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Abstract Massless spinning particle model that interacts
with electromagnetic and antisymmetric gauge fields in anti-
de Sitter space-time is considered as a constrained Hamilto-
nian system. d-dimensional anti-de Sitter space-time is real-
ized as a real projective manifold parametrized by the homo-
geneous coordinates. Classical constraints that generate in
the presence of interactions minimal world-line supersym-
metry algebra extended by the dilatations of the ambient-
space homogeneous coordinates are found. Various repre-
sentations of the Lagrangian of the spinning particle are
obtained. Dirac quantization is shown to produce first- and
second-order equations for the wave function of the spinning
particle that are presented in the homogeneous, inhomoge-
neous and intrinsic coordinates of AdSd .

1 Introduction

Spinning particle models [1–4] are known to provide classi-
cal realization of the spin 1/2 field equations in Minkowski
space-time as odd generators of the minimal world-line
supersymmetry algebra that is the finite-dimensional sub-
algebra of the infinite-dimensional superVirasoro algebra of
the superstring. Since the world-line supersymmetry is less
restrictive than the world-sheet one, spinning particle mod-
els admit a wide variety of generalizations. In particular,
it is possible to include interactions with background elec-
tromagnetic [1,5–8], Yang-Mills [9,10], gravitational [5,11]
and antisymmetric gauge fields [12] in a way consistent with
minimal world-line supersymmetry. Such models upon quan-
tization yield Dirac equation for spin 1/2 field interacting
with background fields. Apart from Minkowski space-time
of the special interest are maximally symmetric spaces such
as anti-de Sitter space-time. There the interplay between the
space-time geometry and world-line supersymmetry appears
to be quite non-trivial [13,14].
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Anti-de Sitter space can be described as a manifold embed-
ded into flat space-time with extra dimension(s) and it is pos-
sible to consider respective spinning particle models [15–
18]. These provide pseudoclassical realization of the idea
of formulating field dynamics in (anti-)de Sitter (as well as
Minkowski) space in a way exhibiting (conformal) isome-
tries that dates back to the seminal works of Dirac [19,20].
It was also applied to examine conformal field theories in
4-dimensional Minkowski (Euclidean) space-time [21–23]
and to formulate dynamical equations for the gauge fields
in 4-dimensional anti-de Sitter space [24,25]. More recently
embedding (or ambient) space description was applied to
study correlation functions in d-dimensional conformal field
theories taking advantage of the AdS/CFT inspired tech-
niques [26–28] and to study higher-spin field equations in
AdSd and its conformal boundary [29–31]. In Ref. [32]
there was considered the possibility of applying twistor meth-
ods to the AdS/CFT duality based on the projective-space
description of the bulk anti-de Sitter space parametrized by
the homogeneous coordinates that naturally combines lin-
ear realization of SO(2, d − 1) isometry and the projective
light-cone description of the (d − 1)-dimensional conformal
boundary space-time. Shortly after that two-twistor formu-
lation of the spinning particle in AdSd for d = 4, 5, 7 was
proposed in [33]. It is based on the generalization [34] of the
two-twistor formulation of the massive bosonic particle in
AdS5 [35].1

Utility of the projective-space realization of anti-de Sit-
ter space from the viewpoint of canonical description of
massless particle (tensionless string) models can be justi-

1 In [33,34] there was also proposed two-supertwistor formulation
of the particle model in AdSd (d = 4, 5, 7) foliated by the super-
Minkowski slices. For d = 5 complete twistor form of the massless
superparticle action in (10|32)−dimensional AdS5 × S5 superspace
was found in [36]. In addition to the pair of SU (2, 2|4) Penrose-Ferber
supertwistors [37], it invloves the pair of SU (2, 2|4) supertwistors with
the odd SU (2, 2) and even SU (4) components in accordance with the
earlier results of Ref. [38,39].
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fied as follows. Description of AdSd as an embedded hyper-
boloid assumes imposition of the constraint y2 + 1 ≈
0 on the ambient-space inhomogeneous coordinates ym ,
where the SO(2, d − 1)-invariant scalar product y2 =
(y · y) = ymηmn yn is taken w.r.t. Minkowski metric ηmn =
diag(−,−,+, · · · ,+) and AdSd radius is set to unity. In the
canonical approach the mass-shell constraint for the mass-
less particle (tensionless string zero modes) in its simplest
form is p2 ≈ 0 and its Poisson bracket (PB) relations with
the above constraint imply that (y · p) ≈ 0 is also a constraint
forming with y2 + 1 ≈ 0 the pair of the second-class con-
straints. The presence of the second-class constraints neces-
sitates introduction of the Dirac brackets (DB) that in general
essentially complicates analysis of the Hamiltonian dynam-
ics (see, e.g. [40]) so it is convenient to treat the constraint
y2 +1 ≈ 0 as a gauge-fixing condition for the first-class con-
straint (y·p) ≈ 0 that generates dilatations of the embedding-
space coordinates [41]. Gauged dilatations implement the
projective-space realization of AdSd , so the set of the two
first-class constraints (y · p) ≈ 0 and p2 ≈ 0 can be taken
as the starting point for description of the massless particle
(tensionless string zero modes) models in such an approach.

