a cru-
cial role in resolving these problems. (ii) The violation of the
manifest covariance of the CLF QM with type-I scheme is
caused by the same reason as for the self-consistency prob-
lem, and the strict covariance can be recovered by taking
the type-II correspondence. (iii) In addition, a clear relation
between the SLF and CLF results are found

[Q]SLF = [Q]val.
.= [Q]full, (3)

within the type-II scheme, where Q = fV,A; the subscripts
“full” and “val.” denote the full result and the valence con-
tribution in the CLF QM, respectively; and the symbol “

.=”
denote that the two quantities are equal to each other only
numerically but not formally.

Besides decay constant, the form factor is another impor-
tant quantity for testing the performance of the LF QMs. The
P → V transition is also related to the spin-1 system, there-
fore it is worth to test whether the form factors of P → V
transition have the problems of self-consistency and covari-
ance, as the case of fV,A mentioned above, in the CLF QM
with type-I correspondence scheme, and whether the type-II
scheme can give a solution to these problems still. Moreover,
the form factors of P → V transition are related to not only
B(2)

1 but also B(3)
3 function, in which only the former con-

tributes to fV,A. Therefore, the form factors of P → V tran-
sition may present much stricter test on the self-consistency
and covariance of CLF QM, as well as above-mentioned find-
ings obtained via fV,A. In addition, it is claimed in Ref. [13]
that the form factor aP→V− (q2) is impossible to be calcu-
lated in the SLF formalism, which need to be checked. In
this paper, these issues will be studied in detail.

Our paper is organized as follows. In Sect. 2, we would like
to review briefly the SLF and the CLF QMs for convenience
of discussion. In Sect. 3, the SLF and CLF results, as well
as the valence contributions, are presented; after that, the
self-consistency and covariance of CLF results for the form
factors of P → V transition are discussed in detail. Finally,
our conclusions are made in Sect. 4.

2 Brief review of light-front quark models

In this section, we would like review briefly the LF QMs for
calculating the current matrix element defined as
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B ≡ 〈M ′′(p′′)|q̄ ′′
1 (k′′

1 )�q ′
1(k

′
1)|M ′(p′)〉 , (4)

which will be further used to extract the form factors. For the
detailed theoretical frameworks of SLF and CLF QMs, one
may refer to, for instance, Refs. [13,16,17,20,72], respec-
tively.

2.1 The SLF quark model

In the framework of SLF QM, a meson bound-state consisting
a quark q1 and antiquark q̄2 with a total momentum p can be
written as

|M(p)〉 =
∑

h1,h2

∫
d3k̃1

(2π)32
√
k+

1

d3k̃2

(2π)32
√
k+

2

(2π)3δ3( p̃ − k̃1 − k̃2)
h1,h2(k̃1, k̃2)

|q1(k1, h1)〉|q̄2(k2, h2)〉 , (5)

where, p̃ = (p+,p⊥) and k̃1,2 = (k+
1,2,k1,2⊥) are the on-

mass-shell LF momenta, 
h1,h2(k̃1, k̃2) is the momentum-
space wavefunction (WF), and the one particle states are
defined as

|q1(k1, h1)〉 =
√

2k+
1 b†

h1(k1)|0〉 ,

|q̄2(k2, h2)〉 =
√

2k+
2 d†

h2(k2)|0〉, (6)

{b†
h(k), bh′(k′)} = {d†

h (k), dh′(k′)}
= (2π)3δ(k+ − k′+)δ2(k⊥ − k′⊥)δhh′ . (7)

The momenta of q1 and q̄2 can be written in terms of the
internal LF relative momentum variables (x,k⊥) as

k+
1 = xp+ , k1⊥ = xp⊥ + k⊥ , k+

2 = x̄ p+ ,

k2⊥ = x̄p⊥ − k⊥ , (8)

where, x̄ = 1 − x , k⊥ = (kx , ky) and p⊥ = (px , py).
The momentum-space WF 
h1,h2(x,k⊥) in Eq. (5) satis-

fies the normalization condition and can be expressed as


h1,h2(x,k⊥) = Sh1,h2(x,k⊥)ψ(x,k⊥) , (9)

where, ψ(x,k⊥) is the radial WF and responsible for describ-
ing the momentum distribution of the constituent quarks in
the bound-state; Sh1,h2(x,k⊥) is the spin–orbital WF and
responsible for constructing a state of definite spin (S, Sz)
out of the LF helicity (h1, h2) eigenstates. For the former,
we shall use the Gaussian-type WF

ψs(x,k⊥) = 4
π

3
4

β
3
2

√
∂kz
∂x

exp

[

−k2
z + k2⊥
2β2

]

, (10)

in this paper, where kz is the relative momentum in z-direction
and has the form

kz =
(
x − 1

2

)
M0 + m2

2 − m2
1

2M0
, (11)

with the invariant mass

M2
0 = m2

1 + k2⊥
x

+ m2
2 + k2⊥
x̄

. (12)

The spin–orbital WF, Sh1,h2(x,k⊥), can be obtained by the
interaction-independent Melosh transformation. It is conve-
nient to use the covariant form, which can be further reduced
by using the equation of motion on spinors and finally written
as [17,72]

Sh1,h2 = ū(k1, h1)�
′v(k2, h2)√

2M̂0
(13)

where M̂2
0 ≡ M2

0 − (m1 − m2)
2 and

�′
P = γ5 , (14)

�′
V = − � ε̂ + ε̂ · (k1 − k2)

DV,LF
, DV,LF = M0 + m1 + m2 ,

(15)

with

ε̂
μ
λ=0 = 1

M0

(

p+,
−M2

0 + p2⊥
p+ ,p⊥

)

, (16)

ε̂
μ
λ=± =

(
0,

2

p+ ε⊥ · p⊥, ε⊥
)

, ε⊥ ≡ ∓ (1,±i)√
2

. (17)

In practice, for M ′(p′) → M ′′(p′′) transition, we shall
take the convenient Drell–Yan–West frame, q+ = 0, where
q ≡ p′ − p′′ = k′

1 − k′′
1 is the momentum transfer. It implies

that the form factors are known only for space-like momen-
tum transfer, q2 = −q2⊥ � 0, and the ones in the time-like
region need an additional q2 extrapolation. In addition, we
also take a Lorentz frame where p′⊥ = 0 and p′′⊥ = −q⊥
amounts to k′′⊥ = k′⊥ − x̄q⊥. Finally, equipping Eq. (4) with
the formulae given above and making some simplification,
we obtain

B(q2) =
∑

h′
1,h

′′
1,h2

∫
dx d2k′⊥
(2π)3 2x

ψ ′′∗(x,k′′⊥)ψ ′(x,k′⊥)

S′′†
h′′

1,h2
(x,k′′⊥)Ch′′

1,h′
1
(x,k′⊥,k′′⊥)

