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Abstract In a recent paper we have shown that a mini-
mally coupled, self-interacting scalar field of mass m can
form black holes of mass M = /3 /(4m) (in Planck units).
If dark matter is composed by axions, they can form mini-
clusters that for QCD axions have masses below this value.
In this work it is shown that for a scenario in which the axion
mass depends on the temperature as m o T~°, minicluster
masses above 0.32 M, corresponding to an axion mass of
3 x 10710 ¢V, exceed M and can collapse into black holes.
If a fraction of these black holes is in binary systems, grav-
itational waves emitted during the inspiral phase could be
detected by advanced interferometers like LIGO or VIRGO
and by the planned Einstein Telescope. For a detection rate
of one event per year, the lower limits on the binary frac-
tion are 10~ and 10~° for LIGO and Einstein Telescope
respectively.

1 Introduction

Still hypothetical particles, with masses estimated to be in the
range m ~ 10722 eV up to 1073 eV and with a small interac-
tion cross section, axions are up to date the most reliable the-
oretical explanation for the CP problem of strong interactions
[1]. In arecent paper [2] we have shown that scalar fields may,
in general, suffer gravitational collapse, producing a central
singularity (see also [3—5]) and the black hole formed under
this process has a mass M = \/§M%/(4m). This result was
derived from an exact solution of the Einstein—Klein—-Gordon
equations in spherical symmetry, assuming that the scalar
field was minimally coupled to gravity. A particular hyper-
bolic self-interacting potential was adopted, which mimics
a free field potential during the first stages of the collapse.
For different potentials the collapse (if it occurs) will fol-
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low a different evolutionary behavior. Nevertheless, since an
initially free field can trigger the collapse, we expect that
this happens in general, except for the particular case of a
strongly repulsive interaction. In fact, both a A¢* potential
or the axion potential given in [6] are less repulsive than the
hyperbolic potential adopted in [2]. This can be shown in Fig.
1 where the axion potential of [6] is compared with the poten-
tial of [2] for identical initial conditions. On the other hand,
Kaup in a seminal paper [7] solved numerically for the first
time the general relativistic Klein-Gordon equation, deriv-
ing the eigenstates for spherical symmetry. He concluded
that in the free field case there is a maximum mass given
by Mmax = 0.633 MI% /m (the so-called Kaup limit), above
which the system becomes unstable. Notice that the Kaup
limit differs slightly in the numerical factor as compared to
the mass M mentioned above, probably a consequence of
being the result of a series of static equilibrium solutions
while the result by [2] was obtained from a dynamic study of
the black hole formation. The inclusion of a self-interaction
with potential V (¢) = (1/ 4)r¢p* increases dramatically the
maximum mass to Mpy,x = 0.127A1/2(M,33/m2) (see, for
instance, [8]). On the other hand, attractive self-interactions
lower the maximum mass below the Kaup mass, leading to an
instability to axion-nova before the collapse to a black hole
[6]. It should also be emphasised that the maximum mass
observed in the diagram “mass versus number of particles”,
often called the “critical mass” in the literature, is not neces-
sarily the value above which the system collapses as it was
shown by Gleiser [9]. This is also true in the case of dense
axion stars, which are unstable for masses above this limit
and only collapse to black holes for masses still higher [6].
On the other hand, axions are good candidates to be cold
dark matter particles present in the standard cosmological
model [10,11], because they interact very weakly either
with baryonic matter or radiation. Axions are produced non-
thermally and are the consequence of a spontaneously broken
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Fig. 1 Comparison between the axionic potential [6] (blue) and the
hyperbolic potential used in [2] (yellow), for the same initial conditions