In the Lagrangian approach important feature of the
parametrization of AdSd by the homogeneous coordinates
xm : ym = |x |−1xm , |x | = √−x2, is that the object that
can be naturally identified with the metric tensor, taking into
account the form of the line element,

ds2 = 1

|x |2 dx
mθmndx

n, θmn = ηmn + 1

|x |2 xmxn, (1)

is degenerate det θ = 0. So one is led to consider par-
ticle (string, brane) mechanics in the space with degen-
erate metric [42]. Tensor θmn and associated differential
operator θmn ∂/∂xn also enter dynamical equations for the
AdSd higher-spin fields in the ambient-space formulation
[24,25,43–45].

In Ref. [46] there was proposed massless spinning particle
model in AdSd realized as the projective space parametrized
by the homogeneous coordinates. Three first-class con-
straints of the model (one odd and two even) span minimal
world-line supersymmetry algebra extended by the gauged
space-time dilatations. Dirac quantization of the model yields
Dirac and Klein-Gordon equations for the particle’s wave
function that is a homogeneous function of degree zero.

In this note we continue to study the above model and
examine the possibility of including interactions with back-
ground gauge fields. As the starting point we take Hamil-
tonian first-class constraints of the free spinning particle
model. Then we seek for the generalizations of the odd con-
straint, that is the world-line supersymmetry generator, by
the terms depending on the background gauge fields and cal-
culate its DB relations with itself that define bosonic con-

straint generating world-line reparametrizations. Then lin-
ear combination of these constraints and the generator of
the space-time dilatations with the Lagrange multipliers is
used to write down the Lagrangian of the interacting spin-
ning particle model in terms of the phase-space variables.
These Lagrange multipliers play the role of the gauge fields
for local world-line supersymmetry, reparametrizations and
space-time dilatations. Integrating out space-time momen-
tum and some of the Lagrange multipliers we derive various
representations of the spinning particle Lagrangian. After
that we discuss Dirac quantization of the proposed models.
We find Hermitian operators associated with the classical
first-class constraints from the requirement that they satisfy
quantum world-line supersymmetry algebra. Then the sub-
stitution of the realization of the Hermitian momentum oper-
ator as a differential operator in configuration space produces
Dirac- and Klein-Gordon-type equations for the wave func-
tion of the spinning particle in homogeneous coordinates. We
also write these equations in the inhomogeneous and intrinsic
coordinates on AdSd .

Section 2 is devoted to the spinning particle’s interaction
with the background electromagnetic field.2 In Sect. 3 we
discuss gauge-invariant interaction with the rank r − 1 anti-
symmetric gauge field. Like in the case of electromagnetic
interaction closed algebra of the constraints is obtained and
various forms of Dirac- and Klein-Gordon-type equations for
the particle’s wave function are found. Let us remark that the
spinning particle model with minimal world-line supersym-
metry interacting with odd-rank antisymmetric tensor gauge
fields in (2d+1)-dimensional Minkowski space was studied
in [12] from the perspective of the Kaluza-Klein dimensional
reduction. In 2d dimensions it results in the particle’s inter-
actions with both rank 2r and 2r + 1 antisymmetric gauge
fields as well as with the electromagnetic field. Curiously
antisymmetric gauge fields appear in quantization of the spin-
ning particle model with extended world-line supersymmetry
[53].

2 Charged spinning particle in background
electromagnetic field

Consider odd constraint

�(e) = |x | ξ · (p − eA(x)) ≈ 0 (2)

as the classical analogue of the Dirac equation that includes
interaction with external electromagnetic field. We take it
as the generator of the minimal world-line supersymmetry.