S′
h′

1,h2
(x,k′⊥) , (18)

where Ch′′
1,h′

1
(x,k′⊥,k′′⊥) ≡ ūh′′

1
(x,k′′⊥)�uh′

1
(x,k′⊥).
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Fig. 1 The Feynman diagram for the matrix element B

2.2 The CLF quark model

In the CLF QM, the matrix element B is obtained by cal-
culating the Feynman diagrams shown in Fig. 1. From this
Feynman diagram and using the Feynman rules given in Refs.
[13,72], the matrix element B(q2) can be written as a mani-
fest covariant form,

B = Nc

∫
d4k′

1

(2π)4

HM ′ HM ′′

N ′
1 N

′′
1 N2

i SB , (19)

where d4k′
1 = 1

2 dk′−
1 dk′+

1 d2k′⊥, the denominators N (′,′′)
1 =

k(′,′′)2
1 −m(′,′′)2

1 + iε and N2 = k2
2 −m2

2 + iε come from the
fermion propagators, and HM ′,M ′′ are the bound-state vertex
functions. The trace term SB associated with the fermion loop
is written as

SB = Tr
[
� ( � k′

1 + m′
1) (i�M ′) (−� k2 + m2)

(iγ 0�
†
M ′′γ 0)( � k′′

1 + m′′
1)

]
, (20)

where the vertex operators �M ′ and �M ′′ are relevant to the
types of mesons and have the forms [72]

i�P = −iγ5 , i�V = i

[
γ μ − (k1 − k2)

μ

DV,con

]
, (21)

for P and V mesons, respectively.
Integrating out the minus components of the loop momen-

tum, one goes from the covariant calculation to the LF one.
By closing the contour in the upper complex k′−

1 plane and
assuming that HM ′,M ′′ are analytic within the contour, the
integration picks up a residue at k2

2 = k̂2
2 = m2

2 correspond-
ing to put the spectator antiquark on the mass shell. Conse-
quently, one has the following replacements [13,72]

N1 → N̂1 = x
(
M2 − M2

0

)
(22)

and

χM = HM/N → hM/N̂ ,

DM,con → DM,LF , (type-I) (23)

where the LF forms of vertex function, hM , is given by

hP/N̂ = hV /N̂ = 1√
2Nc

√
x̄

x

ψ

M̂0
. (24)

Equation (23) gives the correspondence between the manifest
covariant and LF approaches. As has been detailed in Ref.
[13,72], the correspondence between χ and ψ in Eq. (23) can
be clearly derived by matching the CLF expressions to the
SLF ones for some zero-mode independent quantities, such
as fP and f P→P+ (q2). However, the validity of the corre-
spondence for the D factor appearing in the vertex operator,
DM,con → DM,LF, has not yet been clarified explicitly [73].
Instead of the traditional type-I correspondence, a much more
generalized replacement,

χM = HM/N → hM/N̂ , M → M0 , (type-II) (25)

is suggested for the purpose of self-consistence of f A,V

[73,74]. Our following theoretical results are given within
traditional type-I scheme unless otherwise specified. The
ones within type-II scheme can be easily obtained by making
an additional replacement M → M0. Finally, after integrat-
ing out k′−

1 , the matrix element, Eq. (19), can be reduced as
the LF form

B̂ = Nc

∫
dxd2k′⊥
2(2π)3

hM ′hM ′′

x̄ N̂ ′
1 N̂

′′
1

ŜB . (26)

It has been noted in Refs. [13,72] thatB receives additional
spurious contributions proportional to the light-like vector
ωμ = (0, 2, 0⊥), and these undesired spurious contributions
are expected to be cancelled out by the zero-mode contri-
butions. As demonstrated in Ref. [13], the inclusion of the
zero mode contribution in practice amounts to some proper
replacements in the ŜB under integration. For the quantities
studied in this paper, we need [13,72]

k̂′μ
1 → PμA(1)

1 + qμA(1)
2 ,

k̂′μ
1 k̂′ν

1 → gμν A(2)
1 + PμPν A(2)

2 + (Pμqν + qμPν)A(2)
3

+ qμqν A(2)
4 + Pμων + ωμPν

ω · P B(2)
1 ,

k′μ
1 N̂2 → qμ

(
A(1)

2 Z2 + q · P
q2 A(2)

1

)
,

k̂′μ
1 k̂′ν

1 N̂2 → gμν A(2)
1 Z2 + qμqν

(
A(2)

4 Z2 + 2
q · P
q2 A(1)

2 A(2)
1

)

+ Pμων + ωμPν

ω · P B(3)
3 ,

Z2 = N̂ ′
1 + m′2

1 − m2
2 + (x̄ − x)M ′2

+ (q2 + q · P)
k′

1⊥ · q⊥
q2 , (27)
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where P = p′ + p′′, and the A and B functions are given by

A(1)
1 = x

2
, A(1)

2 = x

2
− k′

1⊥ · q⊥
q2 ,

A(2)
1 = −k′2

1⊥ − (k′
1⊥ · q⊥)2

q2 ,

A(2)
2 = (A(1)

1 )2 , A(2)
3 = A(1)

1 A(1)
2 , A(2)

4 = (A(1)
2 )2 ,

B(2)
1 = x

2
Z2 − A(2)

1 ,

B(3)
3 = B(2)

1 Z2 +
(
P2 − (q · P)2

q2

)
A(1)

1 A(2)
1 . (28)

It should be noted that most of the ω-dependent terms associ-
ated with the C functions have been eliminated by the inclu-
sion of the zero-mode contributions [13], and thus are not
shown in above formulae. However, there are still some resid-
ual ω-dependences that are associated with the B functions,
which can be clearly seen from Eq. (27). As stated in Ref.
[13], the B functions play a special role since, on the one
hand, it is combined with ωμ, on the other hand, there is no
zero-mode contribution associated with B due to x N̂2 = 0.
Therefore, a different mechanism is required to neutralize
the residual ω-dependence.

Using the formulae given above, one can obtain the full
result of B, and further extract the form factors. For a given
quantity, Q, its full result can be expressed as the sum of the
valence and zero-mode contributions,

Qfull = Qval. + Qz.m. . (29)

In order to evaluate the effect of zero-mode, we also need
to calculate Qval. and/or Qz.m.. In this paper, we employ the
strategy introduced in Ref. [74] to calculate Qval..