global symmetry, known as a Peccei—Quinn symmetry, which
occurs when the temperature of the universe drops below the
symmetry breaking scale. If dark matter is composed, at least
partially by axions, it is not possible to exclude that mini-
axion stars (dubbed miniclusters in the literature) could have
been formed from density fluctuations present in the epoch of
symmetry breaking. In fact, the phenomenology of the mini-
cluster formation is determined by the cosmic epoch during
which the symmetry breaking occurs. Hogan and Rees [12]
considered a density contrast of the order of the unity and
that the typical mass of a mini-axion star corresponds to the
mass of all axions inside the horizon at T ~ 100 MeV. In
this case, the masses of these miniclusters would be about
1070 M. However, Kolb and Tkachev [4] found that oscil-
lations of the axion potential are responsible for non-linear
effects controlling the density of mini-axion stars. The mass
scale of these objects is fixed as before by the total mass
in axions within the horizon but at 7 ~ 1 GeV, when the
axion mass is of the order of 10~ eV. These effects reduce
the mini-axion star mass to about 10~'2 M. These masses
are below the critical mass expected to trigger the gravita-
tional collapse. Recently, Fairbairn et al. [13] revisited the
formation of miniclusters, considering different scenarios for
the evolution of the axion mass. Here, their results will be
used to show that miniclusters of non-QCD axions having
masses above 0.32 M, corresponding to an axion mass of
~3x 10710 ¢eV can collapse and form black holes. In [13],
the Press—Schechter formalism was used to compute the mass
function of dark halos formed during the hierarchical struc-
ture process in which the miniclusters are seeds. Presently,
we cannot exclude the possibility that a small fraction of col-
lapsed miniclusters could constitute binary systems formed
during successive merger episodes that led to the assembly
of dark halos. In this work we will explore this possibility,
aiming to constrain the putative fraction of binaries formed
during merger events by using the gravitational wave sig-
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nal emitted during the coalescence of these systems. We will
make predictions for the advanced-LIGO [14] and for the
planned Einstein Telescope ([15]) laser interferometers. The
paper is organized as follows: in Sect. 2 we discuss the criti-
cal mass of miniclusters able to collapse, in Sect. 3 a simple
evolutionary model for the pairs is discussed, in Sect. 4 we
give a detailed discussion of the detection of the events and
in Sect. 5 we present our final considerations.

2 Critical mass

The formation of compact structures constituted by axions
or axion-like particles (ALP) is plagued by the absence of an
effective cooling mechanism [16]. In the case of configura-
tions involving scalar fields, different investigations indicate
that these systems may relaxe through the emission of bursts
of particles [17,18], a process known as gravitational cool-
ing. Coherent oscillations of the scalar field may also help the
relaxation process that leads to the formation of a compact
boson star [19]. Another path to form compact axion-like
structures was investigated in [20], where dark mater was
assumed to be composed by a non-relativistic bosonic con-
densate in which the uncertainty principle balances gravity
for scales less than the Jeans length. The high resolution
cosmological simulations performed with this dark matter
model with m ~ 10722 eV indicate that the resulting large
structure is indistinguishable from cold dark matter, but “soli-
tonic” compact structures are generally formed in the core of
galaxies.

As mentioned before, in the scenario where primordial
axion miniclusters are formed, the estimated masses are
below the critical value and hence they will not collapse
into black holes. The early evolution of axions is determined
mainly by two energy scales: the mass m and the decay con-
stant f,. The time #y at which the axion mass becomes sig-
nificant is when its Compton wavelength is comparable to
the Hubble radius, that is m =~ hH(to)/cz. This mass is a
consequence of non-perturbative effects like instantons [21]
and its evolution with the temperature can be modeled by the
relation m o¢ T~". For QCD axions n = 3.34, a value which
is consistent with lattice simulations. The computed mass of
miniclusters by [13] as a function of the QCD axion mass is
shown in Fig. 2 (blue curve) that is always below the mini-
mum mass (black curve) computed from the relation derived
by [2].

Higher minicluster masses can be obtained if a more dra-
matic variation of the axion mass with the temperature is con-
sidered. Assuming for instance n = 6, minicluster masses
up to 103 Mg can be obtained. These large values are not
in contradiction with constraints imposed by the Lyman-«
forest power spectrum [13]. The minicluster mass as a func-
tion of the axion mass for the case n = 6 is also shown in
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Fig. 2 The mass of axionic miniclusters as a function of the axion
mass for two different temperature evolution models [13]. The blue
curve corresponds to QCD axions while the red curve corresponds to
a rapid variation of the axion mass with temperature. The black curve
corresponds to the critical mass derived by [2]

Fig. 2 (red curve). Inspection of these plots indicate that, for
the temperature evolution scenario with n = 6, miniclusters
with masses above 0.32 M corresponding to an axion mass
of 3 x 10719 eV are susceptible to undergo the gravitational
collapse.