2 (Non-minimal) electromagnetic interactions of the superparticle were
considered in [47–52].
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In the absence of the interaction it coincides with odd con-
straint introduced in [46]. Observe that the minimality prin-
ciple fixes the homogeneity degree of Am(x): (x · ∂)A(x) =
−A(x). Transverse strength of the electromagnetic field by
definition is

Fmn(x) = θm
kθn

l(∂k Al − ∂l Ak) = ∂m An − ∂n Am,

θm
n(x) = δm

n + xmxn

|x |2 (3)

and the last equality follows by taking into account transver-
sality (x · A(x)) = 0 and homogeneity properties of the
electromagnetic potential. After introduction of the PB (DB)
relations

{pm, xn}PB = δ
n
m, {ξm, ξn}DB = iηmn (4)

it is easy to see that odd constraint (2) has zero PB with the
constraint

D = (x · p) ≈ 0 (5)

that generates dilatations of the embedding-space coordi-
nates. Also the DB relations of the supersymmetry generator
with itself

{�(e), �(e)}DB = iT(e) (6)

define bosonic constraint

T(e) = |x |(p−eA)2+2i(ξ ·x)ξ ·(p−eA)+ie|x |2(ξ ·F ·ξ) ≈ 0

(7)

that is the generator of the world-line reparametrizations.
Eq. (6) appears to be the only non-trivial relation of the
world-line supersymmetry algebra extended by the space-
time dilatations.

Having introduced the classical first-class constraints we
can write down the spinning particle’s Hamiltonian as their
linear combination

H(e) = ẽ

2
T(e) − aD − iχ�(e) ≈ 0 (8)

with even ẽ, a and odd χ Lagrange multipliers. Then the
action is defined as the integral of the Lagrangian expressed
in terms of the phase-space variables

S(e) =
∫

dτL(e) ph, (9)

where

L(e) ph = (p · ẋ) + i

2
(ξ · ξ̇ ) − H(e). (10)

Integrating out the momentum pm yields configuration-space
form of the particle’s Lagrangian

L(e) conf = 1
2ẽ|x |2 (ẋ + ax)2 + e(ẋ · A) + i

2 (ξ · ξ̇ )

− i
|x |2 (ξ · x)(ξ · ẋ)

+ iχ
ẽ|x |ξ · (ẋ + ax) − ie

2 ẽ|x |2(ξ · F · ξ).

(11)

The Lagrange multiplier a plays the role of the gauge field
for the scale transformations of x and p. Integrating it out
allows to bring the Lagrangian to the form

L(e) RPd = 1
2ẽ|x |2 (ẋθ ẋ) + e(ẋ · A) + i

2 (ξ · ξ̇ )

− i
|x |2 (ξ · x)(ξ · ẋ)

+ iχ
ẽ|x | (ξθ ẋ) − ie

2 ẽ|x |2(ξ · F · ξ)

(12)

that manifests the realization of AdSd as the projective space
RPd parametrized by the homogeneous coordinates with the
degenerate metric θmn = ηmn + 1

|x |2 xmxn .
In quantum theory classical observables are replaced by

the Hermitian operators and their PB (DB) relations—by the
(anti)commutators. The operators associated with the phase-
space variables satisfy the (anti)commutation relations3

[pm, xn] = −iδ
n
m, {ξm, ξn} = ηmn . (13)

From the anticommutation relations of ξm it follows that
they are proportional to γ−matrices in (d + 1) dimensions:
ξm = 2−1/2γm and their Hermiticity is understood in the
same sense as that of γm , i.e. (γm)† = (−)t Aγm A−1, where
A = γ 01γ 02 · · · γ 0t and t is the number of time-like dimen-
sions (t = 2 for the realization of AdSd as the hyperboloid in
the ambient space-time). Classical constraints become Her-
mitian operators that select physical subspace in the space
of quantum states of the spinning particle. We choose Her-
mitian operator associated with the classical supersymmetry
generator in the form

�(e)H = |x |γ · (p − eA) + i(γ · x)
2|x | ≈ 0, (14)

where the second summand arises as a result of moving the
momentum operator to the right in the manifestly Hermitian
representation for the first summand. The square of �(e)H

�2
(e)H = T(e)H (15)

3 We do not place hats over the quantum operators and set h̄ = 1 not
to overburden the notation. Hopefully, this will not cause a confusion.
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defines Hermitian operator associated with the classical con-
straint T(e)

4

T(e)H = [|x | γ · (p − eA)
]2 + i DH − 1

4
≈ 0, (16)

where

DH = (x · p) − i(d + 1)

2
≈ 0 (17)

is the Hermitian operator for the generator of the space-time
dilatations. Note the relation

[|x | γ · (p − eA)
]2 = |x |2(p − eA)2 + i(γ · x)γ · (p − eA)

+ ie

2
|x |2(γ · F · γ ) (18)

that makes obvious the contact with the classical constraint
(7).