3 Results and discussions

The matrix element for the P → V transition can be repre-
sented in terms of the form factors as

〈V (p′′, λ)|q̄ ′′
1 γμq

′
1|P(p′)〉 = iεμναβε∗ν Pαqβ g(q2) , (30)

〈V (p′′, λ)|q̄ ′′
1 γμγ 5q ′

1|P(p′)〉
= − f (q2) ε∗

μ − ε∗ · P
[
a+(q2)Pμ + a−(q2)qμ

]
. (31)

These form factors are related to the commonly used Bauer–
Stech–Wirbel (BSW) form factors via

V (q2) = −(M ′ + M ′′)g(q2) ,

A1(q
2) = − f (q2)

M ′ + M ′′ , A2(q
2) = (M ′ + M ′′)a+(q2) ,

A0(q
2) = − 1

2M ′′
[
q2a−(q2) + f (q2) + (M ′2 − M ′′2)a+(q2)

]
.

(32)

3.1 Theoretical results

Using the formulae given in the last section, we obtain the
SLF results for the form factors written as

[F(q2)]SLF =
∫

dx d2k′⊥
(2π)3 2x

ψ ′′∗(x,k′′⊥)ψ ′(x,k′⊥)

2M̂ ′
0M̂

′′
0

F̃SLF(x,k′⊥, q2), (33)

where, F = g, f and a±, and the integrands are

g̃SLF(x,k′⊥, q2)

= −2

{

x̄m′
1 + xm2 + (m′

1 − m′′
1)
k′⊥ · q⊥

q2

+ 2

D′′
V,LF

[

k′2⊥ + (k′⊥ · q⊥)2

q2

]}

, (34)

ãSLF+ (x,k′⊥, q2)

= 2

{
(m′′

1 − 2xm′
1 + m′

1 + 2xm2)
k′⊥ · q⊥
q2⊥

+ (x − x̄)(x̄m′
1 + xm2)

+ 2

D′′
V,LF

(
k′⊥ · q⊥
x̄q2⊥

− 1

)

[
k′⊥ · k′′⊥ + (xm2 − x̄m′′

1)(xm2 + x̄m′
1)

] }
, (35)

f̃ SLF(x,k′⊥, q2)

= − 4M ′′

x̄M ′′
0

{[
k′2⊥(x̄m′

1 + m′′
1 − x̄m2) − x̄k′⊥

· q⊥(m′′
1 + 2x̄m′

1 + xm2 − x̄m2)

+ (x̄m′
1 + xm2)(m

′′
1m2 + x x̄M ′′2

0 + x̄2q2⊥)
]

+ k′′2⊥ + m2
2 − x̄2M ′′2

0

x̄ D′′
V,LF

[
k′⊥ · k′′⊥ + (xm2 − x̄m′′

1)(xm2 + x̄m′
1)

]}

−
(
M ′2 − M ′′2 + q2⊥

)
ãSLF+ (x,k′⊥, q2) , (36)

ãSLF− (x,k′⊥, q2)

= 4

q2⊥

{
m′′

1M
′2
0 + m′

1M
′′2
0 − (m′

1 + m′′
1)(m

′
1 − m2)

(m′′
1 − m2) − x̄(m′

1 − m2)q2⊥
+ [m′

1 − m′′
1 + 2x̄(m′

1 − m2)]k′⊥
· q⊥ − 2(m′

1 − m2)k′2⊥

+ 1

D′′
V,LF

{
− k′′⊥ · q⊥

[
M ′2

0 − (m′
1 − m2)

2
]

+ k′⊥ · k′′⊥
[
M ′′2

0 + M ′2
0
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+2(m′′
1 + m2)(m

′
1 − m2) + q2⊥

] }}

− 2

q2 f̃ SLF(x,k′⊥, q2) + ãSLF+ (x,k′⊥, q2) . (37)

The SLF results for g(q2) and a+(q2) have been given in
the previous works, for instance, Refs. [16,17], while the
ones for f (q2) and a−(q2) are first obtained in this paper.
For [g(q2)]SLF and [a+(q2)]SLF, the results in Ref. [17] are
obtained by takingp′′⊥ = 0 (i.e. the final state moves along the
z axis), while the results given above and the ones in Ref. [16]
are obtained in the p′⊥ = 0 reference frame (i.e. the initial
state moves along the z axis). We find that these two sets of
results are a little bit different in form, but such difference
does not affect the final results after the internal variables
are integrated out. In addition, it is claimed in the abstract
of Ref. [13] that a−(q2) is impossible to be calculated in the
SLF QM, which will be discussed in the next subsection.

Using the framework of the CLF QM given in the last
section, we obtain the full CLF results for the form factors,

[F(q2)]full = Nc

∫
dx d2k′⊥
2(2π)3

χ ′
Pχ ′′

V

x̄
F̃ full(x,k′⊥, q2) , (38)

where,

g̃full(x,k′⊥, q2)

= −2

{

x̄m′
1 + xm2 + (m′

1 − m′′
1)
k′⊥ · q⊥

q2

+ 2

D′′
V,con

[

k′2⊥ + (k′⊥ · q⊥)2

q2

]}

, (39)

ãfull+ (x,k′⊥, q2)

= 2

{
(m′′

1 − 2xm′
1 + m′

1 + 2xm2)
k′⊥ · q⊥
q2⊥

+ (x − x̄)(x̄m′
1 + xm2) + 2

D′′
V,con

k′′⊥ · q⊥
x̄q2⊥

[
k′⊥ · k′′⊥ + (xm2 − x̄m′′

1)(xm2 + x̄m′
1)

] }
, (40)

f̃ full(x,k′⊥, q2)

= −2

{
− (m′

1 + m′′
1)

2(m′
1 − m2)

+ (xm2 − x̄m′
1)M

′2 + (xm2 + x̄m′
1)M

′′2

− x(m2 − m′
1)(M

′2
0 + M ′′2

0 )

+ 2xm′′
1M

′2
0 − 4

(
m′

1 − m2
)

(

k′2⊥ + (k′⊥ · q⊥)2

q2

)

− m2q
2 − (m′

1 + m′′
1)(q

2 + q · P)

k′⊥ · q⊥
q2 +4(m′

1 − m2)B
(2)
1 + 2

D′′
V,con

[ (

k′2⊥ + (k′⊥ · q⊥)2

q2

)

(
(x − x̄)M ′2 + M ′′2

− 2(m′
1 − m′′

1)(m
′
1 − m2) + 2xM ′2

0

− q2 − 2(q2 + q · P)
k′⊥ · q⊥

q2

)

−
(
M ′2 + M ′′2 − q2

+ 2(m′
1 − m2)(m

′′
1 + m2)

)
B(2)

1 + 2B(3)
3

]}
,

(41)

ãfull− (x,k′⊥, q2)

= −2

{
(3 − 2x)(x̄m′

1 + xm2)

− [
(6x − 7)m′

1 + (4 − 6x)m2 + m′′
1

]

k′⊥ · q⊥
q2 + 4(m′

1 − m2)

[

2

(
k′⊥ · q⊥

q2

)2

+ k′2⊥
q2

]

− 4
(m′

1 − m2)

q2 B(2)
1 + 1

D′′
V,con[

− 2
(
M ′2 + M ′′2 − q2 + 2(m′

1 − m2)(m
′′
1 + m2)