Here it is assumed that a fraction n of axion (or ALP)
miniclusters of mass M ~ 0.32 M, constituting dark halos
has collapsed and formed black holes. Upper limits from
microlensing implies that the maximum contribution of black
holes of such a mass to the total dark matter density is about
n ~ 0.05 (see [22]), a value that will be adopted in our
computations. We assume also that a fraction f;, of these
black holes form binary systems, a parameter that will be
constrained by the coalescence rate of these systems as we
shall see below.

3 The evolution of axion black hole binaries

The putative binaries constituted by two black holes of mass
My, = 0.32 M have an orbital separation distribution that
fixes the rate at which they merge due to energy and angu-
lar momentum losses by gravitational radiation. During the
inspiral phase of the merger, the wave frequency increases
and peaks around the orbital frequency corresponding to a
pair separation close to the gravitational radius. Such a char-
acteristic frequency scales inversely with the black hole mass
and is given by [23]

Mo
fmax = 4397 (1 4+ 0.316y) 3 Hz, 1))

where M is the binary mass, which in our case is 0.64 M,
and y = u/M with u being the reduced mass of the binary.

Putting numbers, it results that the maximum gravitational
wave frequency is about 7.4 kHz.

In the absence of a detailed mechanism for the formation
of black hole pairs, despite recent investigations in this sense
[24], only a simple estimation of the physical characteristics
of the pairs will be presented here. The main free parameter
of our model, the fraction of binaries f;, will be constrained
by requiring merger rates respectively equal to 1 event each
10 years, 1 event per year and an optimistic assumption of
10 events per year that would occur in the volume of the
universe probed by the gravitational antenna. This point will
be discussed in more detail in the next section. We will first
assume that when dark halos begin to be assembled some
10'0 years ago, the initial number of binaries Ny in a given
halo is approximately

M
No = nfp (ﬁ) : )

In the equation above 7 is the fraction of dark matter under the
form of black holes, f} is the fraction of binaries of mass M
among these black holes and My ~ 10'? M, is a typical halo
mass for galaxies similar to the Milky Way. As mentioned
before, we will take n = 0.05.

In a second step, we will assume that the binaries have a
distribution of separation a such as P (a)da is the fraction of
binaries with separation in the interval a, a + da. Fixing the
masses of the pair components, the merger timescale t due to
gravitational radiation depends only on the initial separation
as T o a*. Therefore, the probability per unit of time P(7)
for the occurrence of a merger after the assembly of the halos
is
P(r) = P(a) | Z—i |ox %- 3)
In the absence of a detailed formation mechanism for the
binaries, we assume that the pair separation distribution is
the same as that observed for massive stars in our galaxy,
that is, P(a) o 1/a (see, for instance, [25]), which was also
adopted for estimations of the coalescence rate of neutron
star binaries [26]. In this case, the merger probability per
unit of time at the age t is

K
Py =—. “

where K is a normalisation constant that can be computed by
integrating P(7) in the interval 7o and T,. Therefore, K =
[In(T,/ ro)]*1 . The lower limit 7o corresponds to the merger
timescale related to the minimal pair separation while the
upper limit 7, corresponds to the maximum pair separation.
In order to maintain the dynamical stability of the pairs, the
maximum separation cannot be larger than the mean distance
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between black holes when the halo was assembled. In our
estimates we will assume that T}, is about 10 times the age
of the Galaxy, namely 7;, ~ 10'! years, corresponding to a
maximum initial pair separation of about 4.5 x 10 km, and
79 = 10° years.