For the case of flat configuration-space Hermitian momen-
tum operator can be realized as the coordinate partial deriva-
tive acting on the wave function �(x). Whenever config-
uration space is a curved manifold, Hermitian momentum
operator is given by

pm = −i(−g)−
1
4 ∂m(−g)

1
4 , (19)

where g is the determinant of the configuration-space metric
tensor. In the realization of anti-de Sitter space-time as the
projective manifold, the scale-invariant measure is propor-
tional to |x |−d−1εm1m2···md+1

xm1dxm2 ∧ · · · ∧ dxmd+1 , so as
the definition of the Hermitian momentum operator we take

pm = −i |x | d+1
2 ∂m |x |− d+1

2 = −i

(
∂m + (d + 1)

2|x |2 xm

)
. (20)

Then the constraint (14) translates into the Dirac-type equa-
tion

�(e)H�(x) = −i |x |γ ·(∂−ieA)�(x)− id(γ · x)
2|x | �(x) = 0

(21)

for the particle’s wave function �(x) that is the 2[ d+1
2 ]-

component spinor field. It has the homogeneity degree zero
DH�(x) = (x · ∂)� = 0 and also satisfies the second-order
equation

T(e)H�(x) = − [|x |γ · (∂ − ieA)
]2

�(x) − d2

4
�(x) = 0.

(22)

4 Discussion of the ambiguities in the definition of Hermitian operators
in locally supersymmetric models can be found, e.g., in [54–56].

To conclude this section let us discuss how the conven-
tional form of spin 1/2 particle’s equations in AdSd in terms
of intrinsic coordinates can be derived from the equations
given above. As an intermediate step let us present Eqs. (21)
and (22) in the inhomogeneous coordinates ym = |x |−1xm .
For Eq. (21) we obtain

�(e)H�(y) = −iγ · (∇ − ieA)�(y) − id

2
(γ · y)�(y) = 0,

(23)

where ∇m = θm
n(y)∂/∂yn , θm

n(y) = δ
n
m + ym yn , and

Eq. (22) becomes

T(e)H�(y) = − [
γ · (∇ − ieA)

]2
�(y) − d2

4
�(y) = 0.

(24)

The electromagnetic potential and field strength in the homo-
geneous and inhomogeneous coordinates are related as

|x |Am(x) = Am(y), |x |2Fmn(x) = Fmn(y). (25)

Transverse field strength in the inhomogeneous coordinates
is defined by

Fmn(y) = θm
kθn

l(∂k Al−∂l Ak) = (∂m+ym)An−(∂n+yn)Am

(26)

and the last equality follows by using the transversality prop-
erty of the potential y · A(y) = 0.

Above equations for the particle’s wave function in the
inhomogeneous coordinates can be transformed to intrinsic
coordinates using the transition formulae [24,25,45]. In par-
ticular, we use the relation between the derivatives of the
coordinate functions

∇mzm = gmn∂n y
m, (27)

where gmn(z) = ∂m ym∂n ym and gmn(z) = ∇mzm∇mzn

are the AdSd metric and its inverse in the intrinsic coor-
dinates. Also the spinning particle’s wave functions in the
inhomogeneous and intrinsic coordinates are connected by

the 2[ d+1
2 ] × 2[ d+1

2 ] matrix M(z)

�(y) = Mψ(z) : (28)

M−1∂mM = 1

2
ωm

abσab + 1

2
eamρa, (29)

M−1(γ · y)(γ · ∂m y)M = eamρa . (30)

In Eqs. (29) and (30) eam(z) and ωm
ab(z) are the AdSd

vielbein and spin connection. Eq. (29) implies that M ∈
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SO(2, d − 1)/SO(1, d − 1) with the so(2, d − 1) gener-
ators realized by the Dirac matrices in d dimensions ρa :

ρaρb + ρbρa = 2ηab (31)

and σab = 1
4 (ρaρb−ρbρa) that span the so(1, d−1) algebra.

Useful consequences of Eqs. (29) and (30) are

(γ · ∂m y) = MρmM
−1(γ · y), {MρmM

−1, (γ · y)} = 0,

ρm = eamρa . (32)

To obtain conventional form of the Dirac equation we mul-
tiply Eq. (23) by M−1(γ · y) from the left. Application of
the transition relations (27)–(30) allows to obtain massless
Dirac equation in AdSd

iM−1(γ · y)�(e)H(y)Mψ(z) = ρmDm(A)ψ(z) = 0, (33)

where

Dm(A) = ∂m + 1

2
ωm

abσab − ieAm (34)

is the spinor covariant derivative extended by the external
electromagnetic potential. The commutator of the covariant
derivatives