)

(A(2)
3 + A(2)

4 − A(1)
2 )

+
(

2M ′2 − q2 − N̂ ′
1 + N̂ ′′

1 − 2(m′
1 − m2)

2

+(m′
1 + m′′

1)
2
) (

A(1)
1 + A(1)

2 − 1
)

+ 2Z2

(
2A(2)

4 − 3A(1)
2 + 1

)

+ 2
q · P
q2

(
4A(1)

2 A(2)
1 − 3A(2)

1

)
+ 2

q2
((

M ′2 + M ′′2 − q2 + 2(m′
1 − m2)(m

′′
1 + m2)

)

B(2)
1 − 2B(3)

3

) ]}
, (42)

for the case of λ = 0 (i.e., [F̃ full]λ=0); and the results for the
case of λ = ± (i.e., [F̃ full]λ=±) can be obtained from these
formulas by deleting the terms associated with B functions.
The CLF results for FP→V are also given in Refs. [13,72],
but the contributions associated with B functions are not con-
sidered. In Ref. [72], the authors claim that the contributions
of B functions to form factors vanish when taking λ = ±,
which is also checked carefully in this work and found to
be legitimate. However, we find that the contributions of B
functions always exist for the λ = 0 state, which implies
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that f (q2) and a−(q2) possibly suffer from the problem of
self-consistency like the case of fV found in Refs. [72–74].
In fact, we will show later that whether [FP→V ]λ=± receive
the contributions of B functions is determined by the strategy
employed to deal with the spurious ω dependent contribu-
tions.

Meanwhile, the corresponding valence contributions in
the CLF approach can also been obtained via. Eq. (38) with
the integrands

g̃val.(x,k′⊥, q2) = g̃full(x,k′⊥, q2) , (43)

ãval.+ (x,k′⊥, q2) = ãfull+ (x,k′⊥, q2) , (44)

f̃ val.(x,k′⊥, q2)

= − 4

x̄

{
k′2⊥(x̄m′

1 + m′′
1 − x̄m2) − x̄k′⊥

· q⊥(m′′
1 + 2x̄m′

1 + xm2 − x̄m2)

+ (x̄m′
1 + xm2)

[
m′′

1m2 + x x̄M ′′2 + x̄2q2⊥
]

+ k′′2⊥ + m2
2 − x̄2M ′′2

x̄ D′′
V,con

[
k′⊥ · k′′⊥ + (xm2 + x̄m′

1)(xm2 − x̄m′′
1)

] }

−
(
M ′2 − M ′′2 + q2⊥

)
ãval.+ (x,k′⊥, q2) , (45)

ãfull− (x,k′⊥, q2)

= 4

q2⊥

{
x(m′′

1 − m2)M
′2
0 + x(m′

1 − m2)M
′′2
0

+ (x̄m′′
1 + xm2)M

′2 + (x̄m′
1 + xm2)M

′′2

− (m′
1 + m′′

1)(m
′
1 − m2)(m

′′
1 − m2)

− x̄(m′
1 − m2)q2⊥

+ [m′
1 − m′′

1 + 2x̄(m′
1 − m2)]k′⊥·

q⊥ − 2(m′
1 − m2)k′2⊥ + 1

D′′
V,con[

− k′′⊥ · q⊥
(
xM ′2

0 + x̄M ′2 − (m′
1 − m2)

2
)

+ k′⊥ · k′′⊥
(
M ′′2 + M ′2 + 2(m′′

1 + m2)

(m′
1 − m2) + q2⊥

) ]}

+ 2

q2⊥
f̃ val.(x,k′⊥, q2) + g̃val.(x,k′⊥, q2) . (46)

3.2 Numerical results and discussions

Based on the theoretical results given above, we then present
our numerical results and discussions. In the numerical anal-
yses, we use the values of Gaussian parameter β obtained
by fitting to the data of zero-mode independent fP [74]. In

Table 1 Numerical results of the zero-mode independent form factors
g(q2⊥) and a+(q2⊥) at q2⊥ = (0, 2, 4) GeV2 for B → D∗ transition and
at q2⊥ = (0, 1, 2) GeV2 for D → K ∗ transition

B → D∗ q2⊥ = 0 q2⊥ = 2 q2⊥ = 4

g(q2⊥) − 0.11 − 0.10 − 0.09

a+(q2⊥) 0.08 0.08 0.07

D → K ∗ q2⊥ = 0 q2⊥ = 1 q2⊥ = 2

g(q2⊥) − 0.35 − 0.27 − 0.22

a+(q2⊥) 0.20 0.16 0.14

Table 2 Numerical results of the zero-mode dependent form factors
f (q2⊥) and a−(q2⊥) at q2⊥ = (0, 2, 4) GeV2 for B → D∗ transition

B → D∗ [ f (q2⊥)]SLF [ f (q2⊥)]λ=0
full [ f (q2⊥)]λ=±1

full [ f (q2⊥)]val.

q2⊥ = 0

Type-I − 4.82 − 4.84 − 5.01 − 5.01

Type-II − 5.32 − 5.32 − 5.32 − 5.32

q2⊥ = 2

Type-I −4.64 −4.68 −4.78 −4.81

Type-II − 5.11 − 5.11 − 5.11 − 5.11

q2⊥ = 4

Type-I − 4.48 − 4.54 − 4.58 − 4.64

Type-II − 4.92 − 4.92 − 4.92 − 4.92

B → D∗ [a−(q2⊥)]SLF [a−(q2⊥)]λ=0
full [a−(q2⊥)]λ=±1

full [a−(q2⊥)]val.

q2⊥ = 0

Type-I – – − 0.11 –

Type-II − 0.10 − 0.10 − 0.10 − 0.10

q2⊥ = 2

Type-I 0.38 − 0.87 − 0.10 − 0.13

Type-II − 0.09 − 0.09 − 0.09 − 0.09

q2⊥ = 4

Type-I 0.14 − 0.50 − 0.09 − 0.10

Type-II − 0.08 − 0.08 − 0.08 − 0.08

order to clearly show the self-consistency of CLF QM, i.e.
the difference between [F]λ=0

full and [F]λ=±
full , we define

�F
full(x) ≡ d[F]λ=0

full

dx
− d[F]λ=±

full

dx
, (47)

which is equal to zero for g(q2) and a+(q2) and related to
B(2)

1 and B(3)
3 functions for f (q2) and a−(q2). In addition,

for convenience of analyses and discussions, we take the
B → D∗ and D → K ∗ transitions as examples. Using the
central values of β, we summarize our numerical results for
the form factors at different q2⊥ in Tables 1, 2 and 3, and

show the dependences of �
f ,a−
full (x) and d[ f , a−]z.m./dx on
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Table 3 Numerical results of the zero-mode dependent form factors
f (q2⊥) and a−(q2⊥) at q2⊥ = (0, 1, 2) GeV2 for D → K ∗ transition