If Nj (1) is the number of binaries at the instant r (computed
after the assembly of the halo), the merger rate Rj(¢) is given
by

Ry (1) = Np(t) P (). &)

Since the number of binaries varies as

dNp(t)
dt

= —Rp (1), (6)

integration of this equation gives the evolution of the number
of pairs in the halo, that is

Nyt = No ()" ™

Using this result, the merger rate at the present age 7 = 10'°
years is

Ry(T) = K20 (2 Lp 8
WT) =K== () LD, ®)
The term L(D) introduced in Eq. (8) needs a more detailed
explanation. It takes into account the effective number of
halos inside the volume of radius D probed by the gravi-
tational antenna. Here we follow the procedure adopted by
[26] that can be summarised as follows: assuming that the
light distribution of galaxies tracks dark matter, the factor
L(D) represents the ratio between the total (blue) luminosity
within the considered volume and that of the Milky Way. For
D < 0.5 Mpc the correction factor is essentially unity since
the closest bright galaxy (M31) is at a distance of about 0.77
Mpc. To compute the correction factor for large distances, the
counts of galaxies performed by [27] and the LEDA (Lyon—
Meudon Extragalactic Database) were adopted. Following
[26] we have also included the contribution of the large
complex of galaxies centered in Norma (the Great Attrac-
tor), which alone gives a contribution to the correction fac-
tor of 2900 for distances D > 70 Mpc. Hence, in other to
make numerical estimates from these relations, it iS neces-
sary to evaluate the volume of radius D probed either by the
advanced LIGO or the ET interferometers.

4 Detection limits

The strength of a given signal is characterised by the signal-
to-noise ratio (§/N), which depends on the source power
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spectrum and on the noise spectral density S,(f) of the
detector. For the merging of a binary system constituted by
compact objects, the optimum S/N ratio is obtained by the
matched-filtering technique, e.g.,

S 2 00 iiz
(—) = 4/ (/) df. C)
N o Su(f)
In the equation above, 72(f) is the sum of the square of
the Fourier transform of both polarization components of the

gravitational wave signal. Here we will adopt the approach
by Finn [28] and, in this case, Eq. (9) is reduced to

s M, \Y
ﬁzsca(%)(]m@) £ (finar). (10)

In this equation the angular function ® depends on the geo-
metrical projection factors of the detector and on the incli-
nation angle i between the orbital angular momentum of the
binary and the line of sight, that is,

2
@2:4[(1+cos2i) F§+4cos2iF§] (1)

According to Finn and Chernoff [29], if ©® is in the range
0 < ® < 4, its probability distribution can be approximated
with a quite good accuracy by the relation

504 — ©)3

P®) =—75

(12)
Using this distribution, the average value of ® that will be
adopted in our computations is 4/3. The other quantities in
Eq. (10) are: the chirp mass M, = u’/>M?/> with u and
M being respectively the reduced and the total mass of the
system, D is the distance to the source, and the parameter rg
(having the dimension of a length) is defined by the relation

ro = 9.25 x 107,/ 5 kpe, (13)
where
fo\'7 e dr
I = <_°) / e (14)
T 0 f Sn(f)

with fo = 203.38 kHz. The factor ¢ ( fimax) is defined simi-
larly, e.g.,

§ (fmax) =

13 2 fmax
(fo/m) / daf (15)
0

I3 f138.(f)’

and the maximum frequency appearing in the upper limit of
the integral is given by Eq. (1).
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Table 1 Minimum fraction of axionic black hole binaries derived from three assumed detection rates (in brackets) for the Einstein Telescope and
Advance LIGO. The maximum radius of the probed volume of the universe is also given

Detector Dnax (Mpc) f» (0.1 events/year) f» (1 event/year) f» (10 events/year)
Einstein telescope 430 9.3x 1078 9.3 x 1077 9.3 x 107°
Advanced LIGO 57 1.1 x 107 1.1 x 1074 1.1 x 1073

In order to compute the integrals in Eqs. (14) and (15),
we adopt the spectral noise density for the advanced LIGO
interferometer [14] and for the planned Einstein Telescope
(ET) [15], version shot-noise limited antenna with a knee-
frequency around 1 kHz. In these cases the scale parameter
results to be ryp = 127 Mpc and 958 Mpc respectively for the
advanced LIGO and ET instruments. Hence, for S/N ~ 7,
the typical threshold for a false alarm rate of about 1 per year,
the maximum distances that can be probed respectively by
advanced LIGO and ET are 57 Mpc and 430 Mpc. Using these
numbers, the resulting fraction of binaries is given in Table
1 for three assumed detection rates. For having a detection
rate of one event per year, advanced LIGO imposes a limit
of about 10~ for the fraction of binaries, while a lower limit
is needed for the ET antenna that is about 107°.