[Da(A), Db(A)] = 1

2
Rab

cdσcd − ieFab = −σab − ieFab,

Da(A) = ema Dm(A) (35)

appears in the transformation of the second-order equation
(24) to the intrinsic coordinates. To find the final form we
substituted explicit expression for the Riemann tensor

Rklmn = gknglm − gkmgln, (R = Rmn
mn = −d(d − 1))

(36)

that provides solution of the Einstein equations in the form
widely used in the literature on the AdS/CFT correspon-
dence:

Rmn − 1

2
gmn R + �gmn = 0 (37)

with the cosmological constant � = − (d−1)(d−2)
2 . The

resulting Klein-Gordon-type equation is

− M−1T(e)HMψ(z) = D2(A)ψ − ieσmnFmnψ

+d(d − 1)

4
ψ = 0. (38)

Note that [(γ · y)�(e)H]2 differs from �2
(e)H by the linear

combination of the constraints �(e)H and DH.

3 Spinning particle interactions with antisymmetric
gauge fields

In this section we discuss gauge-invariant coupling of
the spinning particle to external (r − 1)-form gauge field
Am[r−1](x)5 that we assume to be transverse xn Anm[r−2](x)
= 0 and homogeneous of degree −(r − 1). The definition of
the transverse field strength

Fm[r ](x) = θm1
n1θm2

n2 . . . θmr
nr ∂[n1

An2...nr ] = ∂[m1
Am2...mr ]

(39)

generalizes that for the electromagnetic field (3). Since the
form of the coupling is sensitive to the value of r we start
with the case of odd r and then turn to even r .

3.1 r odd

In this case the fermionic constraint

�(q, r odd) = |x |(ξ · p) + inq|x |r ξm[r ]Fm[r ] ≈ 0 (40)

naturally generalizes that for the free spinning particle. q
stands for the particle’s charge, ξm[r ] = ξm1 . . . ξmr and the
factor |x |r makes the last term homogeneous of degree zero
like the first is, while the factor in , n = r−1

2 − 2[ r−1
4 ] makes

it real under the complex conjugation. DB relations of this
constraint with itself generate classical world-line supersym-
metry algebra

{�(q, r odd), �(q, r odd)}DB = iT(q, r odd) (41)

with

T(q, r odd) = |x |2 p2 + 2i(ξ · x)(ξ · p)
+2rinq|x |r+1ξn[r−1]Fn[r−1]m pm

−2rin−1q|x |r−1(ξ · x)ξm[r ]Fm[r ]
+(−)

r−1
2 r2q2|x |2rξm[r−1]Fm[r−1]k

×Fkn[r−1]ξn[r−1] ≈ 0

(42)

being the world-line reparametrization generator in the pres-
ence of the interaction.

Similarly to the previously considered case of the inter-
action with the background electromagnetic field, one can
write down the spinning particle’s Hamiltonian

H(q, r odd) = ẽ

2
T(q, r odd) − aD − iχ�(q, r odd) ≈ 0 (43)

5 We use the notation according to which a number in square brackets
following an index stands for the set of antisymmetrized indices equal
to that number.
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and the action functional

S(q, r odd) =
∫

dτL(q, r odd) ph, (44)

where the Lagrangian expressed in terms of the phase-space
variables has the form

L(q, r odd) ph = (p · ẋ) + i

2
(ξ · ξ̇ ) − H(q, r odd). (45)

Integrating consecutively momentum pm and dilatation
gauge field a yields two representations of the configuration-
space Lagrangian:

L(q, r odd) conf = 1

2ẽ|x |2 (ẋ + ax)2 + i

2
(ξ · ξ̇ )

− i

|x |2 (ξ · x)(ξ · ẋ)
−rinq|x |r−1ξm[r−1]Fm[r−1]n ẋn

+ iχ

ẽ|x | (ξ · (ẋ + ax)

+(1 − r)inqẽ|x |r+1ξm[r ]Fm[r ]
)

(46)

and

L(q, r odd) RPd = 1

2ẽ|x |2 (ẋθ ẋ) + i

2
(ξ · ξ̇ )

− i

|x |2 (ξ · x)(ξ · ẋ)
− rinq|x |r−1ξm[r−1]Fm[r−1]n ẋn

+ iχ

ẽ|x | ((ξθ ẋ)

+(1 − r)inqẽ|x |r+1ξm[r ]Fm[r ]
)

. (47)

In quantum theory the Hermitian operator associated with
the odd constraint (40) is

�(q, r odd)H = |x |(γ ·p)+ i(γ · x)
2|x | + inq

2
r−1

2

|x |rγm[r ]Fm[r ] ≈ 0,

(48)

where the antisymmetrized product of r γ -matrices is defined
as

γm[r ] = 1

r !γ
[m1γm2 . . . γmr ]. (49)