D → K ∗ [ f (q2⊥)]SLF [ f (q2⊥)]λ=0
full [ f (q2⊥)]λ=±1

full [ f (q2⊥)]val.

q2⊥ = 0

Type-I − 1.93 − 1.76 − 2.17 − 2.19

Type-II − 2.66 − 2.66 − 2.66 − 2.66

q2⊥ = 1

Type-I − 1.75 − 1.59 − 1.89 − 1.97

Type-II − 2.37 − 2.37 − 2.37 − 2.37

q2⊥ = 2

Type-I − 1.61 − 1.50 − 1.69 − 1.79

Type-II − 2.14 − 2.14 − 2.14 − 2.14

D → K ∗ [a−(q2⊥)]SLF [a−(q2⊥)]λ=0
full [a−(q2⊥)]λ=±1

full [a−(q2⊥)]val.

q2⊥ = 0

Type-I – – −0.34 –

Type-II − 0.35 − 0.35 − 0.35 − 0.35

q2⊥ = 1

Type-I 0.97 − 0.94 − 0.27 − 0.49

Type-II − 0.27 − 0.27 − 0.27 − 0.27

q2⊥ = 2

Type-I 0.32 − 0.62 − 0.22 − 0.30

Type-II − 0.21 − 0.21 − 0.21 − 0.21

x in Figs. 2 and 3. Based on these numerical results and the
theoretical formulae given in the last subsection, we have the
following discussions and findings:

• From Eqs. (39) and (40), it can be found that the CLF
results for g(q2) and a+(q2) are independent of the
B function contributions and the choice of λ, which
implies that such two form factors do not have the self-
consistency problem, i.e.,

[g(q2)]λ=0
full = [g(q2)]λ=±

full ,

[a+(q2)]λ=0
full = [a+(q2)]λ=±

full . (48)

From Eqs. (43) and (44), it can be found that they are
also free from the zero-mode effect. Further comparing
Eqs. (34) with (39) for g(q2) and Eqs. (35) with (40) for
a+(q2), respectively, we can conclude that

[g(q2)]SLF = [g(q2)]val. = [g(q2)]full ,

[a+(q2)]SLF = [a+(q2)]val. = [a+(q2)]full (49)

within both the type-I and the type-II scheme. The numer-
ical examples for g(q2) and a+(q2) are given in Table 1.

• The form factors f (q2) anda−(q2) are zero-mode depen-
dent, which is different from the case of g(q2) and
a+(q2); and moreover, their CLF results extracted via
λ = 0 mode ([ f (q2)]λ=0

full and [a−(q2)]λ=0
full ) receive

additional contributions associated with B(2)
1 and B(3)

3
functions relative to the ones obtained via λ = ±
mode ([ f (q2)]λ=±

full and [a−(q2]λ=±
full ), which can be found

from Eqs. (41) and (42). From Figs. 2a, c and 3a, c, it
can be clearly seen that the contributions of B(2)

1 and

B(3)
3 functions,

∫ 1
0 dx� f ,a−

full (x), are nonzero in the tradi-

Fig. 2 The dependences of
�

f,a−
full (x) and d[ f, a−]z.m./dx

on x for B → D∗ transition at
q2⊥ = (0, 2, 4) GeV2. See text
for the detailed explanations and
discussions
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Fig. 3 The dependences of
�

f,a−
full (x) and d[ f, a−]z.m./dx

on x for D → K ∗ transition at
q2⊥ = (0, 1, 2) GeV2. See text
for the detailed explanations and
discussions
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tional type-I correspondence scheme. It also can be found
from the numerical examples given in Tables 2 and 3 (the
fourth and fifth columns), from which one can further
find that the effects of these contributions are very sig-
nificant at some q2 points. Therefore, the CLF results
in type-I scheme suffer from the self-consistency prob-
lems, [ f (q2)]λ=0

full �= [ f (q2)]λ=±
full and [a−(q2)]λ=0

full �=
[a−(q2)]λ=±

full (type-I).

Interestingly, within the type-II correspondence scheme,
the positive �

f ,a−
full (x) with small x and the negative one

with large x can exactly cancel each other at each q2

point, therefore
∫

dx� f ,a−
full (x) = 0, which are clearly

shown in Figs. 2a, c and 3a, c. As a result, we find that

[ f (q2)]λ=0
full =̇ [ f (q2)]λ=±

full ,

[a−(q2)]λ=0
full =̇ [a−(q2)]λ=±

full , (type-II) (50)

which can also be easily found by comparing the numer-
ical results given in the fourth and the fifth columns
of Tables 2 and 3. The Eq. (50) implies that the self-
consistency problem can be resolved by employing the
type-II correspondence scheme.

• Comparing Eqs. (36) with (45) and Eqs. (37) with (46),
respectively, we do not find significant relations between
the SLF results and the valence contributions in the
CLF approach for f (q2) and a−(q2) within the type-
I scheme. However, employing the type-II scheme and
making some simplifications on these formulas, we find

surprisingly that the SLF and valence results are exactly
the same,

[ f (q2)]SLF = [ f (q2)]val. and

[a−(q2)]SLF = [a−(q2)]val. , (type-II) (51)

which can also been clearly seen from the numerical
results given in Tables 2 and 3.

In addition, we find that [a−(q2)]SLF,val. is divergent at
q2 = 0 in the type-I scheme, therefore their numerical
results are labeled as “–” in Tables 2 and 3. It is possi-
bly the reason for why the author of Ref. [13] claims
in the abstract that a−(q2) is impossible to be calcu-
lated in the SLF QM, while we note that the CLF results,
[ f (0)]λ=0

full and [a−(0)]λ=0
full , also suffer from such prob-

lem in the type-I scheme. Interestingly, this divergence
problem does not exist in the type-II scheme, and their
numerical results at q2 = 0 satisfy the relations given by
Eqs. (50), (51) and following Eq. (52).

• From Figs. 2b, d and 3b, d, it can be seen that zero-
mode presents sizable contributions to f (q2) and a−(q2)

within the traditional type-I correspondence scheme, i.e.,
[ f (q2)]z.m. �= 0 and [a−(q2)]z.m. �= 0 (type-I); while,
in the type-II correspondence scheme, these contribu-
tions, although existing formally, vanish numerically, i.e.,
[ f (q2)]z.m.=̇0 and [a−(q2)]z.m.=̇0 (type-II). Therefore,
one can further find that
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[ f (q2)]full =̇ [ f (q2)]val. and

[a−(q2)]full =̇ [a−(q2)]val. , (type-II) (52)

which can also be found from the numerical examples
given in Tables 2 and 3.