5 Concluding remarks

In the past years, the collapse of a bosonic star has been the
subject of many investigations. If several questions are still
waiting for an adequate answer, it seems that there is a general
agreement about the existence of a critical mass above which
ablack hole could be formed. The original work by Kaup [7],
based on the solution of the relativistic Klein-Gordon equa-
tion, indicated that for the free-field case there is a maximum
mass of the configuration (Kaup limit) that depends inversely
on the mass of the scalar field. The equilibrium of these con-
figurations is a consequence of the balance between gravity
and the quantum pressure due to the Heisenberg Uncertainty
Principle. More recently, from a dynamical study of scalar
fields [2], the authors conclude that a black hole could be
formed if the mass of the system is larger than a critical value
that differs from the Kaup limit only by a small numerical
factor.

On the other hand, axions (or axion-like particles) are
possible candidates to be identified as dark matter particles.
Thus, a natural question arises whether these particles could
form structures with masses above the critical value and,
consequently, collapse into black holes. As we have seen,
QCD axions can form miniclusters whose mass are below
the critical value and hence the formation of black holes is
not expected. Nevertheless, a recent investigation [13] con-
sidered a more extreme scenario in which the axion mass has
an important dependence on the temperature, i.e., m oc TF.

In this picture, for a given axion mass, the corresponding
minicluster mass is larger than that of QCD axions. Using
this result and the critical mass by [2], we have shown that
for masses above 0.32 M, corresponding to an axion mass
of 3 x 10719 ¢V, the miniclusters can collapse and form black
holes. Note that the minicluster model taken from [13] only
guarantees enough mass for the critical condition in the whole
cluster, and that we are assuming that the whole cluster is col-
lapsing into the black hole, with no intermediate process of
stars formation, that would require an efficient cooling mech-
anism or an even larger minicluster mass in order to produce
a critical axion star [5].

Clearly, it is difficult to say if the adopted scenario for
the formation of axion miniclusters is realistic or not. It is
worth mentioning that a recent investigation has simulated
the formation of axion stars using a relativistic approach [30].
These simulations indicate that configurations with masses
larger than 2.14 x 10~'° (eV/m) M collapse into a black
hole. For axions of mass 3 x 1071 eV the critical mass is
about 0.7 Mg, a value that is surprisingly consistent with the
values we have obtained. If in [30] the possibility of emis-
sion of gravitational waves by the coalescence of binaries
is invoked, the authors restrict their analysis to the fact that
the maximum emitted frequency will be within the range of
frequencies able to be detected by the advanced LIGO inter-
ferometer. In other words, the antenna is able to explore the
window of axion masses around 10710 eV.

In this work it is assumed that a fraction of black hole
binaries is formed during the process of assembly of halos
as described in [13] and a simple model for their evolution is
presented, which is controlled essentially by the gravitational
radiation emitted during the inspiral phase. Two interferom-
eters were considered in our analysis: advanced LIGO and
the planned Einstein Telescope. The first can probe the signal
of these binaries in a volume with radius of 57 Mpc while
the second will see much further, probing a volume having
a radius of 430 Mpc. For detection rates of one event per
year, the limits imposed to the binary fraction are of 10~
and 1079 respectively for the advanced LIGO and ET. In
the case of ad-LIGO that is currently in operation, ten years
of accumulated data will move an order of magnitude this
limit and impose severe constraints either on the formation
of binaries or on the fraction of black holes that could have
been formed in the axion dark matter scenario.
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