Squaring the constraint (48) allows to obtain quantum version
of the world-line supersymmetry algebra (41)

�2
(q, r odd)H = T(q, r odd)H (50)

and define the Hermitian operator corresponding to the gen-
erator of the world-line reparametrizations

T(q, r odd)H = [|x |(γ · p)]2+ rinq

2
r−3

2

|x |r+1γ n[r−1]Fn[r−1]m pm

+ rin+1q

2
r−1

2

|x |r−1
(
(γ · x)γm[r ]Fm[r ]

−|x |2γ n[r−1]∂mFmn[r−1]
)

+ (−)nq2

2r−1
|x |2r (γm[r ]Fm[r ])2 + i DH − 1

4
≈ 0. (51)

Let us note in passing that the square of γm[r ]Fm[r ] can be
expanded over the basis of the antisymmetrized products of
γ -matrices using the relations given, e.g. in [57]

(γm[r ]Fm[r ])2 =
r−1

2∑
k=0

(−)k
(r !)2

(2k+1)![(r − 2k − 1)!]2

×Fm[2k+1]n[r−2k−1]Fm[2k+1]l[r−2k−1]γn[r−2k−1]l[r−2k−1]
= r2Fmn[r−1]Fml[r−1]γn[r−1]l[r−1]

− [r(r − 1)]2

6
Fm[3]n[r−3]Fm[3]l[r−3]γn[r−3]l[r−3]

+ · · · + (−)
r−1

2 r !Fm[r ]Fm[r ]. (52)

Clearly which of the (r + 1)/2 terms actually contribute to
the sum depends on the values of r and the space-time dimen-
sion d.

Substitute now the realization (20) of the momentum as
the differential operator to impose (48) and (51) on the con-
figuration space wave function �(x). So we come to the
first-order Dirac-type equation

�(q, r odd)H�(x) = −i |x |(γ · ∂)� − id(γ · x)
2|x | �

+ inq

2
r−1

2

|x |rγm[r ]Fm[r ]� = 0 (53)

and the second-order Klein-Gordon-type equation

T(q, r odd)H�(x) = − [|x |(γ · ∂)
]2

�

− rin+1q

2
r−3

2

|x |r+1γ n[r−1]Fn[r−1]m∂m�

+ rin+1q

2
r−1

2

|x |r−1
(
(γ · x)γm[r ]Fm[r ]

−|x |2γ n[r−1]∂mFmn[r−1]
)

�
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+ (−)nq2

2r−1
|x |2r (γm[r ]Fm[r ])2� − d2

4
�

= 0. (54)

For transformation of the above equations to the intrinsic
coordinates let us first rewrite them in the inhomogeneous
coordinates. Eq. (53) takes the form

�(q, r odd)H�(y) = −i(γ · ∇)� − id

2
(γ · y)�

+ inq

2
r−1

2

γm[r ]Fm[r ]� = 0, (55)

where the r -form field strength in the homogeneous and inho-
mogeneous coordinates is related in the following way

|x |r Fm[r ](x) = Fm[r ](y), Fm[r ](y)
= (∂[m1

+ (r − 1)y[m1
)Am2...mr ] (56)

generalizing (25) and (26) for the electromagnetic field.
The Klein-Gordon-type equation (54) in the inhomogeneous
coordinates reads

T(q, r odd)H�(y) = − [
(γ · ∇)

]2
�

− rin+1q

2
r−3

2

γ n[r−1]Fn[r−1]m∇m�

+ rin+1q

2
r−1

2

(
(γ · y)γm[r ]Fm[r ]

−γ n[r−1]∇mFmn[r−1]
)

�

+ (−)nq2

2r−1
(γm[r ]Fm[r ])2� − d2

4
� = 0.

(57)

Then using the relations (27)-(32) we find wave equations
describing gauge-invariant interaction of the spin 1/2 field
on the AdSd background with the odd-rank antisymmetric
gauge field in the intrinsic coordinates

iM−1(γ · y)�(q, r odd)HMψ(z)

= ρmDmψ + in+1q

2
r−1

2

ρm[r ]Fm[r ]ψ = 0 (58)

and

− M−1T(q, r odd)HMψ(z)

= D2ψ + rin+1q

2
r−3

2

ρm[r−1]Fm[r−1]nDnψ

+ rin+1q

2
r−1

2

ρm[r−1]DnFnm[r−1]ψ

− (−)nq2

2r−1
(ρm[r ]Fm[r ])2ψ + d(d − 1)

4
ψ = 0. (59)

The definition of the spinor covariant derivative coincides
with (34) in the absence of electromagnetic field and the
r−form field strength in the ambient-space and intrinsic
coordinates is related as

Fm[r ](y) = ∂m1 ym1
. . . ∂mr ymr

Fm[r ](z),
Fm[r ](z) = ∂[m1 Am2...mr ](z). (60)

3.2 r even

In the case of r even, the odd constraint takes the form

�(q, r even) = |x |(ξ · p) + inq|x |r−1(ξ · x)ξm[r ]Fm[r ] ≈ 0.