Combining the findings given above, we can finally con-
clude that

[F(q2)]SLF = [F(q2)]val. =̇ [F(q2)]full , (type-II) (53)

where, [F(q2)]full ≡ [F(q2)]λ=±
full =̇[F(q2)]λ=0

full [Eq. (50)]
implies the self-consistency of the CLF QM and holds only in
the type-II correspondence scheme; the symbol, “=̇”, should
be replaced by “=” for g(q2) and a+(q2).

Besides of the self-consistency problem, the CLF QM with
traditional type-I correspondence scheme also has a problem
of covariance, which will be discussed in the follows. A pecu-
liar property of the LF matrix element is its dependence on
the light-like four vector ω = (0, 2, 0⊥) [13,71], which can
be explicitly revealed by the decomposition

B̂ = physical part + ω-dependent part , (54)

where the “physical part” contains the physical contributions
to the form factors, while the “ω-dependent part” is unphys-
ical and may violate the covariance of matrix element if it is
nonzero. In the CLF QM, most of the ω-dependent contri-
butions are eliminated by the zero-mode contributions, but
there are still some residual ω-dependences which are asso-
ciated with B functions and independent of zero-mode [13].
Therefore, a different mechanism is required to “neutralize”
the effects of these residual ω-dependent contributions.

In order to clearly show the residual ω-dependence of
matrix element of P → V transition, after integrating out
the k− component and taking into account the zero-mode
contributions, we can decompose the trace term ŜB in the
integrand of Eq. (26) for 〈V (p′′, λ)|q̄ ′′

1 γμγ 5q ′
1|P(p′)〉 as

Ŝμ
P→V =4

Pμε∗ · ω + ωμε∗ · P
ω · P{

2(m′
1 − m2)B

(2)
1 − 1

D′′
V,con[(

M ′2 + M ′′2 − q2 + 2(m′
1 − m2)

(m′′
1 + m2)

)
B(2)

1 − 2B(3)
3

]}
+ ... , (55)

where “...” denotes the physical contribution resulting in the
CLF results for f (q2) and a±(q2) without considering con-
tributions related to B functions. For the first term in Eq. (55),
in order to separate the potential physical contribution from
the unphysical one, we shall use the identity [71]

Pμ ε · ω

ω · P
= εμ − qμ

q2

(
ε · q − q · P ω · ε

ω · P
)

− ωμ

ω · P
[
ε · P − ε · q q · P

q2 − ε · ω
P2

ω · P + ε · ω
(q · P)2

q2ω · P
]

− iλ

ω · P
ε · q
q2 εμαβνωαqβ Pν . (56)

For the case of λ = 0, using Eq. (56), the pre-factor in
Eq. (55) can be written as

Pμε∗ · ω + ωμε∗ · P
ω · P

∣∣∣
λ=0

= ε∗μ − qμ

q2 ε∗ · q + qμ q · P ω · ε∗

q2 ω · P + ωμ 2M ′′

ω · P . (57)

For the case of λ = ±, instead of using Eq. (56), we can
directly write the pre-factor in Eq. (55) as

Pμε∗ · ω + ωμε∗ · P
ω · P

∣∣∣
λ=± = ωμ ε∗ · P

ω · P , (58)

due to ε∗
λ=± · ω = 0. Based on these formulae, we have

following remarks:

• Comparing Eq. (57) with Eq. (58), it can be found that
the first and the second term in Eq. (57) give additional
contributions associated with B functions to [ f (q2)]λ=0

full
and [a−(q2)]λ=0

full , respectively, which results in the self-
consistency problems of CLF QM.

The last terms in Eqs. (57) and (58) are the residual
ω-dependent parts, which give the contributions to the
unphysical form factor and will violate the covariance
if nonzero. Therefore, we can conclude that the self-
consistency and the covariance problems of CLF QM
are in fact have the same origin.

• In the traditional type-I correspondence scheme, the
residual ω-dependent parts in Eqs. (57) and (58) are
nonzero, therefore, the covariance of matrix element is
violated. While, these unphysical ω-dependent parts van-
ish numerically in the type-II scheme because they are
proportional to

∫
dx� f,a−

full (x) = 0 (type-II). It implies
that the covariance can be recovered by employing the
type-II scheme.

• It should be noted that, for the λ = ± mode, the decom-
position into physical and unphysical contributions is
ambiguous. Instead of Eq. (58) used in this paper, one
can also decompose Pμε∗·ω+ωμε∗·P