(61)

In this subsection n = r
2 − 2[ r4 ]. Similarly to the previously

considered models, DB relations of this constraint with itself
generate the world-line supersymmetry algebra

{�(q, r even), �(q, r even)}DB = iT(q, r even), (62)

where the world-line reparametrization generator equals

T(q, r even) = |x |2 p2 + 2i(ξ · x)(ξ · p)
+ 2rinq|x |r (ξ · x)ξn[r−1]Fn[r−1]m pm

+ 2inq|x |r ξm[r ]Fm[r ](x · p)
− (−)nq2|x |2r (ξm[r ]Fm[r ])2 ≈ 0. (63)

The constraints (61), (63) and D are the first-class con-
straints of the model and are used to define the spinning
particle’s Lagrangian and action functional

S(q, r even) =
∫

dτL(q, r even) ph : (64)

L(q, r even) ph = (p · ẋ) + i

2
(ξ · ξ̇ ) − ẽ

2
T(q, r even)

+ aD + iχ�(q, r even). (65)

Substituting explicit expressions for these constraints and
integrating out the momentum allows to transfer from
the phase-space to the configuration-space form of the
Lagrangian

L(q, r even) conf = 1

2ẽ|x |2 (ẋ + ax)2 + i

2
(ξ · ξ̇ )

− i

|x |2 (ξ · x)(ξ · ẋ)
− rinq|x |r−2(ξ · x)ξm[r−1]Fm[r−1]n ẋn

+ (−)nq2

2
ẽ|x |2r (ξm[r ]Fm[r ])2

123
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+ iχ

ẽ|x | (ξ · (ẋ + ax)

+(1 − r)inqẽ|x |r (ξ · x)ξm[r ]Fm[r ]
)

.

(66)

Further integrating out the dilatation gauge field, one finds the
Lagrangian that corresponds to the realization of the AdSd
as a projective manifold with the degenerate metric

L(q, r even) RPd = 1

2ẽ|x |2 (ẋθ ẋ)

+ i

2
(ξ · ξ̇ ) − i

|x |2 (ξ · x)(ξ · ẋ)
− rinq|x |r−2(ξ · x)ξm[r−1]Fm[r−1]n ẋn

+ (−)nq2

2
ẽ|x |2r (ξm[r ]Fm[r ])2

+ iχ

ẽ|x | ((ξθ ẋ)

+(1 − r)inqẽ|x |r (ξ · x)ξm[r ]Fm[r ]
)

.

(67)

Now we come to the discussion of the Dirac quantization
of the model. Let us define the Hermitian operator associated
with the odd constraint (61) as

�(q, r even)H = |x |(γ · p) + i(γ · x)
2|x |

+ inq

2
r
2

|x |r−1(γ · x)γm[r ]Fm[r ] ≈ 0. (68)

As in the previous sections expression for the Hermitian oper-
ator that corresponds to the world-line reparametrization gen-
erator is obtained by requiring the closure of the world-line
supersymmetry algebra

�2
(q, r even)H = T(q, r even)H, (69)

where

T(q, r even)H = [|x |(γ · p)]2

+ rinq

2
r
2
−1

|x |r (γ · x)γ n[r−1]Fn[r−1]m pm

+ rin+1q

2
r
2

|x |r
(
γm[r ]Fm[r ]

+(γ · x)γ n[r−1]∂mFmn[r−1]
)

− (−)nq2

2r
|x |2r (γm[r ]Fm[r ])2 + i

(
1 + in−1q

2
r
2
−1

|x |rγm[r ]Fm[r ]

)
DH − 1

4
≈ 0.