ω·P
∣∣
λ=± in the same way

as Pμε∗·ω+ωμε∗·P
ω·P

∣∣
λ=0 by using Eq. (56). At this time,

[ f (q2)]λ=±
full and [a−(q2)]λ=±

full have the same forms as

123



Eur. Phys. J. C (2019) 79 :422 Page 11 of 14 422

Table 4 The updated results of form factors for some P → V transitions

F F(0) a b F F(0) a b

V D→ρ 1.05+0.01+0.07
−0.01−0.07 1.20+0.02+0.10

−0.02−0.10 0.23+0.02+0.01
−0.02−0.01 AD→ρ

0 0.68+0.01+0.04
−0.01−0.04 1.27+0.02+0.04

−0.02−0.05 0.30+0.02+0.03
−0.02−0.03

AD→ρ
1 0.67+0.01+0.05

−0.01−0.05 0.57+0.01+0.06
−0.01−0.04 −0.02+0.00+0.01

−0.01−0.01 AD→ρ
2 0.49+0.00+0.04

−0.00−0.04 0.71+0.02+0.08
−0.02−0.07 0.15+0.01+0.01

−0.01−0.01

V D→K ∗
1.14+0.01+0.06

−0.01−0.07 1.09+0.02+0.08
−0.02−0.07 0.21+0.02+0.01

−0.02−0.01 AD→K ∗
0 0.76+0.01+0.04

−0.01−0.05 1.14+0.02+0.04
−0.03−0.05 0.26+0.02+0.03

−0.02−0.03

AD→K ∗
1 0.78+0.01+0.05

−0.01−0.06 0.56+0.02+0.03
−0.02−0.03 −0.02+0.01+0.01

−0.01−0.01 AD→K ∗
2 0.65+0.00+0.05

−0.00−0.06 0.82+0.03+0.07
−0.03−0.07 0.12+0.01+0.01

−0.01−0.01

V Ds→K ∗
1.07+0.02+0.08

−0.02−0.08 1.40+0.04+0.10
−0.04−0.09 0.39+0.04+0.05

−0.04−0.05 ADs→K ∗
0 0.59+0.01+0.04

−0.01−0.05 1.50+0.04+0.10
−0.04−0.10 0.51+0.04+0.02

−0.05−0.02

ADs→K ∗
1 0.63+0.01+0.06

−0.01−0.06 0.79+0.01+0.04
−0.01−0.03 0.05+0.01+0.00

−0.02−0.00 ADs→K ∗
2 0.53+0.00+0.06

−0.00−0.06 0.98+0.05+0.09
−0.05−0.08 0.24+0.02+0.01

−0.03−0.01

V Ds→φ 1.24+0.01+0.06
−0.01−0.06 1.21+0.02+0.05

−0.02−0.05 0.30+0.02+0.05
−0.02−0.05 ADs→φ

0 0.71+0.00+0.04
−0.01−0.05 1.29+0.02+0.06

−0.02−0.06 0.38+0.02+0.01
−0.02−0.01

ADs→φ
1 0.77+0.00+0.06

−0.00−0.07 0.70+0.02+0.01
−0.02−0.01 0.03+0.01+0.00

−0.01−0.00 ADs→φ
2 0.66+0.00+0.06

−0.00−0.07 0.92+0.02+0.06
−0.02−0.06 0.18+0.01+0.01

−0.01−0.01

V B→ρ 0.35+0.01+0.06
−0.01−0.05 1.70+0.02+0.20

−0.02−0.20 0.84+0.04+0.10
−0.04−0.10 AB→ρ

0 0.30+0.01+0.05
−0.01−0.05 1.76+0.02+0.20

−0.02−0.20 0.97+0.04+0.20
−0.05−0.17

AB→ρ
1 0.27+0.01+0.05

−0.01−0.04 0.85+0.02+0.08
−0.02−0.06 0.12+0.01+0.03

−0.01−0.02 AB→ρ
2 0.25+0.01+0.04

−0.01−0.04 1.44+0.03+0.20
−0.03−0.13 0.64+0.04+0.09

−0.04−0.07

V B→K ∗
0.40+0.01+0.07

−0.01−0.06 1.65+0.03+0.20
−0.03−0.20 0.80+0.05+0.10

−0.06−0.10 AB→K ∗
0 0.35+0.01+0.06

−0.01−0.06 1.71+0.03+0.20
−0.03−0.20 0.91+0.05+0.10

−0.06−0.10

AB→K ∗
1 0.32+0.01+0.06

−0.01−0.05 0.87+0.03+0.08
−0.03−0.06 0.12+0.02+0.03

−0.02−0.02 AB→K ∗
2 0.30+0.01+0.05

−0.01−0.05 1.46+0.03+0.20
−0.04−0.20 0.64+0.05+0.08

−0.05−0.06

V B→D∗
0.78+0.01+0.09

−0.01−0.10 1.26+0.01+0.10
−0.01−0.10 0.37+0.01+0.04

−0.02−0.03 AB→D∗
0 0.68+0.01+0.08

−0.01−0.08 1.28+0.01+0.10
−0.01−0.10 0.40+0.02+0.05

−0.02−0.03

AB→D∗
1 0.66+0.01+0.08

−0.01−0.08 0.66+0.01+0.05
−0.01−0.05 0.00+0.01+0.01

−0.01−0.01 AB→D∗
2 0.62+0.00+0.08

−0.00−0.08 1.13+0.02+0.10
−0.02−0.09 0.30+0.02+0.03

−0.02−0.02

V Bs→K ∗
0.28+0.02+0.07

−0.02−0.06 2.06+0.04+0.20
−0.05−0.20 1.82+0.14+0.20

−0.15−0.10 ABs→K ∗
0 0.22+0.01+0.06

−0.01−0.05 2.14+0.04+0.20
−0.05−0.20 2.05+0.15+0.20

−0.17−0.20

ABs→K ∗
1 0.20+0.01+0.05

−0.01−0.05 1.29+0.05+0.06
−0.05−0.04 0.61+0.07+0.05

−0.08−0.03 ABs→K ∗
2 0.19+0.01+0.05

−0.01−0.04 1.80+0.05+0.20
−0.06−0.16 1.45+0.12+0.10

−0.14−0.08

V Bs→φ 0.38+0.01+0.09
−0.01−0.08 1.91+0.02+0.20

−0.02−0.13 1.44+0.06+0.10
−0.07−0.10 ABs→φ

0 0.30+0.01+0.07
−0.01−0.06 1.98+0.02+0.20

−0.02−0.20 1.61+0.07+0.20
−0.07−0.20

ABs→φ
1 0.28+0.01+0.07

−0.01−0.06 1.18+0.02+0.06
−0.03−0.05 0.44+0.03+0.04

−0.03−0.03 ABs→φ
2 0.26+0.01+0.07

−0.01−0.06 1.69+0.03+0.20
−0.03−0.17 1.16+0.06+0.08

−0.06−0.07

V Bs→D∗
s 0.83+0.01+0.10

−0.01−0.10 1.34+0.03+0.10
−0.03−0.08 0.52+0.03+0.03

−0.03−0.02 A
Bs→D∗

s
0 0.68+0.01+0.09

−0.01−0.09 1.37+0.03+0.10
−0.03−0.10 0.57+0.03+0.03

−0.04−0.02

A
Bs→D∗

s
1 0.66+0.01+0.09

−0.01−0.10 0.76+0.03+0.04
−0.03−0.02 0.10+0.01+0.03

−0.01−0.03 A
Bs→D∗

s
2 0.59+0.00+0.08

−0.00−0.09 1.17+0.04+0.08
−0.04−0.06 0.41+0.03+0.01

−0.03−0.01

V Bc→D∗
0.23+0.02+0.09

−0.02−0.07 3.51+0.09+0.20
−0.10−0.13 7.91+0.67+0.10

−0.70−0.10 ABc→D∗
0 0.13+0.01+0.05

−0.01−0.04 3.64+0.09+0.20
−0.10−0.20 8.79+0.72+0.30

−0.78−0.30

ABc→D∗
1 0.13+0.01+0.05

−0.01−0.04 2.76+0.10+0.05
−0.11−0.01 4.56+0.47+0.30

−0.50−0.30 ABc→D∗
2 0.13+0.01+0.05

−0.01−0.04 3.04+0.11+0.10
−0.11−0.09 6.13+0.59+0.10

−0.61−0.10

V Bc→D∗
s 0.42+0.03+0.10

−0.03−0.10 2.99+0.10+0.20
−0.10−0.17 4.84+0.46+0.10

−0.51−0.10 A
Bc→D∗

s
0 0.24+0.02+0.07

−0.02−0.06 3.11+0.10+0.20
−0.10−0.20 5.41+0.50+0.20

−0.58−0.20

A
Bc→D∗

s
1 0.24+0.02+0.08

−0.02−0.06 2.23+0.11+0.06
−0.11−0.05 2.53+0.30+0.20

−0.36−0.14 A
Bc→D∗

s
2 0.21+0.01+0.07

−0.01−0.06 2.50+0.12+0.10
−0.12−0.10 3.55+0.40+0.04

−0.47−0.04

V Bc→J/ψ 0.90+0.01+0.20
−0.01−0.20 2.25+0.03+0.04

−0.03−0.05 2.08+0.08+0.06
−0.09−0.04 ABc→J/ψ

0 0.57+0.01+0.10
−0.01−0.10 2.34+0.03+0.05

−0.03−0.06 2.31+0.09+0.05
−0.09−0.05

ABc→J/ψ
1 0.57+0.01+0.10

−0.01−0.10 1.16+0.03+0.20
−0.03−0.13 1.05+0.05+0.10

−0.06−0.10 ABc→J/ψ
2 0.52+0.01+0.10

−0.01−0.10 1.97+0.03+0.05
−0.03−0.06 1.62+0.07+0.05

−0.07−0.02

[ f (q2)]λ=0
full and [a−(q2)]λ=0

full , respectively, thus the self-
consistency problem vanishes, which however is at the
expense of introducing some unphysical form factors,
for instance, the one corresponding to non-vanishing
εμαβνωαqβ Pν in Eq. (56). Therefore, we can conclude
that whether the self-consistency appears is in fact deter-
mined by the way of decomposition for the contribution
of B functions. This ambiguous decomposition become
trivial only when the contributions of B functions are
zero, which is impossible in the type-I corresponding
scheme but can be achieved in the type-II scheme.

Therefore, we can conclude that the problems of self-
consistency and covariance in the CLF QM can be resolved