(70)

Realizing momentum operator as the differential operator in
configuration space allows to obtain Dirac-type and Klein-
Gordon-type equations for the particle’s wave function in the
homogeneous coordinates

�(q, r even)H�(x) = −i |x |(γ · ∂)� − id(γ · x)
2|x | �

+ inq

2
r
2

|x |r−1(γ · x)γm[r ]Fm[r ]� = 0

(71)

and

T(q, r even)H�(x) = − [|x |(γ · ∂)]2�

− rin+1q

2
r
2
−1

|x |r (γ · x)γ n[r−1]Fn[r−1]m∂m�

+ rin+1q

2
r
2

|x |r
(
γm[r ]Fm[r ]

+(γ · x)γ n[r−1]∂mFmn[r−1]
)

�

− (−)nq2

2r
|x |2r (γm[r ]Fm[r ])2� − d2

4
�

= 0. (72)

Note that �(x) is homogeneous of degree zero since
DH�(x) = 0. In terms of the inhomogeneous coordinates
ym = |x |−1xm these equations acquire the form

�(q, r even)H�(y) = −i(γ · ∇)� − id

2
(γ · y)�

+ inq

2
r
2

(γ · y)γm[r ]Fm[r ]� = 0 (73)

and

T(q, r even)H�(y) = −[(γ · ∇)]2�

− rin+1q

2
r
2
−1

(γ · y)γ n[r−1]Fn[r−1]m∇m�

+ rin+1q

2
r
2

(
γm[r ]Fm[r ]

+(γ · y)γ n[r−1]∂mFmn[r−1]
)

�

− (−)nq2

2r
(γm[r ]Fm[r ])2� − d2

4
� = 0.

(74)

Connection between the r -form field strength in the homo-
geneous and inhomogeneous coordinates is given in (56).
Using the transition relations (27)–(32) one can write the
above equations in terms of the intrinsic coordinates. Eq. (73)
transforms into the massless Dirac equation on AdSd coupled
to external r -form field strength

123
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iM−1(γ · y)�(q, r even)HMψ(z) = ρmDmψ

+ in−1q

2
r
2

ρm[r ]Fm[r ]ψ = 0. (75)

The relation between the r -form field strength in the inho-
mogeneous and intrinsic coordinates is given in (60). Anal-
ogously the second-order equation (74) transforms into the
generalization of the Klein-Gordon equation

− M−1T(q, r even)HMψ(z)

= D2ψ + rin+1q

2
r
2
−1

ρn[r−1]Fn[r−1]mDmψ

− rin+1q

2
r
2

ρn[r−1]DmFmn[r−1]ψ

+ (−)nq2

2r
(ρm[r ]Fm[r ])2ψ

+ d(d − 1)

4
ψ = 0. (76)

4 Conclusion

In this note we have studied interactions with background
electromagnetic or rank (r − 1) antisymmetric gauge fields
of the minimally-supersymmetric massless spinning particle
in anti-de Sitter space-time. d−dimensional anti-de Sitter
space-time has been realized as a real projective manifold
parametrized by the homogeneous coordinates. For all of
the considered interactions we have found the set of three
first-class constraints, one odd and two even, that gener-
ate extended world-line supersymmetry algebra. The con-
straints are the classical generators of 1d supersymmetry,
reparametrizations and rescalings of the space-time homo-
geneous coordinates. Various forms of the spinning par-
ticle’s Lagrangian both in terms of the phase-space and
configuration-space variables have been derived. Then the
quantum realization of the classical constraint algebra by the
Hermitian operators has been found. The form of the Her-
mitian operator associated with the classical generator of the
world-line reparametrizations is unambiguously fixed by the
closure of the quantum algebra of the constraints. The real-
ization of the Hermitian momentum operator as the differen-
tial operator in configuration space yields first- and second-
order equations for the particle’s wave function in the pres-
ence of background electromagnetic field or antisymmetric
gauge fields. These equations have been presented both in the
homogeneous and inhomogeneous coordinates of the ambi-
ent space. Finally using known transition relations between
the ambient and intrinsic coordinates they have been written
in the conventional form of extended Dirac and Klein-Gordon
equations in AdSd .

Let us note that although we treated independently inter-
actions of the spinning particle with electromagnetic and
(r − 1)-form gauge fields, along the same lines it is possi-
ble to consider simultaneous coupling to a number of gauge
fields and electromagnetic field. One can also consider inter-
actions with mixed symmetry fields that carry even number
of indices in each set of the antisymmetrized indices.

The part of our discussion that concerned transition
of the equations for particle’s wave function from the
ambient-space to intrinsic coordinates assumed implicitly
that Spin(1, d−1) and Spin(2, d−1) spinor representations
have equal dimension that is the case for d even. So one of
possible generalizations is to consider the case of d odd that
presumably requires introduction of additional (odd) vari-
ables and constraints to impose chirality projection on the
spinor wave function in d + 1 dimensions.

As a further development of the results reported here it is
possible to consider interaction of the spinning particle with
the Yang-Mills field, to look for the superfield formulation
and to describe particles with other values of spin.
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