simultaneously by taking type-II correspondence scheme.
Finally, using the values of input parameters summarized in

the appendix and employing the type-II scheme, we present
our updated numerical results of BSW form factors for some
P → V transitions in Table 4, where the two uncertain-
ties are caused by parameters β and quark masses, respec-
tively. Some form factors have also been evaluated by other
approaches, for instance, Lattice QCD [75,76], light-cone
sum rules [77–80] and perturbative QCD [81–88]. Through
comparison of these previous results with ours listed in
Table 4, it is found that they are generally consistent with
each other within theoretical uncertainties.

4 Summary

In this paper, we have investigated the self-consistency and
Lorentz covariance of the CLF QM via the matrix elements
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and relevant form factors of P → V transition, which
provide much stricter tests on the CLF QM and are much
more complicated than the case of decay constants stud-
ied in the previous works [73,74]. Two types of correspon-
dence schemes between the manifest covariant BS approach
and the LF QM are studied in detail. The main difference
between these two schemes resides in whether the replace-
ment M → M0 is applied only in the vertex operator or in
each term in the integrand. Meanwhile, the results in the SLF
QM are also presented for comparison. Our main findings are
summarized as follows:

• The form factors g(q2) and a+(q2) are independent
of the spurious contributions associated with B func-
tions, therefore their CLF results obtained via λ = 0
and ± polarization states of vector meson are consis-
tent with each other, [g(q2)]λ=0

full = [g(q2)]λ=±
full and

[a+(q2)]λ=0
full = [a+(q2)]λ=±

full , within both type-I and -
II correspondence schemes. Moreover, they are also free
from the zero-mode contributions, therefore their valence
contributions and full results in the CLF QM are the same.
Besides, they are also equal to the SLF results. These rela-
tions can be summarized by Eq. (53) in both type-I and
-II schemes.

• In the CLF QM, the form factors a−(q2) and f (q2)

receive the contributions related to B(2)
1 and B(3)

3 func-
tions, and these contributions obtained via λ = 0 and ±
states within the type-I scheme are different with each
other, therefore, the CLF results for a−(q2) and f (q2)

in the type-I scheme suffer from the problem of self-
consistency. This problem can be resolved by employ-
ing the type-II correspondence because the contributions
associated with B functions vanish numerically after tak-
ing M → M0.

• The form factors a−(q2) and f (q2) receive the zero-
mode contributions. These contributions exist formally
but vanish numerically in the type-II scheme, which
results in [ f (q2)]full =̇ [ f (q2)]val. and [a−(q2)]full

=̇ [a−(q2)]val.. Further considering [ f (q2)]SLF =
[ f (q2)]val. and [a−(q2)]SLF = [a−(q2)]val. (type-II), we
can conclude that the relation given by Eq. (53) holds
still for the form factos a−(q2) and f (q2) in the type-II
scheme, but is violated in the type-I scheme.

• The manifest covariance of the CLF result for 〈V |q̄γμγ 5

q|P〉 is violated within the traditional type-I correspon-
dence scheme, but remarkably, can be recovered by
employing the type-II correspondence. We further show
that the self-consistency and covariance problems of CLF
QM have the same origin; in addition, whether the self-
consistency problem exists is in fact determined by the

way of decomposition for the contribution of B func-
tions. This ambiguous decomposition become trivial in
the type-II correspondence scheme.

Above findings confirm further the conclusion obtained
via the decay constants of vector and axial-vector mesons in
the previous works [73,74].
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Appendix: Input parameters

The constituent quark masses and Gaussian parameters β are
essential inputs for calculating the form factors of P → V
transition. For the former, their values have been suggested
in many previous works, for instance, Refs. [68,71,72,89];
in addition, they can also be obtained from the variational
principle [27,28,90]; but the errors are not evaluated in these
previous works. In this work, we take [68]

mu(d),s,c,b = (0.25, 0.45, 1.40, 4.64) GeV , (59)

as default inputs, and assign 10% uncertainties to them which
can cover roughly most of the values suggested in Refs.
[27,28,68,71,72,89,90]. For the Gaussian parameters β, we
summarize their values in Table 5, which are obtained by fit-
ting to the data of decay constants of P and V mesons [74]
with the default values of quark masses, Eq. (59), as inputs. In
the fit, the theoretical formulas for the decay constants in the
CLF QM with type-II correspondence scheme given in Ref.
[74] are used. These values are used in our updated predic-
tions for the BSW form factors, whose momentum depen-
dence can be parameterized and reproduced via the three
parameter form

F(q2) = F(0)

1 − a(q2/M ′2) + b(q2/M ′2)2 . (60)

Our updated numerical results of F(0), a and b for some
P → V transitions are summarized in Table 4.
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Table 5 The values of Gaussian
parameters β (in unit of MeV),
where q = u and d

βqq̄ βsq̄ βss̄ βcq̄ βcs̄

P meson 314.1 ± 0.5 350.7 ± 1.6 377.7 ± 1.4 461.2 ± 11.1 543.2 ± 9.5

V meson 312.4 ± 5.8 314.2 ± 9.6 350.5 ± 5.0 412.0 ± 12.0 514.1 ± 18.5

βcc̄ βbq̄ βbs̄ βbc̄ βbb̄

P meson 753.3 ± 14.0 540.7 ± 9.6 601.9 ± 7.4 933.9 ± 11.1 1382.4 ± 50.0

V meson 684.4 ± 6.7 504.4 ± 14.2 556.4 ± 10.1 863.4 ± 32.8 1370.1 ± 11.2
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